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Abstract

A temporal constraint language Γ is a set of relations with first-order definitions in (Q;<).
Let CSP(Γ) denote the set of constraint satisfaction problem instances with relations from Γ.
CSP(Γ) admits robust approximation if, for any ε ≥ 0, given a (1 − ε)-satisfiable instance of
CSP(Γ), we can compute an assignment that satisfies at least a (1−f(ε))-fraction of constraints
in polynomial time. Here, f(ε) is some function satisfying f(0) = 0 and lim

ε→0
f(ε) = 0.

Firstly, we give a qualitative characterization of robust approximability: Assuming the Unique
Games Conjecture, we give a necessary and sufficient condition on Γ under which CSP(Γ) admits
robust approximation. Secondly, we give a quantitative characterization of robust approxima-
bility: Assuming the Unique Games Conjecture, we precisely characterize how f(ε) depends on
ε for each Γ. We show that our robust approximation algorithms can be run in almost linear
time.

1 Introduction

In the Constraint Satisfaction Problem (CSP), we are given a set of constraints over a set of variables,
and the task is to decide whether there exists an assignment of values to the variables that satisfies
all the constraints. CSP can express general combinatorial and temporal problems in artificial
intelligence, computer science, discrete mathematics, operations research, and elsewhere [11, 23].

In this paper, we consider the Temporal CSP (TCSP), a particular class of CSP where variables
represent times and constraints represent sets of allowed temporal relations among them. Formally,
a temporal relation is a relation with a first-order definition in (Q;<). TCSP forms a fundamental
and important class of CSP over infinite domains [4]. Since TCSP is NP-hard in general, one of the
major line of research is to identify tractable subclasses and develop efficient algorithms for them.
One of the standard way to define subclasses of TCSP is restricting constraint languages.

A temporal constraint language, denoted by Γ, is a set of temporal relations. CSP(Γ) denotes
the set of TCSP instances where each instance consists of constraints from Γ. Polynomial-time algo-
rithms have been developed for larger and larger classes of constraint languages, see, e.g., [27, 26, 21],
whereas TCSP for several specific constraint languages are known to be NP-complete [13]. Building
on previous works, Bodirsky and Kára [7] finally showed the complete complexity classification
of TCSP. Namely, they obtain a necessary and sufficient condition on Γ under which CSP(Γ) is
tractable. The proof technique relies on a machinery from universal algebra, which plays an impor-
tant role when we investigate the computational complexity of CSP in various settings.

In this paper, we study the complexity of Max-TCSP, instead of satisfiability of TCSP. In
particular, we are interested in robust approximability of TCSP. An algorithm is called a (c, s)-
approximation algorithm for CSP(Γ) if, given any c-satisfiable instance (some assignment satisfies
at least a c-fraction of constraints) of CSP(Γ), it outputs an assignment that satisfies at least an
s-fraction of constraints. An algorithm is called a robust approximation algorithm for CSP(Γ) if
it is (1 − ε, 1 − f(ε))-approximation algorithm for any ε ≥ 0, where f is some function satisfying
f(0) = 0 and lim

ε→0
f(ε) = 0. When we want to specify f(ε), we call it a f(ε)-robust approximation

algorithm. Note that if CSP(Γ) admits polynomial-time robust approximation, then satisfiability
of CSP(Γ) is solvable in polynomial-time. However, the reverse statement does not hold in general.
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For example, CSP({<}) (also known as the Acyclic Graph Problem) is solvable in polynomial-time,
but (1−ε, 1/2+ε)-approximation is known to be UG-Hard [14], i.e., NP-Hard under Khot’s Unique
Games Conjecture (UGC) [17].

The notion of robust approximation is natural and useful, e.g., let us consider the Correlation
Clustering Problem [1], which is equivalent to CSP({=, ̸=}). Here, a variable stands for a datum and
a constraint u = v (resp., u ̸= v) means u and v is similar (resp., dissimilar). The objective is to find
a partition of the data into groups that agrees as much as possible with the constraints. If we are
given a data set with a perfect (satisfiable) partition, then we can find it easily. However, if a small
fraction of constraints are wrongly given by some reason, e.g., measurement error, then recovering
the optimal partition may become much harder. Motivated by such practical applications, it is
natural to ask what class of constraint languages admits robust approximation.

Our Contribution. In this paper, we give a complete complexity classification of robust approx-
imability of TCSP:

Theorem 1. Let Γ be a temporal constraint language. Then, CSP(Γ) admits polynomial-time robust
approximation if either Γ is trivial or a Horn equality constraint language. Otherwise, it is UG-Hard
to robustly approximate CSP(Γ).

We say that a constraint language Γ is trivial if every instance of CSP(Γ) is satisfiable unless
it contains an individual constraint that is unsatisfiable such as xi ̸= xi. Informally, Γ is a Horn
equality constraint language if each relation in Γ can be defined as a Horn formula whose atoms are
of the form x = y. See Preliminaries for the more detailed definition.

We also show a more fine-grained classification that almost tightly (up to logarithmic factor)
characterizes how f(ε) depends on ε:

Theorem 2. Let Γ be a Horn equality constraint language.

1. If Γ is not trivial, it is UG-Hard to compute o(
√
ε)-robust approximation of CSP(Γ).

2. If Γ is negative, there is a polynomial-time O(
√
ε log(1/ε))-robust approximation algorithm

for CSP(Γ).

