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Abstract

The notion of non-malleable codes was introduced as a relaxation of standard error-correction
and error-detection. Informally, a code is non-malleable if the message contained in a modified
codeword is either the original message, or a completely unrelated value.

In the information theoretic setting, although existence of such codes for various rich classes
of tampering functions is known, explicit constructions exist only for highly structured family of
tampering functions. Prior explicit constructions of non-malleable codes rely on the “compart-
mentalized” structure of the tampering function, i.e. the codeword is partitioned into a priori
fixed blocks and each block can only be tampered independently. The prominent examples of
this model are the family of bit-wise independent tampering functions and the split-state model.

We consider an infinitely large natural class of non-compartmentalized tampering functions.
In our model, the tampering function can permute the bits of the encoding and (optionally)
perturb them. In the information theoretic setting, we provide an explicit and efficient, rate-1
non-malleable code for multi-bit messages.

Lack of explicit constructions of non-malleable codes for non-compartmentalized tampering
functions severely inhibits their utility in cryptographic protocols. As a motivation for our
construction, we show an application of non-malleable codes to cryptographic protocols. In an
idealized setting, we show how string commitments can be based on one-bit commitments, if
non-malleable codes exist. Further, as an example of a non-trivial use of non-malleable codes
in standard cryptographic protocols (not in an idealized model), we show that if explicit non-
malleable codes are obtained for a slightly larger class of tampering functions than we currently
handle, one can obtain a very simple non-malleable commitment scheme, under somewhat strong
assumptions.
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1 Introduction

Non-Malleable Codes have emerged as an object of fundamental interest, at the intersection of
coding theory and cryptography. Informally, a code is non-malleable if the message contained in
a codeword that has been tampered with is either the original message, or a completely unrelated
value. As a relatively new problem, several basic questions are still open. In particular, explicit
constructions of non-malleable codes that can withstand expressive families of attack is one of the
main challenges in this area. This is the subject of this paper.

But we begin our investigation into non-malleable codes with an enticing question, from an entirely
different domain:

Can non-malleable string-commitments be “entirely based” on non-malleable bit-commitments?

To formalize this problem, we consider an idealized model of bit commitments: to commit a bit to
Bob, Alice can create a small physical token which has the bit “locked” inside (and later, she can
send him a “key” to open the token). This completely hides the bit from Bob until Alice reveals it
to him; on the other hand, Alice cannot change the bit inside the token once she has sent it to Bob.
Further, this is a non-malleable bit commitment scheme, in that if Bob plays a man-in-the-middle
adversary, and wants to send a commitment to Carol, he can can only send the token from Alice as
it is, or create a new token himself, independent of the bit committed to by Alice. In fact, further,
let us assume that Bob cannot create a token on his own. Then, the only man-in-the-middle attacks
possible are to forward Alice’s token to Carol, or to send nothing to Carol, and Bob has to decide
on an action independent of the bit Alice committed to.

Now, we ask whether, in this model, one can make non-malleable string commitments (relying on
no computational assumptions). This is a question about non-malleable codes in disguise! Indeed,
if we required the commitment protocol to involve just a single round of token transfer, then a
commitment protocol is nothing but a non-malleable encoding of a string into bits. If all codewords
have the same length, and if Bob receives only one commitment, then the class of attacks we need
to protect against is that of bit-level permutations.

This application also brings out an important aspect of non-malleable codes: whether they are
explicit or not. While there indeed is an efficient randomized construction of non-malleable codes
that can resist permutations [FMVW13], it will not be suitable in this case, because neither the
sender nor the receiver in a commitment scheme can be trusted to pick the code honestly (Bob
could play either role), and non-malleable codes are not guaranteed to stay non-malleable if the
description of the code itself can be tampered with.

In this work, we present the first explicit construction of a non-malleable code that can resist bit-
level permutations. In fact, we consider a more general class of attacks in which an attacker can first
permute the bits of the encoding and then perturb it by passing each bit through some channel of
its choice. We allow the adversary the family of all channels (with probabilities which are constant,
independent of the security parameter), except for the two constant channels (first of which set its
output always to 0 and the other which sets it to 1). In return, we obtain a stronger non-malleable
guarantee than usual: the attack can result only in a codeword with the same message, or an invalid
codeword. (This corresponds to our stronger non-malleability requirement that Bob cannot create
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his own commitments other than by simply forwarding Alice’s commitment.) Also, the probability
of generating an invalid codeword is the same for all messages.

Our construction is in two steps: first we build a rate-0 non-malleable code,1 and then use it in
constructing a rate-1 non-malleable code.

Our rate-0 construction is fairly natural, though its analysis turns out to be more complicated.
At a high-level the construction combines an “outer code” which has a sufficiently large distance
and dual distance (for example, a “packed secret-sharing scheme” based on the Reed-Solomon code)
with an “inner code” which is transparent to bit-level permutations – namely, a unary code. Each
character of the outer code-word is encoded into a block of bits using the inner code. To obtain some
level of resistance to mixing bits from different blocks, we keep the bits in the codeword randomly
permuted, and also, we ensure a good density of invalid codewords in the code (achieved, specifically,
by requiring that the the weight of each codeword is, say, even), so that blindly mixing together
bits from different codewords has some probability of creating an invalid codeword. A careful
combinatorial argument can be used to show that, despite dependencies among the blocks caused
by a permutation attack, the probability of having all attacked blocks remaining valid decreases
multiplicatively. If the outer code has a large distance, this ensures that the probability of creating
a different valid codeword is negligible. However, we need to ensure not only that the attack has
negligible chance of modifying one codeword into a different valid codeword, but also that the
probability of creating an invalid codeword is (almost) independent of the actual message. Roughly,
this is based on the large dual distance of the outer code.

The code above does not have a positive rate (i.e., the size of the codewords is super-linear in the
size of the messages). Next, we show that this code can then be boot-strapped into one with rate 1.
The idea is to encode the message using a rate-1 code of sufficiently large dual distance to obtain
a codeword c, and then use the non-malleable code to encode a (weakly collision-resistant) hash
function h and h(c). (The proof of non-malleability of this construction uses specific properties of
our rate-0 non-malleable code and does not apply if an arbitrary non-malleable code is used.) Note
that, to obtain rate 1, it is important that the description of h itself is sub-linear in the size of c,
precluding the use of a 2-universal hash function. Instead we use a Merkle-tree construction applied
to a 2-universal hash function family over a domain of Θ(κ)-bit long strings.

Finally, we return to the problem of non-malleable commitments. While the motivating problem
was posed in an idealized setting, one could ask if the same approach – of encoding a string using a
non-malleable code, and then committing each bit individually – would yield a non-malleable string
commitment scheme in the standard model. Interestingly, we give a new construction and analysis
to show that this is indeed possible, with a somewhat strong assumption (used to implement a
simple non-malleable bit-commitment protocol), if explicit non-malleable codes that can tolerate
permutations along with all channels (including the two constant channels) are constructed. We
leave open the problem of constructing non-malleable codes against this class of attacks.

1Rate can be defined as infκ limL→∞
L

N(L,κ)
, where N(L, κ) stands for the number of bits in a codeword in the

code for L-bit long messages with security parameter κ (the advantage an adversary can have in the malleability
experiment should be negligible in κ).
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1.1 Our Contribution

We construct, in the information theoretic setting, explicit non-malleable rate 1 codes against a
tampering function family which allows permutation of the code followed by some perturbation of
each bit. Our message space is {0, 1}L and our codewords lie in {0, 1}N . The set SN represents the
set of all permutations over [N ]. A channel f over {0, 1} takes as input a bit b ∈ {0, 1} and outputs
a distribution over {0, 1}. If support of f is {0, 1},2 then we say that it is a non-constant channel.
For example, f(b) = 1 ⊕ b (toggle channel), f(b) = U{0,1} (uniform bit generation channel) and
f(b) = b (message-forwarding channel) are special cases of non-constant channels.

Our class of tampering functions is specified by (π, f1, . . . , fN ) such that π ∈ SN , and fis are
non-constant channels. Given an encoding c[N ] ≡ c1 . . . cN , the tampering function produces the
following (distribution) of strings: f1(cπ−1(1)) . . . fN (cπ−1(N)). That is, our tampering functions
allows permutation of the codeword (at bit level representation) followed by passing each bit of
the outcome through a non-constant channel. This class is represented by C{0,1} ◦ SN . Our main
theorem states the following:

Informal Theorem 1. There exists an explicit non-malleable rate 1 code with efficient encoding and
decoding against an adversary who is allowed to permute the output codeword followed by application
of non-constant channels.

Note that the tampering family C{0,1} ◦ SN is an infinitely large family.3

1.2 Prior Work

Prior to the study of non-malleable codes, [CDF+08] considered a related notion of detecting arith-
metic manipulations.

Non-malleable Codes. The study of non-malleable codes was formalized and motivated in [DPW10].
They showed existence of a constant rate non-malleable code against the class of all bit-wise in-
dependent tampering functions. Existence of rate 1 non-malleable codes against various classes of
tampering functions is known. For example, existence of such codes with rate (1 − α) was shown
against any tampering function family of size 22αn ; but this scheme has inefficient encoding and
decoding [CG14a]. For tampering functions of size 2poly(n), rate 1 codes (with efficient encoding and
decoding) exist with overwhelming probability [FMVW13].

On the other hand, explicit constructions of non-malleable codes with good rate have remained
elusive, except for some well structured tampering function classes. Recently, an explicit rate 1
code for the class of bit-wise independent tampering function was proposed by [CG14b]. Note that
a tampering function in this class tampers each bit independently. For the generalized model, where

2 Support of f is defined to be the union of supports of f(0) and f(1) distributions.
3 The class of “simple channels” Csimple,{0,1} is the set of channels which contain: 1) f(b) = b, 2) f(b) = 1 ⊕ b, 3)

f(b) = 0 and 4) f(b) = 1. Although each channel in the class C{0,1} can be written as a convex linear combination
of channels in Csimple,{0,1}, it is not the case that any tampering function in the class C{0,1} ◦ SN can be written as a
convex linear combination of tampering functions in the class Csimple,{0,1} ◦ SN . So, to construct non-malleable codes
against the infinite family C{0,1} ◦ SN , it is not sufficient to construct a non-malleable code against the finite family
Csimple,{0,1} ◦ SN .
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the codeword is partitioned into separate blocks and each block can be tampered arbitrarily but
independently, an encoding scheme was proposed in [CKM11]. In the most general such setting,
i.e. there are only two such independent partitions (known as the split-state model), an explicit
encoding scheme for bits was proposed by [DKO13]. Recently, in a major break-through result, an
explicit scheme (of rate 0) was proposed for arbitrary length messages by [ADL13].

Note that, known explicit construction of codes against particular tampering function classes ex-
ploit the “compartmentalized” nature of the family of tampering functions, i.e. the codeword can
be a priori partitioned into pieces such that the tampering function is applied independently to
each partition. For example, bit-wise independent tampering functions act on each bit indepen-
dently; and in the split-state model, the tampering on each state is independent. The class of
functions being studied in this paper is one of the most natural classes of tampering functions with-
out the aforementioned “compartmentalization” property. Achieving non-malleability via explicit
codes against non-compartmentalized class of functions turns out to be cryptographically interesting
(see Appendix E).

Codes under computational assumptions. The idea of improving the rate of error-correcting
codes by considering computationally limited channels stems from the work of Lipton [Lip94].
Restricting the channels to be computationally efficient allows one to use cryptographic assumptions,
e.g., Micali et. al. [MPSW05] show how to combine digital signatures with list-decodable codes
to go beyond the classical error correction bound for unique decoding. Further constructions in
various settings were provided in [OPS07, HO08, GS10, CKO14]. In the setting of non-malleable
codes as well, constructions based on computational assumptions have been explored, e.g., in [LL12,
FMNV14].

Non-malleable commitments. There is an extensive amount of literature on non-malleable
commitments starting from the work of Dolev, Dwork and Naor [DDN91] leading to recent constant-
round constructions based on one-way functions [Goy11, LP11]. Our suggested application of non-
malleable codes to non-malleable commitments is similar in spirit to the work of Meyers and She-
lat [MS09] on the completeness of bit encryption.

1.3 Technical Overview

An obvious starting point to construct a code which is non-malleable against the class of all permu-
tations is a unary encoding scheme, i.e. a message s ∈ {0, 1}L is interpreted as a number s ∈ Z2L

and the encoding is the characteristic vector of a size s subset of [N ]. Note that in this case, we
need N = 2L (the rate is exponentially close to 0); and hence it cannot be efficiently encoded or
decoded.

