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Abstract

We give the first representation-independent hardness result for agnostically learning halfspaces with
respect to the Gaussian distribution. We reduce from the problem of learning sparse parities with noise
with respect to the uniform distribution on the hypercube (sparse LPN), a notoriously hard problem in
computer science and show that any algorithm for agnostically learning halfspaces requires nΩ(log (1/ε))

time, ruling out a polynomial time algorithm for the problem. As far as we are aware, this is the first
representation-independent hardness result for supervised learning when the underlying distribution is
restricted to be a Gaussian.

We also show that the problem of agnostically learning sparse polynomials with respect to the
Gaussian distribution in polynomial time is as hard as PAC learning DNFs on the uniform distribution in
polynomial time. This complements the surprising result of [APVZ14] who show that sparse polynomials
are learnable under random Gaussian noise in polynomial time.

Taken together, these results show the inherent difficulty of designing supervised learning algorithms
in Euclidean space even in the presence of strong distributional assumptions. Our results use a novel
embedding of random labeled examples from the uniform distribution on the Boolean hypercube into
random labeled examples from the Gaussian distribution that allows us to relate the hardness of learning
problems on two different domains and distributions.

1 Introduction

Proving lower bounds for learning Boolean functions is a fundamental area of study in learning theory ([BR13,
FK12, Fel12, KS10, DLSS13, KKO13, KS06, DOSW11a]). In this paper, we focus on representation-
independent hardness results, where the learner can output any hypothesis as long as it is polynomial-time
computable. Almost all previous work on representation-independent hardness induces distributions that
are specifically tailored to an underlying cryptographic primitive and only rule out learning algorithms that
succeed on all distributions.

Given the ubiquity of learning algorithms that have been developed in the presence of distributional con-
straints (e.g., margin-based methods of [BDS00, BSS12, SSSS10] and Fourier-based methods of [KKMS08,
KOS04]), an important question is whether functions that seem difficult to learn with respect to all distribu-
tions are in fact also difficult to learn even with respect to natural distributions. In this paper we give the first
hardness result for a natural learning problem (agnostically learning halfspaces) with respect to perhaps the
strongest possible distributional constraint, namely that the marginal distribution is a spherical multivariate
Gaussian.
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1.1 Learning Sparse Parities With Noise

Our main hardness result is based on the assumption of hardness of learning sparse parities with noise.
Learning parities with noise (LPN) and its sparse variant are notoriously hard problems with connections
to cryptography [KPC+11] in addition to several important problems in learning theory [FGKP09]. In this
problem, the learner is given access to random examples drawn from the uniform distribution on the n
dimensional hypercube (denoted by {−1, 1}n) that are labeled by an unknown parity function. Each label is
flipped with a fixed probability η (noise rate), independently of others. The job of the learner is to recover the
unknown parity. In the sparse variant, the learner is additionally promised that the unknown parity is on a
subset of size at most a parameter k. It is easy to see that the exhaustive search algorithm for k-SLPN runs in
time nO(k), and an outstanding open problem is to find algorithms that significantly improve upon this bound.
The specific hardness assumption we take is as follows:

Assumption 1. Any algorithm for learning k-SLPN for any constant accuracy parameter ε must run in time
nΩ(k).

The current best algorithm for SLPN is due to Greg Valiant [Val12] and runs in time Ω(n0.8k) for constant
noise rates. Finding even an O(nk/2)-time algorithm for SLPN would be considered a breakthrough result.
We note that the current best algorithm for LPN is due to [BKW03] and runs in time 2O(n/ logn).

Further evidence for the hardness of SLPN are the following surprising implications in learning theory:
1) an no(k)-time algorithm for SLPN would imply an no(k)-time algorithm for learning k-juntas and 2) a
polynomial-time algorithm for O(log n)-SLPN would imply a polynomial-time algorithm for PAC learning
DNF formulas with respect to the uniform distribution on the cube without queries due to a reduction by
[FGKP09]. The LPN and SLPN problems have also been used in previous work to show representation-
independent hardness for agnostically learning halfspaces with respect to the uniform distribution on {−1, 1}n
[KKMS08] and for agnostically learning non-negative submodular functions [FKV13].

1.2 Our results

We focus on giving hardness results for agnostically learning halfspaces and sparse polynomials. Learning
halfspaces is one of the most well-studied problems in supervised learning. A halfspace (also known as a
linear classifier or a linear threshold function) is a Boolean valued function (i.e. in {−1, 1}) that can be
represented as sign(

∑n
i=1 ai · xi + c) for reals a1, a2, . . . , an and c with the input x being drawn from any

fixed distribution on Rn. Algorithms for learning halfspaces form the core of important machine learning
tools such as the Perceptron [Ros58], Artificial Neural Networks [Vap98], Adaboost [FS97] and Support
Vector Machines (SVMs) [Vap98].

While halfspaces are efficiently learnable in the noiseless (PAC model of [Val84]) setting, the wide
applicability of halfspace learning algorithms to labeled data that are not linearly separable has motivated
the question of learning noisy halfspaces. [BFKV98] gave an efficient algorithm to learn halfspaces under
random classification noise. However, under adversarial noise (i.e.the agnostic setting), algorithmic progress
has been possible only with distributional assumptions. [KKMS08] showed that halfspaces are agnostically
learnable on the uniform distribution on the hypercube in time nO(1/ε2) and on the gaussian distribution in
time nO(1/ε4). The latter running time was improved to nO(1/ε2) by [DKN09]. [SSSS10] have given efficient
agnostic algorithms for learning halfspaces in the presence of a large margin (their results do not apply in
this setting, as halfspaces with respect to Gaussian distributions may have exponentially small margins).

[KKMS08] showed that their agnostic learning algorithm on the uniform distribution on the hypercube is
in fact optimal, assuming the hardness of the learning parity with noise (LPN) problem. No similar result,
however, was known for the case of Gaussian distribution:
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Question 1. Is there an algorithm running in time poly(n, 1/ε) to agnostically learn halfspaces on the
Gaussian distribution?

There was some hope that perhaps agnostically learning halfspaces with respect to the Gaussian distribu-
tion would be easier than on the uniform distribution on the hypercube. We show that this is not the case and
give a negative answer to the above question. In fact, we prove that any agnostic learning algorithm for the
class of halfspaces must run in time nΩ(log (1/ε)).

Theorem 1 (see Theorem 7 for details). If Assumption 1 is true, any algorithm that agnostically learns
halfspaces with respect to the Gaussian distribution to an error of ε runs in time nΩ(log (1/ε)).

We next consider the problem of agnostically learning sparse (with respect to the number of monomials)
polynomials. Since this is a real valued class of functions, we will work with the standard notion of `1
distance to measure errors. Thus, the distance between two functions f and g on the Gaussian distribution
is given by Ex∼γ [|f(x)− h(x)|]. Note that `1 error reduces to the standard disagreement (or classification)
distance in case of Boolean valued functions.