3. If Γ is not negative, it is UG-Hard to compute o(1/ log(1/ε))-robust approximation of CSP(Γ).

4. There is a polynomial-time O(log log(1/ε)/ log(1/ε))-robust approximation algorithm for CSP(Γ).

Informally, Γ is a negative equality constraint language if each relation in Γ can be defined as a
disjunction of negative literals or a single positive literal whose atoms are of the form x = y. See
Preliminaries for the more detailed definition.

Furthermore, we give almost linear time algorithms for the above mentioned robust approxima-
tion results.

Theorem 3. There exist algorithms that achieve the approximation guarantee mentioned in Items 2
and 4 of Theorem 2 in O(m · poly log n · exp(1/ε)) time, where n is the number of variables and m
is the number of constraints.

Related Works. Motivated by obvious applications, CSP over finite domains has been a central
problem in a lot of research areas. In their seminal paper [12], Feder and Vardi posed a famous
dichotomy conjecture; “for any constraint language Γ over a finite domain, CSP(Γ) is either in
P or NP-complete.” The conjecture has been a driving force of the theoretical study of CSP and
although it still remains open, we have developed deep mathematical insights on the structure of
CSP, see, e.g., [9].

A systematic study of robust approximation algorithms was initiated by Zwick [28]. He gave
polynomial-time robust approximation algorithms for 2SAT and Horn-SAT, which, combined with
previous works [16, 24], implies a complete complexity classification of robust approximability
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of Boolean CSP. Later Dalmau and Krokhin [10] gave a more fine-grained classification which
determines how f(ε) depends on ε for each constraint language.

For CSP over general finite domains, Guruswami and Zhou conjectured that CSP(Γ) admits
polynomial-time robust approximation if and only if CSP(Γ) has “bounded-width,” which informally
means that CSP(Γ) is solvable by a local consistency method. Dalmau and Krokhin [10], and
Kun et al. [20] obtained robust approximation algorithms for the special case of width-1 and finally
Barto and Kozik [2] confirmed the conjecture. Unlike Boolean CSP, a quantitative version of the
classification has not been obtained so far, see [10].

As far as the authors know, there is only one paper that systematically studies the robust
approximablity of CSP over infinite domains. Ordering CSP (OCSP) is TCSP with additional hard
constraints that the variables need to be given different values. Guruswami et al. [14] showed that
for any constraint language Γ, the best approximation algorithm for CSP(Γ) as OCSP is random
assignment algorithms, assuming UGC. In particular, this implies that if Γ is nontrivial, then it is
UG-hard to robustly approximate CSP(Γ) as OCSP. We notice that our results do not follow easily
from [14] since the existence of hard constrains in OCSP affects the approximability of CSP.

As for specific CSP over infinite domains, we are only aware of the result for CSP({=, ̸=});
Charikar et al. [8] gave a polynomial-time O(

√
ε log(1/ε))-robust algorithm for it.

Our Technique. First we would like to emphasize that our contribution is the results themselves
and not the techniques to prove them. Each technical proof is non-trivial but not too difficult to
come up with for experts on each topic such as universal algebra, approximation algorithms based
on SDP, and connection between hardness of approximation and integrality gap. We briefly describe
the overall proof structure below.

To prove Theorem 1, first we must identify the borderline which separates tractable and in-
tractable cases. By the results of Bodirsky and Kára [6, 7] and Guruswami et al. [14], we see that if
CSP(Γ) admits robust approximation, then Γ must be a Horn equality constraint language. Then,
we show that Γ is a Horn equality constraint language is sufficient by giving robust approximation
algorithms.

To prove Theorem 2, first we show that the “easiest” non-trivial TCSP is CSP({=, ̸=}). The
approximation hardness of CSP({=, ̸=}) follows a simple reduction from Max-CUT. Next we extend
the robust approximation algorithm for CSP({=, ̸=}) due to Charikar et al. [8] and obtain an
algorithm with the same approximation guarantee when Γ is negative. If Γ is not negative, we
can show CSP(Γ) is as hard as CSP({ODD3, ̸=}). The approximation hardness of CSP({ODD3, ̸=})
follows by modifying the approximation hardness of Horn SAT due to Guruswami and Zhou [15].

Our algorithms are based on semidefinite programming (SDP) relaxation. One might think
Raghavendra’s canonical SDP relaxation for CSP over finite domains [22] can be extended to han-
dle TCSP. This is the case in the sense that its integrality gap turns out to match UG-Hardness [14].
However, it is hard to explicitly analyze its approximation guarantee, and existing rounding tech-
niques introduce errors depending on the domain size, which is too huge for TCSP. Thus, we use
an equivalent SDP relaxation tailored to equality constraint languages so as not to be affected by
the domain size.

Our inapproximability results rely on UGC, which states that for any ε > 0, there exists an
integer q > 0 such that it is NP-hard to compute (1 − ε, ε)-approximation of CSP where each
constraint is a two-variable linear equation over Zq. This complexity theoretic assumption enables
us to prove optimal inapproximability results for various optimization problems such as Max-CUT,
Vertex Cover etc., though proving them under P ̸=NP seems beyond our current proof techniques.
See, e.g., [18] for discussion on UGC. To show inapproximability results in Theorem 2, we use the
fact that the integrality gap matches UG-Hardness and explicitly give bad integrality gap instances.