The next logical step is to explore Reed-Solomon based share-packing techniques over a field F of
characteristic 2 such that |F| = Θ(L). Suppose there are n elements in this encoding of s. Each
of these elements need to be protected against tampering. To achieve this goal, we can attempt
to de-randomize the existential results of [FMVW13, CG14a] to construct non-malleable (inner)
encodings of the elements. But note that the tampering family size continues to be exponential
in n, because each (encoding of an) element in the codeword can possibly receive bits from any
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position of the original codeword. Therefore, de-randomization of these existential proofs cannot
be efficiently performed. Note that efficiency improvements by choosing share-packing techniques
with Algebraic Geometric (AG) codes over constant size fields also faces the identical bottleneck.

Our rate 1 encoding scheme is modularly constructed in two steps. First, an efficient non-malleable
code is constructed which achieves rate Θ(1/L). This encoding scheme is an amalgamation of the
two ideas mentioned above, i.e. share-packing techniques using algebraic geometric codes and unary
encoding scheme as an inner encoding scheme. There are other subtleties which arise but can be
resolved using a variant of the unary encoding scheme mentioned above. Finally, we construct a
rate 1 encoding scheme using this code to bootstrap. This step employes a Reed-Solomon based
(rate 1) share-packing of the message; followed by appending a small tag using the non-malleable
code constructed previously.

Henceforth, these two encoding schemes shall be referred to as the basic and main constructions,
respectively. We emphasize that our main construction works only for the particular basic construc-
tion we provide, i.e. we do not show a mechanism to convert any basic non-malleable scheme into
a rate 1 non-malleable scheme. Our basic construction provides several additional combinatorial
properties which make is amenable to rate amplification.

1.3.1 Basic Construction

For ease of presentation, we introduce our construction using Reed-Solomon codes instead of alge-
braic geometric codes in this section.

Suppose F is a sufficiently large field of characteristic 2 such that {f−`, . . . , f−1, f1, . . . , fn} ⊆ F.
To encode a message s[`] ≡ (s1, . . . , s`) ∈ F`, pick a random polynomial p(·) of degree < k such
that p(f−i) = si, for all i ∈ [`]. The encoding is defined to be c[n] ≡ ( 〈1, p(f1)〉, . . . , 〈n, p(fn)〉 ) ∈
([n]× F)n. This serves as our outer encoding scheme and each element is interpreted in Zn|F|.

Let m = 6n |F|. The inner encoding of a secret x ∈ Zn|F| is the characteristic vector of a random
subset of [m] of size (m/3) + 2x.

Our final encoding scheme is a concatenation of the outer and the inner encoding schemes. In
particular, we have L = ` lg |F|, N = nm = 6n2 |F|, k = n/3 and ` = k/2. Rate of this code is
L/N = Θ̃(1/L2).4 Final encoding of s is represented by: c[N ] ∈ {0, 1}N .

Suppose π ∈ SN be a tampering function. The codeword obtained by applying this tampering
function to the codeword c[N ] is π(c[N ]) ≡ cπ−1[N ]:=cπ−1(1) . . . cπ−1(N).

Intuition of Non-malleability Proof. We consider two special tampering functions to illustrate
our proof outline.

Example 1. Consider the tampering function π which identically maps the first (n−2)m bits, i.e. it
“preserves” the encodings of the first (n−2) blocks. And it permutes some bits across the encodings
of the last two blocks.

4 If algebraic geometric codes are used, then L = c` and N = 6n22c, where |F| = 2c and c is any constant > 6. In
this case, rate is: Θ(1/L).
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Note that the distance of the Reed-Solomon code used in our setting is � 2 even after fixing
the message s. So, π(c[N ]) is a valid codeword if and only if the last 2m bits of c[N ] and π(c[N ])
encode identical elements in ([n]×F). Further, the independence of our Reed-Solomon code is� 2,
therefore the distribution of 〈n− 1, p(fn−1)〉 and 〈n, p(fn)〉 are, respectively, identical to 〈n− 1,UF〉
and 〈n,UF〉, irrespective of the value of the message s being encoded.

So, the probability σ of π(c[N ]) being a valid codeword and encoding the identical message is the
probability of 0 in the following experiment:

1. Sample a ∼ 〈n− 1,UF〉 and b ∼ 〈n,UF〉.

2. Encode a and b with the inner encoding scheme; the encodings are represented by ã and b̃
respectively.

3. Apply the tampering function π (restricted to the last two blocks) to (ã, b̃).

4. If the tampered blocks a′ and b′ encode a and b, respectively, then output 1; otherwise output
0.

Note that σ is independent of the message s; and can be computed efficiently. We emphasize that
a′ need not be (bit-wise) identical to ã and b′ need not be (bit-wise) identical to b̃; they need to
encode the same message a and b, respectively.

We say that an outer codeword is “dirty,” if it receives bits from at least two different blocks after
the tampering function is applied. So, in this example, π has exactly two dirty outer codewords.
An analogous argument suffice when the number of dirty outer codewords is “small.”

Example 2. Now consider a tampering function π which has the following property: Each block
receives at least one bit from every block of c[N ].

In this case, we leverage the fact that any valid inner code has parity 0; and (on average) any bit of
the encoding is 0 and 1 with at least a constant probability. So, if bits from two (or more) different
blocks are copied into one block by the tampering function, then we expect that the resulting parity
of the tampered block should have parity 1 with constant probability. We expect the following.
Since a large number of outer codewords are dirty, with 1−negl(n) probability at least one block of
the tampered codeword π(c[N ]) does not have parity 0. But this argument is not immediate because
the parities of bits in the tampered blocks are correlated random variables.

First, note that the probability of any bit in c[N ] being 1 is at least 1/3. One can extend this
argument (despite correlations among wires) to claim that any subset of 1 6 t 6 m wires in a
block has parity 1 with a constant probability. Intuitively, given this observation, we would like to
conclude that the probability that all dirty outer codewords have parity 0 is negl(n).

Despite correlations, using a careful analysis, we show that there exist (at least) n/2 outer blocks
whose parity of bits are independently set to 1 with constant probability (and this is tight). This
suffices to formally prove our intuitive claim. Thus, in this case, we can output σ = 1.

A generalization of this argument also works when the number of dirty outer codewords is “large.”

Putting Things Together. When the number of dirty codewords is “small,” we use the argument
used in the first example. On the other hand, if the number of dirty codewords is “large” we use
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the argument of the second example. By appropriately choosing the parameters of our encoding
scheme these cases are exhaustive.

Extension to Channels. If the number of dirty outer codewords is large, then an argument
similar to the one mentioned above continues to work. But if the number of dirty outer codewords
is small, then we need to make a small modification. Note that if the tampering function toggles
two bits in the same block, then it preserves the parity. To counter this issue, we replace the inner
code which encodes a secret x ∈ Zn|F| using the characteristic vector of a random subset of [m]
of size dm/3e + 3x, where m = 9n |F| + 1. Now, we can show that applying any number of non-
constant channels to a block does not preserve the parity of the block with constant probability.
Thus, generalizing the definition of “dirty” codewords, we can take care of non-constant channels as
well.

A robust non-malleable code permits the tampering function to change the encoding but not the
encoded message itself. Robust non-malleability is a strengthening of the traditional notion of non-
malleability. Using algebraic geometric codes, instead of Reed-Solomon codes, we have the following
theorem:

Theorem 1. Let κ be the statistical security parameter and L ∈ N. In the information theoretic
setting, there exists an explicit robust non-malleable code with efficient encoding and decoding for
messages in {0, 1}L against the class of functions C{0,1} ◦ SN , where codewords are in {0, 1}N ,
N = Θ(L2) and L > lg3 κ.

The basic non-malleable encoding scheme is summarized in Figure 6.

1.3.2 Main Construction

Let F be a suitably large field with characteristic 2. The message s is an L-bit message and is
interpreted as an element in F`. This is shared using a Reed-Solomon secret sharing scheme with
appropriately chosen parameters such that the number of shares n 6 ` + `1−c, where c ∈ (0, 1) is
a constant. Let the shares be c(1) ∈ Fn. Next, we use the basic non-malleable encoding scheme to
encode the message

(
h, h

(
c(1)
))
, where h $←H and H is a suitably chosen (almost) universal hash

function with weak collision resistance properties. We represent this as c(2) and shall be referred to
as the “tag of c(1).”

The final non-malleable encoding of the message s is the pair c =
(
c(1), c(2)

)
. Parameters for

the Reed-Solomon encoding and the hash family H can be appropriately chosen so that the rate
L/N = 1− o(1) (see Figure 7).

Intuition of Non-Malleability Proof. We illustrate the main ideas underlying our analysis.
Fix a tampering function (π, f1, . . . , fN ). Let the tampered codeword be c̃ = (c̃(1), c̃(2)).

Case 1. If “too many” blocks in the tag c̃(2) receive bits from the code c(1). In this case, we show
that all blocks have parity 0 mod 3 with 1− negl(κ) probability.

7



Case 2. If “too many” blocks in the tag c̃(2) receive bits from multiple blocks in c(2) itself. In
this case, we use an analysis similar to “large number of dirty blocks” that all blocks have parity 0
mod 3 with 1− negl(κ) probability.

Case 3. In this case, the tampering function copies most blocks identically (except permuting bits
within a block). This means that the outer codeword in the tag in c(2) and c̃(2) remains identical.
Now, there are some cases to consider.

Case 3.a. If c(1) and c̃(1) are different then this yields a collision of the hash function, which
happens only with negl(κ) probability. The reduction to collision resistance experiment can only be
performed if the number of blocks in c(2) which are copied into c̃(1) is small.

Case 3.b. If large number of bits are not identically mapped in c(1) then the probability that c(1)

and c̃(1) are equal is negl(κ).

Case 3.c. If the number of bits not identically mapped in c(1) are also small, then the probability
that c(1) = c̃(1) and the underlying outer codewords on c(2) and c̃(2) are equal is independent of the
message being coded. This relies on the large distances of the Reed-Solomon code and the basic
encoding scheme.

We can set parameters such that these cases are exhaustive. This provides our main result:

Theorem 2. Let κ be the statistical security parameter and L ∈ N. In the information theoretic
setting, there exists an explicit robust non-malleable code with efficient encoding and decoding for
messages in {0, 1}L against the class of functions C{0,1} ◦ SN , where codewords are in {0, 1}N ,
N = L× (1 + o(1)) and L ∈ [lg11 κ, κλ], for a constant λ ∈ N.

The construction is summarized in Figure 7. The proof of this result, detailed in Section 5.1, closely
follows the outline mentioned above. Our construction provides an alternate efficient explicit rate
1 AMD code [CDF+08].

2 Preliminaries

We denote the set {1, . . . , n} by [n]. If a ∈ [b− ε, b+ ε], then we represent it as: a = b± ε. The set

of all k-subsets of S is represented by
(
S
k

)
; and the set of all subsets of S is represented by 2S .

Probability distributions are represented by bold capital alphabets, for example X. The distribution
US represents a uniform distribution over the set S. Given a distribution X, x ∼ X represents that
x is sampled according to the distribution X. And, for a set S, x $← S is equivalent to x ∼ US .

For a joint variable X = (X1, . . . ,Xn) and S = {i1, . . . , i|S|} ⊆ [n], we define the random variable
XS = (Xi1 , . . . ,Xi|S|). We use a similar notation for vectors as well, for example xS represents
the vector restricted to indices in the set S. For a function f(·), the random variable Y = f(X)
represents the following distribution: Sample x ∼ X; and output f(x). Further, f(x[n]) represents
the vector f(x1) . . . f(xn). For example, i+ [n] = {i+ 1, . . . , i+ n}.

The statistical distance between two distributions S and T over a finite sample space I is defined
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as:
SD (S,T) :=

1

2

∑
i∈I

∣∣∣∣Pr
s∼S

[s = i]− Pr
s∼T

[s = i]

∣∣∣∣
For a pair z = 〈x, y〉, define first(z):=x and second(z):=y.

2.1 Classes of Tampering Functions

We shall consider the following set of tampering functions.

1. Family of Permutations. Let SN denote the set of all permutations π : [N ] → [N ]. Given
an input codeword x[N ] ∈ {0, 1}N , tampering with function π ∈ SN yields the following
codeword: xπ−1(1) . . . xπ−1(N)=:xπ−1([N ]).

2. Family of Non-constant Channels. Let C{0,1} denote the set of all binary channels f such that
Supp(f(U{0,1})) = {0, 1}. The transition probabilities of these channels are constants. Given
an input bit b, application of a channel f , produces the (randomized) output f(b). Note that
the following functions lie in this family: 1) f(b) = 1 ⊕ b, i.e. negation of the input bit, 2)
f(b) = U{0,1}, i.e. a uniform random bit irrespective of the input bit. We emphasize that the
only channels whose transition probabilities are constants but are not included in this class
are: f(b) = 0 and f(b) = 1. Note that this class contains infinitely many functions.

