The Power of Super-logarithmic Number of Players

Arkadev Chattopadhyay* Michael E. Saks ${ }^{\dagger}$

April 24, 2014

Abstract

In the 'Number-on-Forehead' (NOF) model of multiparty communication, the input is a $k \times m$ boolean matrix A (where k is the number of players) and Player i sees all bits except those in the i-th row, and the players communicate by broadcast in order to evaluate a specified function f at A. We discover new computational power when k exceeds $\log m$. We give a protocol with communication cost poly-logarithmic in m, for block composed functions with limited block size. These are functions of the form $f \circ g$ where f is a symmetric b-variate function, and g is a $k r$-variate function and $f \circ g(A)$ is defined, for a $k \times b r$ matrix to be $f\left(g\left(A^{1}\right), \ldots, g\left(A^{b}\right)\right)$ where A^{i} is the i-th $k \times r$ block of A. Our protocol works provided that $k>1+\ln b+2^{r}$. Ada et.al [ACFN12] previously obtained simultaneous and deterministic efficient protocols for composed functions of block-width $r=1$. The new protocol is the first to work for block composed functions with $r>1$. Moreover, it is simultaneous, with vanishingly small error probability, if public coin randomness is allowed. The deterministic and zero-error version barely uses interaction.

1 Introduction

In the Number-on-Forehead (NOF) model of communication, k players collaborate to evaluate a function f on a $k \times m$ boolean matrix $X=\left(x_{i, j}\right)$. Player i knows all input bits except those in row i which is represented metaphorically by saying that row i is on the forehead of Player i, who sees all foreheads except her own. The players communicate by broadcast. The goal is to design a communication protocol for evaluating f that minimizes the number of bits of communication. Every such function can be evaluated with $m+1$ bits of communication by having the k th player broadcast the first row of the matrix; the first player (who then knows the entire matrix) evaluates the function and announces the result.

Since it was introduced by Chandra, Furst and Lipton [CFL83], the model has been studied extensively (e.g., [BNS92, Gro94, BGKL03, BPSW06, CKK ${ }^{+} 07$, VW08, CA08, LS09, DPV09, She12]), in part because it captures a communication bottleneck relevant to several models of computation such as branching programs, boolean circuits, SAT refutation via polynomial

[^0]calculus etc. For each of these models, proving lower bounds for computing some function f reduces to proving communication lower bounds for a function related to f in the NOF model.

For example, the complexity class ACC^{0} is believed to be rather weak. ${ }^{1}$ This belief is based on the famous Razborov-Smolensky Theorem [Raz87, Smo87] stating that AC ${ }^{0}$ circuits augmented with MOD_{p} gates, for any fixed prime p, cannot even compute efficiently the majority function MAJ (which outputs 1 if at least half the input bits are 1). A widely held conjecture says that ACC^{0} does not contain MAJ, but the only known non-trivial separation is $N E X P \not \subset \mathrm{ACC}^{0}$ [Wil11]. Combining results of [HG91, BT94] gives that for any $f:\{0,1\}^{n} \rightarrow\{0,1\}$ in ACC^{0} there is a constant C such that for $k=(\log n)^{C}$ if the variables of f are arranged (arbitrarily) in a matrix with k rows (padding rows with dummy inputs as needed) there is a k-player NOF protocol for evaluating f that is efficient (uses $\log (n)^{O(1)}$ bits of communication). This has inspired researchers to seek an explicit function f on $n=m k$ bits for which there is provably no efficient NOF k-party protocol as long as $k=(\log n)^{O(1)}$. This would separate ACC^{0} from any complexity class containing f.

The best lower bound known in the NOF model is $\Omega\left(m / 4^{k}\right)$ [BNS92] for the generalized inner product function GIP ${ }_{k}^{m}$ which outputs 1 if the input matrix has an odd number of all 1 columns. This lower bound is $m^{\Omega(1)}$ if the number of players is less than $(1-\varepsilon) \log m$ but becomes trivial if $k \geq \log m$. Similarly all known NOF lower bounds become trivial for $k \geq \log m$.

One might guess that GIP remains hard for NOF when $k \geq \log (m)$, but surprisingly Grolmusz [Gro94] found a protocol for $k \geq \log (m)$ with $\operatorname{cost} O\left((\log m)^{2}\right)$. His protocol relies on the structure of GIP. For a k-variate boolean function g and an m variate function f the composition $(f \circ g)(M)$ has output $f\left(g\left(A^{1}\right), \ldots, g\left(A^{m}\right)\right)$ where A^{i} is the i-th column of A. We call f the outer function and g the inner function. For GIP, f is sum modulo 2 , and g is AND. In fact, Grolmusz's protocol works if f is symmetric (invariant under any permutation of the variables).