Organization In the next section, we introduce notion and standard tools to analyze TCSP.
Then, we prove Theorem 1, which is a “qualitative” characterization of robust approximability.
Next, we prove Theorem 2, which is a “quantitative” characterization of robust approximability.
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Finally, we prove Theorem 3, which gives almost linear time algorithms for the robust approxima-
bility results in Theorem 2.

2 Preliminaries

For an integer n, [n] denotes the set {1, . . . , n}. We often use n and m to denote the number of
variables and constraints of the instance we are concerned with, respectively.

For two real vectors x and y, ∠(x,y) denotes the angle between them, i.e., arccos(⟨x,y⟩/(∥x∥ ·
∥y∥)).

Temporal Constraint Language. A temporal constraint language Γ is a finite relational struc-
ture (Q;R1, R2, . . .) with a first-order definition in (Q;<), the rational numbers with the dense
linear order. Each Ri is a temporal relation, i.e., Ri ⊆ Qki for some finite ki such that there is a
first-order formula ϕi with ki free variables that defines Ri over (Q;<).

An instance of the problem CSP(Γ) is I = (V, C), where V is a set of variables and C is a set of
constraints. Each constraint C ∈ C is of the form (x1, . . . , xk;R), where x1, . . . , xk ∈ V are variables
and R ∈ Γ is a k-ary relation. We say that β : V → Q satisfies a constraint (x1, . . . , xk;R) ∈ C
if the tuple (β(x1), . . . , β(xk)) is in R. We say that β satisfies I if it satisfies all the constraints.
When β satisfies a constraint C (resp., instance I), we write β |= C (resp., β |= I). We denote by
opt(I) the maximum fraction of constraints of I simultaneously satisfiable by some assignment.

An equality constraint language Γ is a temporal constraint language such that each relation can
be defined with a =-formula, i.e., a quantifier-free first-order formula whose atoms are of the form
x = y.

For each relation R from an equality constraint language, we can find a formula ϕR of the
equality relation that defines R. In particular, we can assume that ϕR is represented in conjunctive
normal form. We say that R is Horn if each clause in ϕR contains at most one positive literal. We
say that R is negative if each clause in ϕR consists of a single positive literal or a disjunction of
negative literals. We say that an equality constraint language Γ is Horn (resp., negative) if every
relation in Γ is Horn (resp., negative). The problem CSP(Γ) is called Horn =-SAT (resp., Negative
=-SAT) if Γ is a Horn (resp., negative) equality constraint language Γ.

Universal Algebra. We introduce several definitions from universal algebra, which is a standard
tool to investigate computational complexity of CSP.

An l-ary operation f preserves (or is a polymorphism of) a k-ary relation R if for any tuples
(ai1, . . . , a

i
k) ∈ R (i ∈ [l]), the tuple (f(a11, . . . , a

l
1), . . . , f(a

1
k, . . . , a

l
k)) belongs to R as well. We say

that f preserves (or is a polymorphism of) a constraint language Γ if f preserves all relations in Γ.
Let Γ be a constraint language and R be a relation. Then, R is pp-definable in Γ if R can be

defined as R(x1, . . . , xk) = ∃y1, . . . , yl(ψ(x1, . . . , xk, y1, . . . , yl)), where ψ is a conjunction of atomic
formulas with relations in Γ and the equality =. If ψ does not contain the equality = then we say
that R is pp-definable in Γ without equality. It is known that the set of relations pp-definable in Γ
is exactly the set of relations whose polymorphisms are the same as Γ [3].

We introduce the notation CSP(Γ) ≤RA CSP(Γ′) as a shorthand for the following. For any error
function f with lim

ε→0
f(ε) = 0 and f(0) = 0, if some polynomial-time algorithm f(ε)-robustly ap-

proximates CSP(Γ′), then there is a polynomial-time algorithm that O(f(ε))-robustly approximates
CSP(Γ).

Though the following lemma is originally proved for Boolean CSP, the proof is also valid for
TCSP.

Lemma 4 ([10]). Let Γ be a constraint language and let R be a relation pp-definable in Γ without
equality. Then CSP(Γ ∪ {R}) ≤RA CSP(Γ).

Thus, if Γ itself contains the equality relation, robust approximability of CSP(Γ) is determined
by polymorphisms. Indeed, any non-trivial equality constraint language turns out to contain the
equality relation. To show this, we use the following fact.
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Lemma 5 ([6]). Let Γ be an equality constraint language that is not preserved by any constant
operation. Then, ̸= is pp-definable in Γ.

Lemma 6. Let Γ be a non-trivial equality constraint language. Then, Γ pp-defines = and ̸=.

Proof. Since Γ is non-trivial, in particular, Γ is not preserved by any constant operation. Thus, ̸=
is pp-definable in Γ from Lemma 5.

Since Γ is non-trivial, there exists a satisfiable relation R(x1, . . . , xk) pp-definable in Γ such
that it is not satisfied by any all-different assignment β, where β(xi) ̸= β(xj) holds for every i ̸= j.
This means that for any satisfying assignment β for R(x1, . . . , xk), β(xi) = β(xj) holds for some
i ̸= j. As long as there is a pair of arguments (xi, xj) such that there is a satisfying assignment β
with β(xi) ̸= β(xj), we add a constraint (xi ̸= xj) to R. Let R′ be the resulting constraint. Note
that R′ is pp-definable in Γ as ̸= is pp-definable in Γ. Since R is not satisfied by the all-different
assignment, R′ must have some pair (xi, xj) such that we have not added the constraint (xi ̸= xj).
Since R′ becomes unsatisfiable if we add a constraint (xi ̸= xj) to R

′, xi must be equal to xj in any
satisfying assignment of R′. Thus, the projection of R′ to {xi, xj} is the equality constraint.

