
Zero Knowledge and Circuit Minimization

Eric Allender1 and Bireswar Das2

1 Department of Computer Science, Rutgers University, USA
allender@cs.rutgers.edu
2 IIT Gandhinagar, India
bireswar@iitgn.ac.in

Abstract. We show that every problem in the complexity class SZK (Statistical Zero Knowledge) is
efficiently reducible to the Minimum Circuit Size Problem (MCSP). In particular Graph Isomorphism
lies in RPMCSP.
This is the first theorem relating the computational power of Graph Isomorphism and MCSP, despite
the long history these problems share, as candidate NP-intermediate problems.

1 Introduction

For as long as there has been a theory of NP-completeness, there have been attempts to
understand the computational complexity of the following two problems:

– Graph Isomorphism (GI): Given two graphs G and H, determine if there is permutation
τ of the vertices of G such that τ(G) = H.

– The Minimum Circuit Size Problem (MCSP): Given a number i and a Boolean function
f on n variables, represented by its truth table of size 2n, determine if f has a circuit of
size i. (There are different versions of this problem depending on precisely what measure
of “size” one uses (such as counting the number of gates or the number of wires) and on
the types of gates that are allowed, etc. For the purposes of this paper, any reasonable
choice can be used.)

Cook [Coo71] explicitly considered the graph isomorphism problem and mentioned that he
“had not been able” to show that GI is NP-complete. Similarly, it has been reported that
Levin’s original motivation in defining and studying NP-completeness [Lev73] was in order
to understand the complexity of GI [PS03], and that Levin delayed publishing his work
because he had hoped to be able to say something about the complexity of MCSP [Lev03].
(Trakhtenbrot has written an informative account, explaining some of the reasons why MCSP
held special interest for the mathematical community in Moscow in the 1970s [Tra84].)

For the succeeding four decades, GI and MCSP have been prominent candidates for so-
called “NP-Intermediate” status: neither in P nor NP-complete. No connection between the
relative complexity of these two problems has been established. Until now.

It is considered highly unlikely that GI is NP-complete. For instance, if the polynomial
hierarchy is infinite, then GI is not NP-complete [BHZ87]. Many would conjecture that GI ∈ P;
Cook mentions this conjecture already in [Coo71]. However this is still very much an open
question, and the complexity of GI has been the subject of a great deal of research. We refer
the reader to [KST93,AT05] for more details.
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In contrast, comparatively little was written about MCSP, until Kabanets and Cai re-
vived interest in the problem [KC00], by highlighting its connection to the so-called Natural
Proofs barrier to circuit lower bounds [RR97]. Kabanets and Cai provided evidence that
MCSP is not in P (or even in P/poly); it is known that BPPMCSP contains several problems
that cryptographers frequently assume are intractable, including the discrete logarithm, and
several lattice-based problems [KC00,ABK+06]. The integer factorization problem even lies
in ZPPMCSP [ABK+06].

Is MCSP complete for NP? This possibility is discussed by Kraj́ıček [Kra11], although no
evidence is presented to suggest that this is a likely hypothesis. Instead, evidence has been
presented to suggest that it will be difficult to reduce SAT to MCSP. Kabanets and Cai define
a class of “natural” many-one reductions; after observing that most NP-completeness proofs
are “natural” in this sense, they show that any “natural” reduction from SAT to MCSP
yields a proof that EXP 6⊆ P/poly. Interestingly, Vinodchandran studies a problem called
SNCMP, which is similar to MCSP, but defined in terms of strong nondeterministic circuits,
instead of deterministic circuits [Var05]. (SNCMP stands for Strong Nondeterministic Circuit
Minimization Problem.) Vinodchandran shows that any “natural” reduction from graph
isomorphism to SNCMP yields a nondeterministic algorithm for the complement of GI that
runs in subexponential time for infinitely many lengths n.

We show that GI ∈ RPMCSP; our proof also shows that GI ∈ RPSNCMP. Thus, although it
would be a significant breakthrough to give a “natural” reduction from GI to SNCMP, no
such obstacle prevents us from establishing an RP-Turing reduction.