Babai et.al [BKL95] suggested that the composed function with outer function MAJ_{m} (the m bit majority function) and inner function MAJ_{k} might be hard for NOF, however Babai, Gál, Kimmel and Lokam [BGKL03] refuted this by giving an efficient simultaneous protocol ${ }^{2}$ that works for a composed function with symmetric outer function and an inner function that is both symmetric and compressible, provided that the number of players is a sufficiently large poly-logarithmic function of m. We won't define compressible here, but we note that MAJ is compressible and so their protocol applies to $\mathrm{MAJ}_{m} \circ \mathrm{MAJ}_{k}$.

Babai et.al [BGKL03] then suggested that $\mathrm{MAJ}_{m} \circ Q$ where Q is not compressible, might be hard for the NOF model. Recently, however, Ada et.al.[ACFN12] showed that for k slightly larger than $\log m$, the composition of any symmetric function with any inner function, has a very efficient deterministic simultaneous NOF protocol.

Babai et.al. also suggested considering composed functions whose inner function depends on more than 1 bit from each player. More precisely, let b and r be integers and let $m=b r$. Split the $k \times m$ matrix A into b blocks, A^{1}, \ldots, A^{b}, where each block is a $k \times r$ matrix. Consider

[^1]the composition $f \circ g$ where f has b variables and g has $k r$ variables. We call r the block length of g. Specifically, they suggested looking at the function $\mathrm{MAJ}_{b} \circ T_{t}^{k, r}$, where $T_{t}^{k, r}$ takes as input a $k \times r$ matrix and interprets each row i as an r-bit integer z_{i}, and outputs 1 if $z_{1}+\cdots+z_{k}>t$. They suggested $b=r$ as a case of special interest, but noted that even the case $r=2$ is open.

Here we give the first efficient NOF protocol for composed functions having block length above 1. Corollary 1.2 implies that MAJ $\circ T_{t}^{k, r}$ has an efficient NOF protocol of only poly$\operatorname{logarithmic}\left(\right.$ i.e. $\left.\log (m)^{O(1)}\right)$ cost, when the number of players k is $\Omega(\log (m))^{2}$ and the block length r is at most $\log \log (m)$. While our primary interest is in boolean functions, our result is naturally stated for polynomial functions over a finite field. The set up we work with is:

- \mathbb{F} is a finite field.
- $D \subseteq \mathbb{F}$.
- p^{1}, \ldots, p^{b} are polynomial functions of the entries of a $k \times m$ matrix each of which depends on at most r variables per row.
- $p=\sum_{i=1}^{b} p^{i}$.
- A is an assignment to the variables whose entries are all in D.
- $n=m k$.

We consider the k-party NOF complexity of evaluating $p(A)$. A key observation that was used previously in making the connection between ACC^{0} lower bounds and NOF-complexity, is that if p is a polynomial of degree strictly less than k, then p has a very efficient k-party simultaneous protocol: for any monomial of degree less than k there is some player who sees all the variables of that monomial and so the polynomial p can be decomposed as a sum of polynomials $p^{1}+\cdots+p^{k}$ where Player j sees all of the variables needed to evaluate p^{j}, and so can simply announce $p^{j}(A)$. However, if the degree of p exceeds k there are no general methods known. In the above set up, the degree of p is $r k$. Our main result shows that if r is not too big then we can get efficient protocols.

Theorem 1.1. 1. Let $\gamma>0$ and suppose $k \geq 1+|D|^{r} \ln (b n / \gamma)$. There is a randomized simultaneous message NOF protocol which outputs either $p(A)$ or "failure", where the probability that it outputs "failure" is at most γ. The total communication cost of the protocol is at most $\left(1+|D|^{r} \ln (b n / \gamma)\right)\lceil\log (1+|\mathbb{F}|)\rceil$.
2. Suppose $k \geq\left(1+|D|^{r} \ln (2 b n)\right)$. There is a deterministic NOF protocol that outputs $p(A)$ having total communication cost $\left(1+|D|^{r} \ln (2 b n)(\lceil r \log |D|\rceil+\lceil\log |\mathbb{F}|\rceil)\right.$.

Remark 1. As in the work of Babai et.al [BGKL03], in public-coin simultaneous message protocols, all coin-tosses are visible to all players and the referee.