Combining Lemmas 4 and 6, the following holds.

Corollary 7. Let Γ be a non-trivial equality constraint language. Let R be a relation pp-definable
in Γ. Then, CSP(Γ ∪ {R}) ≤RA CSP(Γ).

Semidefinite Programming. We introduce an SDP relaxation BasicSDP. For an instance I =
(V, C) of a standard CSP over the domain [q], we want to find a collection of vectors {xu,a}u∈V,a∈[q]
and a collection of probability distributions {µC}C∈C :

max E
C∈C

Pr
β∼µC

[β |= C]

s.t. Pr
β∼µC

[β(u) = a, β(v) = b] = ⟨xu,a,xv,b⟩ ∀C ∈ C, u, v ∈ V, a, b ∈ [q],

Pr
β∼µC

[β(u) = a] = ⟨xu,a, I⟩ ∀C ∈ C, u ∈ V, a ∈ [q].

Here, I is any unit vector. Since µC is a probability distribution, we implicitly impose ⟨xu,a,xv,b⟩ ≥
0 and

∑
a xu,a = I. See [22] for detailed explanation of BasicSDP. We define sdp(I) as the optimal

SDP value of BasicSDP for I. For TCSP, since we only need n values though the domain is Q, we
can write down BasicSDP as well. Guruswami et al. showed that, assuming UGC, BasicSDP gives a
tight approximation ratio to Ordering CSP, which is a large subset of TCSP. The difference is that,
in Ordering CSP, we only consider constraints that can be satisfied only when all variables have
different values. However, it is almost direct to modify the argument to cover the whole TCSP:

Lemma 8 ([14]). Let Γ be a temporal constraint language. Suppose that there is an instance I
of CSP(Γ) with sdp(I) = c and opt(I) = s. Then, it is UG-Hard to compute (c − ε, s + ε)-
approximation for CSP(Γ) for any ε > 0.

Let Γ be an equality constraint language and I be an instance of CSP(Γ). Then, sdp(I) is
determined by

∑
a∈[q]⟨xu,a,xv,a⟩ for u, v ∈ V . Thus, by letting xu = ⊕q

a=1xu,a := (xu,1, . . . ,xu,q),
we can transform BasicSDP to the following SDP relaxation.

max E
C∈C

Pr
β∼µC

[β |= C]

s.t. Pr
β∼µC

[β(u) = β(v)] = ⟨xu,xv⟩ ∀C ∈ C, u, v ∈ V.

Again, we implicitly impose ⟨xu,xv⟩ ≥ 0 and ∥xu∥2 = 1. (Strictly speaking, the above formulation
might be weaker than the original BasicSDP but suffices for our purpose.) Note that semidefinite
programs can be solved within an additive error δ for any δ > 0 in time polynomial in the size of
an instance and log(1/δ).
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3 Qualitative Characterization

In this section, we prove Theorem 1, which is a “qualitative” characterization of robust approxima-
bility.

First we introduce well-known relations (See [7]).

• Betw is the ternary relation {(x, y, z) ∈ Q3 | (x < y < z) ∨ (z < y < x)}.
• Cycl is the ternary relation {(x, y, z) ∈ Q3 | (x < y < z) ∨ (y < z < x) ∨ (z < x < y)}.
• Sep is the 4-ary relation {(x1, y1, x2, y2) ∈ Q4 | all distinct and the interval [min{x1, y1},max{x1, y1}]

and the interval [min{x2, y2},max{x2, y2}] overlap}.

Then, we use the following classification result.

Lemma 9 (Theorem 20 (and proof of Theorem 50) in [7]). A temporal constraint language Γ
satisfies at least one of the following:

1. Γ is trivial,

2. There is a pp-definition of <, Cycl, Betw, or Sep in Γ, or

3. Γ is an equality constraint language.

For the first case, robust approximation is meaningless since every instance is satisfiable. As for
the second case, robust approximation is hard from the following and Corollary 7.

Lemma 10 ([13, 7, 14]). It is NP-Complete to solve CSP({Betw}), CSP({Cycl}), and CSP({Sep}),
and it is UG-Hard to compute (1− ε, 1/2 + ε)-approximation of CSP({<}) for any ε > 0.

Now we focus on the third case, i.e., Γ is an equality constraint language. The following lemma
gives the condition under which CSP(Γ) is solvable.

Lemma 11 (Theorem 1 and Lemma 8 in [6]). Let Γ be a non-trivial trivial equality constraint
language. The problem CSP(Γ) is polynomial-time solvable if Γ is Horn and NP-complete otherwise.

We show the following robust approximation algorithm for Horn =-SAT in the next section.

Lemma 12. There is an O( log log 1/εlog 1/ε )-robust approximation algorithm for Horn =-SAT.

We finish the proof of Theorem 1 by combining Lemmas 9, 10, 11 and 12.

