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Abstract

In the ‘Number-on-Forehead’ (NOF) model of multiparty communication, the input is
a k × m boolean matrix A (where k is the number of players) and Player i sees all bits
except those in the i-th row, and the players communicate by broadcast in order to evaluate
a specified function f at A. We discover new computational power when k exceeds logm.
We give a protocol with communication cost poly-logarithmic in m, for block composed
functions with limited block size. These are functions of the form f ◦ g where f is a
symmetric b-variate function, and g is a kr-variate function and f ◦ g(A) is defined, for a
k× br matrix to be f(g(A1), . . . , g(Ab)) where Ai is the i-th k× r block of A. Our protocol
works provided that k > 1+ln b+2r. Ada et.al [ACFN12] previously obtained simultaneous
and deterministic efficient protocols for composed functions of block-width r = 1. The new
protocol is the first to work for block composed functions with r > 1. Moreover, it is
simultaneous, with vanishingly small error probability, if public coin randomness is allowed.
The deterministic and zero-error version barely uses interaction.

1 Introduction

In the Number-on-Forehead (NOF) model of communication, k players collaborate to evaluate
a function f on a k ×m boolean matrix X = (xi,j). Player i knows all input bits except those
in row i which is represented metaphorically by saying that row i is on the forehead of Player
i, who sees all foreheads except her own. The players communicate by broadcast. The goal
is to design a communication protocol for evaluating f that minimizes the number of bits of
communication. Every such function can be evaluated with m + 1 bits of communication by
having the kth player broadcast the first row of the matrix; the first player (who then knows
the entire matrix) evaluates the function and announces the result.

Since it was introduced by Chandra, Furst and Lipton [CFL83], the model has been studied
extensively (e.g., [BNS92, Gro94, BGKL03, BPSW06, CKK+07, VW08, CA08, LS09, DPV09,
She12]), in part because it captures a communication bottleneck relevant to several models
of computation such as branching programs, boolean circuits, SAT refutation via polynomial
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calculus etc. For each of these models, proving lower bounds for computing some function f
reduces to proving communication lower bounds for a function related to f in the NOF model.

For example, the complexity class ACC0 is believed to be rather weak.1 This belief is
based on the famous Razborov-Smolensky Theorem [Raz87, Smo87] stating that AC0 cir-
cuits augmented with MODp gates, for any fixed prime p, cannot even compute efficiently
the majority function MAJ (which outputs 1 if at least half the input bits are 1). A widely
held conjecture says that ACC0 does not contain MAJ, but the only known non-trivial sep-
aration is NEXP 6⊂ ACC0 [Wil11]. Combining results of [HG91, BT94] gives that for any
f : {0, 1}n → {0, 1} in ACC0 there is a constant C such that for k = (log n)C if the variables
of f are arranged (arbitrarily) in a matrix with k rows (padding rows with dummy inputs as
needed) there is a k-player NOF protocol for evaluating f that is efficient (uses log(n)O(1) bits
of communication). This has inspired researchers to seek an explicit function f on n = mk bits
for which there is provably no efficient NOF k-party protocol as long as k = (log n)O(1). This
would separate ACC0 from any complexity class containing f .

The best lower bound known in the NOF model is Ω(m/4k) [BNS92] for the generalized inner
product function GIPm

k which outputs 1 if the input matrix has an odd number of all 1 columns.
This lower bound is mΩ(1) if the number of players is less than (1− ε) logm but becomes trivial
if k ≥ logm. Similarly all known NOF lower bounds become trivial for k ≥ logm.

One might guess that GIP remains hard for NOF when k ≥ log(m), but surprisingly Grol-
musz [Gro94] found a protocol for k ≥ log(m) with cost O((logm)2). His protocol relies on the
structure of GIP. For a k-variate boolean function g and an m variate function f the compo-
sition

(
f ◦ g

)
(M) has output f(g(A1), . . . , g(Am)) where Ai is the i-th column of A. We call

f the outer function and g the inner function. For GIP, f is sum modulo 2, and g is AND.
In fact, Grolmusz’s protocol works if f is symmetric (invariant under any permutation of the
variables).