We can define more complex tampering function classes by composition of these function classes. For
example, composition of SN with C{0,1} yields the following class of tampering functions. For any π ∈
SN and f1, . . . , fN ∈ C{0,1}, it transforms a codeword x[N ] into f1(xπ−1(1)) . . . fN (xπ−1(N))=:f1,...,N (xπ−1([N ])).
This class is represented by: C{0,1} ◦ SN . Our main result provides an efficient non-malleable code
against the tampering class C{0,1} ◦ SN .

2.2 Non-Malleable Codes Security Experiment

At a high level, our model describes a game between an honest challenger and a malicious adversary.
In the first step, the adversary sends the tampering function f which will be applied to the codeword
generated later. Next, the challenger, just seeing this tampering function, tries to estimate the
failure probability σf of the adversary, which is the probability that the tampered codeword is
invalid. For non-malleability, this failure probability should be independent of the message chosen
by the adversary. Now, the adversary sends the message s to be encoded. The honest challenger
computes the encoding (possibly randomized) of the message.

The adversary can succeed in the above game in two ways. First, it can try to make the failure
probability σf depend on the message. Second, the adversary can also succeed if the tampered
codeword is valid for some message s′ 6= s with non-negligible probability. We define two advantages
adv1,A and adv2,A, respectively, for the adversary in the above experiment.

The above intuituion is formalized in Figure 1. We say that the encoding scheme Enc is non-
malleable against the class of tampering functions F if there exists ν = negl(κ) such that adv1,A =
ν(κ) and adv2,A = ν(κ).
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Note that in our model any valid malleated codeword cannot encode any s′ 6= s with non-negligible
probability. Hence, our notion of non-malleability is stronger than the standard notion of non-
malleable codes considered in literature. We call it robust5 non-malleability.

ExptEnc,A,F (1κ):
It is an experiment between an honest challenger H and a malicious adversary A, where Enc :
{0, 1}L → C ⊆ {0, 1}N is the encoding scheme (possibly randomized) such that the message
message is M:={0, 1}L and C ⊆ {0, 1}N denotes the codeword space. F is the class of allowed
tampering functions. Any f ∈ F maps C to an element in {0, 1}N .

1. A sends a tampering function f ∈ F .

2. H runs the algorithm A to compute the failure probability σf .

3. A sends a message s ∈M.

4. H computes c← Enc(m; r).

Define c̃ = f(c).
The adversary can succeed in the above experiment by two ways. Firstly, if the probability of
c̃ being an invalid codeword is non-negligibly away from σf . Secondly, if c̃ is a valid codeword
such that Dec(c̃) 6= m with non-negligible probability. Equivalently, these advantages, adv1,A and
adv2,A, respectively, can be defined as follows:

adv1,A = |Pr[c̃ /∈ C]− σf |
adv2,A = Pr[c̃ ∈ C ∧ Dec(c̃) 6= m]

Both probabilities are taken over the randomness r used by the challenger to encode the messages.

Figure 1: Robust Non-Malleability Experiment

2.3 Hash Functions

Definition 1 (Almost Universal Hash Function Family). A family of hash functions Hκ : Dκ → Rκ
is an ε-almost universal hash function family, if for all x, x′ ∈ Dκ such that x 6= x′ we have:

Pr
h

$←Hκ

[
h(x) = h(x′)

]
6 ε

An (1/ |Rκ|)-almost universal hash function family is also called a universal hash function family.
An ε-almost universal hash function family has weak collision resistance properties which shall
suffice for our construction.

Let T ′(·) be any function. Note that there exists a universal hash function familyH′κ : {0, 1}2T
′(κ) →

5 Our notion of robust non-malleability is intermediate to the notions of standard and strong non-
malleability [DPW10]. In robust non-malleability it is acceptable if the underlying message does not change but
the encoding itself changes.
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{0, 1}T
′(κ) such that the description of the hashes in H′κ is identical to the set {0, 1}3T

′(κ).6

Let T ∗(·) be any function. Then there exists an ε∗-almost universal hash function family H∗κ :

{0, 1}2T
′(κ)T ∗(κ) → {0, 1}T

′(κ) such that the description of the hashes inH∗κ is identical to {0, 1}
3T ′(κ)D(κ)

and ε∗ = D(κ) · 2− lg3 κ, where D(κ) = lg 2T ∗(κ). This hash function class is obtained by construct-
ing a Merkle-tree using the hash function family H′κ such that at each level of the Merkle-tree an
independent hash function from H′κ is used.

In particular, for any constant λ ∈ N and for any lg3 κ 6 L 6 κλ, there exists a hash function family
Hκ : {0, 1}L → {0, 1}lg

3 κ with seed length at most 4λ lg4 κ and ε∗ = 4λ lg κ · 2− lg3 κ.

3 Building Blocks

In this section, we define encoding schemes (equivalently, secret sharing schemes) relevant to our
construction.

Definition 2 (Secret Sharing Scheme). Consider alphabet sets Λ0,Λ1, . . . ,Λm and a joint distribu-
tion S = (X0,X1, . . . ,Xm) over the space Λ0×Λ1×· · ·×Λm. The random variable X0 represents the
secret being shared and Xi for i ∈ [m] represents the ith share. For s ∈ Λ0 and set T = {i1, . . . , i`},
the conditional distribution (XT |X0 = s) is defined as the conditional distribution of (Xi1 , . . . ,Xi`)
under S when X0 = s. We define the following properties of the secret sharing schemes.

1. t-independence: For any s ∈ Λ0, T ⊆ [n] such that |T | 6 t, we have

SD ((XT |X0 = s),UΛT ) = 0

2. t-privacy: For any s1, s2 ∈ Λ0, T ⊆ [n] such that |T | 6 t, we have

SD ((XT |X0 = s1), (XT |X0 = s2)) = 0

3. r-reconstruction: For any s1, s2 ∈ Λ0, T ⊆ [n] such that |T | > r, we have

SD ((XT |X0 = s1), (XT |X0 = s2)) = 1

Consider a secret sharing scheme with r-reconstruction. Then any two different secrets s, s′ have at
least m− r + 1 different shares. Hence, we define the distance for this secret sharing scheme to be
m− r + 1.

Secret Sharing Schemes. Below, we describe some secret sharing schemes which are relevant
to our construction.

6 The hash function family is the set of all random T ′(κ)× 2T ′(κ) Toeplitz matrices; and evaluation of the hash
h ∈ {0, 1}T

′(κ)×2T ′(κ) at x ∈ {0, 1}2T
′(κ)×1 is a matrix multiplication h · x. This family of hash function is, in fact,

pairwise independent.

11



Secret Sharing Scheme X(RS,n,k,`,F):

1. Sample space: Λ0 = F`, Λ1 = · · · = Λn = F.

2. Conditions: |F| > n+ ` and n > k > `.

3. Joint Distribution (X0, . . . ,Xn) is defined via the following sampling procedure: We assume
that {f−`, . . . , f−1, f1, . . . , fn} ⊆ F.

(a) Pick a random polynomial: p(x) =
∑k−1

i=0 aix
i, where ai

$← F and i ∈ {0} ∪ [k − 1].

(b) Define x0 = (p(f−1), . . . , p(f−`)) ∈ F`.
(c) Define xi = p(fi), for i ∈ [n].

(d) Output (x0, x[n]).

Efficient Encoding and Decoding. Efficient sampling property for X(RS,n,k,`,F) follows from
the efficiency of Lagrange interpolation.

Figure 2: Basic Reed-Solomon based Secret Sharing.

Secret Sharing Scheme X(aRS,n,k,`,F):

1. Sample space: Λ0 = F`, Λ1 = · · · = Λn = [n]× F.

2. Conditions: |F| > n+ ` and n > k > `.

3. Joint Distribution (X0, . . . ,Xn) is defined via the following sampling procedure: We assume
that {f−`, . . . , f−1, f1, . . . , fn} ⊆ F.

(a) Pick a random polynomial: p(x) =
∑k−1

i=0 aix
i, where ai

$← F and i ∈ {0} ∪ [k − 1].

(b) Define x0 = (p(f−1), . . . , p(f−`)) ∈ F`.
(c) Define xi = 〈i, p(fi)〉, for i ∈ [n].

(d) Output (x0, x[n]).

Efficient Encoding and Decoding. Efficient sampling property for X(aRS,n,k,`,F) follows from
the efficiency of Lagrange interpolation.

Figure 3: Augmented Reed-Solomon based Secret Sharing.
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Secret Sharing Scheme X(aAG,n,k,d,`,t,Fq):

1. Sample space: Λ0 = F`, Λ1 = · · · = Λn = [n]× Fq.

2. Conditions: Let α, β, α′, δ, q be constants such that:

(a) α ∈ (0, 1) and β ∈ (0, 1− α).

(b) α′ ∈ (0, α) and δ ∈ (0, α− α′).

(c) q∗ = max

{(
1 + 1

β

)2
,
(

1 + 1
α−α′−δ

)2
,
(

1 + 1
1−α−α′

)2
, 49

}
(d) For all q > q∗ such that q is an even power of a prime, there are infinitely many n′ ∈ N

such that for k = αn′, d = (1 − α − β)n′, ` = α′n′ and t = δn′, there exists [n′, k, d]q
AG codes (see Figure 9). Set n:=n′ − ` = (1− α′)n′.

3. Joint Distribution (X0, . . . ,Xn) is defined via the following sampling procedure:

(a) Consider [n′, k, d]q AG code over Fq as described in Figure 9.

(b) Sample a random AG codeword (z−`, . . . , z−1, z1, . . . , zn).

(c) Define x0 = (z−`, . . . , z−1) ∈ F`q.
(d) Define xi = 〈i, zi〉, for i ∈ [n].

(e) Output (x0, x[n]).

Efficient Encoding and Decoding. Follows from [CC06] as described in Figure 9.

Figure 4: Augmented Algebraic-Geometric Code based Secret Sharing.
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Secret Sharing Scheme X(unary,m,F,p):

1. Sample space: Λ0 = Z|F |, Λ1, . . . ,Λm = {0, 1}.

2. Condition: m = 3p |F |+ 1.

3. Joint Distribution (X0, . . . ,Xm) is defined via the following sampling procedure: We assume
that there exists a bijection from the set F to Z|F |, say f 7→ map(f).

(a) Pick f $← F .

(b) Define x0 = map(f).

(c) Sample x[m]
$←
(

[m]
dm/3e+ px0

)
. Here x[m] is the characteristic vector of the sampled

subset.

(d) Output (x0, x[m]).

Efficient Encoding and Decoding. It is easy to see that there exists efficient encoding and
decoding schemes. In fact, it is also efficient to sample xS ∼ (XS |XT = xT ), for any S, T ⊆
{0} ∪ [m].

Figure 5: Balanced Unary Secret-sharing Scheme.

1. Basic Secret Sharing scheme using Reed-Solomon codes X(RS,n,k,`,F). This is a generalization
of Massey secret sharing scheme [Mas95] and is commonly referred to as the “share-packing
technique” for Reed-Solomon codes. This is an [n, k] code over a field F, such that |F| > n+ `.
Let {f−`, . . . , f−1, f1, . . . , fn} ⊆ F. The secret sharing of message (s1, . . . , s`) ∈ F` is done
by choosing a random polynomial p(·) of degree < k conditioned on (p(f−1), . . . , p(f−`)) =
(s1, . . . , s`). The shares {y1, . . . , yn} are evaluations of p(·) at {f1, . . . , fn} respectively. The
formal description of the secret sharing scheme is provided in Figure 2. The field F will
generally have characteristic 2 and this scheme will be used in our main construction presented
in Section 5.

The encoding has (k − `)-privacy (in fact, (k − `) independence) and distance d = n− k + 1.

2. Secret Sharing scheme using Reed-Solomon codes X(aRS,n,k,`,F). Consider any [n + `, k] code
over finite field F such that |F| > n + `. Given a message s ∈ F`, the secret sharing is
performed as follows: Sample a random Reed-Solomon code conditioned on the fact that its
first ` elements are identical to the message s. Let y1, . . . , yn be the remaining elements in the
codeword. The shares are defined to be 〈1, y1〉, . . . , 〈n, yn〉. It is known that efficient encoding
and decoding exist using Lagrange interpolation. For formal description of this scheme refer
to Figure 3.

The encoding scheme has (k − `)-privacy and distance d = n− k + 1.

3. Secret Sharing scheme using algebraic geometric codes X(aAG,n,k,`,F) [CC06]. Consider [n +
`, k, d]q AG code over finite field Fq for the choice of parameters specified in Figure 4. Given
a message s ∈ F`q, the secret sharing is performed as follows: Sample a random AG code
conditioned on the fact that its first ` elements are identical to the message s. Let y1, . . . , yn
be the remaining elements in the codeword. The shares are defined to be 〈1, y1〉, . . . , 〈n, yn〉.
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It is known that efficient encoding and decoding exist [CC06]. For formal description of this
scheme refer to Figure 4.