3.1 Approximability of Horn =-SAT

Now we prove Lemma 12. Let Γk be the equality constraint language that consists of Horn clauses of
at most k literals. Note that every Horn formula is pp-definable in Γ3 and Γ3 contains the equality
relation. Thus from Lemma 4, it suffices to consider CSP(Γ3) to prove Lemma 12. In this section,

however, we give an O( log(k log 1/ε)
log 1/ε )-approximation algorithm for CSP(Γk) to see the dependency on

k.
Let I = (V, C) be an instance of CSP(Γk). We let yC = Prβ∼µC

[β |= C] in the BasicSDP. Then
for each constraint C ∈ C, we have a constraint of the form:

yC ≤
∑

(u̸=v)∈C

(1− ⟨xu,xv⟩) +
∑

(u=v)∈C

⟨xu,xv⟩.

Note that the latter sum contains at most one summand.
Let I be an instance with opt(I) ≥ 1 − ε. Clearly sdp(I) ≥ 1 − ε holds, and it follows that

yC ≥ 1 −
√
ε for at least a (1 −

√
ε)-fraction of constraints. Then, we discard constraints C with

yC < 1−
√
ε. For simplicity of exposition, we assume that every constraint C satisfies yC ≥ 1− ε.

This does not affect the final result since O( log(k log 1/ε)
log 1/ε ) remains the same by replacing ε with

√
ε.

We also assume that ε < 1/2.
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Our rounding scheme is as follows. Let s ≥ 1 and δ = δ(k, ε) ≪ ε be parameters determined

later. Let h = 2
√
k

δ log 1
δ . We pick t from {h0, h1, h2, . . . , hs} uniformly at random. Then, we choose

t random hyperplanes, which divides the entire space into 2t cells. For each cell, we introduce a
new value and assign the value to all variables in the cell. Note that the resulting assignment β
only uses at most 2t different values.

The following lemma is useful to analyze the performance of our algorithm.

Lemma 13. Let x,y be unit vectors. The probability that two unit vectors x and y are in the same
cell given by t random hyperplanes is (1− ∠(x,y)

π )t. In particular, the following hold.

• If ⟨x,y⟩ ≥ 1− ε, then the probability that x and y are in the same cell is 1−O(t
√
ε).

• If ⟨x,y⟩ ≤ 1− ε, then the probability that x and y are in the same cell is exp(−Ω(t
√
ε)).

Proof. The first claim is obvious. If ⟨x,y⟩ ≥ 1 − ε, then ∠(x,y) ≤ 2
√
ε holds, and it follows that

(1 − ∠(x,y)
π )t ≥ (1 − 2

√
ε

π )t ≥ 1 − 2t
√
ε

π . If ⟨x,y⟩ ≤ 1 − ε, then ∠(x,y) ≥
√
2ε holds, and it follows

that (1− ∠(x,y)
π )t ≤ (1−

√
2ε
π )t ≤ exp(− t

√
2ε
π ).

The following three lemmas show that each kind of constraints is satisfied with high probability.

Lemma 14. Let C be a constraint of the form (u = v). If yC ≥ 1−ε, then Pr[β |= C] = 1−O(hs
√
ε).

Proof. Since ⟨xu,xv⟩ ≥ 1 − ε, from Lemma 13, we have Pr[β |= C] = Et[1 − O(t
√
ε)] = 1 −

O(hs
√
ε).

Lemma 15. Let C be a constraint of the form (u1 ̸= v1) ∨ · · · ∨ (ul ̸= vl). If yC ≥ 1 − ε, then
Pr[β ̸|= C] = 1/s+ exp(−Ω(h/

√
2l)).

Proof. We have
∑l

i=1⟨xui ,xvi⟩ ≤ l−1+ε. Thus, there exists some i ∈ [l] with ⟨xui ,xvi⟩ ≤ 1− 1−ε
l .

From Lemma 13, we have Pr[β ̸|= C] = Et[exp(−Ω(t
√

(1− ε)/l))] = 1/s + exp(−Ω(h/
√
2l)) (We

used ε < 1/2).

Lemma 16. Let C be a constraint of the form (u1 ̸= u1) ∨ · · · ∨ (ul−1 ̸= vl−1) ∨ (ul = vl). If
yC ≥ 1− ε, then Pr[β |= C] = 1−O(hs

√
ε)− δ − 1/s.

Proof. Let η = 1− ⟨xul
,xvl⟩. Suppose that η < 2ε. Then, from Lemma 13, Pr[β |= C] ≥ Pr[βul

=
βvl ] = Et[1−O(t

√
ε)] = 1−O(hs

√
ε)

Suppose that η ≥ 2ε. Then, there exists some i ∈ [l− 1] such that ⟨xui ,xvi⟩ ≤ 1− η−ε
l−1 ≤ 1− η

2l .

Let p+t = Pr[β |= (ul = vl) | t] and p−t = Pr[β ̸|= (ui ̸= vi) | t]. We want to bound from above the
number of t such that neither p+t ≥ 1 − δ nor p−t ≤ δ. We will choose δ so that p+1 ≥ 1 − δ. Let
t∗ ∈ {hi}si=0 be the smallest value such that p+t∗ < 1− δ. If t∗ ≥ hs, then we always have p+t ≥ 1− δ

and we are done. Suppose t∗ < hs. Then, by choosing s = 1
δ and δ = log(k log 1/ε)

log 1/ε , we have p−ht∗ ≤ δ

as follows. From Lemma 13, 1 − δ > p+t∗ ≥ 1 − 2t∗
√
η

π , hence δ <
2t∗

√
η

π . Multiplying h both sides

and using the definition of h, we have log 1
δ <

ht∗
√

η/k

π . Again from Lemma 13,

p−ht∗ ≤ exp(−
ht∗

√
η/l

π
) ≤ exp(−

ht∗
√
η/k

π
) < exp(− log

1

δ
) = δ.