Question 2 (Agnostic Learning of Sparse Polynomials). For a function f : Rn → R, normalized so
that Ex∼γ [f(x)2] = 1, suppose there is an s-sparse polynomial p such that Ex∼γ [|f(x) − p(x)|] ≤ δ ∈
[0, 1]. Is there an algorithm that uses random examples labeled by f to return a hypothesis h such that
Ex∼γ [|h(x)− f(x)|] ≤ δ + ε, in time poly(s, n, 1/ε)?

On the uniform distribution on {−1, 1}n, even the noiseless version (i.e. δ = 0) of the question above
is at least as hard as learning juntas. Indeed, a poly(s, n, 1/ε) time algorithm for PAC learning s-sparse
polynomials yields the optimal (up to polynomial factors) run time of poly(2k, n, 1/ε) for learning juntas.
Agnostically learning sparse polynomials on the uniform distribution on {−1, 1}n is at least as hard as the
problem of PAC learning DNFs with respect to the uniform distribution on {−1, 1}n, a major open question
in learning theory.

On the other hand, a surprising recent result by [APVZ14] shows that it is possible to learn sparse
polynomials in the presence of random additive Gaussian noise with respect to the Gaussian distribution (as
opposed to the agnostic setting where the noise is adversarial).

Given the results of [APVZ14], a natural question is if the agnostic version of the question is any easier
with respect to the Gaussian distribution. We give a negative answer to this question:

Theorem 2 ( See Theorem 9 for details). If Assumption 1 is true, then, there is no algorithm running in
time poly(n, s, 2d, 1/ε) to agnostically learn s-sparse degree d polynomials from random examples on the
Gaussian distribution.

A subroutine to find heavy Fourier coefficients of any function f on {−1, 1}n is an important primitive
in learning algorithms and the problem happens to be just as hard as agnostic learning sparse polynomials
described above. On the Gaussian distribution, Fourier-Transform based methods employ what is known as
the Hermite transform [KKMS08, KOS08].

We show that the problem of finding heavy Hermite coefficients of a function on Rn from random
examples is no easier than its analog on the cube. In particular, we give a reduction from the problem of PAC
learning DNF formulas on the uniform distribution, to the problem of finding heavy Hermite coefficients
of a function on Rn given random examples labeled by it. It is possible to derive this result by using the
reduction of [FGKP09] who reduce PAC learning DNF formulas on the uniform distribution to sparse LPN
by combining it with our reduction from sparse LPN to agnostic learning of sparse polynomials. However,
we give a simple direct proof based on the properties of Fourier spectrum of DNF formulas due to [Jac97].
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To complement this negative result, we show that the problem becomes tractable if we are allowed the
stronger value query access to the target function, in that, the learner can query any point of its choice and
obtain the value of the target at the point from the oracle. On the uniform distribution on the hypercube, with
query access to the target function, the task of agnostic learning s-sparse polynomials can in fact be performed
in polynomial time in s, n, 1/ε using the well known Kushilevitz-Mansour (KM) algorithm [KM93]. The
KM algorithm can be equivalently seen as a procedure to find the large Fourier coefficients of a function
given query access to it. We show (in Appendix B) that it is possible to extend the KM algorithm to succeed
in finding heavy Hermite coefficients.

Theorem 3. Given access to a queries from a function f such that Ex∼γ [f(x)2] = 1, there is an algorithm that
finds all the Hermite coefficients of f of degree d that are larger in magnitude than ε, in time poly(n, d, 1/ε).
Consequently, there exists an algorithm to agnostically learn s-sparse degree d polynomials on γ in time and
queries poly(s, n, d, 1/ε).

1.3 Our Techniques

Our main result relates the hardness of agnostic learning of halfspaces on the Gaussian distribution to the
hardness of learning sparse parities with noise on the uniform distribution on the hypercube (sparse LPN).
The reduction involves embedding a set of labeled random examples on the hypercube into a set of labeled
random examples on Rn such that the marginal distribution induced on Rn is the Gaussian distribution. To
do this, we define an operation that we call as the Gaussian lift of a function, that takes an example label
pair (x, f(x)) with x ∈ {−1, 1}n and produces (z, fγ(z)) where z is distributed according to the Gaussian
distribution if x is distributed according to the uniform distribution on {−1, 1}n. We refer to the function fγ

as the Gaussian lift of f .
We show that given random examples labeled by f from the uniform distribution on {−1, 1}n, one can

generate random examples labeled by fγ whose marginal distribution is the Gaussian. Further, we show how
to recover a hypothesis close to f from a hypothesis close to fγ . When f is a parity function, fγ will be
noticeably correlated with some halfspace. We show that the correlation is in fact exponentially small in n
(but still enough to give us our hardness results) and requires a delicate computation which we accomplish
looking at it as a limit of a quantity that can be estimated accurately. We then implement a similar idea for
reducing sparse LPN to agnostically learning sparse polynomials on Rn under the Gaussian distribution by
proving that the Gaussian lift of the parity function χγ is correlated with a monomial on Rn with respect to
the Gaussian distribution.

We note that when allowed query access to the target function on {−1, 1}n, one can extend the well
known KM algorithm [KM93] to find heavy Hermite coefficients of any function on Rn, given query access
to it. The main difference in this setting is the presence of higher degree terms in Hermite expansion (as
against only multilinear terms in the Fourier expansion).

1.4 Related Work

We survey some algorithms and lower bounds for the problem of agnostically learning halfspaces here.
As mentioned before, [KKMS08], gave agnostic learning algorithms for halfspaces by assuming that the
distribution is product Gaussian. They showed that their algorithm can be made to work under the more
challenging log-concave distributions in polynomial time for any constant error. This result was recently
improved by [KKM13]. [SSSS10] gave a polynomial time algorithm for the problem under large margin
assumptions on the underlying distribution. Following this, [BSS12] gave a trade-off between time and
accuracy in the large margin framework.
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In addition to the representation-independent hardness results mentioned before, there is a line of work
that shows proper hardness of agnostically learning halfspaces on arbitrary distributions via a reduction from
hard problems in combinatorial optimization. [GR09] show that it is NP hard to properly (i.e. the hypothesis
is restricted to be a halfspace) agnostically learn halfspaces on arbitrary distributions. Extending this result,
[DOSW11b] show that it is impossible to give an agnostic learning algorithm for halfspaces on arbitrary
distribution that returns a polynomial threshold function of degree 2 as the hypothesis, unless P = NP.