The encoding scheme has t = δn′-privacy and (αn′+ n′√
q−1 +1)-reconstruction, where n′ = n+`.

For details on parameter setting for AG codes, see Appendix G.

4. Balanced unary secret sharing scheme X(unary,m,F,p). Set m:=3p |F |, where F is the message
space. Given a message s ∈ F , the secret sharing is performed as follows: Sample a random
set S of [m] of weight dm/3e + ps. The shares are defined to be the characteristic vector of
set S. Note that this scheme has efficient encoding and decoding. For a formal description
refer to Figure 5.

For any s ∈ F and any set S used for encoding s, the weight of the final shares lie in
[m/3, 2m/3]. Hence, the name balanced unary secret sharing scheme.

Definition 3 (Concatenation Codes.). Consider two encoding schemes, the outer encoding scheme
X(out) = (X

(out)
0 ,X

(out)
1 , . . . ,X

(out)
n ) over Λ0 × Λ ×· · · × Λ and the inner encoding scheme X(in) =

(X
(in)
0 ,X

(in)
1 , . . . ,X

(in)
m ) over Λ× Λ′ ×· · · × Λ′. We define the concatenation code as the joint distri-

bution X(concat) = (X
(concat)
0 ,X

(concat)
1 , . . . ,X

(concat)
nm ) over Λ0 ×Λ′ ×· · · ×Λ′. Given a secret s ∈ Λ0,

sample x[nm] ∼ (X
(concat)
[nm] |X(concat)

0 = s) as follows: Sample x
(out)
[n] ∼

(
X

(out)
[n]

∣∣∣ X(out)
0 = s

)
. Next,

for each i ∈ [n], sample x(i−1)m+[m] ∼
(
X

(in)
[m]

∣∣∣ X(in)
0 = x

(out)
i

)
. Output x[nm].

Encoding and decoding procedures for concatenation codes are defined naturally using correspond-
ing procedures for inner and outer encoding schemes. Note that the final encoding and decoding
procedures are efficient if the corresponding procedures are efficient for inner and outer schemes.

Moreover, we emphasize that we do not focus on error correcting codes. In particular, if any of
inner or outer decoding procedures fails, we output ⊥ as the decoding of the overall code.

Suppose we have a codeword c[n] over Fn then ci is referred to as the ith element of the codeword.
Now, consider a concatenation code where each element ci is further encoded using an inner code
over some field (F′)m. The resultant codeword is d[mn] ∈ (F′)mn. The ith block in d[mn] corresponds
to the encoding of the ith element of c[n].

4 Basic Non-Malleable Encoding Scheme

In this section, we give the construction for our non-malleable encoding scheme.

Construction. As a high level, our encoding scheme is a concatenation code (see Definition 3)
which does the following: Given a message s, it samples an outer code according to augmented
algebraic geometric code based secret sharing (see Figure 4). Then for each outer code element, it
samples an inner codeword according to balanced unary secret sharing scheme (see Figure 5).

The choice of parameters for our scheme is as follows: Let κ be the statistical security parameter. As
shown in Figure 4, the first step is to choose the constants α, β, α′, δ, q satisfying certain conditions.
We set these constants as follows: α:=3/7, β:=1/7, α′:=1/7, δ:=1/7, q:=64. Note that these
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parameters satisfy all the conditions specified in Figure 4. Hence, there exists infinitely many
n′ ∈ N such that there exists [n′, k, d]q AG codes for k = αn′ and d = (1− α− β)n′.

Let Fq be a finite field with characteristic 2 and size 26. Choose smallest n′ of the form (
√
q−1)qu/2

such that (1−α′)n′ > lg3 κ, where u ∈ N. Define ` = α′n′ and t = δn′ and n = n′− ` > lg3 κ. Note
that n 6

√
q lg3 κ.

For this choice of parameters, our message space is F`q, which is identical to {0, 1}6`, i.e. L = 6`.

Our encoding scheme is formally defined in Figure 6. Our code is a subspace of {0, 1}nm, where
m = 9 |F |+ 1, where F = [n]× Fq.

Let N = n(9 · 6 · n+ 1), n = L, 54L2 + L.

Property of outer encoding scheme. Due to the parameter setting in our scheme, the outer
encoding scheme satisfies the following properties:

◦ (n6 )-privacy.

◦ (2n
3 + 1)-reconstruction and (n3 ) distance.

Let {0, 1}L be the message space such that L ≡ 6·8u for some u ∈ N.a Consider the following choice
of parameters for the secret sharing scheme X(aAG,n,k,d,`,t,Fq) (see Figure 4). Let α:=3/7, β:=1/7,
α′:=1/7, δ:=1/7, and q:=64. Note that these parameters satisfy all the conditions specified in
Figure 4. Let Fq be finite field of characteristic 2 with |Fq| = 26. Let n′ = 7 · 8u. Let k = αn′,
d = (1− α− β)n′, ` = α′n′, t = δn′ and n = n′ − `.
Note that X(aAG,n,k,d,`,t,F) exists for the above setting of parameters.

Let X(aAG,n,k,d,`,t,F) be the outer code X(out); X(unary,m,F,3) (see Figure 5) be the inner code X(in)

where F = [n] × Fq and m:=9 |F | + 1. Define X(basic) as the concatenation of X(out) with X(in)

(see Definition 3).

Encbasic(s ∈ F`):

1. Output c[mn] ∼ (X
(basic)
[mn] |X

(basic)
0 = s).

Decbasic(c[mn] ∈ {0, 1}mn):

1. Decode c[mn] by decoding algorithm corresponding to X(basic) code.

a If L is not of this form then consider the smallest number of form 6 · 8u greater than L. And pad the original
message with sufficient 0s to encode it. This increases the length of the message by at most a multiplicative factor
of 8.

Figure 6: Basic Non-malleable Code achieving rate > 1/c∗L, where c∗ = 440.
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Equivalence of codes for our scheme. We need the concept of equivalence of two codewords
g

(nmc)
[nm] and h

(nmc)
[nm] which are equivalent if each block encodes identical outer codeword element. 7

Formally defined as follows:

Inner codes. Consider two inner codewords, g(in)
[m] and h

(in)
[m] . We say that g(in)

[m] and h
(in)
[m] are

equivalent codes if they encode the same message according to the inner code X(in).

Non-Malleable codes. Consider two codewords g(nmc)
[mn] and h(nmc)

[mn] . We say that G(nmc)
[mn]

∼= h
(nmc)
[mn]

if the following holds. Define g(in)
i = g

(nmc)
(i−1)m+[m] for all i ∈ [n]. Similarly, define h(in)

i = h
(nmc)
(i−1)m+[m]

for all i ∈ [n]. Then, g(in)
i
∼= h

(in)
π(i) for all i ∈ [n].

4.1 Proof of Non-Malleability against SN

As a primer, in this section, we will consider the tampering functions SN , which is the set of all
permutations [N ] to [N ]. We show that our scheme described in Figure 6 is non-malleable against
this class of tampering functions.

Proof Overview. Intuitively, a block in the tampered codeword is said to be dirty if it receives
bits from at least two blocks of the given encoding. Formal definition is provided in Definition 5.
Let ndirty denote the number of such dirty codewords. We have the following two cases.

1. ndirty < lg2 n. We use high distance and high privacy of the outer encoding scheme compared
to lg2 n to argue the following. Failure probability is independent of the message being encoded
and can be brute force calculated by assuming s = 0`.

2. ndirty > lg2 n. Since the number of dirty codewords is large, we first fix the outer codeword
and show for any fixing Pr[c̃ ∈ C] 6 negl(n). We show this by first proving each dirty inner
codeword is invalid with at least a constant probability and then showing that overall failure
probability grows exponentially in ndirty. Hence, we output failure probability as 1.

Formal Proof. In order to argue non-malleability of our scheme, we will describe an algorithm
A specified in the security experiment which outputs the failure probability σf such that follow-
ing conditions are satisfied. Let s be the message being encoded in the non-malleability security
experiment. Let c be the code, and let c̃ be the malleated code.

adv1,A = |Pr[c̃ /∈ C]− σf | 6 negl(κ) (1)

adv2,A = Pr[c̃ ∈ C ∧ Decn,k,`,F(c̃) 6= s] 6 negl(κ) (2)

Note that these conditions should hold independent of the message being encoded, which could have
been chosen maliciously by A.

7Note that we only insist that g(nmc)
[nm] and h(nmc)

[nm] not only encode the same message s but also every outer codeword
element is identical.
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Let the codeword given to the adversary A be c[mn] ∼ (X
(nmc)
[mn] |X

(nmc)
0 = s). By the definition

of concatenation codes, we can equivalently write it as d(out)
[n] ∼ (X

(out)
[n] |X

(out)
0 = s) and c[mn] ∼

(X
(nmc)
[mn] |X

(out)
[n] = d

(out)
[n] ). We also define y(in)

i = c(i−1)m+[m]. Note that y(in)
i refers to the ith block of

c corresponding to ith outer codeword element, i.e. d(out)
i .

Let the tampering function be f ∈ F . Let c̃[mn] = f(c[mn]). For all i ∈ [n], define z(in)
i = c̃(i−1)m+[m].

Here z(in)
i refers to the ith block c̃.

We will model the attack as a weighted bipartite graph G = (VL, VR,W ) with partite sets VL = y
(in)
[n]

and VR = z
(in)
[n] and a symmetric weight function W : VL × VR → {0} ∪ N, such that W (u, v) =

W (v, u). The weight on the edge between nodes u ∈ VL and v ∈ VR, denoted by wu,v, corresponds
to the number of bits that have been copied from codeword u in c[mn] to codeword v in c̃. Note
that these weights can be calculated by seeing the tampering function f alone. Also, since f is
a permutation, this graph is regular, i.e. nR = n = nL and degL(u) = degR(v) = m for all
u ∈ VL, v ∈ VR.

Now consider the connected components {Ci} of graph G. A connected component Ci with two
nodes, u, v such that u ∈ VL, v ∈ VR and wu,v = m is called a matching. Matchings correspond to
a copy of a block y(in)

u in c to a block z(in)
v in c̃. More formally, we define a matching as follows:

Definition 4 (Matching). For i, j ∈ [n], (y
(in)
i , z

(in)
j ) is a matching if y(in)

i
∼= z

(in)
j . That is y(in)

i =

z
(in)
j up to internal permutation of bits.

Right nodes in a matching are always valid w.r.t. inner coding scheme X(unary,m,F,3). Moreover,
as mentioned above, any matching (y

(in)
i , z

(in)
j ) would result in an invalid code c̃ if i 6= j. This is

because in outer encoding scheme (see Figure 3) we store the index of the outer codeword element.
If there exists such a matching, we output σf = 1. Thus, without loss of generality, we assume that
for any matching (y

(in)
i , z

(in)
j ), i = j. Let nmatch denote the number of such matchings.

For components of size greater than 2 nodes, all nodes on the right receive bits from more than one
blocks on the left. We call these dirty codewords. More formally,

Definition 5 (Dirty Codewords). For some j ∈ [n], z(in)
j is said to be a dirty inner codeword if

there is no i ∈ [n] such that (y
(in)
i , z

(in)
j ) is a matching. In other words, there exists i, i′ ∈ [n] such

that some bits have been copied from both z(in)
i and z(in)

i′ to y(in)
j .

Let ndirty be the number of dirty codewords in c̃. Note that this classification of blocks in c̃ depends
solely on the tampering function f . Now we do a case analysis on ndirty in order to analyze the
validity of c̃.

◦ ndirty < lg2 n: In this case since the number of dirty codewords is “small", the non-malleability
would hold using distance and privacy of the outer encoding scheme. This follows by the
following two claims.

Claim 1. c̃ ∈ C =⇒ c̃ ∼= c.
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Proof. For the outer encoding scheme, we have distance, d > lg2 n. The claim follows by
noting that in order to get a valid code for a different message, the adversary needs to change
at least d outer codeword characters.

Claim 2. ∀s1, s2 ∈M following holds

Pr[c̃ /∈ C : c[mn] ∼ (X
(nmc)
[mn] |X

(nmc)
0 = s1), c̃ = f(c)]

= Pr[c̃ /∈ C : c[mn] ∼ (X
(nmc)
[mn] |X

(nmc)
0 = s2), c̃ = f(c)]

Proof. The claim follows by lg2 n-privacy of the outer encoding scheme.

For the class of permutations, the number of blocks of c which are used in creating dirty
codewords in c̃ are exactly equal to ndirty. But the outer encoding scheme has t-privacy for
t > lg2 n. Hence, the outer code elements corresponding to y(in)

i ’s which are used to create
dirty codewords are independent of the message. To calculate the probability in the claim
above, we need to calculate the probability that permutations of these randomly chosen blocks
(due to privacy) results in valid blocks which are consistent with the blocks that were copied
directly (matchings). From the previous claim, it holds that these have to be equal to the outer
codeword elements in c in order to be a valid code overall. In short, we need to calculate the
probability that permutations blocks corresponding to certain randomly elements, results in
the exactly same blocks (up to some natural allowed permutations of bits inside these blocks).
Note that this probability would be independent of the message.