For boolean functions we get:
Corollary 1.2. Let g be a boolean function whose variable set is a $k \times r$ matrix and let f be a symmetric b-variate boolean function.

- Suppose $\gamma>0$ and $k \geq 1+2^{r} \ln (b n / \gamma)$. There is a public-coin randomized simultaneous message protocol which outputs either $f \circ g(A)$ or "failure", where the probability that it outputs failure is at most γ. The total communication is at most $\left(1+2^{r} \ln (n b / \gamma)\right)\lceil\log (1+$ $|\mathbb{F}|)]$.
- If $k \geq 1+2^{r} \ln (2 b n)$, there is a 2 round deterministic NOF protocol for $f \circ g$ with communication $\left(1+2^{r} \ln (2 b n)\right)(r+\lceil\log (2 b)\rceil)$.

To deduce the corollary, let q be the smallest prime that is greater than b (so $b \leq q \leq 2 b$) and let \mathbb{F} be the field of integers $\bmod q$. For any boolean function there is a polynomial λ over field \mathbb{F} that agrees with g on every 0 -1 input. Let λ be the $k r$-variate polynomial over \mathbb{F} that represents the given boolean function g. Let X be a $k \times r b$ matrix of variables. For $i \in[b]$, let X^{i} be the i th $k \times r$ block of variables and define the polynomial $p^{i}(X)$ by $\lambda\left(X^{i}\right)$. The polynomial $p(X)=\sum_{i=1}^{b} p^{i}(X)$ counts the number of X^{i} for which $g\left(X^{i}\right)=1$ and since f is a symmetric function, $p(X)$ determines $f \circ g(X)$. Now apply Theorem 1.1 to p with $D=\{0,1\}$.

Main Idea for our Protocol: As mentioned earlier, a polynomial p of degree less than k can be evaluated by k players in the NOF model by decomposing p as a sum of k polynomials, where the i-th polynomial can be evaluated privately by Player i. For a polynomial of degree k or more we can't do this. Still every polynomial p can be decomposed as a sum of polynomials $q^{0}+q^{1}+\cdots q^{k}$ where q^{0} consists of monomials that depend on every row of A (and thus can't be evaluated by any one player) and q^{i} consists of all monomials that contain at least one variable for rows $1, \ldots, i-1$ and no variable from row i, and can thus be evaluated by Player i. So the problematic part is q_{0}, which is identically 0 if p has degree less than k. The first (simple) idea is that we don't need q_{0} to be identically 0 , we only need that $q_{0}(A)=0$. The second idea is to consider alternative bases (rather than the standard monomial basis) for writing polynomials. A natural set of bases to consider are shifted monomial bases, where we fix a matrix B and consider the basis consisting of products of terms of the form $x_{i, j}-B_{i, j}$. Each such B gives rise to an alternative decomposition $q_{0}^{B}+\cdots+q_{k}^{B}$. A simple but key observation is that the polynomial q_{0}^{B} depends on B, and so it suffices for the players to agree on B so that $q_{0}^{B}(A)=0$. Furthermore for our set up, the polynomial p is initially given as a sum of polynomials p^{u} each depending on only a few variables per row. The players can choose a different shift B^{u} for each polynomial p^{u} and decompose p^{u} with respect to that basis. Hence, the problem becomes to find a way for the players to identify and agree upon a sequence ($B^{u}: u \in[b]$) of shift matrices such that when p^{u} is decomposed with respect to B^{u} the associated polynomial q_{0}^{u} evaluated at A is 0 . It turns out that, using the fact that each p^{u} depends on only a few variables per row, this is easy to do.

We point out that the previous works on protocols for composed functions by Grolmusz [Gro94], Babai et.al [BGKL03] and Ada et.al [ACFN12] did not use this polynomial view.

2 Some definitions

$\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ denotes the ring of polynomials over field \mathbb{F}. The set of monomials $x_{1}^{j_{1}} \ldots x_{n}^{j_{n}}$ where $\left(j_{1}, \ldots, j_{n}\right) \in \mathbb{N}^{n}$ is a basis. More generally, for $c=\left(c_{1}, \ldots, c_{n}\right) \in \mathbb{F}^{n}$ the set of c-shifted
monomials $\left(x_{1}-c_{1}\right)^{j_{1}} \ldots\left(x_{n}-c_{n}\right)^{j_{n}}$ comprise a basis, called the c-shifted basis. A polynomial p is independent of x_{i} if no monomial in the monomial expansion of p includes x_{i}.