Thus, all but one choice of t, p+t ≥ 1− δ or p−t ≤ δ holds. Thus, Pr[β |= C] ≥ 1
s ·0+(1− 1

s )(1− δ) ≥
1− δ − 1

s .

Proof of Theorem 12. From Lemmas 14, 15, and 16, the probability that β does not satisfy a
constraint is at most O(hs

√
ε) + 1/s + exp(−Ω(h/

√
2k)) + δ. From the choice of s, δ, we have

Pr[β |= C] = 1−O(δ).
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4 Quantitative Characterization

In this section, we prove Theorem 2, which is a “quantitative” characterization of robust approx-
imability. Item 4 is already proved in Lemma 12. Items 1, 2 and 3 will be proved in the following
sections.

4.1 Inapproximability of Correlation Clustering

In this section, we prove Item 1 of Theorem 2. Since any non-trivial Γ pp-defines = and ̸= from
Lemma 6, it suffices to show the following.

Lemma 17. It is UG-Hard to compute o(
√
ε)-robust approximation of CSP({=, ̸=}).

We show a reduction from Max-CUT to CSP({=, ̸=}), then apply the following theorem.

Theorem 18 ([19]). It is UG-Hard to compute o(
√
ε)-robust approximation for Max-CUT.

The reduction is as follows. Let a graph G = (V,E) be an instance of Max-CUT. We construct
a weighted graph Ĝ = (V̂ , E= ∪ E̸=,W ) as: (i) V̂ := {vi | v ∈ V, i ∈ {0, 1}}. (ii) E= := {(ui, v1−i) |
(u, v) ∈ E, i ∈ {0, 1}}. (iii) E̸= := {(v0, v1) | v ∈ V }. (iv) W : E= ∪ E ̸= → [0, 1] as W (e) = 1

4|E|

if e ∈ E=, W (e) = d(v)
4|E| if e = (v0, v1) ∈ E ̸=. Here d(v) denotes the degree of v in G. Note

that
∑

e∈E=
W (e) =

∑
e∈E ̸=

W (e) = 1
2 . We can regard Ĝ as an instance of CSP({=, ̸=}), and the

following two lemmas hold.

Lemma 19. If opt(G) ≥ 1− ε, then opt(Ĝ) ≥ 1− ε/2.

Proof. Let l : V → {0, 1} be a labeling for G with opt(G) ≥ 1− ε. Define l̂ : V̂ → {0, 1}, a labeling
of Ĝ, as: l̂(v0) = l(v) and l̂(v1) = 1− l(v). Then, l̂ satisfies a 1− ε fraction of edges in E= and every
edge in E̸=. Therefore, opt(Ĝ) ≥ (1− ε)× 1/2 + 1/2 = 1− ε/2.

Lemma 20. If opt(Ĝ) ≥ 1− ε, then opt(G) ≥ 1− 2ε.

Proof. First we show that if opt(Ĝ) = 1, then opt(G) = 1. Without loss of generality, we can
assume that G is connected. An optimal cut l : V → {0, 1} is defined as follows. Pick an arbitrary
vertex v∗0 ∈ V̂ and define V0 := {v0 ∈ V̂ | v0 is reachable from v∗0 using only edges in E=}, and
l(v) = 0 iff v0 ∈ V0. Note that if (u, v) ∈ E, then exactly one of u0, v0 is in V0, thus, l is an optimal
cut.

Now we assume opt(Ĝ) ≥ 1 − ε and a labeling l̂ : V̂ → {1, 2, . . . . , 2|V |} is optimal. We say a
pair of vertices (v0, v1) is good if l̂(v0) ̸= l̂(v1). Consider a subgraph Ĝ′ induced by good vertices
from Ĝ. To obtain Ĝ′, we need to remove at most an ε fraction of edges from Ĝ. Thus, the total
weight of satisfied edges is at least 1−2ε in Ĝ′. Let Ĝ′′ be a subgraph obtained from Ĝ′ by deleting
all unsatisfied edges. Then, we can construct a cut from the labeling of Ĝ′′ so that opt(G) ≥ 1−2ε,
by similar reasoning for the case of opt(Ĝ) = 1.

Combining Theorem 18 and Lemmas 19, 20, we complete the proof of Lemma 17.

4.2 Approximability of Negative =-SAT

In this section, we prove Item 2 of Theorem 2. Let Γk be the equality constraint language consisting
of negative clauses of at most k literals. Since every negative formula is pp-definable in Γk for some
k, we consider CSP(Γk).

Given an instance I = (V, C) of CSP(Γk), let C= be the set of constraints of the form (u = v)
and C̸= = C \C=. Then, we solve BasicSDP. For each constraint C ∈ C, we let yC = Prβ∼µC

[β |= C].
Then, we have:

yC ≤ ⟨xu,xv⟩ if C ∈ C=,

yC ≤
∑

(u̸=v)∈C

(1− ⟨xu,xv⟩) if C ∈ C ̸=.
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Our rounding scheme uses t random hyperplanes to define an assignment β as was the case for
Horn =-SAT, but here we fix t = 10

√
k log(1/ε).

Proof of Item 2 of Theorem 2. We can safely assume that each constraint C satisfies yC ≥ 1/2
(At most an O(ε)-fraction of constraints can satisfy yC < 1/2). For a constraint C ∈ C, we set
εC = 1− yC .