Babai et.al [BKL95] suggested that the composed function with outer function MAJm (the
m bit majority function) and inner function MAJk might be hard for NOF, however Babai,
Gál, Kimmel and Lokam [BGKL03] refuted this by giving an efficient simultaneous protocol 2

that works for a composed function with symmetric outer function and an inner function that
is both symmetric and compressible, provided that the number of players is a sufficiently large
poly-logarithmic function of m. We won’t define compressible here, but we note that MAJ is
compressible and so their protocol applies to MAJm ◦MAJk.

Babai et.al [BGKL03] then suggested that MAJm ◦ Q where Q is not compressible, might
be hard for the NOF model. Recently, however, Ada et.al.[ACFN12] showed that for k slightly
larger than logm, the composition of any symmetric function with any inner function, has a
very efficient deterministic simultaneous NOF protocol.

Babai et.al. also suggested considering composed functions whose inner function depends
on more than 1 bit from each player. More precisely, let b and r be integers and let m = br.
Split the k×m matrix A into b blocks, A1, . . . , Ab, where each block is a k×r matrix. Consider

1ACC0 is the class of boolean functions computable by circuits of polynomial size and constant depth using
AND gates, OR gates and MODw gates for some fixed positive integer w. A MODw gate outputs 1 iff the sum
of the input values is divisible by w.

2In a simultaneous protocol, all processors simultaneously send one message to a referee who computes f(A)
from the messages
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the composition f ◦ g where f has b variables and g has kr variables. We call r the block length
of g. Specifically, they suggested looking at the function MAJb ◦T k,r

t , where T k,r
t takes as input

a k× r matrix and interprets each row i as an r-bit integer zi, and outputs 1 if z1 + · · ·+zk > t.
They suggested b = r as a case of special interest, but noted that even the case r = 2 is open.

Here we give the first efficient NOF protocol for composed functions having block length
above 1. Corollary 1.2 implies that MAJ ◦ T k,r

t has an efficient NOF protocol of only poly-
logarithmic (i.e. log(m)O(1)) cost, when the number of players k is Ω(log(m))2 and the block
length r is at most log log(m). While our primary interest is in boolean functions, our result is
naturally stated for polynomial functions over a finite field. The set up we work with is:

• F is a finite field.

• D ⊆ F.

• p1, . . . , pb are polynomial functions of the entries of a k×m matrix each of which depends
on at most r variables per row.

• p =
∑b

i=1 p
i.

• A is an assignment to the variables whose entries are all in D.

• n = mk.

We consider the k-party NOF complexity of evaluating p(A). A key observation that was
used previously in making the connection between ACC0 lower bounds and NOF-complexity,
is that if p is a polynomial of degree strictly less than k, then p has a very efficient k-party
simultaneous protocol: for any monomial of degree less than k there is some player who sees
all the variables of that monomial and so the polynomial p can be decomposed as a sum of
polynomials p1 + · · ·+ pk where Player j sees all of the variables needed to evaluate pj , and so
can simply announce pj(A). However, if the degree of p exceeds k there are no general methods
known. In the above set up, the degree of p is rk. Our main result shows that if r is not too
big then we can get efficient protocols.

Theorem 1.1. 1. Let γ > 0 and suppose k ≥ 1 + |D|r ln(bn/γ). There is a randomized
simultaneous message NOF protocol which outputs either p(A) or ”failure”, where the
probability that it outputs ”failure” is at most γ. The total communication cost of the
protocol is at most

(
1 + |D|r ln(bn/γ)

)
dlog(1 + |F|)e.

2. Suppose k ≥ (1 + |D|r ln(2bn)). There is a deterministic NOF protocol that outputs p(A)
having total communication cost (1 + |D|r ln(2bn)(dr log |D|e+ dlog |F|e).