One of the more important results about GI is that GI lies in SZK: the class of problems
with statistical zero-knowledge interactive proofs [GMW91]. After giving a direct proof of
the inclusion GI ∈ RPMCSP in Section 3, we give a proof of the inclusion SZK ⊆ BPPMCSP

in Section 4. We conclude with a discussion of additional directions for research and open
questions.

But first, we present the basic connection between MCSP and resource-bounded Kol-
mogorov complexity, which allows us to use MCSP to invert polynomial-time computable
functions.

2 Preliminaries and Technical Lemmas

A small circuit for a Boolean function f on n variables constitutes one form of a short
description for the bit string of length 2n that describes the truth table of f . In fact, as dis-
cussed in [ABK+06, Theorem 11], there is a version of time-bounded Kolmogorov complexity
(denoted KT) that is roughly equivalent to circuit size. That is, if x is a string of length m
representing the truth table of a function f with minimum circuit size s, it holds that(

s

log m

)1/4

≤ KT(x) ≤ O(s2(log s + log log m)).

The connection with Kolmogorov complexity is relevant, because of this simple observa-
tion: The output of a pseudorandom generator consists of strings with small time-bounded
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Kolmogorov complexity. Thus, with an oracle for MCSP, one can take as input a string x
and accept iff x has no circuits of size, say,

√
|x|, and thereby ensure that one is accepting a

very large fraction of all of the strings of length n (since most x encode functions that require
large circuits), and yet accept no strings x such that KT(x) ≤ nε. Such a set is an excellent
test to distinguish the uniform distribution from the distribution generated by a pseudoran-
dom generator. Using the tight connection between one-way functions and pseudorandom
generators [HILL99], one obtains the following result:

Theorem 1. [ABK+06, Theorem 45] Let L be a language of polynomial density such that,
for some ε > 0, for every x ∈ L, KT(x) ≥ |x|ε. Let f(y, x) be computable uniformly in time
polynomial in |x|. There exists a polynomial-time probabilistic oracle Turing machine N and
polynomial q such that for any n and y

Pr
|x|=n,s

[f(y, NL(y, f(y, x), s)) = f(y, x)] ≥ 1/q(n),

where x is chosen uniformly at random and s denotes the internal coin flips of N .

Here, “polynomial density” means merely that L contains at least 2n/nk strings of each
length n, for some k. That is, let fy be a collection of functions indexed by a parameter y,
where fy(x) denotes f(y, x). Then, if one has access to an an oracle L that contains many
strings but no strings of small KT-complexity, one can use the probabilistic algorithm N
to take as input fy(x) for a randomly-chosen x, and with non-negligible probability find a
z ∈ f−1

y (fy(x)), that is, a string z such that fy(z) = fy(x).
Note that such a set L can be recognized in deterministic polynomial time with an oracle

for MCSP, as well as with an oracle for SNCMP. One could also use an oracle for RKT, the
KT-random strings: RKT = {x : KT(x) ≥ |x|}.

3 Graph Isomorphism and Circuit Size

Theorem 2. GI ∈ RPMCSP.

Proof. We are given as input two graphs G and H, and we wish to determine whether there
is an isomorphism from G to H.

Consider the polynomial-time computable function f(G, τ) that takes as input a graph
G on n vertices and a permutation τ ∈ Sn and outputs τ(G). We will use the notation fG(τ)
to denote f(G, τ). That is, fG takes a permutation τ as input, and produces as output the
adjacency matrix of the graph obtained by permuting G according to τ . Observe that fG is
uniformly computable in time polynomial in the length of τ .

Thus, by Theorem 1, there is a polynomial-time probabilistic oracle Turing machine N
and polynomial q such that for any n and G

Pr
τ∈Sn,s

[fG(NMCSP(G, fG(τ), s)) = fG(τ)] ≥ 1/q(n),

where τ is chosen uniformly at random and s denotes the internal coin flips of N .
Now, given input (G, H) to GI, our RPMCSP algorithm does the following for 100q(n)

independent trials:
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1. Pick τ and probabilistic sequence s uniformly at random.
2. Compute τ(G).

3. Run NMCSP(H, τ(G), s) and obtain output π.
4. Report “success” if π(H) = τ(G).

The RPMCSP algorithm will accept if at least one of the 100q(n) independent trials are
successful.

Note that if H and G are not isomorphic, then there is no possibility that the algorithm
will succeed.