2 Preliminaries

In this paper, we will work with functions that take both real and Boolean values (i.e. in {−1, 1}) on the
n-dimensional hypercube {−1, 1}n and Rn. For an element x ∈ {−1, 1}n, we will denote the coordinates
of x by xi. Let γ = γn be the standard product Gaussian distribution on Rn with mean 0 and variance 1
in every direction and U = Un, the uniform distribution on {−1, 1}n. We define the sign function on R as
sign(x) = x/|x| for every x 6= 0. Set sign(0) to be 0. For z ∈ {−1, 1}n, the weight of z is the translated
Hamming weight (to account for our bits being in {−1, 1}) and is denoted by |z| = 1

2

∑
i∈n zi + n/2. For

vectors z ∈ {−1, 1}n and y ∈ Rn+, let z ◦ y denote the vector t such that ti = zi · yi.
A half normal random variable is identically distributed as the absolute value of a univariate gaussian

random variable with mean zero and variance 1. We denote the distribution of a half normal random variable
by |γ|. As is well known, Ex∼|γ|[x] =

√
2/π and V ar[|γ|] = (1− 2/π).

The parity function χS : {−1, 1}n → {−1, 1}, for any S ⊆ [n], is defined by χS(x) = Πi∈Sxi for any
x ∈ {−1, 1}n. For any S ⊆ [n], the majority function MAJS is defined by MajS(x) = sign(

∑
i∈S xi).

The input x in the current context will come either from {−1, 1}n or Rn. When S = [n], we will drop the
subscript and write χ and MAJ for χ[n] and MAJ[n] respectively. The class of halfspaces is the class of all
Boolean valued functions computed by expressions of the form sign(

∑
i∈[n] ai · xi) for coefficients ai ∈ R

for each 1 ≤ i ≤ n. The inputs to a halfspace can come from both {−1, 1}n and Rn.
For a probability distribution D on X (Rn or {−1, 1}n) and any functions f, g : X → R such that

Ex∼D[f(x)2],Ex∼D[g(x)2] < ∞, let 〈f, g〉D = Ex∼D[f(x) · g(x)]. The `1 and `2 norms of f w.r.t D are
defined by ||f ||1 = Ex∼D[|f(x)|] and ||f ||2 =

√
Ex∼D[f(x)2], respectively. We will drop the subscript in

the notation for inner products when the underlying distribution is clear from the context.

Fourier Analysis on {−1, 1}n: Parity functions for each α ⊆ [n] form an orthonormal basis for the linear
space of real valued functions square summable functions on the uniform distribution on {−1, 1}n (denoted by
L2({−1, 1}n,U)). The (real) coefficients of the linear combination are referred to as the Fourier coefficients
of f . For f : {−1, 1}n → R and α ⊆ [n], the Fourier coefficient f̂(α) is given by f̂(α) = 〈f, χα〉 =
E[f(x)χα(x)]. The cardinality of the index set α is said to be the degree of the Fourier coefficient f̂(α).
The Fourier expansion of f is given by f(x) =

∑
α⊆[n] f̂(α)χα(x). Finally, we have Plancherel’s theorem:

〈f, g〉U =
∑

α⊆[n] f̂(α) · ĝ(α) and ||f ||22 =
∑

α⊆[n] f̂(α)2 for any f ∈ L2({−1, 1}n,U).
It is possible to exactly compute the Fourier coefficients of the Majority function MAJ[n] = MAJ on

{−1, 1}n. We refer the reader to the online lecture notes of O’Donnell (Theorem 16, [O’D12]).

Fact 4. Let M̂AJ(α) be the Fourier coefficients of the majority function MAJ = MAJ[n] at index set α of
cardinality a on {−1, 1}n for an odd n. As MAJ is a symmetric function, the values of the coefficients depend
only on the cardinality of the index set a. As MAJ is an odd function, M̂AJ(α) = 0 if |α| = a is even. For
odd a:
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M̂AJ(α) = (−1)
a−1
2 ·

(n−1
2

a−1
2

)
(
n−1
a−1

) · 2

2n
·
(
n− 1
n−1

2

)
.

In particular, M̂AJ(α) =
√

2
nπ if a = 1.

Hermite Analysis on Rn: Analogous to the parity functions, the Hermite polynomials form an orthonormal
and complete basis for L2(Rn, γn), the linear space of all square integrable functions on Rn with respect
to the spherical gaussian distribution γn = γ. These polynomials can be constructed in the univariate
(n = 1) case by applying Gram Schmidt process to the family {1, x, x2, . . .} giving the first few members
as h0(x) = 1, h1(x) = x, h2(x) = x2−1√

2
, h3(x) = x3−3x√

6
, · · · . The multivariate Hermite polynomials are

obtained by taking products of univariate Hermite polynomials in each coordinate. Thus, for every n-tuple
of non-negative integers ∆ = (d1, d2, . . . , dn) ∈ Zn, we have a polynomial H∆ = Πi∈[n]hdi(xi). As γn is
product and hdi are each orthonormal, H∆ so constructed are clearly an orthonormal family of polynomials.

Analogous to the Fourier expansion, any function f ∈ L2(Rn, γn) can be written uniquely as
∑

D∈Zn f̂(∆)·
H∆, where f̂(∆) is the Hermite coefficient of f at index ∆ and is given by f̂(∆) = Ex∼γ [f(x) ·H∆(x)].
We have the Plancherel’s theorem: 〈f, g〉γ =

∑
∆⊆Zn f̂(∆) · ĝ(∆) and ||f ||22 =

∑
∆⊆Zn f̂(∆)2 for any

f ∈ L2(Rn, γ).
Agnostic Learning: The agnostic model of learning [Hau92, KSS94] is a challenging generalization Valiant’s
PAC model of supervised learning that allows adversarial noise in the labeled examples. Given labeled
examples from an arbitrary target function p, the job of an agnostic learner for a class C of real (or Boolean)
valued functions is to produce a hypothesis h that has an error w.r.t p that is at most ε more than that of best
fitting hypothesis from the class C. Formally, we have:

Definition 1 (Agnostic learning with `1 error). Let F be a class of real-valued functions with distributionD on
X (either {−1, 1}n or Rn). For any real valued target function p onX , let opt(p,F) = inff∈F Ex∼D[|p(x)−
f(x)|]. An algorithm A, is said to agnostically learn F on D if for every ε > 0 and any target function p on
X , given access to random examples drawn from D and labeled by p, with probability at least 2

3 , A outputs a
hypothesis h such that E(x,y)∼P[|h(x)− p(x)|] ≤ opt(p,F) + ε.

The `1 error for real valued functions specializes to the disagreement (or Hamming) error for Boolean
valued functions and thus the definition above is a generalization of agnostic learning a class of Boolean
valued functions on a distribution. A general technique (due to [KKMS08]) for agnostic learning C on
any distribution D is to show that every function in C is approximated up to an `1 error of at most ε by
a polynomial of low-degree d(n, ε), which can then be constructed using `1-polynomial regression. This
approach to learning can equivalently be seen as learning based on Empirical Risk Minimization with absolute
loss [Vap98]. As observed (in [KKMS08]), since `1 error for Boolean valued functions is equivalent to the
disagreement error, polynomial regression can also be used to agnostically learn Boolean valued function
classes w.r.t disagreement error.