Remark 1. As in the work of Babai et.al [BGKL03], in public-coin simultaneous message
protocols, all coin-tosses are visible to all players and the referee.

For boolean functions we get:

Corollary 1.2. Let g be a boolean function whose variable set is a k× r matrix and let f be a
symmetric b-variate boolean function.
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• Suppose γ > 0 and k ≥ 1 + 2r ln(bn/γ). There is a public-coin randomized simultaneous
message protocol which outputs either f ◦ g(A) or “failure”, where the probability that it
outputs failure is at most γ. The total communication is at most

(
1+2r ln(nb/γ)

)
dlog(1+

|F|)e.

• If k ≥ 1 + 2r ln(2bn), there is a 2 round deterministic NOF protocol for f ◦ g with com-
munication (1 + 2r ln(2bn))(r + dlog(2b)e).

To deduce the corollary, let q be the smallest prime that is greater than b (so b ≤ q ≤ 2b)
and let F be the field of integers mod q. For any boolean function there is a polynomial λ over
field F that agrees with g on every 0-1 input. Let λ be the kr-variate polynomial over F that
represents the given boolean function g. Let X be a k × rb matrix of variables. For i ∈ [b],
let Xi be the ith k × r block of variables and define the polynomial pi(X) by λ(Xi). The
polynomial p(X) =

∑b
i=1 p

i(X) counts the number of Xi for which g(Xi) = 1 and since f is a
symmetric function, p(X) determines f ◦ g(X). Now apply Theorem 1.1 to p with D = {0, 1}.

Main Idea for our Protocol: As mentioned earlier, a polynomial p of degree less than k
can be evaluated by k players in the NOF model by decomposing p as a sum of k polynomials,
where the i-th polynomial can be evaluated privately by Player i. For a polynomial of degree k
or more we can’t do this. Still every polynomial p can be decomposed as a sum of polynomials
q0 +q1 + · · · qk where q0 consists of monomials that depend on every row of A (and thus can’t be
evaluated by any one player) and qi consists of all monomials that contain at least one variable
for rows 1, . . . , i− 1 and no variable from row i, and can thus be evaluated by Player i. So the
problematic part is q0, which is identically 0 if p has degree less than k. The first (simple) idea
is that we don’t need q0 to be identically 0, we only need that q0(A) = 0. The second idea is to
consider alternative bases (rather than the standard monomial basis) for writing polynomials.
A natural set of bases to consider are shifted monomial bases, where we fix a matrix B and
consider the basis consisting of products of terms of the form xi,j − Bi,j . Each such B gives
rise to an alternative decomposition qB0 + · · · + qBk . A simple but key observation is that the
polynomial qB0 depends on B, and so it suffices for the players to agree on B so that qB0 (A) = 0.
Furthermore for our set up, the polynomial p is initially given as a sum of polynomials pu each
depending on only a few variables per row. The players can choose a different shift Bu for each
polynomial pu and decompose pu with respect to that basis. Hence, the problem becomes to
find a way for the players to identify and agree upon a sequence (Bu : u ∈ [b]) of shift matrices
such that when pu is decomposed with respect to Bu the associated polynomial qu0 evaluated
at A is 0. It turns out that, using the fact that each pu depends on only a few variables per
row, this is easy to do.

We point out that the previous works on protocols for composed functions by Grolmusz
[Gro94], Babai et.al [BGKL03] and Ada et.al [ACFN12] did not use this polynomial view.

2 Some definitions

F[x1, . . . , xn] denotes the ring of polynomials over field F. The set of monomials xj11 . . . xjnn
where (j1, . . . , jn) ∈ Nn is a basis. More generally, for c = (c1, . . . , cn) ∈ Fn the set of c-shifted
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monomials (x1 − c1)j1 . . . (xn − cn)jn comprise a basis, called the c-shifted basis. A polynomial
p is independent of xi if no monomial in the monomial expansion of p includes xi.