On the other hand, if H and G are isomorphic, then τ(G) does appear in the image of fH .
In fact, the distributions τ(G) and τ(H) are identical over τ picked uniformly at random.
Thus, with probability at least 1/q(n) (taken over the choices of τ and s), the algorithm will
succeed in any given trial. Thus the expected number of trials that will succeed is 100, and
hence, by the Chernoff bounds, the probability of having at least one success is well over
1/2.

Since truth-tables that require large strong nondeterministic circuits also require large
deterministic circuits, it is immediate that this reduction can be carried out also with SNCMP.

Corollary 1. GI ∈ RPSNCMP ∩ RPRKT.

4 Zero Knowledge

In this section, we show SZK ⊆ BPPMCSP. Note that SZK is best defined not as a class
of languages but as a class of “promise problems”. A promise problem consists of a pair
of disjoint languages (Y,N) where Y consists of “yes-instances” and N consists of “no-
instances”. Thus the inclusion SZK ⊆ BPPMCSP is perhaps more properly stated in terms of
“promise” BPPMCSP. That is, we will show that, for every (Y,N) ∈ SZK there is a probabilistic
polynomial time oracle Turing machine M with the property that x ∈ Y implies M(x)
accepts with probability at least 2/3 when given oracle MCSP, and x ∈ N implies M(x)
accepts with probability at most 1/3 when given oracle MCSP. M may exhibit any behavior
on inputs outside of N ∪ Y .

It was shown by Chailloux et al. [CCKV08] that SZK is equal to a class that Ben-Or and
Gutfreund [BOG03] defined and called NISZK|h. Importantly for us, Ben-Or and Gutfreund
showed that a promise problem they called IID (Image Intersection Density) is complete
for NISZK|h (and thus, by [CCKV08], IID is also complete for SZK). The yes-instances of
IID consist of pairs of circuits (C0, C1), each of size n, taking m-bit inputs, such that the
distributions C0(x) and C1(x) (where x is chosen uniformly at random) have statistical
distance at most 1/n2. The no-instances of IID consist of pairs of circuits (C0, C1) with the
property that Pr|x|=m[∃y C1(y) = C0(x)] < 1/n2.

We will not work directly with IID, but rather with a related problem that is shown to
be complete for NISZK|h in [BOG03, Lemma 20], which is just like IID but with different
parameters. Let us call this problem PIID for “polarized IID”. The yes-instances of PIID
consist of triples (n, D0, D1), where each Di is an m-input circuit of size at most nk (for
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some fixed k), such that the distributions D0(x) and D1(x) (where x is chosen uniformly at
random) have statistical distance at most 1/2n. The no-instances of PIID consist of triples
(n, D0, D1) with the property that Pr|x|=m[∃y D1(y) = D0(x)] < 1/2n.

Furthermore, we need to make use of the fact that we can assume that the length m of
the inputs to the circuits D0 and D1 may be assumed without loss of generality to be at least
nδ for some fixed δ > 0. To see this, observe that the proof given in [BOG03, Theorem 22]
showing hardness of IID is via a generic reduction from any problem in SZK. If we apply their
proof to IID itself (that is, reducing IID to IID) we obtain that IID remains hard even when
m is polynomially-related to n. Then applying the proof of [BOG03, Lemma 20] (showing
hardness of PIID) maintains this condition on m.

Theorem 3. SZK ∈ BPPMCSP

Proof. It will suffice to show that PIID ∈ BPPMCSP.

Consider the polynomial-time computable function F (C, x) that takes a Boolean circuit
C on m-bit inputs, and a string x of length m as input, and outputs C(x). We will use the
notation FC(x) to denote F (C, x). Since the length of x is polynomially-related to the size
of C in the instances of PIID that we consider, it follows that FC is uniformly computable in
time polynomial in the length of x.

Thus, by Theorem 1, there is a polynomial-time probabilistic oracle Turing machine N
and polynomial q such that for any m and C

Pr
|x|=m,s

[FC(NMCSP(C, FC(x), s)) = FC(x)] ≥ 1/q(m),

where x is chosen uniformly at random and s denotes the internal coin flips of N .