In order to compute σf for this case, brute force compute the probability in Claim 4.1 by
taking s = 0`.

◦ ndirty > lg2 n: We will analyze this case for every fixed outer codeword elements but over the
randomness used to generate the blocks. More precisely, given s the message being encoded,
fix d(out)

[n] ∈ Supp
(
X

(out)
[n]

∣∣∣ X(out)
0 = s

)
. Now our sample space is

(
X

(in)
[nm]

∣∣∣ X
(out)
[n] = d

(out)
[n]

)
.

For a connected component which is not a matching, by Lemma 5, the probability that all
the nodes on the right are valid blocks is at most µndirty,i , where ndirty,i is the number of dirty
codewords in Ci and µ ∈ (0, 1) is a constant. Here, by a valid block we refer to blocks which
have parity 0 mod 3.

Since we had already fixed the outer codeword elements, these success probabilities over each
component are independent of each other. Hence, we get

Pr[c̃ ∈ C] 6

 ∏
i:Ci is not a matching

µndirty,i

 6 µndirty 6 negl(n),

where the last inequality follows by ndirty > lg2 n.

In this case, we can set σf = 1.
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4.2 Proof of Theorem 1

A formal proof is provided in Appendix C. We provide a high level proof below.

Intuitively, a block in the tampered codeword is said to be dirty if it receives bits from at least two
blocks of the given encoding. Formal definition is provided in Definition 5. Let ndirty denote the
number of such dirty codewords. Moreover, a block in the tampered codeword is said to be dirty
matching if it receives bits from one block of the codeword given but there is at least one bit which
is passed through a non-constant channel. Note that simply copying a bit is a trivial channel and is
ignored. For a formal definition, see Definition 12. Let nmatch,dirty denote the number of such dirty
matchings. Let nD = ndirty + nmatch,dirty. We have the following two cases.

1. nD < lg2 n. We use high distance and privacy of the outer encoding scheme compared to lg2 n
to argue the following. Failure probability is independent of the message being encoded and
can be brute force calculated by assuming s = 0`.

2. nD > lg2 n. Since the number of dirty codewords and dirty matchings is large, we first fix
the outer codeword and show for any fixing Pr[c̃ ∈ C] 6 negl(n). We first prove that a
codeword obtained via a dirty matching is invalid with constant probability. We also show
that each dirty codeword is invalid with a constant probability. Finally, we show that the
failure probability grows exponentially in nD. Hence, we output failure probability as 1.

5 Rate 1 Non-Malleable Encoding Scheme

Our main construction is presented in Figure 7.

Construction. Our encoding scheme does the following at an intuitive level. It encodes a given
message s ∈ {0, 1}L using Reed-Solomon secret sharing scheme (see Figure 2); and appends a
suitable tag to it using the basic non-malleable encoding scheme presented in Figure 6.

We choose our parameters as follows. Suppose we are interested in encoding L bit messages such
that lg3 κ 6 L 6 κλ, where λ ∈ N is a constant and κ is the statistical security parameter. We choose
a characteristic 2 field F such that lg |F| =

⌈
lg(2L+ lg9 κ)

⌉
. Define ` =

⌈
L

lg|F|

⌉
and n = k = `+lg9 κ.

Let Hκ : {0, 1}n lg|F| → {0, 1}lg
3 κ be the ε∗-almost universal hash function family defined in Sec-

tion 2.3. Such a hash function family has seed length 4λ lg4 κ and ε∗ = (3λ+1) lg κ·2− lg3 κ = negl(κ).
The weak collision resistance properties of this family suffices for our construction.

To encode a message s ∈ {0, 1}L, we interpret it as an element in F`. Next, we share this message
according to the secret sharing scheme X(RS,n,k,`,F). The resulting collection of shares is an element
in Fn which is interpreted as a binary string c(1)

[N(1)]
, where N (1) = n lg |F|.

To, generate the tag we do the following. First, sample h $←Hκ and compute t =
(
h, h

(
c

(1)

[N(1)]

))
.

Number of bits in t is at most 4λ lg4 κ+lg3 κ� 5λ lg4 κ. Encoding of t using our basic non-malleable
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For message length L and statistical security parameter κ, let F be a characteristic 2 field such that:
lg |F| =

⌈
lg(2L+ lg9 κ)

⌉
. Let ` =

⌈
L

lg|F|

⌉
. Let n = k = `+lg9 κ. Suppose L 6 κλ, where λ ∈ N is a

constant. Define N (1) = n lg |F|, N (2) be the (bit) length of non-malleable encoding of a message
of length 5λ lg4 κ according to X(basic), and N = N (1) + N (2). Let Hκ : {0, 1}n lg|F| → {0, 1}lg

3 κ

be the ε∗-almost universal hash function family defined in Section 2.3. It has seed length 4λ lg4 κ
and ε∗ = λ lg κ · 2− lg3 κ = negl(κ).

Enc(s ∈ {0, 1}L):

1. Let c(1)

[N(1)]
∼
(
X

(RS,n,k,`,F)
[n] |X(RS,n,k,`,F)

0 = s
)
. Here we interpret s as an element in F`; and

the shares ∈ Fn as element in {0, 1}N
(1)

.

2. Draw h
$←Hκ and define t =

(
h, h

(
c

(1)

[N(1)]

))
. Let c(2)

[N(2)]
∼
(
X

(basic)

[N(2)]
|X(basic)

0 = t
)
.

3. Output
(
c

(1)

[N(1)]
, c

(2)

[N(2)]

)
.

Dec(c ∈ {0, 1}N ):

1. Let
(
c

(1)

[N(1)]
, c

(2)

[N(2)]

)
≡ c.

2. Decode c(2)

[N(2)]
by the decoding algorithm of X(basic) to obtain (h, z).

3. If h
(
c

(1)

[N(1)]

)
= z, then: Output s ∈ {0, 1}L obtained by decoding c(1)

[N(1)]
according to the

decoding algorithm of X(RS,n,k,`,F).

Figure 7: Main Non-malleable Code achieving rate 1, if L > lg11 κ.
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scheme shall produce a code of length N (2) 6 25c∗λ2 lg8 κ, where c∗ = 440 as defined in Figure 6.
We represent this encoding as c(2)

[N(2)]
.

Note that N (1) 6 (L+lg |F|)+lg |F| lg9 κ 6 L+Θ(lg10 κ) and N (2) 6 25c∗λ2 lg8 κ. So, for L > lg11 κ
our construction is rate 1.

To decode our main non-malleable encoding scheme, we decode the tag and obtain (h, z). Next,
check whether h

(
c

(1)

[N(1)]

)
= z or not. If yes, then output the decoding of c(1)

[N(1)]
.

In the parameter setting done above, we have ensured that: (k − `) > 2N (2) + lg2 κ and bit length
of t is at least lg3 κ (which is required to keep our basic encoding scheme secure).

5.1 Proof of Theorem 2

Consider a tampering function (π, f1, . . . , fN ) ∈ C{0,1}◦SN . The tampered code is c̃[N ] ≡
(
c̃

(1)

[N(1)]
, c̃

(2)

[N(2)]

)
.

Given the tampering function (π, f1, . . . , fN ), we define the following sets:

1. Let P be the set of indices i ∈ [N (1)] such that π(i) 6∈ [N (1)].

2. Let Q be the set of indices i ∈ [N ] \ [N (1)] such that π(i) ∈ [N (1)]. Define 〈Q〉 as the set of
blocks such that an index in the block belongs to Q.

3. Let Q be the set of indices in i ∈ [N ] \ [N (1)] such that π−1(i) ∈ [N (1)]. Define
〈
Q
〉
as the set

of blocks such that an index in the block belongs to Q.

4. Let M be the set of indices i ∈ [N (1)] such that π(i) 6= i or fi is not the message forwarding
channel.

5. Let R′ be the set of blocks in c(2)

[N(2)]
such that there exists an index i in the block such that

π−1(i) is not in the block or fi is a not a message forwarding channel. Let R be the set of all
the indices corresponding to the blocks in R′.

Let τ = lg2 κ be a threshold parameter. We consider the following case analysis.

Case 1.
∣∣〈Q〉∣∣ > τ . Consider a block indexed by Q. We define the “bundle” corresponding to this

block as the set of all indices which maps from [N (1)] to this block. We shall show that the parity
mod 3 of each bundle is unpredictable. Since there are large number of bundles, the probability that
all of them have 0 mod 3 parity is negl(κ). The actual proof for this case is slightly complicated
by the fact that the message being encoded by the basic encoding scheme is dependent upon the
encoding c(1)

[N(1)]
. The full proof is provided in Appendix D.1.

Case 2.
∣∣R′ \ 〈Q〉∣∣ > τ . There are large number of blocks in the tag which are dirty and receive

all their bits from the tag only. We shall show that in this case, the probability that c̃(2)

[N(2)]
is a valid

codeword is negl(κ). This case is similar in spirit to the case where there are large number of “dirty”
codewords in our basic encoding scheme. The full proof for this case is provided in Appendix D.2.
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Case 3.
∣∣〈Q〉∣∣ 6 τ and

∣∣R′ \ 〈Q〉∣∣ 6 τ . First note that, we have |〈Q〉| 6 2τ . Suppose not. Let
the number of blocks in our basic encoding scheme be n(2). Then the number of blocks which
do not receive bits from other blocks and have message forwarding channel applied to each of
its indices is n(2) −

∣∣〈Q〉∣∣ − ∣∣R′ \ 〈Q〉∣∣. This is the same as the number of blocks all of whose
indices are mapped inside their block and the channel applied at each destination index is the
message forwarding channel. So, we get: n(2)−

∣∣〈Q〉∣∣− ∣∣R′ \ 〈Q〉∣∣ = n(2)− |〈Q〉| − |R′ \ 〈Q〉|. Then∣∣R′ \ 〈Q〉∣∣ > |〈Q〉| − ∣∣〈Q〉∣∣ > τ ; which is a contradiction.

Further, note that the distance of the outer code of the basic encoding scheme is Θ(lg3 κ). If only
|R′| 6

∣∣R′ \ 〈Q〉∣∣+ ∣∣〈Q〉∣∣ 6 2τ blocks are changed then the only way c̃(2)

[N(2)]
can be a valid codeword

is when: the underlying outer codeword of c(2)

[N(2)]
and c̃(2)

[N(2)]
are identical.

After these two observations, this case is further subdivided into cases.

Case 3.a. c
(1)

[N(1)]
6= c̃

(1)

[N(1)]
. Here the message being encoded in the basic encoding scheme does

not change. So, we want to leverage the collision resistance of our hash function family. Note that
|〈Q〉| 6 2τ . So, the distribution over those blocks is independent of the message being encoded in
the tag. So, we can construct c(1)

[N(1)]
and then simulate the construction of c̃(1)

[N(1)]
(by simulating the

distribution over the blocks indexed by 〈Q〉). This shall violate the collision resistance property of
the hash function. Therefore, this happens only with negl(κ) probability.

Case 3.b. c
(1)

[N(1)]
= c̃

(1)

[N(1)]
andM > 2N (2) +τ . Note that at most N (2) elements inM are mapped

to indices in the tag; and at most N (2) elements in M receive maps from indices in the tag. So,
there is a set M ′ in M of size τ such that: a) For any index i ∈M ′ we have π(i) ∈M , and b) For
any index i ∈ M ′ we have π−1(i) ∈ M . Note that M ′ and π(M ′) are both subsets of M and the
size of their union is at most 2τ . Since the independence of the Reed-Solomon code is much large
than 2τ , the distribution over c(1)

M ′∪π(M ′) is uniform. So, the probability that c(1)
π(M ′) = c̃

(1)
π(M ′) is at

most negl(κ).8

Case 3.c. c
(1)

[N(1)]
= c̃

(1)

[N(1)]
and M 6 2N (2) + τ . Note that the probability of: “c(1)

[N(1)]
= c̃

(1)

[N(1)]
and

decryptions of c(2)

[N(2)]
and c̃

(2)

[N(2)]
are identical” is same as the probability of: “c(1)

M = c̃
(1)
M and the

underlying (augmented) F64 element encoded by blocks c(2)
R and c̃(2)

R are identical.” This is because
the distance of the basic encoding scheme is Θ(lg3 κ).