In the NOF setting, the variables are ($x_{i, j}: 1 \leq i \leq k, 1 \leq j \leq m$). An assignment is a $k \times m$ matrix A. A polynomial p which contains no variable of row i is said to be independent of row i. The row-by-row decomposition of p relative to assignment B expresses p as the sum $q_{0}^{B}+q_{1}^{B}+\cdots+q_{k}^{B}$, as follows. Expand p in the B-shifted basis and let q_{0}^{B} be the sum of those (shifted) monomials in the expansion (with coefficients) that depend on every row, and for $i \geq 1$ let q_{i}^{B} be the sum of all monomials that are independent of row i and dependent on rows $1, \ldots, i-1$. Note each monomial is included in one and only one of the polynomials.

3 Proof of Theorem 1.1.

The goal is to evaluate $p(A)$. Suppose the players are all given some fixed auxiliary assignment B. All of them can compute the row-by-row decomposition $q_{0}^{B}+\cdots+q_{k}^{B}$. Player i can evaluate $q_{i}^{B}(A)$ and announce the result with total cost $k\lceil\log |\mathbb{F}|\rceil$. If it happens that $q_{0}^{B}(A)=0$ then this is enough to determine $p(A)$. It therefore suffices to show how the players agree on a matrix B such that $q_{0}^{B}(A)=0$.

To do this, we use the hypothesis of the theorem that $p=p^{1}+\cdots+p^{b}$ where p^{j} depends in at most r variables per row. We define a simultaneous protocol Π_{C} which depends on a $k \times r$ matrix C. We'll show that this protocol works provided that C satisfies certain properties. We will also show that the players can agree on a C to satisfy these properties (either using shared randomness, or deterministically by having Player k choose C).

The matrix C is used to define $k \times m$ matrices $B^{1}(C), \ldots, B^{b}(C)$ as follows: For each $u \in[b]$, let X_{i}^{u} be the sequence of (at most r) variables in row i on which p^{u} depends. In $B^{u}(C)$, assign the variables of X_{i}^{u} from left to right according to row i of C. Other variables in row i are set to 0 . Let $q_{0}^{u}+q_{1}^{u}+\cdots+q_{b}^{u}$ be the row-by-row decomposition of p^{u} relative to $B^{u}(C)$. Given C, the matrices $B^{u}(C)$ and the decomposition of p^{u} can be computed privately by each player. Now in Π_{C} each player i announces $\alpha_{i}=\sum_{u=1}^{b} q_{i}^{u}(A)$ and the output of the protocol is $\sum_{i} \alpha_{i}$. The cost is $k\lceil\log |\mathbb{F}|\rceil$.

The difference of the output of the protocol from the correct answer is equal to $p(A)-$ $\sum_{u=1}^{b} q_{0}^{u}(A)$, so it suffices that $q_{0}^{u}(A)=0$ for all u. The following definitions will be helpful to achieve this.

- For polynomial p^{u} and row index i, and for matrices A and B we write $B \equiv_{p^{u}, i} A$ if A and B agree on all variables of row i on which p^{u} depends.
- For $u \in[b]$ and $j \in[k]$ we say that C satisfies property $Q^{u}(j)$ if there is an index $i^{u} \neq j$ such that $B^{u}(C) \equiv_{p^{u}, i^{u}} A$.
- For $j \in[k]$ we say that C satisfies property $Q(j)$ if it satisfies $Q^{u}(j)$ for every $u \in[b]$.
- We say that C satisfies property Q if it satisfies $Q(j)$ for every $j \in[k]$.

Observe that if C satisfies property $Q(j)$ for some j, then for each $u \in[b]$ there is an index $i^{u} \neq j$ such that $B^{u}(C)$ agrees with A on all variables of row i^{u} that appear in p^{u}. Each
$B^{u}(C)$-shifted monomial of q_{0}^{u} contains a variable from each row so in particular it contains a variable from row i^{u} and thus the monomial vanishes at A. Thus $q_{0}^{u}(A)=0$ for all u and so Π_{C} will give the correct answer. Observe also that Player j is able to privately check whether a matrix C satisfies $Q(j)$.

Claim 3.1. Let $\gamma>0$ and $k \geq \ln (b n / \gamma)|D|^{r}+1$. If C is chosen uniformly at random from among $k \times r$ matrices with entries in D, the probability that the matrix C does not satisfy Q is at most γ.