3 Hardness of Agnostically Learning Halfspaces on the Gaussian Distribu-
tion

In this section, we show that any algorithm that agnostically learns the class of halfspaces on the Gaussian
distribution with an error of at most ε takes time nΩ(log (1/ε)). In particular, there is no fully polynomial time
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algorithm to agnostically learn halfspaces on the Gaussian distribution (subject to the hardness of sparse LPN).
We reduce the problem of learning sparse parities with noise on the uniform distribution on the Boolean
hypercube to the problem of agnostic learning halfspaces on the Gaussian distribution to obtain our hardness
result.

Our approach is a generalization of the one adopted by [KKMS08] who used such a reduction to show the
optimality of their agnostic learning algorithm for halfspaces on the uniform distribution on {−1, 1}n. We
begin by briefly recalling their idea here: Let χS be the unknown parity for some S ⊆ [n]. Observe that on
the uniform distribution on {−1, 1}n, χS is correlated with the majority function MAJS with a correlation of
≈ 1/

√
|S| ≥ 1/

√
n. Thus, the expected correlation between MAJS and the noisy labels is ≈ η/

√
n where η

is the noise rate. In other words, MAJS predicts the value of the label at a uniformly random points from
{−1, 1}n with probability ≈ 1/2 + η/

√
n (i.e. with an inverse polynomial advantage over random). The key

idea here is to note that if we drop a coordinate, say j ∈ S (i.e. a “relevant” variable for the unknown parity)
from every example point to obtain labeled examples from {−1, 1}n−1, then, the labels and example points
are independent as random variables and thus no halfspace can predict the labels to an inverse polynomial
advantage. On the other hand, if we drop a coordinate j /∈ S, then, the labels are still correlated with the
correct parity and thus, MAJS predicts the labels with an inverse polynomial advantage. Thus, drawing
enough examples can allow us to distinguish between the two cases and construct S one variable at a time.

Such a strategy, however, cannot be directly applied to relate learning problems on different distributions.
Instead, we show that given examples from {−1, 1}n labeled by some function f , we can simulate examples
drawn according to the Gaussian distribution, labeled by some fγ : Rn → {−1, 1} (which we call as the
Gaussian lift of f ). Further, we show that when f is some parity χα, then, fγ is noticeably correlated
with some halfspace on the Gaussian distribution. Now, given examples drawn according to the Gaussian
distribution, labeled by some fγ , one can use the agnostic learner for halfspaces to recover α with high
probability. We now proceed with the details of our proof. We first define the Gaussian lift of any function
f : {−1, 1}n → R. At any x ∈ Rn, fγ returns a value obtained by evaluating f at the point associated with
the sign pattern of x.

Definition 2 (Gaussian Lift). The Gaussian lift of a function f : {−1, 1}n → R is a function fγ : Rn → R
such that for any x ∈ Rn, fγ(x) = f(sign(x1), sign(x2), . . . , sign(xn)).

We begin with a general reduction from the problem of learning k-sparse parity with noise on the uniform
distribution on {−1, 1}n to problem of learning any class C of functions on Rn agnostically on the Gaussian
distribution. This reduction works under the assumption that for every S ⊆ [n], the Gaussian lift of the parity
function on α ⊆ [n], denoted as χγα is noticeably correlated with some function from cα ∈ C.

Lemma 5 (Correlation Lower Bound yields Reduction to SLPN). Let C be a class of Boolean valued functions
on Rn such that for every α ⊆ [n] for |α| ≤ k, there exists a function cα ∈ C such that 〈cα, χγα〉 ≥ θ(k)and
cα depends on variables only in α.

Suppose there exists an algorithm A (that may not be proper and can output real valued hypotheses)
to learn C agnostically over the Gaussian distribution to an `1 error of at most ε using time and samples
T (n, 1/ε). Then, there exists an algorithm to solve SLPN that runs in time and examples Õ( n

(1−2η)θ(k)) +

Õ(n) · T (n, 2
(1−2η)θ(k)) where η is the noise rate.

Proof. We will assume that C is negation closed, that is, for every c ∈ C, the function −c ∈ C. This
assumption can be easily removed by running the procedure described below twice, the second time with
the labels of the examples negated. We skip the details of this easy adjustment here. Let χβ be the target
parity for some β ⊆ [n] such that |β| ≤ k. We claim that the following procedure determines if j ∈ β for any
j ∈ [n] given noisy examples from χβ with high probability.

7



1. For each example-label pair (x, y) ∈ {−1, 1}n × {−1, 1}, generate a new example label pair as
follows.

(a) Draw independent half-normals h1, h2, ..., hn.

(b) Let z ∈ Rn−1 be defined so that zi = xi · hi for each i ∈ [n], i 6= j.

(c) Output (z, y) where z = (z1, z2, · · · zj−1, zj+1, · · · , zn) ∈ Rn−1. Denote the distribution of
(z, y) by Dj .

2. Set ε = (1− 2η) · θ(k). Collect a set of T (n, 1/ε) examples, R, output by the procedure above.

3. Run A on R with `1 error parameter ε set to (1− 2η)θ(k)/2. Let h be the output of the algorithm.

4. Draw a set fresh set of r = O(log (1/δ)/ε2), {(z1, y1), (z2, y2), . . . , (zr, yr)}, again by the procedure
above and estimate err = 1

r ·
∑r

i=1[|h(zi)− yi|]. Accept i as relevant if err ≤ 1− ε/4. Else reject.

We now argue the correctness of this procedure. For Dj described above (obtained by dropping the jth

coordinate in the lifted examples), it is easy to see that the marginal distribution on the first n− 1 coordinates
is γn−1, the spherical Gaussian distribution on n− 1 variables. Set ε = (1− 2η) · θ(k).

Suppose j /∈ T . In this case, for any example (z, y), y = χγβ(z) with probability 1 − η independently
of other examples. We know that there exists a cβ ∈ C, depending only on coordinates in β such that
〈cβ, χγβ〉 ≥ θ(k). Thus, E(z,y)∼Dj

[cβ(z) · y] = ε. In this case, thus, running A with the error parameter ε
obtains h : {−1, 1}n−1 → R with error at most

E(z,y)∼Dj
[|cβ − y|] + ε = (1− η) · E(z,y)∼Dj

[|cβ(z′)− χγβ(z′)|] + η · E(z,y)∼Dj
[|cβ(z′)− χγβ(z′)|]] + ε

= 1− ε/2.