Now, given input (n, D0, D1) to PIID, our BPPMCSP algorithm does the following for n`

independent trials (for an ` to be determined later):

1. Pick m-bit input x and probabilistic sequence s uniformly at random.

2. Compute z = D0(x).

3. Run NMCSP(D1, z, s) and obtain output y.

4. Report “success” if D1(y) = z.

The BPPMCSP algorithm will accept if at least log n of the n` independent trials are successful.

If (n, D0, D1) is a no-instance of PIID, then the probability that any given trial succeeds
is at most 1/2n. Thus, for all large n the expected number of the n` trials that will succeed
is at most n`/2n < 1. By the Chernoff bounds, the probability that log n trials will succeed
is less than 1/3.

If (n, D0, D1) is a yes-instance of PIID, then D0(x) and D1(x) have statistical distance
at most 1/2n.

5



Note that

Pr
|x|=m,s

[FD1(N
MCSP(D1, FD0(x), s)) = FD0(x)]

=
∑

z

Pr
|x|=m,s

[FD1(N
MCSP(D1, z, s)) = z|z = FD0(x)] Pr[z = FD0(x)]

=
∑

z

Pr
|x|=m,s

[FD1(N
MCSP(D1, z, s)) = z|z = FD1(x)] Pr[z = FD0(x)].

Also,

Pr
|x|=m,s

[FD1(N
MCSP(D1, FD1(x), s)) = FD1(x)]

=
∑

z

Pr
|x|=m,s

[FD1(N
MCSP(D1, z, s)) = z|z = FD1(x)] Pr[z = FD1(x)].

Thus the difference of these two probabilities is∑
z

Pr
|x|=m,s

[FD1(N
MCSP(D1, z, s)) = z|z = FD1(x)](Pr[z = FD0(x)]− Pr[z = FD1(x)])

≤
∑

z

1 · (Pr[z = FD0(x)]− Pr[z = FD1(x)])

≤ 1/2n

Since Pr|x|=m,s[FD1(N
MCSP(D1, FD1(x), s)) = FD1(x)] > 1/q(m) > 1/q(nk), it follows that

each trial has probability at least 1/q(nk) − 1/2n of success. Thus, the expected number of
the n` trials that will succeed is at least n`(1/q(nk)− 1/2n). Picking ` so that n` is enough
greater than q(nk) guarantees that this expected value is at least n. Thus, by the Chernoff
bounds the probability that at least log n trials succeed is greater than 2/3.

ut
Observe that we obtain one-sided error on those instances (n, D0, D1) of PIID where

Pr|x|=m[∃y D1(y) = D0(x)] = 0, instead of merely being bounded by 1/2n. In particular, the

promise problem known as SD1,0 (consisting of pairs of circuits (D0, D1) where, for the yes-
instances, D0 and D1 represent identical distributions, and the no-instances have disjoint
images) is in RPMCSP. It was shown in [KMV07] that this problem is complete for the class of
problems that have “V-bit” perfect zero knowledge protocols; this class contains most of the
problems that are known to have perfect zero-knowledge protocols, including the problems
studied in [AD08].

5 Conclusions and Open Problems

We are the first to admit that there appears to be no reason why these results could not have
been proved earlier. The techniques involved have been available to researchers for years, and

6



the proofs have much the same flavor as the reductions of factoring, discrete logarithm, and
other cryptographic problems to MCSP that were presented in [ABK+06]. Perhaps the only
missing ingredient is that the earlier work involved using MCSP (or, equivalently, RKT) to
break pseudorandom generators that were constructed from one-way functions that people
actually believed were cryptographically secure. In contrast, the functions fG considered
here have never seemed like promising candidates to use, in constructing pseudorandom
generators.

It is natural to wonder if better reductions are also possible. Is GI ∈ PMCSP? Or in
ZPPMCSP?

Equally temptingly, is it possible to build on these ideas to reduce larger classes to MCSP?
The Wikipedia article on “NP-Intermediate Problems” (as of April 10, 2014) says “. . . MCSP
is believed to be NP-complete” [Wik14]. We are unaware of much evidence for this “belief”
being very widespread in the complexity theory community, but it is certainly an intriguing
possibility.

Alternatively, is it possible to tie MCSP more closely to SZK? For instance, what is
the complexity of the promise problem whose yes-instances consist of strings with KT-
complexity at most

√
n, and whose no-instances consist of strings with KT-complexity >

n/2?
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