Proof. Let j be any row. By hypothesis, p^{u} depends on at most r variables from row i. Thus, for $i \neq j$, the probability that $B^{u}(C) \equiv_{p^{u}, i} A$ is at least $1 /|D|^{r}$. Hence, the probability that $Q^{u}(j)$ does not hold, which is the probability that for all $i \neq j, B^{u} \equiv_{\left(p^{u}, i\right)} A$, is at most $\left(1-1 /|D|^{r}\right)^{k-1} \leq e^{-(k-1) /|D|^{r}}$. Taking a union bound over $u \in[b]$ and $j \in[k]$ gives that the probability that Q fails is at most $b k e^{-(k-1) /|D|^{r}} \leq b n e^{-(k-1) /|D|^{r}} \leq \gamma$ using the hypothesized lower bound on k.

We now state our randomized simultaneous message protocol: players use public coins to uniformly sample C. Each player j checks whether C satisfies $Q(j)$ (which can be done privately). If it does then he runs Π_{C} and makes the appropriate announcement. If C does not satisfy $Q(j)$, player j announces "failure". If no player says failure then C satisfies property Q and so Π_{C} provides the correct answer. If any player announces "failure" then the referee announces "failure". By Claim 3.1, assuming that $k \geq 1+\ln (b n / \gamma)|D|^{r}$, this happens with probability at most γ. Each player sends at most $\lceil\log |\mathbb{F}|+1\rceil$ bits (where the " +1 " includes the possibility of failure), for a total of $k\lceil\log |\mathbb{F}+1|\rceil$ bits.

For the deterministic protocol, if we take $\gamma=1 / 2$ in the Claim, then for $k \geq 1+\ln (2 b n)|D|^{r}$, there is a matrix C satisfying $Q(k)$. Player k can select such a C privately satisfying $Q(k)$ and announce it (using $k r\lceil\log |D|\rceil$ bits). The players then run Π_{C}. The total communication is at most $k(r\lceil\log |D|\rceil+\lceil\log |\mathbb{F}|\rceil)$.

Note that both our randomized and deterministic protocols have an explicit dependence on k which becomes unaffordable for large values of k. To reduce the communication cost of these protocols to the amount claimed in the theorem, let $k^{\prime}=\left\lceil 1+|D|^{r} \ln (n b / \gamma)\right\rceil$. Without any communication, each player $1, \ldots, k^{\prime}$ can simplify the polynomial p by substituting in the variables appearing in rows after k^{\prime}. This gives a polynomial p^{\prime} that depends only on the first k^{\prime} rows. The polynomial p^{\prime} and the number k^{\prime} satisfy the hypotheses for the above arguments for both the randomized and deterministic protocols. So players $1, \ldots k^{\prime}$ can evaluate p^{\prime} with the rest of the players remaining silent. Thus, replacing k by k^{\prime} in the cost of the protocols above, completely establishes Theorem 1.1.

4 Conclusion and Open Problems

We give the first efficient NOF protocol for composed functions of block length greater than 1. Some further questions suggested by our work are stated below:

- To de-randomize our simultaneous message protocol, we used interaction in a very limited way. Can it be made a simultaneous deterministic protocol? The protocol Π_{C} is simultaneous, so the non-simultaneity only comes from having to choose C satisfying Claim 3.1. In our protocol this is done by Player k but it seems possible that this can be done simultaneously. Player j can privately determine the set of all matrices C that satisfy $Q(j)$. Claim 3.1 can be easily modified to show that (for k a bit larger than $2^{r}+\ln (b)$) there are several matrices C that satisfy $Q(i)$ for all i. Consider the simultaneous protocol in which each player j announces every C that satisfies $Q(j)$ together with his announcement for the protocol Π_{C}. For C that satisfies $Q(j)$ for all j, the players will have all run Π_{C} from which $p(A)$ can be deduced. The problem with this protocol is that if there are many matrices that satisfy $Q(j)$ for some j then it may be very costly. This gives rise to the following problem: is it possible for each player j to (privately) select a small subset \mathcal{C}_{j} of matrices satisfying Q_{j} in such a way that $\cap_{j} \mathcal{C}_{j}$ is nonempty. If so, then player j can announce only those matrices in \mathcal{C}_{j}, thereby giving an efficient NOF protocol.
- Our protocol works for all inner functions of block length r. The number of players and the communication needed is exponential in r. Can the dependence on r be improved? The only lower bound on the communication we know is linear in r, which comes from a simple counting argument (which is essentially the same argument which shows that for general functions on $m k$ variables there is a function that requires communication $\Omega(m)$.)
- If we restrict the inner function to a specific interesting function, such as $T_{t}^{k, r}$, then the counting lower bounds don't work. Are there protocols that handle larger block length for this function?