On the other hand, if j ∈ T , then, since the procedure drops the jth coordinate of every example, the
distribution of the labels y is uniformly random and independent of the distribution of the coordinates zi,
i 6= j. In this case, for any function in h : {−1, 1}n−1 → R, it can be easily checked that E[|c(z)− y|] ≥ 1
where the expectation is over the random variables (z, y).

We can estimate the `1 error E(z,y)∼Dj
[|y − h(z)|] of the hypothesis h produced by the algorithm, to an

accuracy of ε/4 with confidence 1 − δ using r = O( log (1/δ)
(1−2η)θ(k)) examples. This is enough to distinguish

between the two cases above. We can now repeat this procedure n times, once for every coordinate j ∈ [n].
Using a union bound, all random estimations and runs of A are successful with probability at least 2/3 using
an additional poly-logarithmic cost in n in time and samples required. Thus we obtain the stated running
time and sample complexity.

Next, we will show that χγS , the Gaussian lift of the parity function the subset S ⊆ [n] is noticeably
correlated with the majority function MAJS = sign(

∑
i∈S xi) with respect to the Gaussian distribution on

Rn. This correlation, while enough to yield the hardness result for agnostic learning of halfspaces when
combined with Lemma 5, is an exponentially small quantity, in sharp contrast to the correlation between
MAJS and χS on the uniform distribution on the hypercube (where it is ≈ 1/

√
|S|). We thus need to adopt

more a more delicate method of estimating it as a limit of a quantity we can estimate accurately.

Lemma 6. Let m be an odd integer and consider S ⊆ [n] such that |S| = m. Then,

|〈MAJS , χ
γ
S〉γ | = 2−Θ(m)
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Proof. Let c = |Ex∼γn [MAJS(x) · χγS(x)]|. Each xi above is independently distributed as N (0, 1). Fix any
odd integer t and define yij for each 1 ≤ i ≤ m and 1 ≤ j ≤ t to be uniform and independent random
variables taking values in {−1, 1}. The idea is to simulate each xi by 1

t

∑t
j=1 yij . In the limit as t → ∞,

the simulated random variable converges to in distribution to xi. Call f t(x) = sign(
∑m

i=1

∑t
j=1 yij) and

gt(x) = sign(Πm
i=1

∑t
j=1 yij), the functions obtained by applying the substitution above to MAJS and χγS

respectively. Let y = {yij ∈ [m]× [t]} denote the inputs bits to f t and gt defined above. Thus,

c = lim
t→∞

E[f t · gt] = lim
t→∞

E[sign(
m∑
i=1

t∑
j=1

yij) ·Πm
i=1sign(

t∑
j=1

yij)] (1)

Using Plancherel’s Identity for the RHS above, we have:

c = E[f t · gt] =
∑

α⊆[m]×[t]

f̂ t(α) · ĝt(α). (2)

We now intend to estimate the RHS of the equation above. Towards this goal, we make some observations
regarding the fourier coefficients f̂ t(α) and ĝt(α).

Claim 1 (Fourier Coefficients of gt). For every α = ∪mi=1αi where αi = α ∩ {(i, j)|j ∈ [t]} for each
1 ≤ i ≤ m, ĝt(α) = Πm

i=1M̂AJi×[t](αi).

That is, the Fourier coefficient at α of gt is the product of Fourier coefficients of majority functions at αi,
where the ith majority function is on bits yij for j ∈ [t].

Proof. ĝt(T ) = E[gt(y) · χα(y)] = E[Πm
i=1sign(

∑t
j=1 yij) · χα(y) = E[Πm

i=1χαi(y) · sign(
∑t

j=1 yij)]

= Πm
i=1E[sign(

∑t
j=1 yij) · χαi(y)] = Πm

i=1M̂AJi×[t](αi), where for the third equality, we note that χα =
Πm
i=1χαi and for the last equality, the fact that yij are all independent and that αi are disjoint.

We now observe the term corresponding to each index α contributes a value with the same sign to the
RHS of Equation (2).

Claim 2. Let α ⊆ [m] × [t] and suppose f̂ t(α) · ĝt(α) 6= 0. If m = 4q + 1 for q ∈ N, then, sign(f̂ t(α) ·
ĝt(α)) = 1. If m = 4q + 3 for q ∈ N then, sign(f̂ t(α) · ĝt(α)) = −1.

Proof of Claim. Set m = 4q + 1, the other case is similar. Recall that t is odd. Let |α| = a for some odd a
(otherwise at least one of αi is even in which case ĝt(α) = 0). From Fact 4: sign(f̂ t(α)) = (−1)(a−1)/2.

Let α = ∪mi=1αi such that αi ⊆ [m]× [t] and let for each i, |αi| = ai. Using the claim above, we have:
sign(ĝt(α)) = Πm

i=1sign(M̂AJi×[t](αi)) = Πm
i=1(−1)(ai−1)/2 = (−1)(a−m)/2. Thus, sign(f̂ t(α) · ĝt(α)) =

(−1)(2a−m−1)/2 = 1.

For the rest of the proof, assume that m = 4q + 1. We are now in a position to analyze Equation (2).
By Claim 2 above, we know that every term in the summation on the RHS of Equation (2) contributes a
non-negative value. We group the Fourier coefficients of f and g based on the size of the index set and refer to
the coefficients with index sets of size r by layer r. Observe that for any index set α ⊆ [m]× [t] = ∪1≤i≤mαi,
if there is an i such that αi = ∅, then, ĝt(T ) = 0. Thus, the term corresponding to index α contributes 0 to
the RHS of Equation (2). Thus, we can assume |α| ≥ m. We first estimate the contribution due to layer m:
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Claim 3 (Contribution due to layer m). For large enough t,

|
∑
|α|=m

f̂ t(α) · ĝt(α)| = Ω

(
1/
√
m · ( 2

πe
)m/2

)
.

Proof of claim. Recall that α = ∪mi=1αi with each αi ⊆ i× [t]. By the discussion above, |αi| = 1. There are
exactly tm indices α that satisfy this condition.

Using Fact 4 we know that f̂ t(α) = (−1)
t−1
2 ·

(
tm−1

2
m−1

2
)

(tm−1
m−1 )

· 2
2tn ·

(tm−1
tm−1

2

)
. Using Fact 4 again, for gt along

with Claim 1, we have : ĝt(T ) =
(√

2
tπ

)m
. Thus, each non-zero term in layer m of (2) contributes:

f̂ t(α) · ĝt(α) =
(
tm−1

2
m−1

2
)

(tm−1
m−1 )

· 2
2tm ·

(tm−1
tm−1

2

)
·
(√

2
tπ

)m
. Using asymptotically tight approximations for binomial

coefficients, for large enough t:

2
2tm ·

(tm−1
tm−1

2

)
= Θ(

√
1

π·(tm−1)), and
(
tm−1

2
m−1

2
)

(tm−1
m−1 )

= Ω((et)−
m−1

2 ). Thus, the contribution to the RHS of Equation

2 by layer m asymptotically
∑

α:|αi|=1 f̂
t(α) · ĝt(α) = Ω(tm · t−

m−1
2 · e−

m−1
2 ·

√
2

π·(tm−1) ·
(√

2
tπ

)m
=

Ω
(

1√
m
· ( 2
πe)

m/2
)
.