In the NOF setting, the variables are (xi,j : 1 ≤ i ≤ k, 1 ≤ j ≤ m). An assignment is a
k ×m matrix A. A polynomial p which contains no variable of row i is said to be independent
of row i. The row-by-row decomposition of p relative to assignment B expresses p as the sum
qB0 + qB1 + · · · + qBk , as follows. Expand p in the B-shifted basis and let qB0 be the sum of
those (shifted) monomials in the expansion (with coefficients) that depend on every row, and
for i ≥ 1 let qBi be the sum of all monomials that are independent of row i and dependent on
rows 1, . . . , i− 1. Note each monomial is included in one and only one of the polynomials.

3 Proof of Theorem 1.1.

The goal is to evaluate p(A). Suppose the players are all given some fixed auxiliary assignment
B. All of them can compute the row-by-row decomposition qB0 + · · ·+qBk . Player i can evaluate
qBi (A) and announce the result with total cost kdlog |F|e. If it happens that qB0 (A) = 0 then
this is enough to determine p(A). It therefore suffices to show how the players agree on a matrix
B such that qB0 (A) = 0.

To do this, we use the hypothesis of the theorem that p = p1 + · · ·+ pb where pj depends in
at most r variables per row. We define a simultaneous protocol ΠC which depends on a k × r
matrix C. We’ll show that this protocol works provided that C satisfies certain properties. We
will also show that the players can agree on a C to satisfy these properties (either using shared
randomness, or deterministically by having Player k choose C).

The matrix C is used to define k×m matrices B1(C), . . . , Bb(C) as follows: For each u ∈ [b],
let Xu

i be the sequence of (at most r) variables in row i on which pu depends. In Bu(C), assign
the variables of Xu

i from left to right according to row i of C. Other variables in row i are set
to 0. Let qu0 + qu1 + · · · + qub be the row-by-row decomposition of pu relative to Bu(C). Given
C, the matrices Bu(C) and the decomposition of pu can be computed privately by each player.

Now in ΠC each player i announces αi =
∑b

u=1 q
u
i (A) and the output of the protocol is∑

i αi. The cost is kdlog |F|e.
The difference of the output of the protocol from the correct answer is equal to p(A) −∑b

u=1 q
u
0 (A), so it suffices that qu0 (A) = 0 for all u. The following definitions will be helpful to

achieve this.

• For polynomial pu and row index i, and for matrices A and B we write B ≡pu,i A if A
and B agree on all variables of row i on which pu depends.

• For u ∈ [b] and j ∈ [k] we say that C satisfies property Qu(j) if there is an index iu 6= j
such that Bu(C) ≡pu,iu A.

• For j ∈ [k] we say that C satisfies property Q(j) if it satisfies Qu(j) for every u ∈ [b].

• We say that C satisfies property Q if it satisfies Q(j) for every j ∈ [k].

Observe that if C satisfies property Q(j) for some j, then for each u ∈ [b] there is an index
iu 6= j such that Bu(C) agrees with A on all variables of row iu that appear in pu. Each
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Bu(C)-shifted monomial of qu0 contains a variable from each row so in particular it contains a
variable from row iu and thus the monomial vanishes at A. Thus qu0 (A) = 0 for all u and so
ΠC will give the correct answer. Observe also that Player j is able to privately check whether
a matrix C satisfies Q(j).

Claim 3.1. Let γ > 0 and k ≥ ln
(
bn/γ

)
|D|r + 1. If C is chosen uniformly at random from

among k× r matrices with entries in D, the probability that the matrix C does not satisfy Q is
at most γ.