8 The argument that c(1)π(M′) = c̃
(1)

π(M′) is at most negl(κ) is slightly complicated by the fact that there are depen-
dencies among these equations. But we can show that the probability of these equations being satisfied is at most
2−τ/2. To see this, consider the following graph over the vertex set {0} ∪M ′ ∪ π(M ′). The directed edge (i, j) exists
if j = π(i). If π(i) is outside M ′ ∪ π(M ′), then we add a directed edge (i, 0). Note that the in- and out-degree of this
graph (except vertex 0) is 1; and vertex 0 has no out-degree. So, we can decompose this graph into vertex disjoint
cycles and paths. The probability that the equations corresponding to a cycle C are satisfied is 2−|C|+1, where |C| is
the size of the cycle C. The probability that the equations corresponding to a path P are satisfied is 2−|P |+1, where
|P | is the number of vertices in the path P . This gives an overall bound that c(1)π(M′) = c̃

(1)

π(M′) with probability at

most 2−|M
′|/2.
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Since independence of the Reed-Solomon code is higher than |M |, the distribution of c(1)
M is in-

dependent of the message s being encoded. Further, the privacy of the basic encoding scheme is
Θ(lg3 κ) which is larger than |R′|. So, the distribution over c(2)

R does not depend on the message
begin encoded.

Therefore, this probability can be computed by first sampling c(1)
M and c(2)

R and then checking whether
c

(1)
M = c̃

(1)
M and the underlying (augmented) F64 elements encoded in c(2)

R and c̃(2)
R are identical.

Computation of Failure Probability. Finally, to compute the failure probability σf , for a
tampering function f ∈ C{0,1}◦SN , check whether

∣∣〈Q〉∣∣ 6 τ and
∣∣R′ \ 〈Q〉∣∣ 6 τ andM 6 2N (2)+τ .

If this is the case, then compute the probability that c(1)
M = c̃

(1)
M and the underlying (augmented)

F64 codeword represented by c(2)
R and c̃

(2)
R are identical, when c

(1)
M is picked uniformly at random

and c̃(1)
R is picked based on the distribution as induced by the basic encoding scheme. If the check

mentioned above is not true then output σf = 1. This completes the proof of Theorem 2.
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A Ensuring Independence

Definition 6 (Weighted Bipartite Graph). Let G = (VL, VR,W ) be a weighted bipartite graph
with partite sets VL and VR and a symmetric weight function W : VL × VR → {0} ∪ N, such that
W (u, v) = W (v, u). The weight on the edge between nodes u ∈ VL and v ∈ VR is denoted by wu,v.

Let nL = |VL| and nR = |VR|. Without loss of generality we assume that VL = [nL] and VR = [nR].
The graph G is connected if there exists a path from every u ∈ VL to v ∈ VR via edges with positive
weights.

The left degree of a vertex u ∈ VL is denoted by degL(u):=
∑

j∈VR wu,j . Similarly, the right degree of
a vertex v ∈ VR is denoted by degR(v):=

∑
i∈VL wi,v. An m-regular bipartite graph has degL(u) =

m = degR(v), for all u ∈ VL and v ∈ VR. Note that for an m-regular graph, nL = nR.

An ordering of the right partite set is defined by a permutation π : [nR]→ [nR] on VR.

Let G = (VL, VR,W ) be a weighted connected bipartite graph. An edge (u, v) is k-blue w.r.t. an
ordering π if wu,v > 0 and the following conditions are satisfied:

1.
∑

j∈VR:π(j)6π(v)wu,j < degL(u)

2.
∑

j∈VR:π(j)<π(v)wu,j < degL(u)− k

And edge (u, v) is k-red w.r.t. an ordering π if wu,v > 0 and it is not k-blue w.r.t. the ordering π.
Further, a node v ∈ VR is k-blue w.r.t. an ordering π if there exists an edge incident on it which is
k-blue w.r.t. π.

We emphasize that the classification of an edge as k-blue or k-red edge depends on the ordering π
of the nodes in VR.

Property 1. For all u ∈ VL there exists v1 6= v2 such that wu,v1 > 0 and wu,v2 > 0.

Observation 1. Given a weighted bipartite graph G satisfying Property 1 and an ordering π, for
any u ∈ VL define firstπ(u) as the unique v∗ ∈ VR such that wu,v∗ > 0 and ∀v ∈ VR, if wu,v > 0
then π(v∗) 6 π(v). Note that if degL(u) > k then the edge (u, v∗) is always k-blue w.r.t. π.

Claim 3. Let G be a weighted bipartite graph satisfying Property 1 such that degL(u) > 2k for all
u ∈ VL. If an edge (u, v) is k-red w.r.t. an ordering π = (π1, . . . , πnR) then (u, v) is k-blue w.r.t.
πrev:=(πnR , . . . , π1).

Proof. We have the following two cases for edge (u, v).

1.
∑

j∈VR:π(j)6π(v)wu,j = degL(u): Note that v∗u = v w.r.t. πrev. Since G satisfies Property 1,
(u, v) is k-blue w.r.t. πrev by Observation 1.

2.
∑

j∈VR:π(j)<π(v)wu,j > degL(u) − k: Since degL(u) > 2k,
∑

j∈VR:π(j)>π(v)wu,j 6 k. Thus,∑
j∈VR:πrev(j)<πrev(v)wu,j < k < degL(u)− k. Hence, (u, v) is k-blue w.r.t. πrev.
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Lemma 1. Let G be a connected weighted bipartite graph satisfying Property 1 such that degL(u) >
2k for all u ∈ VL. There exists an ordering π such that at least n/2 vertices in VR are k-blue w.r.t.
the ordering π.

In particular, π ∈ {π1 = (1, . . . , nR), π2 = (nR, . . . , 1)}.

Proof. Here we will prove the second statement in the theorem. More precisely, we will show that a
vertex v ∈ VR is k-blue w.r.t. at least π1 or π2. In particular, wlog if v ∈ VR is not k-blue w.r.t. π1,
then it is k-blue w.r.t. π2. Since v is not k-blue in π1, all the edges incident on v are k-red. Since
G is connected, there is at least one edge incident on v. By Claim 3, this edge is k-blue w.r.t. π2.
Hence, v is k-blue w.r.t. π2.

The lemma follows by an averaging argument.

B Unpredictability

Given a distribution D over a set S and a function f : S → R, define the distribution f(D) over set
R by the following sampling procedure: Sample x ∼ D. Output f(x).

Definition 7 (δ-Balanced). A distribution D over a set S is δ-balanced if

∀s ∈ S,
(

Pr
x∼D

(x = s) > 0

)
=⇒

(
Pr
x∼D

(x = s) ∈ [δ, 1− δ]
)

Definition 8 (α-Unpredictability). A distribution D over sample space S is said to be α-unpredictable,
if there exists s0, s1 ∈ S such that Prs∼D[s = s0], Prs∼D[s = s1] > α and s0 6= s1.

Definition 9 (Weight, Density, Dense, Sparse). For an n-bit binary string x[n], its weight (repre-
sented as wt(x[n])) is the number of 1s in it. Its density is defined to be wt(x[n])/n. It is α-dense if
its density is at least α; and it is α-sparse if its density is at most α.

Now consider the weighted bipartite graph G as described in the Appendix A. Moreover, let G be
a m-regular bipartite graph with nL = n = nR and degL(u) = degR(v) = m for all u ∈ VL, v ∈ VR.
Next, we label the vertices in VL by elements in Λ0. More precisely, let map : VL → Λ0 mapping
vertices in VL to Λ0. The label on u ∈ VL is denoted by map(u). For the rest of the analysis, fix
any labeling map for the vertices VL.

We emphasize that the analysis holds for any arbitrary labeling.

For each u ∈ VL, map(u) is encoded using the encoding scheme X(unary,m,Λ0,3) (see Figure 5). Note
that m = 9|Λ0|. Also, we will choose the parameter used in red/blue labeling of edges and vertices
in Appendix A as k = m/2.

Next, [m] is sequentially partitioned into Su,1, . . . , Su,n such that [m] = Su,1∪ . . .∪Su,n and |Su,j | =
wu,j , ∀j ∈ [n]. For any vertex u ∈ VL, sample xu,[m] ∼ (X[m]|X0 = m(u)). For j ∈ [nR] with
wu,j = 0, define Bu,j = 0. For each j ∈ [nR] with wu,j > 0, we define Bu,j =

∑
i∈Su,j Xu,i. In other

words, Bu,j is the random variable representing wt(Xu,Su,j ).
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Now consider an ordering π of VR such that the number of vertices which are k-blue w.r.t. π are at
least n/2. Such a ordering π is guaranteed to exist by Lemma 1. Let the set of k-blue vertices w.r.t.
π be Sπblue such that |Sπblue| > n/2. We share process these vertices in ascending order as induced by
π, i.e. a vertex v ∈ Sπblue is processed before v′ ∈ Sπblue if and only if π(v) < π(v′).

Consider the next vertex v ∈ Sπblue w.r.t. π. Then there is an edge, say (u, v), incident on v which
is k-blue w.r.t. π. We shall analyze the distribution on vertex v given the fixings of all the edges
to vertices v′ ∈ VR such that π(v′) < π(v). Let Yv = ∪i∈VL ∪j∈VR:π(j)<π(v) XSi,j . Also, let all the
edges incident on v apart from (u, v) be Gv = ∪i 6=uXSi,v .

We partition the outgoing edges from vertex u into three sets F, S, T ⊂ [m] as follows: F =
∪j:π(j)<π(v)Su,j , S = Su,v and T = ∪j:π(j)>π(v)Su,j . Note that by definition of a k-blue edge, T 6= ∅.

Figure 8 shows the various sets of edges defined above.

u v
k-Blue Edge

with Weight wu,v

Set of wires: F
Restricted to: Good Fixing

Set of wires: S ∪ T
Total Weight of wires: > k

Set of wires: G
Any Fixing Permitted

Figure 8: Argument about “Why Blue Edges are Unpredictable?”

For the analysis below, we begin by making the following observation. Though we need to condition
the analysis of edge (u, v) on (Yv,Gv), it is sufficient to condition on XF ,Gv. In particular, we
claim the following:

Claim 4. (Bu,v mod 3|Yv = yv,Gv = gv) ≡ (Bu,v mod 3|XF = xF ,Gv = gv), where xF is
restriction of yv to the set F .

Let Zv be the random variable bit string at the node v in this graph. Let Pv = wt(Zv) mod 3. In
order to show that Zv is a valid encoding according to ModΛ0 conditioned on Yv with at most a
constant probability, we do the following: We show that (Pv|Y) is β-unpredictable for some constant
β ∈ (0, 1) (Lemma 4). In this direction, we first prove that (Bu,v mod 3|XF ,Gv) is α-unpredictable
for some constant α ∈ (0, 1) (Lemma 3).

We prove these lemmas conditioned on the fact that XF comes from a good distribution. Hence,
we begin by defining a good fixing for XF . A good fixing intuitively means that even after setting
the edges from the vertex u which go to prior vertices, there are a sufficient number of both 0s and
1s in XSu,v∪T . More precisely, we define it as follows:

Definition 10. (c-Good Fixing) Let x∗F be a fixing for the variable XF . We say that x∗F is a c-good
fixing if for all x ∈ Supp(XS∪T |XF = x∗F ), x is c-dense and (1− c)-sparse.

We emphasize that above definition is independent of the weight of the edge (u, v).

Lemma 2. Sample xu,[m] ∼ (X1, . . . ,Xm|X0 = map(u)). Then, ∀c ∈ (0, 1/3), ∃ν = negl(κ) such
that Pr[xu,F is a c-good fixing] > 1 − ν, where the probability is taken over the randomness of the
sampling procedure.
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Proof. This follows from Lemma 8 by noting that wt(xu,[m]) ∈ [m/3, 2m/3] and |Su,v| + |T | >
m/2.

Lemma 3 (Unpredictability of Bu,v mod 3). Let c ∈ (0, 1) be a constant such that x∗F be a c-good
fixing for XF . Let G = gv. Then, there exists a constant α > 0 such that (Bu,v mod 3|XF =
x∗F ,Gv = gv) is α-unpredictable.

Proof. Since x∗F is a c-good fixing, XSu,v∪T is c-dense and (1− c)-sparse. By Lemma 9, there exists
a constant α > 0 such that (Bu,v mod 3|XF = x∗F ,Gv = gv) is α-unpredictable.

Lemma 4 (Unpredictability of (Pv|Yv = yv)). There exists a constant β ∈ (0, 1) and ν = negl(κ)
such that (Pv|Yv) is β-unpredictable with probability 1− ν(κ).

Proof. Sample xu,[m] ∼ (X1, . . . ,Xm|X0 = map(u)). Then by Lemma 2, ∀c ∈ (0, 1/3), ∃ν = negl(κ)
such that Pr[xu,F is a c−good fixing] > 1−ν. We call this a good event. Now, given such a c-good
fixing x∗F and any fixing gv of Gv, by Lemma 3, (Bu,v mod 3|XF = x∗F ,Gv = gv) is α-unpredictable
for a constant α ∈ (0, 1). This implies that (Bu,v mod 3|Yv = yv,Gv = gv) is α-unpredictable
(Claim 4). Hence, (Pv|Yv = yv,Gv = gv) is α-unpredictable.