The claim above is enough to give us a lower bound on c. Our aim in the following is to establish an
inverse exponential upper bound on the correlation between MAJS and χγS . Together with the contribution
due to layer m, we have that c = 2−Θ(m). This will complete the proof.

Claim 4 (Contribution due to layers r > m). For large enough t,m,

|
∑
|α|>m

f̂ t(α) · ĝt(α)| = 2−Ω(m).

Proof of Claim. Let ri ≥ 1 for every 1 ≤ i ≤ m such that
∑

i≤n ri = r. Consider any α = ∪1≤i≤mαi

such that |αi| = ri. The number of indices α is Π1≤i≤m
(
t
ri

)
≤ tr/Πn

i=1ri!. If any ri is even, then, the

coefficient ĝt(α) = 0. Thus, the only non-zero contribution to the correlation from layer r is due to the

indices α such that all |αi| = ri are odd positive integers. Using Fact 4: f̂ t(α) =
(
tm−1

2
r−1
2

)

(tm−1
r−1 )

· 1
2tm−1 ·

(tm−1
tm−1

2

)
,

and |ĝt(α)| ≤ Π1≤i≤m
(

t−1
2

ri−1
2

)

( t−1
ri−1)

1
2t−1 ·

(t−1
t−1
2

)
.

Let us estimate the sum squared of all coefficients ĝt(α) such that |αi| = ri for each i. Recall that for the
majority function on m bits, the sum squared of all coefficients of any layer q is ≈ (2/π)3/2 · 1/q3/2. This
can be derived directly using Fact 4 (see [O’D12]).∑

α:|αi|=ri

(ĝt(α))2 ≤
∑

α:|αi|=ri

Πm
i=1(

∑
|αi|=ri

(M̂AJi×[t](αi))
2) = Πm

i=1(2/π)3/2 · 1/r3/2
i .

The maximum value over all r1, r2, . . . , rm that give a non-zero ĝt(α) (i.e. each ri odd) of the expression on
the RHS is: (2/π)3m/2 · (m/r)3/2 = 2−Θ(m) · (m/r)3/2.
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On the other hand, each coefficient of f t of layer r is equal and the total sum squared of coefficients from
layer r of f t is at most O(1/r3/2). Now, using Cauchy Schwarz inequality for the sum of product of fourier
coefficients of f t and gt at indices corresponding to each valid partition, r1, r2, . . . , rm of the integer r > m
and summing up over all valid partitions of r, the total contribution due to layer r to the correlation is at most:
2−Θ(m) · 1/r3/2. Since

∑
r>m 1/r3/2 converges, we have the claimed upper bound.

As an immediate corollary, we obtain the following hardness for the problem of agnostic learning of
halfspaces on the Gaussian distribution.

Theorem 7 (Hardness of Agnostic Learning of Halfspaces). Suppose there exists an algorithm A to learn
the class of halfspaces agnostically over the Gaussian distribution to an error of at most ε that runs in time
T (n, 1/ε). Then, there exists an algorithm to solve k-SLPN that runs in time Õ(n · T (n, 2O(k)

(1−2η)) where η
is the noise rate. In particular, if there is an algorithm that agnostically learns halfspaces on γn in time
no(log (1/ε)) then there is an algorithm that solves SLPN for all parities of length k = O(log n) in time no(k).

For a proof, we use Lemma 5 with C as the class of all majorities of length k and note that θ(k) = 2−Θ(k).

3.1 Agnostically Learning Sparse Polynomials is Hard

We now reduce k-sparse LPN to agnostically learning degree k and 1-sparse polynomials on the Gaussian
distribution and obtain that any algorithm to agnostically learn even a monomial of degree k up to any
constant error on the Gaussian distribution runs in time nΩ(k). We note that the polynomial regression
algorithm [KKMS08] can be used to agnostically learns degree k polynomials to an accuracy of ε in time
nO(k) · poly(1/ε). Thus, our result shows that this running time cannot be improved (assuming that sparse
LPN is hard). For a proof, we observe that the Gaussian lift of the parity function χγ is noticeably correlated
with a sparse polynomial (in fact, just a monomial) on Rn under the Gaussian distribution. We then invoke
Lemma 5 to complete the proof.

Lemma 8 (Correlation of χγS with monomials). Let MS : Rn → R be the monomial MS(x) = Πi∈Sxi.
For χγS : Rn → {−1, 1}, the Gaussian lift of the the parity on S ⊆ [n], we have: Ex∼γ [χγS(x) ·MS(x)] =
( 2
π )|S|/2.

Proof. Ex∼γ [χγS(x) ·MS(x)] = (Exi∼γ [sign(xi) · xi])|S| = (Ez∼|γ|[z])|S| = (2/π)|S|/2.

Using Lemma 5, we thus have:

Theorem 9 (Sparse Parity to Sparse Polynomials). If there is an algorithm to agnostically learn 1-sparse,
degree k polynomials on the Gaussian distribution in time T (n, k, 1/ε), then, there is an algorithm to solve
k-SLPN in time Õ(n) · T (n, k, 2O(k)/(1− 2η)). In particular, if Assumption 1 is true, then any algorithm to
agnostically learn degree k monomials up to any constant error runs in time nΩ(k).

4 Hardness of Finding Heavy Hermite Coefficients

In this section, we show that a polynomial time algorithm to find all large Hermite coefficients of any function
f on the Gaussian distribution using random examples gives a PAC learning algorithm for DNF formulas on
the uniform distribution on {−1, 1}n. The idea is to use the subroutine that recovers large Hermite coefficients
of a function using random labeled examples to find heavy Fourier coefficients of functions on the uniform
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distribution (via the Gaussian lift) on the hypercube using random examples. Our reduction will then be
completed using the properties of the Fourier spectrum of DNF formulas due to [Jac97] (similar to the one
used by [FGKP09]). Observe that given query access, finding heavy Fourier coefficients on the uniform
distribution on {−1, 1}n is easy and the reduction yields us a subroutine to find heavy Fourier coefficients by
random examples alone.

Lemma 10. Suppose there is an algorithm A, that, for ε > 0, uses random examples drawn according to the
spherical Gaussian distribution and labeled by an unknown f : Rn → {−1, 1} and returns (with probability
at least 2/3) the Hermite coefficients of f , that are at least ε in magnitude in time and samples T (n, 1/ε).