We consider the loss caused by C=. From Lemma 13, if yC ≥ 1 − δ for C ∈ C=, then Pr[β |=
C] = 1−O(

√
kδ log(1/ε)). Thus, the total loss is proportional to

1

m

∑
C∈C=

√
kεC log(1/ε) ≤

√
k log(1/ε)

m

√
|C=|

∑
C∈C=

εC ≤
√
k log(1/ε)

√
1

m

∑
C∈C=

εC ≤
√
kε log(1/ε).

The first inequality is by Cauchy-Schwartz.
We now turn to C ̸=. Let C ∈ C ̸= be a constraint of l literals. Then, We have

∑l
i=1⟨xui ,xvi⟩ ≤

l − 1 + 1/2 = l − 1/2 from εC ≤ 1/2. Thus, there exists some i ∈ [l] with ⟨xui ,xvi⟩ ≤ 1 − 1
2l .

From Lemma 13, we have Pr[β ̸|= C] = exp(− t
√

1/l

π ) = O(
√
ε). Thus, the total loss is at most

1
m

∑
C∈C ̸= O(

√
ε) = O(

√
ε).

In summary, the total loss is at most O(
√
kε log(1/ε)) +O(

√
ε) = O(

√
kε log(1/ε)).

4.3 Inapproximability of Non-Negative =-SAT

In this section, we prove Item 3 of Theorem 2. We introduce a relation ODD3(x, y, z) = {(x, y, z) ∈
Q3 | |{x, y, z}| = 1 or 3}. We use the following fact.

Lemma 21 ([5]). Let Γ be an equality constraint language such that Γ is not preserved by a constant
operation and some relation R ∈ Γ is not negative. Then, ODD3 is pp-definable in Γ.

From Corollary 7, Lemmas 5 and 21, it suffices to show the following inapproximability result.

Lemma 22. It is UG-Hard to compute o( 1
log 1/ε)-robust approximation of CSP({ODD3, ̸=}).

We will give an instance I with sdp(I) = 1 − ε and opt(I) = 1 − O( 1
log 1/ε). Then, we have

the desired result from Lemma 8. We borrow several ideas from [15], which shows that computing
o( 1

log 1/ε)-robust approximation of Horn SAT (over the Boolean domain) is UG-Hard.

Given a parameter k, our integrality gap instance I = (V, C) looks as follows.

Variables : u1, . . . , uk, v1, . . . , vk

Initial constraint : ODD3(u1, u1, v1)

Block i (1 ≤ i ≤ k − 1) :

{
ODD3(ui, vi, ui+1),
ODD3(ui, vi, vi+1)

Final constraint : (uk ̸= vk)

We intend to set u1 = v1 using the initial constraint and to set ui = vi = ui+1 = vi+1 using Block i.
Because of the final constraint, the instance I is unsatisfiable. Since I has 2k constraints, we have
opt(I) ≤ 1− 1

2k .
Now we show that sdp(I) ≥ 1− 1

exp(k) . Suppose that we have fixed SDP vectors x = {xv}v∈V
in BasicSDP. Then, for each constraint C ∈ C, the optimal probability distribution µC is locally
determined from x. Thus, to construct a good SDP solution, we can concentrate on constructing
good SDP vectors x. We say that x satisfies a constraint C if there is a probability distribution
µC that is consistent with x such that Prβ∼µC

[β |= C] = 1.
For δ = 1

exp(k) , our SDP vectors x will satisfy the initial constraint up to 1− δ and completely

satisfy Block i (1 ≤ i ≤ k − 1) and the final constraint. Since it is hard to construct all the SDP
vectors at once, we make SDP vectors for each block first so that they agree with each other on
some interface, and then we coalesce them together. The following definition and claim help us
bring down the difficulty.
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Definition 23 (partial SDP solution). Let C′ ⊆ C be a set of constraints. Then, SDP vectors
{xv}v∈V ′ for V ′ ⊆ V is said to be a partial SDP solution on C′ if every constraint in C′ is satisfied
by x. (In particular, xv must be defined for every variable v that appears in C′.)

An easy modification of Claim 7 of [15] gives the following.

Lemma 24 ([15]). Let C1, C2 ⊆ C be two disjoint set of constraints. Let x1 = {x1
v}v∈V1

and x2 =
{x2

v}v∈V2
be partial SDP solutions on C1 and C2, respectively. Suppose that, for all u, v ∈ V1 ∩V2, it

holds that ⟨x1
u,x

1
v⟩ = ⟨x2

u,x
2
v⟩. Then, there exists a partial SDP solution y on C1∪C2 that preserves

inner products between vectors corresponding to variables in C1 ∩ C2.

Now we construct a partial SDP solution for each block.

Lemma 25. For any 0 ≤ δ ≤ 1/2 and 1 ≤ i ≤ k − 1, there exists a partial SDP solution
{xui ,xvi ,xui+1 ,xvi+1} to Block i such that

⟨xui ,xvi⟩ = 1− δ and ⟨xui+1 ,xvi+1⟩ = 1− 2δ.

Proof. Consider the following matrix whose columns and rows correspond to xui , xvi , xui+1 , xvi+1

in this order and each element represents the inner product between corresponding vectors.

A =


1 1− δ 1− δ 1− δ

1− δ 1 1− δ 1− δ
1− δ 1− δ 1 1− 2δ
1− δ 1− δ 1− 2δ 1

 .