References

[ACFN12] A. Ada, A. Chattopadhyay, O. Fawzi, and P. Nguyen. The NOF multiparty communication complexity of composed functions. In International Colloquium on Au tomata, Programming and Languages (ICALP), pages 13-24, 2012.
[BGKL03] L. Babai, A. Gál, P. G. Kimmel, and S. V. Lokam. Communication complexity of simultaneous messages. SIAM J. of Computing, 33:137-166, 2003.
[BKL95] L. Babai, P. G. Kimmel, and S. V. Lokam. Simultaneous messages vs. communication. In 12th Annual Symposium on Theoretical Aspects of Computer Science (STACS), pages 361-372. Springer, 1995.
[BNS92] L. Babai, N. Nisan, and M. Szegedy. Multiparty protocols, pseudorandom generators for logspace, and time-space trade-offs. Journal of Computer and System Sciences, 45(2):204-232, 1992.
[BPSW06] P. Beame, T. Pitassi, N. Segerlind, and A. Wigderson. A strong direct product theorem for corruption and the multiparty communication complexity of disjointness. Computational Complexity, 15(4):391-432, 2006.
[BT94] Richard Beigel and Jun Tarui. On ACC. Computational Complexity, 4:350-366, 1994.
[CA08] A. Chattopadhyay and A. Ada. Multiparty communication complexity of disjointness. Technical Report TR08-002, Electronic Colloquium on Computational Complexity (ECCC), 2008.
[CFL83] A. K. Chandra, M. L. Furst, and R. J. Lipton. Multiparty protocols. In 15th ACM Symposium on Theory of Computing (STOC), pages 94-99, 1983.
$\left[\mathrm{CKK}^{+} 07\right]$ A. Chattopadhyay, A. Krebs, M. Koucký, M. Szegedy, P. Tesson, and D. Thérien. Languages with bounded multiparty communication complexity. In Symposium on Theoretical Aspects of Computer Science (STACS), pages 500-511, 2007.
[DPV09] M. David, T. Pitassi, and E. Viola. Improved separations between nondeterministic and randomized multiparty communication. ACM Transactions on Computation Theory (TOCT), 1(2), 2009.
[Gro94] V. Grolmusz. The BNS lower bound for multi-party protocols is nearly optimal. Information and Computation, 112:51-54, 1994.
[HG91] Johan Håstad and Mikael Goldmann. On the power of small-depth threshold circuits. Computational Complexity, 1:113-129, 1991.
[LS09] T. Lee and A. Shraibman. Disjointness is hard in the multiparty number-on-theforehead model. Computational Complexity, 18(2):309-336, 2009.
[Raz87] A. A. Razborov. Lower bounds on the size of bounded-depth networks over a complete basis with logical addition. Math. Notes of the Acad. of Sci. of USSR, 41(3):333-338, 1987.
[She12] A. A. Sherstov. The multiparty communication complexity of set disjointness. In 44 th Symposium on Theory of Computing (STOC), 2012.
[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit complexity. In 19th Annual ACM Symposium on Theory of Computing, pages 77-82. ACM Press, 1987.
[VW08] E. Viola and A. Wigderson. Norms, XOR lemmas, and lower bounds for polynomials and protocols. Theory of Computing, 4(1):137-168, 2008.
[Wil11] Ryan Williams. Non-uniform ACC circuit lower bounds. In IEEE Conference on Computational Complexity, pages 115-125, 2011.

[^0]: *School of Technology and Computer Science, Tata Institute of Fundamental Research, email: arkadev.c@tifr.res.in. This work was partly supported by a Ramanujan Fellowship of the DST.
 ${ }^{\dagger}$ Department of Mathematics, Rutgers University, email: msaks30@gmail.com. This work was supported in part by NSF Grants CCF-0832787 and CCF-1218711.

[^1]: ${ }^{1} \mathrm{ACC}^{0}$ is the class of boolean functions computable by circuits of polynomial size and constant depth using AND gates, OR gates and MOD_{w} gates for some fixed positive integer w. $\mathrm{A} \mathrm{MOD}_{w}$ gate outputs 1 iff the sum of the input values is divisible by w.
 ${ }^{2}$ In a simultaneous protocol, all processors simultaneously send one message to a referee who computes $f(A)$ from the messages