Then, there exists an algorithm, that uses random example access to a Boolean function g : {−1, 1}n →
{−1, 1} on the uniform distribution on {−1, 1}n, and returns (with probability at least 2/3), every Fourier
coefficient of g of total degree at most d and magnitude at least ε, in time and samples T (n, (2/π)d/2/ε).

Proof. Given access to random labeled examples from the uniform distribution on {−1, 1}n and labeled by a
function g, we construct an algorithm A′ which runs A on a examples labeled by the Gaussian lift, gγ of g
and recovers large Fourier coefficients of g from the set of large Hermite coefficients of gγ . As before, to
simulate a random examples from gγ we do the following:

1. Draw a random example (x, g(x)) where x ∈ {−1, 1}n is uniformly distributed.

2. Draw y1, y2, · · · , yn as independent half-normals induced by unit variance, zero mean Gaussian.

3. Return (x ◦ y, g(x)).

Notice that x ◦ y is distributed according to the Gaussian distribution. Further,

gγ(x) = g(sign(x1), sign(x2), · · · , sign(xn))

for each x ∈ Rn. Let ∆ ∈ {0, 1}n ⊆ Zn (i.e., ∆ is an index of a multilinear Hermite coefficient). Thus,
∆ corresponds to a subset β ⊆ [n] such that |β| = d. We will now show that: |ĝγ(∆)| ≥ (2/π)−d/2ε. We
can then run A to find all Hermite coefficients of gγ of magnitude at least (2/π)−d/2, collect all multilinear
coefficients of degree at most d and return the corresponding index sets as the indices of the Fourier
coefficients of f of magnitude at least ε and degree at most d. The Fourier coefficients of g at the indices
returned can then be efficiently computed by taking enough random samples and computing the empirical
correlations. This will complete the proof.

For this purpose, note that, being a function on {−1, 1}n, g =
∑

α⊆[n] ĝ(α) ·Πi∈αxi. Thus,

gγ(x) = g(sign(x1), sign(x2), . . . , sign(xn)) =
∑
α⊆[n]

ĝ(α) ·Πi∈αsign(Πi∈αxi).

We now have: ĝγS = Ex∼γn [gγ(x) ·HS(x)] =
∑

T⊆[n] ĝ(T ) · Ex∼γn [sign(Πi∈Txi)HS(x)]. For any α 6= β
(the subset of [n] corresponding to ∆), then, Ex∼γn [sign(Πi∈αxi)H∆(x)] = 0 . Thus, using independence of
xi for each i ∈ [n] and that E[|xi|] =

√
2/π, we have:

Ex∼γn [gγ(x) ·H∆(x)] = ĝ(β)Ex∼γn [sign(Πi∈βxi) ·Πi∈βxi] = ĝ(β)Πi∈βE[|xi|] = ĝ(β)(2/π)−|β|/2.

12



We describe the main idea of the proof here. We are given random examples drawn from {−1, 1}n and
labeled by some function f . We simulate the examples from the Gaussian lift fγ by embedding the examples
from {−1, 1}n into Rn using half-normals as before. We then argue that if f̂(S) is large in magnitude, then
so is the multilinear Hermite coefficient at S of fγ . Thus finding heavy Hermite coefficients of fγ gives
us the indices of large Fourier coefficients of f , which can then be estimated by random sampling. The
remaining details of the reduction from PAC learning DNFs are provided in Section A of the Appendix.

5 Conclusion and Open Problems

In this paper, we described a general method to embed hard learning problems on the discrete hypercube into
the spherical Gaussian distribution on Rn. Using this technique, we showed that any algorithm to agnostically
learn the class of halfspaces on the Gaussian distribution runs in time nΩ(log (1/ε)). We also ruled out a fully
polynomial algorithm to agnostically learn sparse polynomials on Rn complementing the result of Andoni et
al. [APVZ14] who gave a polynomial time algorithm for learning the class with random additive Gaussian
noise.

On the other hand, as described before, the fastest algorithm for agnostically learning halfspaces runs in
time nO(1/ε2) [DKN09]. Thus, an outstanding open problem is to close the gap between these two bounds.
That is:

Question 3. What is the optimal time complexity for agnostically learning halfspaces on the Gaussian
distribution? In particular, is there an algorithm that agnostically learns halfspaces on the Gaussian
distribution in time nO(log (1/ε))?

References

[APVZ14] Alexandr Andoni, Rina Panigrahy, Gregory Valiant, and Li Zhang. Learning sparse polynomial
functions. In SODA, 2014.

[BDS00] Shai Ben-David and Hans-Ulrich Simon. Efficient learning of linear perceptrons. In NIPS,
pages 189–195, 2000.

[BF02] Nader H. Bshouty and Vitaly Feldman. On using extended statistical queries to avoid member-
ship queries. Journal of Machine Learning Research, 2:359–395, 2002.

[BFKV98] Avrim Blum, Alan M. Frieze, Ravi Kannan, and Santosh Vempala. A polynomial-time
algorithm for learning noisy linear threshold functions. Algorithmica, 22(1/2):35–52, 1998.

[BKW03] A. Blum, A. Kalai, and H. Wasserman. Noise-tolerant learning, the parity problem, and the
statistical query model. Journal of the ACM, 50(4):506–519, 2003.

[BR13] Quentin Berthet and Philippe Rigollet. Complexity theoretic lower bounds for sparse principal
component detection. In COLT, pages 1046–1066, 2013.

[BSS12] Aharon Birnbaum and Shai Shalev-Shwartz. Learning halfspaces with the zero-one loss:
Time-accuracy tradeoffs. In NIPS, pages 935–943, 2012.

[DKN09] Ilias Diakonikolas, Daniel M. Kane, and Jelani Nelson. Bounded independence fools degree-2
threshold functions. CoRR, abs/0911.3389, 2009.

13



[DLSS13] Amit Daniely, Nati Linial, and Shai Shalev-Shwartz. From average case complexity to improper
learning complexity. CoRR, abs/1311.2272, 2013.

[DOSW11a] Ilias Diakonikolas, Ryan O’Donnell, Rocco A. Servedio, and Yi Wu. Hardness results for
agnostically learning low-degree polynomial threshold functions. In SODA, pages 1590–1606,
2011.

[DOSW11b] Ilias Diakonikolas, Ryan O’Donnell, Rocco A. Servedio, and Yi Wu. Hardness results for
agnostically learning low-degree polynomial threshold functions. In SODA, pages 1590–1606,
2011.

[Fel12] V. Feldman. A complete characterization of statistical query learning with applications to
evolvability. Journal of Computer System Sciences, 78(5):1444–1459, 2012.

[FGKP09] V. Feldman, P. Gopalan, S. Khot, and A. Ponuswami. On agnostic learning of parities,
monomials and halfspaces. SIAM Journal on Computing, 39(2):606–645, 2009.