This matrix A satisfies the condition of the lemma, and we can construct a probability distribution
satisfying Block i that is consistent to inner products determined by A. For example, for the
constraint ODD3(ui, vi, ui+1), we can use the probability distribution for which |{ui, vi, ui+1}| = 1
with probability 1− δ and |{ui, vi, ui+1}| = 3 with probability δ.

To ensure there are vectors realizing the matrix A, we need to show that A is positive semidef-
inite. Let J be the all-one matrix. Then,

A = (1− 2δ)J + δ


2 1 1 1
1 2 1 1
1 1 2 0
1 1 0 2

 .

We can check that last matrix is positive semidefinite. Thus, A is a sum of semidefinite matrices
and hence A is also positive semidefinite.

Lemma 26. sdp(I) ≥ 1− 1
k2k+1 .

Proof. Let δ > 0 be a sufficiently small value. By combining partial SDP solutions given by
Lemma 25 iteratively using Lemma 24, we have an SDP solution x = {xv}v∈V with the following
property: it is a partial SDP solution for all constraints in Blocks 1 to k − 1, and

⟨xu1 ,xv1⟩ = 1− δ, ⟨xuk
,xvk⟩ = 1− 2kδ.

Then, the loss from the initial constraint is δ, and the loss from the final constraint is 1− 2kδ. By
choosing δ = 1/2k, the optimal SDP value is at least 1− δ

2k = 1− 1
k2k+1 .

Since opt(I) ≤ 1− 1
2k whereas sdp(I) ≥ 1− 1

k2k+1 , we have Lemma 22 from Lemma 8, which
gives Item 3 of Theorem 2.
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5 Robust Approximation of Horn =-SAT in Almost Liner Time

In this section, we show that we can solve BasicSDP for Horn =-SAT in almost linear time. Since
rounding can be done in linear time, we can obtain an O(log log(1/ε)/ log(1/ε))-robust approxi-
mation for Horn =-SAT as well as an O(

√
ε log(1/ε))-robust approximation for Negative =-SAT in

almost linear time. Recall that Negative =-SAT is a special case of Horn =-SAT.
For a TCSP instance I, let Iq be the instance whose domain is restricted to [q] instead of Q.

The following lemma says that, if q is large enough, then the optimal value does not decrease much
by using only q values.

Lemma 27. Let I be an instance of Horn =-SAT. Then, opt(Iq) ≥ (1− 1
q )opt(I) holds.

Proof. Let β∗ : V → Q be the optimal assignment for I. Let ϕ : Q → [q] be a random mapping. (We
do not have to define the whole mapping explicitly as the size of the range of β∗ is bounded by |V |.)
Then, we construct q-valued β from β∗ by setting βv = ϕ(β∗v). Let C be a constraint satisfied by β∗.
If C is of the form (u = v), then Pr[β |= C] = 1. If C is of the form ∧k

i=1(ui = vi) → false for some
k ≥ 1, then there exists some i ∈ [k] such that β∗(ui) ̸= β∗(vi). Thus, Pr[β |= C] ≥ 1− 1

q . Finally,

suppose C is of the form ∧k−1
i=1 (ui = vi) → (uk = vk) for some k ≥ 1. Then, β∗(uk) = β∗(vk) holds

or there exists some i ∈ [k] such that β∗(ui) ̸= β∗(vi). From the same reasoning, Pr[β |= C] ≥ 1− 1
q

holds.

For CSP over finite domains, it is known that an almost optimal SDP solution can be obtained
in almost linear time as follows.

Lemma 28 ([25]). Let I = (V, C) be a CSP instance on n variables over the domain [q] with m
constraints and maximum arity k. Suppose sdp(I) ≥ α. Then for every ε > 0, we can compute in
time m · poly(kq/ε) · poly log n an SDP solution of value at least α − ε that is feasible for a CSP
instance I ′ obtained from I by discarding at most an ε-fraction of constraints.

Lemma 29. Let I = (V, C) be an instance of Horn =-SAT of maximum arity k with opt(I) ≥ α.
Then, we can compute in time m·poly(k1/ε/ε)·poly log n an SDP solution of value at least α−O(ε).

Proof. We set q = 1/ε. From Lemma 27, opt(Iq) ≥ α − ε. Using Lemma 28, we obtain a feasible
SDP solution {xu,a}u∈V,a∈[q] of value at least α−O(ε). Here, the O(·) notation arises since we have
discarded an ε-fraction of constraints from Iq,

Now, we define xu as ⊕q
i=1xu,i and claim {xu}u∈V is a good SDP solution for I. The ob-

jective value does not change since ⟨xu,xv⟩ =
∑

i∈[q]⟨xu,i,xv,i⟩ and the objective value is only

determined by these inner products. Moreover, constraints in BasicSDP are satisfied since ∥xu∥2 =∑q
i=1 ∥xu,i∥2 = 1 and ⟨xu,xv⟩ =

∑
i⟨xu,i,xv,i⟩ ≥ 0.

Combining the rounding method given in Sections 3 and 4, we have the following.

Corollary 30. For Horn =-SAT (resp., Negative =-SAT) of maximum arity k, In m ·poly(k1/ε/ε) ·
poly log n, we can compute an O( log(k log 1/ε)

log 1/ε )-robust approximation (resp., an O(
√
ε log(1/ε)-robust

approximation).
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