Since there are
(

3
2

)
pairs of possible parity values, by an averaging argument over gv, (Pv|Yv = yv)

is β-unpredictable for β = α

(
3
2

)−1

conditioned on the good event.

Lemma 5. Pr[∀j ∈ VR, Pj ≡ 0 mod 3] 6 (1− γ)nR/2 for some constant γ ∈ (0, 1) with probability
1− negl(κ). Further, this holds even for a graph with multiple connected components.

Proof.

Pr[∀j ∈ VR, Pj ≡ 0 mod 3] 6 Pr[∀j ∈ Sπblue, Pj ≡ 0 mod 3]

=
∏

j∈Sπblue

Pr[Pj ≡ 0 mod 3|Yj = yj ]

6 (1− β + ν(κ))|S
π
blue|,

where ν = negl(κ). The last inequality follows from Lemma 4. The lemma follows by noting that
|Sπblue| > nR/2.

Note that the above analysis was done for a given mapping map. Thus, analysis of each components
can be done independently. Hence, this analysis extends naturally to any bipartite graph G.

C Proof of Theorem 1

In this section, we consider the family of tampering functions in the composition of bit level permu-
tations and non-constant channels. We show that our scheme described in Figure 6 is non-malleable
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against this class of tampering functions. In particular, we will describe an algorithm A specified
in the security experiment which outputs the failure probability σf such that following conditions
are satisfied. Let s be the message being encoded in the non-malleability security experiment.

adv1,A = |Pr[c̃ /∈ C]− σf | 6 negl(κ) (3)

adv2,A = Pr[c̃ ∈ C ∧ Decn,k,`,F(c̃) 6= s] 6 negl(κ) (4)

Note that these conditions should hold independent of the message being encoded, which could have
been chosen maliciously by A.

Let fcopy ∈ C{0,1} be a non-constant channel such that fcopy(b) = b,∀b ∈ {0, 1}. In this section, for
ease of analysis, we will not consider fcopy in the class C{0,1}. Since this channel leaves the bit b
unchanged, equivalently, this will be seen as a simple copy of the bit.

In this section, we consider tampering functions in the composition of Smn and fi1 , . . . , fiz ∈ C{0,1}
for some I = {i1, . . . , iz} such that I ⊆ [nm].

Let s be the message being encoded. Then, c[mn] ∼ (X
(nmc)
[mn] |X

(nmc)
0 = s) be the codeword generated.

By the definition of concatenation codes, we can equivalently write it as d(out)
[n] ∼ (X

(out)
[n] |X

(out)
0 = s)

and c[mn] ∼ (X
(nmc)
[mn] |X

(out)
[n] = d

(out)
[n] ). We also define y(in)

i = c(i−1)m+[m]. Note that y
(in)
i refers to the

ith block of c corresponding to ith outer codeword element, i.e. d(out)
i .

Let the tampering function be F . Let c̃[mn] = F (c[mn]). For all i ∈ [n], define z(in)
i = c̃(i−1)m+[m].

Here z(in)
i refers to the ith block c̃.

Given the tampering function F , similar to the case of permutations, we define the concept of a
matching and a dirty codeword for tampered blocks. Recall that a block in c̃ is said to be made by
a matching if it copies all the bits from one block in c (see Definition 4). Otherwise, it is called a
dirty codeword (see Definition 5).

In this section, we will further classify the type of matchings. Consider a matching (y
(in)
i , z

(in)
j )

for some i, j ∈ [n]. We will have two kinds of matching: pure and dirty. We call a matching a
“pure” matching if bits have been copied directly to bits in a single block of c̃ without using any
non-constant channel. A matching is called a “dirty” matching if it is not a pure matching. More
formally, we define them as follows:

Definition 11 (Pure Matching). For i, j ∈ [n], a matching (y
(in)
i , z

(in)
j ) is said to be pure if for all

k ∈ ((j − 1)m + [m]), k /∈ I, where I ⊆ [mn] refers to the set of indices to which non-constant
channels have been applied.

Moreover, as mentioned above, any pure matching (y
(in)
i , z

(in)
j ) would result in an invalid code c̃ if

i 6= j. This is because in outer encoding scheme (see Figure 3) we store the index of the outer code
elements. If there exists such a matching, we output σf = 1. Thus, without loss of generality, we
assume that for any pure matching (y

(in)
i , z

(in)
j ), i = j.

32



Definition 12 (Dirty Matching). For i, j ∈ [n], a matching (y
(in)
i , z

(in)
j ) is said to be dirty if ∃k ∈

((j − 1)m+ [m]) such that k ∈ I, where I ⊆ [mn] refers to the set of indices to which non-constant
channels have been applied.

Define nmatch,pure and nmatch,dirty to be the number of pure and dirty matchings, respectively. Define
ndirty as the number of dirty codewords. Finally, define nD:=nmatch,dirty + ndirty.

Depending on the tampering function F we have the following two cases:

◦ nD < lg2 n: In this case, we prove the following claims:

Claim 5. c̃ ∈ C =⇒ c̃ ∼= c.

Proof. The claim follows from the fact that for the outer encoding scheme, we have distance,
d > lg2 n.

Claim 6. ∀s1, s2 ∈M following holds

Pr[c̃ /∈ C : c
(nmc)
[mn] ∼ (X

(nmc)
[mn] |X

(nmc)
0 = s1), c̃ = F (c)]

= Pr[c̃ /∈ C : c
(nmc)
[mn] ∼ (X

(nmc)
[mn] |X

(nmc)
0 = s2), c̃ = F (c)]

Proof. The claim follows by lg2 n-privacy of the outer encoding scheme.

Note that for this class of tampering functions, the number of blocks of c which are used
in creating dirty matchings and dirty codewords in c̃ are exactly equal to nD. But the outer
encoding scheme has t-privacy where t� lg2 n. Hence, the outer code elements corresponding
to y(in)

i ’s which are used to create dirty matchings and dirty codewords are independent of the
message. To calculate the probability in the claim above, we need to calculate the probability
that dirty matchings and (dirty) permutations of the blocks for these randomly chosen elements
(due to privacy) results in valid blocks which are consistent with the blocks that were copied
directly (matchings). From previous claim, it holds that these have to be equal to the blocks
in c in order to be a valid code overall. In short, we need to calculate the probability that
dirty matchings and dirty permutations of blocks for certain randomly chosen elements results
in the exactly same blocks (up to some natural allowed permutations of bits within blocks).
Note that this probability would be independent of the message.

In order to compute σf for this case, brute force compute the probability in Claim 6 by taking
s = 0`.

◦ nD > lg2 n. We will analyze this case for every fixed outer code elements but over the
randomness used to generate the blocks. More precisely, given s the message being encoded,
fix d(out)

[n] ∈ Supp
(
X

(out)
[n]

∣∣∣ X(out)
0 = s

)
. Now our sample space is

(
X

(in)
[nm]

∣∣∣ X
(out)
[n] = d

(out)
[n]

)
.

Next, consider the bipartite graph G = (VL, VR,W ) corresponding to the dirty matchings and
dirty codewords as described in Appendix B. Let {Ci} be the connected components of G.
Now, we will consider each component separately. For a component, if it consists of a dirty
matching (y

(in)
i , z

(in)
j ), then by Lemma 10, there exists a constant µ1 ∈ (0, 1) such that the
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parity (mod 3) of z(in)
j is µ1-unpredictable. Since all valid blocks have parity (0 mod 3), z(in)

j

will be an invalid block with probability at least µ1.

For a connected component which is not a matching, an analysis similar to Appendix B and
using Lemma 11, will show that there exists a constant µ2 ∈ (0, 1) such that the probability
that all the nodes on the right are valid is at most µndirty,i

2 , where ndirty,i is the number of dirty
codewords in Ci.

Since we had already fixed the outer code elements, these success probabilities over each
component are independent of each other. Hence, we get

Pr[c̃ ∈ C] 6

 ∏
i:Ci is a matching

(1− µ1)

 ∏
i:Ci is not a matching

µ
ndirty,i

2

 6 µnD 6 negl(n),

where µ ∈ (0, 1) is some constant and the last inequality follows by nD > lg2 n.

In this case, we can set σf = 1.

D Proof of Theorem 2

The only proofs which need to be presented are proofs for Case 1 and 2 as presented in Section 5.
These two proofs are presented below.

D.1 Proof of Case 1

Here we will prove the following lemma:

Lemma 6. If
∣∣〈Q〉∣∣ > τ , Pr[c̃(2)is a valid codeword according to basic scheme] 6 negl(κ), where the

probability is over the randomness used to pick the codeword for the message s.

Proof. In order to analyse this case, we will pick a codeword for message s using following steps.

1. Pick c(1)
P uniformly at random.

2. Pick a code c(1)

[N(1)]
for message s consistent with c(1)

P . Note that this is possible since indepen-

dence of c(1)

[N(1)]
is more than N (2).

3. Pick a hash function h uniformly at random. Then t = (h, h(c
(1)

[N(1)]
)). Recall that the basic

non-malleable encoding scheme is a concatenation code. Pick an outer codeword d
(out)
[n] for

message t.

4. Pick an inner code for each outer code element in d(out)
[n] . We will denote the length of each

block by m.
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Without loss of generality, let 1, . . . ,
∣∣〈Q〉∣∣ be the blocks of d(out)

[n] which are in 〈Q〉. For any i

consider the bundle of indices from c
(1)
P which are being copied to block i. This may be followed by

application of non-constant channels. Let Xi,1, . . . , Xi,c(i) be the set of indices such that c(i) is the
number of indices being copied to block i. We classify the blocks in 〈Q〉 into two types. If a block
i has c(i) = m, we call it is a full block. Let otherwise the block is called non-full block. Let nfull
be the number of full blocks and nnon−full be the number of non-full blocks.

We have the following two exhaustive cases cases:

1. nfull > τ/2: Consider a full block. In c̃, this complete block is made by copying indices from
c

(1)
P . The validity of this block is independent of the choice of the outer codeword element of
this block in d(out)

[n] . Hence, we will analyze this block over the randomness used to pick bits

in c(1)
P .

Note that non-constant channels may be applied to some or all of these indices Xi,j . Let
X ′i,j = fi,j(Xi,j). Also, let Yi =

∑
j X
′
i,jmod3. We claim the following:

Claim 7. Let Yi =
∑

j Xi,jmod3. Then Yi is α-unpredictable, for some constant α > 0.

Proof. Yi =
∑

j X
′
i,jmod3 =

(
fi,1(Xi,1) +

∑
j>1X

′
i,j

)
mod3. Now, for any fixing ofXi,2, . . . , Xi,m

and any fixing of the randomness of fi,2, . . . , fi,m, Yi is αi-unpredictable because Xi,1 ≡ U2

and fi,1 is a non-constant channel. Here αi > 0 is some constant. Note that it is okay that αi
might depend on the channels applied in this block.

From above claim, we get that parity mod 3 of this block is µ-unpredictable. Since only parity
0 mod 3 blocks are valid, Pr[Block i is valid] 6 (1− αi).

Since the bits in c
(1)
P which are copied to different full blocks are chosen independently, we

have the following:

Pr[c̃(2)is a valid codeword according to basic scheme] 6 (1− α)τ/2 6 negl(κ),

where α = mini αi.

2. nnon−full > τ/2: We will analyse this case for a fixing of bits in c(1)
P which are copied to this

block, the fixing of the randomness of the non-constant channels applied to these bits and a
fixing of the outer codeword d(out)

[n] as shown above. The analysis will be over the randomness

used to pick the inner codeword block given the outer code element in d(out)
[n] .

Consider a non-full block i. Let fi,j be the non-constant channel applied to Xi,j . Let X ′i,j =
fi,j(Xi,j). We fix the randomness for the channels fi,j . This fixes the value Zi =

∑
j X
′
i,jmod3.

Now consider the bits in this block which have been copied from different blocks of c(2)[N (2)].
Also, note that non-constant channels may have been applied to potentially all these bits. By
repeated application of Lemma 11 on different blocks from which bits have been copied, we
get that the parity mod 3 of this collection of bits is µ-unpredictable for some constant µ > 0.

Now combining the above two observations, we get that parity mod 3 of this block is µ-
unpredictable. Since only parity 0 mod 3 blocks are valid, Pr[Block i is valid] 6 (1− µi).
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Note that this analysis can be done independently for each non-full block in 〈Q〉. Using this
observation, we get

Pr[c̃(2)is a valid codeword according to basic scheme] 6 (1− µi)τ/2 6 negl(κ),

where γ = mini µi.

D.2 Proof of Case 2

Here we will prove the following lemma.

Lemma 7. If
∣∣R′ \ 〈Q〉∣∣ > τ , Pr[c̃(2)is a valid codeword according to basic scheme] 6 negl(κ), where

the probability is over the randomness used to pick the codeword for the message s.