Proof. Let j be any row. By hypothesis, pu depends on at most r variables from row i. Thus,
for i 6= j, the probability that Bu(C) ≡pu,i A is at least 1/|D|r. Hence, the probability that
Qu(j) does not hold, which is the probability that for all i 6= j, Bu 6≡(pu,i) A, is at most

(1 − 1/|D|r)k−1 ≤ e−(k−1)/|D|r . Taking a union bound over u ∈ [b] and j ∈ [k] gives that the
probability that Q fails is at most bke−(k−1)/|D|r ≤ bne−(k−1)/|D|r ≤ γ using the hypothesized
lower bound on k. �

We now state our randomized simultaneous message protocol: players use public coins
to uniformly sample C. Each player j checks whether C satisfies Q(j) (which can be done
privately). If it does then he runs ΠC and makes the appropriate announcement. If C does not
satisfy Q(j), player j announces “failure”. If no player says failure then C satisfies property
Q and so ΠC provides the correct answer. If any player announces “failure” then the referee
announces “failure”. By Claim 3.1, assuming that k ≥ 1 + ln(bn/γ)|D|r, this happens with
probability at most γ. Each player sends at most dlog |F| + 1e bits (where the “+1” includes
the possibility of failure), for a total of kdlog |F + 1|e bits.

For the deterministic protocol, if we take γ = 1/2 in the Claim, then for k ≥ 1+ln(2bn)|D|r,
there is a matrix C satisfying Q(k). Player k can select such a C privately satisfying Q(k) and
announce it (using krdlog |D|e bits). The players then run ΠC . The total communication is at
most k(rdlog |D|e+ dlog |F|e).

Note that both our randomized and deterministic protocols have an explicit dependence
on k which becomes unaffordable for large values of k. To reduce the communication cost of
these protocols to the amount claimed in the theorem, let k′ = d1 + |D|r ln(nb/γ)e. Without
any communication, each player 1, . . . , k′ can simplify the polynomial p by substituting in the
variables appearing in rows after k′. This gives a polynomial p′ that depends only on the first
k′ rows. The polynomial p′ and the number k′ satisfy the hypotheses for the above arguments
for both the randomized and deterministic protocols. So players 1, . . . k′ can evaluate p′ with
the rest of the players remaining silent. Thus, replacing k by k′ in the cost of the protocols
above, completely establishes Theorem 1.1.

4 Conclusion and Open Problems

We give the first efficient NOF protocol for composed functions of block length greater than 1.
Some further questions suggested by our work are stated below:
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• To de-randomize our simultaneous message protocol, we used interaction in a very limited
way. Can it be made a simultaneous deterministic protocol? The protocol ΠC is simulta-
neous, so the non-simultaneity only comes from having to choose C satisfying Claim 3.1.
In our protocol this is done by Player k but it seems possible that this can be done simul-
taneously. Player j can privately determine the set of all matrices C that satisfy Q(j).
Claim 3.1 can be easily modified to show that (for k a bit larger than 2r + ln(b)) there are
several matrices C that satisfy Q(i) for all i. Consider the simultaneous protocol in which
each player j announces every C that satisfies Q(j) together with his announcement for
the protocol ΠC . For C that satisfies Q(j) for all j, the players will have all run ΠC from
which p(A) can be deduced. The problem with this protocol is that if there are many
matrices that satisfy Q(j) for some j then it may be very costly. This gives rise to the
following problem: is it possible for each player j to (privately) select a small subset Cj
of matrices satisfying Qj in such a way that ∩jCj is nonempty. If so, then player j can
announce only those matrices in Cj , thereby giving an efficient NOF protocol.

• Our protocol works for all inner functions of block length r. The number of players and
the communication needed is exponential in r. Can the dependence on r be improved?
The only lower bound on the communication we know is linear in r, which comes from a
simple counting argument (which is essentially the same argument which shows that for
general functions on mk variables there is a function that requires communication Ω(m).)

• If we restrict the inner function to a specific interesting function, such as T k,r
t , then the

counting lower bounds don’t work. Are there protocols that handle larger block length
for this function?
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