[FK12] Vitaly Feldman and Varun Kanade. Computational bounds on statistical query learning. In
COLT, pages 16.1–16.22, 2012.

[FKV13] Vitaly Feldman, Pravesh Kothari, and Jan Vondrák. Representation, approximation and learning
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A Hardness of Finding Heavy Hermite Coefficients

We now go on to complete the reduction from PAC learning DNF formulas on the uniform distribution
to finding heavy Hermite coefficients of a function on Rn with respect to the Gaussian distribution. This
machinery is standard and is due to [Jac97]. We need the following lemma due to Jackson [Jac97] ( we
actually state a slightly refined version due to Bshouty and Feldman [BF02]). In the following, we abuse the
notation a little bit and use D to also refer to the PDF of the distribution denoted by D.

Lemma 11. For any Boolean valued function f : {−1, 1}n → {−1, 1} computed by a DNF formula of size
s, and any distribution D over {−1, 1}n, there is α ⊆ [n] such that |α| ≤ log (2s+ 1) · ||2n · D||∞ and
|f̂(α)| ≥ 1

s+1 .
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On the uniform distribution, the lemma above directly yields a weak learner for DNF formulas. Jackson’s
key idea here is to observe that learning f on D is same as learning 2nf.D on the uniform distribution.
Coupled with a boosting algorithm [Fre90, Fre92, KS03] that uses only the distributions for which ||2nD||∞
is small (poly(1/ε)), one obtains the PAC learner for DNF formulas.

Theorem 12. If there is an algorithm to find Hermite coefficients of magnitude at least ε, of a function
f : Rn → R on the Gaussian distribution from random labeled examples in time poly(n, 1/ε), then there is
an algorithm to PAC learn DNF formulas on the uniform distribution in polynomial time.

B Finding Large Hermite Coefficients Using Queries

For ∆1 ∈ Zk and ∆2 ∈ Zn−k, let ∆ = ∆1 ◦∆2 denote the n-tuple obtained by concatenating ∆1 and ∆2.
Similarly, for s ∈ Rk and z ∈ Rn−k let t = s ◦ z denote the element of Rn obtained by concatenating s and z.
We are now ready to present the procedure to find heavy Hermite coefficients of a function given query access
to it. Since heavy Hermite coefficients, in general, may not be multilinear, we adapt the idea of [KM93] to
work in this setting. Our proof is based on that of [KM93] (See also the lecture notes by O’Donnell [O’D12]).

Theorem 13. Let f : Rn → R be any function such that ||f ||2 = Ex∼γ [f(x)2] = 1. There exists an
algorithm that uses query access to f and runs in time Õ(nd/ε2) to return every index ∆ ∈ Zk of degree d
such that |f̂(∆)| ≥ ε.

Proof. We estimate every coefficient of f that is larger than ε within an error of ε/3. Thus, for each ∆ ∈ Zn,
we will obtain f̃(∆) such that |f̃(∆)− f̂(∆)| ≤ ε/3.

We first describe a subroutine which we will repeatedly use in the algorithm. For any ∆ ∈ Zk, let

W∆1 =
∑

∆2∈Zn−k

f̂(∆1 ◦∆2)2.

Lemma 14. Let f : Rn → R be a function with query access. Given ∆1 = {i1, i2, · · · , ik} ∈ Zk such that∑
j≤k ij ≤ d, there is an algorithm that returns a value v such that |v−

∑
T :T∈Nn−k f̂(∆1 ◦∆2)2| ≤ δ with

probability at least 2/3 in time and queries Õ(nd
δ2

).

Proof. Define f̂∆1 : Rn−k → R by

f̂∆1(z) = Ex∼Rk [f(x ◦ z) ·H∆1(x)]. (3)

For W ∈ Zn, let Wk ∈ Rk denote the first k coordinate values of W and Wn−k denote the last k. One then
has HW (x ◦ z) = HWk

(x) ·WWn−k
(z) for any x ∈ RWk and z ∈ RWn−k . Then, we have:
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f̂∆1(z) = Ex∼Rk [f(x ◦ z) ·H∆1(x)]

= Ex∼Rk [
∑
W∈Zn

f̂(W ) ·HW (x ◦ z) ·H∆1(x)]

= Ex∼Rk [
∑
W∈Zn

f̂(W ) ·HWk
(x)HWn−k

(z) ·H∆1(x)]

=
∑
W∈Zn

Ex∼Rk [f̂(W ) ·HWk
(x)HWn−k

(z) ·H∆1(x)]

For every W such that Wk 6= S, the term above evaluates to 0 due to the orthogonality of H∆1 and HWk

=
∑

W=∆1 circ∆2

f̂(∆1 ◦∆2)H∆2(z) (4)

Now,∑
∆2∈Nn−k

f̂(∆1 ◦∆2)2 = Ez∈γn−k [(
∑

∆2∈Nn−k

f̂(∆1 ◦∆2)H∆2(z))2]

= Ez,z′∈γn−k [(
∑

∆2∈Nn−k

f̂(∆1 ◦∆2)H∆2(z)) · (
∑

∆2∈Nn−k

f̂(∆1 ◦∆2)H∆2(z′))]

Using Equation (4)

= Ez,z′∈γn−k [f̂∆2(z) · f̂∆2(z′)]

Using Equation (3) (5)

= Ex,x′∈γk , z,z′∈γn−k [f(x ◦ z)f(x′ ◦ z′)H∆1(x) ·H∆1(x′)] (6)

The quantity in the RHS of Equation (6) can be computed up to an additive error of at most δ > 0
by drawing Õ(1/δ2) random points from Rk and Rn−k and obtaining the values of f at the appropriate
combinations using queries. Thus, we obtain the required result.

We can now describe the algorithm

1. Set δ = ε2/3, β = 1
3dnε2

.

2. S← ∅.

3. For j = 1 to n

(a) For k = 1 to d:

i. For each T ∈ S, if Z = T ◦ k is such that HZ is of degree at most d:
A. Estimate WZ to an accuracy of δ to a confidence of 1− β.
B. If WZ > ε2/2, S← S ∪ Z.

4. Return S.

The algorithm above is analogous to the Kushilevitz Mansour algorithm and it is easy the correctness
based on the lemma above: We begin by noting the sum squared of all Hermite coefficients of f is 1 as
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the Hermite transformation preserves `2 norms. Thus, the number of coefficients that are larger than ε in
magnitude are at most 1/ε2. One can thus argue that with high probability, the size of S in the algorithm
above is at most O(1/ε2) at all times. In the jth iteration, the algorithm tries to append any of the d powers
of xj to each of the indices in S. For each such newly produced index Z, the algorithm estimates the Weight
WZ as in the lemma above. It adds Z to S whenever WZ is estimated to be higher than ε2/2. Thus, each
such iteration needs O(nd) time to execute.

This completes the proof.
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