Proof. We will analyse this case for a fixed outer codeword for the tag t. Let the outer codeword
be d(out)

[n] ). Let the length of each inner code word block be m, i.e. N (2) = mn. Let c(2)

[N(2)]
= c

(2)
[mn] ∼

(X
(basic)
[mn] |X

(out)
[n] = d

(out)
[n] ). We also define y(in)

i = c
(2)
(i−1)m+[m]. Note that y(in)

i refers to the ith block

of c(2) corresponding to ith outer codeword element, i.e. d(out)
i .

Here we will only consider tampering function correspoding to the blocks in R′\〈Q〉. This tampering
function would be a composition of some permutation of bits in R followed by non-constant channels
fi1 , . . . , fiz ∈ C{0,1} for some I = {i1, . . . , iz} such that I ⊆ [nm]. Only interesting channels to
consider are non-message forwarding channels.

Given c̃(2), for all i ∈ [n], define z(in)
i = c̃

(2)
(i−1)m+[m]. Here z

(in)
i refers to the ith block c̃(2).

Recall that each block in R′ \ 〈Q〉 receives all its bits from c
(2)

[N(2)]
. Note that each block in R′ \ 〈Q〉

either a dirty matching or a dirty codeword. For completion, we refine these terms below.

Definition 13 (Dirty Matching). For i, j ∈ [n], a matching (y
(in)
i , z

(in)
j ) is said to be dirty if ∃k ∈

((j − 1)m+ [m]) such that k ∈ I, where I ⊆ [mn] refers to the set of indices to which non-constant
channels have been applied.

Definition 14 (Dirty Codewords). For some j ∈ [n], z(in)
j is said to be a dirty inner codeword if

there is no i ∈ [n] such that (y
(in)
i , z

(in)
j ) is a matching. In other words, there exists i, i′ ∈ [n] such

that some bits have been copied from both z(in)
i and z(in)

i′ to y(in)
j .

Since we have fixed the outer codeword d(out)
[n] , our sample space is

(
X

(in)
[nm]

∣∣∣ X
(out)
[n] = d

(out)
[n]

)
.

Next, consider the bipartite graph G = (VL, VR,W ) corresponding to the dirty matchings and dirty
codewords as described in Appendix B. We will restrict our analysis to R′ \ 〈Q〉. So, we pick
VR = R′ \ 〈Q〉 and VL consists of the blocks in c(2)

[N(2)]
.9

9 For the sake of completeness of the degree of the edges in VL, we can consider an additional sink node in VR and
all the additional edges are mapped to this sink node.
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Let {Ci} be the connected components of G. Now, we will consider each component separately.
For a component, if it consists of a dirty matching (y

(in)
i , z

(in)
j ), then by Lemma 10, there exists a

constant µ1 ∈ (0, 1) such that the parity (mod 3) of z(in)
j is µ1-unpredictable. Since all valid blocks

have parity (0 mod 3), z(in)
j will be an invalid block with probability at least µ1.

For a connected component which is not a matching, an analysis similar to Appendix B and using
Lemma 11, will show that there exists a constant µ2 ∈ (0, 1) such that the probability that all the
nodes on the right are valid is at most µndirty,i

2 , where ndirty,i is the number of dirty codewords in Ci.

Since we had already fixed the outer code elements, these success probabilities over each component
are independent of each other. Hence, we get

Pr[c̃(2) is valid] 6

 ∏
i:Ci is a matching

(1− µ1)

 ∏
i:Ci is not a matching

µ
ndirty,i

2

 6 µτ 6 negl(n),

where µ ∈ (0, 1) is some constant and the last inequality follows by τ = lg2 n.

E Application to Non-malleable Commitments

In their original paper, Dziembowski et. al. [DPW10] suggest that non-malleable codes can be
useful in obtaining tamper-proof security as follows. Consider a cryptographic device viewed as a
pair 〈G, s〉 where G is a public cryptographic algorithm, encoded in a tamper-proof hardware; for
example G could be the signing algorithm of a digital signature scheme. String s represents the
secret contents of the memory, such as the signing-key along with some other state. State s might
evolve over time. An adversary attacking the system can issue output queries on (appropriate)
inputs x of its choice, and learn the output of G(s, x). In addition, it may also issue tamper queries,
represented as functions from the allowed class of tampering-function f ∈ F . In response, the state
of the device is set to s′ ← f(s). The adversary can issue these queries in any order for an appropriate
number of times; such an adversary is said to have tamper-access to the device. Dziembowski et. al.
argue that if we encode the secret s using a non-malleable code secure against the class F , then the
resulting device, denoted 〈G̃, s̃〉 10 becomes secure against such tampering attacks: any tampering
function f ∈ F will either leave s unchanged or result in an invalid encoding.

Non-malleable string commitments. The above approach is also useful in the setting of non-
malleable commitments [DDN91]. Specifically, we show that non-malleable codes can be combined
with with non-malleable bit commitment schemes to obtain a simple and efficient constructions for
non-malleable string commitment schemes.

For simplicity, first consider “idealized commitment” models in which commitments can be imple-
mented via physical means such as locked-boxes, hardware tokens, or sealed envelopes. Concretely,
to commit to a bit b, the committer “writes” the value of b inside a box, locks the box using a

10String s̃ is the non-malleable codeword of s; algorithm G̃ first decodes s̃ to s and then applies G.
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physical lock, and sends it over to the receiver; to open the commitment, it simply sends across the
key for the lock. We assume that the box implements an “idealized commitment”: it perfectly hides
the bit when locked, and opens to the same bit b that was written when it was first locked. This
scheme is also a “non-malleable” commitment: a man-in-the-middle adversary can either choose to
forward the locked-box to an honest receiver, or it can abort.11

Using non-malleable codes (secure against permutation attacks) we can construct a string commit-
ment scheme as follows. The resulting scheme will be non-malleable against the class of rearranging
attacks in which the adversary is only allowed to rearrange or permute the order of locked boxes it
receives.

To commit to a string x of length n, the committer first encodes x using a non-malleable code secure
against permutation attacks to obtain the codeword w of length n′. It then sends n′ locked boxes
in the order B1, . . . , Bn′ where box Bi is a commitment to wi for i ∈ [n′]. This scheme remains
non-malleable against any rearrangement of the boxes: any permutation of the boxes does not
change the committed string x. Indeed, suppose that after receiving the boxes, man-in-the-middle
chooses a permutation π : [n′] → [n′] and applies them to the n′ boxes to define its commitment
(B′1, . . . , B

′
n′). Let w

′ be the resulting codeword inside these boxes where w′i is the bit inside box B
′
i.

By construction, for every i there exists a unique j such that B′i = Bπ(j), and therefore w′i=wπ(j).
Hence, w′ is a permutation of the original codeword w. Since the non-malleable code is resistant to
permutation attacks, both w′ and w encode the same string x.

Instead of working in a model with physical boxes, one can also obtain a similar result in the
framework of universal composition [Can00, Can01]. For example, consider the UC-style formulation
of rerandomizable RCCA encryption by Prabhakaran and Rosulek [PR07] where, roughly speaking,
the trusted third party returns a randomly chosen “pointer” or a “handle” to represent a ciphertext
(or commitment). This pointer acts as an ideal commitment and can be used by various parties to
refer to the committed value in a larger computation.

Construction in the plain model. We now show that the above approach also works in the
plain model provided that we use appropriate bit commitment and non-malleable code schemes.
We will demonstrate this via an example. We will use Naor’s commitment based on adaptive PRGs
and non-malleable codes secure against class F∗, as explained below.

Let G : {0, 1}n → {0, 1}3n be a pseudorandom generator (PRG) where n is the security parameter.
In Naor’s scheme, the receiver sends a random string r ∈ {0, 1}3n; to commit to 0, the committer
sends z = G(s) and to commit to 1 it sends z ⊕ r where ⊕ denotes bitwise exclusive-or and
s ∈ {0, 1}n is a random seed. If the PRG is an adaptive PRG 12 then this scheme is a non-malleable
bit commitment scheme. This is because, given access to the inversion oracle OG, A can learn the
value it commits to on “right”; if the scheme were not non-malleable, it compromises the hiding of
commitment on “left”, contradicting the adaptive security of the PRG G.

We will stick to a slightly weaker definition of non-malleable commitments, called non-malleability
11The probability of abort is independent of the bit in the received box since the bit is information-theoretically

hidden.
12Roughly speaking, following [PPV08, KMO10], G is said to be adaptively secure if no PPT adversary A can tell

if y = G(s) for a random s ∈ {0, 1}n or y is uniform even if A has access to a special inversion oracle OG; on query
a string z of length 3n, the oracle tells whether z is in the range of G or not. A is not allowed to query the challenge
string y.
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w.r.t. replacement [Goy11, Wee10]. Roughly speaking, this is the same as usual definition of non-
malleability except that whenever the man-in-the-middle A sends a commitment for which no valid
decommitment exists, the definition considers A to have “admitted defeat.” When this happens,
the definition allows a “simulator” to replace the invalid value (denoted by the abort symbol ⊥) by
any arbitrary value of its choice (that helps maintain an indistinguishable distribution). It has been
shown in [Goy11, Wee10] that this definition suffices for almost all applications of NM commitments
that we know.

There are 4 ways in which A can “admit defeat” as above. These cases are listed below, and we say
that A acts as a defeat channel on the received commitment:

(1) when A receives commitment to a bit 0 on left, it commits to 0 on right, but if it receives
commitment to 1, it commits to ⊥; we denote this by defeat0→0,1→⊥.

(2) opposite of the first case, denoted by defeat1→1,0→⊥.

(3) “toggle” variant of case (1) where A commits to 1 if it receives a commitment to 0 and ⊥ in
the other case; this is denoted by defeat0→1,1→⊥.

(4) opposite of (3), denoted by: defeat1→0,0→⊥.

We need a non-malleable code which, in addition to tolerating permutation attacks, can also han-
dle attacks set, reset, toggle, (duplicate) copy, and all four defeat attacks. More precisely, let F∗
be a class of tampering functions where every function f ∈ F∗ is fully specified by a string
of n′ actions where action ∈ {set, reset} ∪ {copyi}i∈[n′] ∪ {togglei}i∈[n′] ∪ defeat, where defeat :=

{defeat0→0,1→⊥, defeat1→1,0→⊥, defeat0→1,1→⊥, defeat1→0,0→⊥}. On input a codeword w ∈ {0, 1}n′ ,
the output w′ = f(w) corresponding to f := {actioni}ni=1 is defined as follows. For every i ∈ [n′],
if actioni = set, then w′i = 1; if actioni = reset, then w′i = 0; if actioni = copyj , then w′i = wj ; if
actioni = togglej , then w′i = 1− wj ; finally, if actioni ∈ defeat bit w′i is defined to be either 0 or ⊥,
according to items (1)–(4) above, depending on the value of wj and the type of the “defeat” action.

We note that in this class, a particular bit of input codeword, say wj , may be copied into more than
one location of the output codeword w′. In contrast, this duplication is not allowed in “permutation
only” attacks. That is, the class of permutation attacks corresponds to f which contain copyj action
exactly once in their description for every j ∈ [n]; in addition, they do not contain set/reset.

To commit to a string x of length, say n, our commitment scheme first encodes x using a non-
malleable code that is secure against F∗. It then commits to each bit of the resulting codeword
using Naor’s bit commitment scheme (instantiated using an adaptive PRG G). These commitments
can be done in parallel. The receiver accepts a string commitment as follows. Let (ri, ti) be the
two messages of i-th bit commitment; by construction ti = zi or zi ⊕ ri for some string zi in the
range of G. Note that zi is always well defined for honestly generated commitments. Define set
Si := {zi, zi⊕ ri} = {ti, ti⊕ ri}. Then, the receiver accepts the commitment if for all distinct i, i′ it
holds that Si ∩Si′ = ∅. It is easy to check that this holds with high probability for honestly created
commitments.

We claim that the above scheme is a non-malleable string commitment scheme. We argue this in
two parts. First, we show that the attack by adversary A translates to a tampering attack f on the
underlying codeword for some f ∈ F∗. That is, we show that if c is the commitment for codeword
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w received by A on left, and c′ ← A(c) is the commitment sent by A on right then there exists
a function f ∈ F∗ such that c′ is a commitment to a codeword w′ = f(w) except with negligible
probability. In the second part, we show that the distribution of w′0 = f0(w0) is computationally
indistinguishable from w′1 = f1(w1) where wb is a codeword for one of the two message x0, x1 chosen
a-priori by A. This will prove non-malleability of our string commitment scheme.

To prove the first claim, we show how to construct f given c, c′ and access to the inversion oracle
OG (corresponding to the adaptive PRG G) without compromising the hiding property of left
commitment c. Let c = {ci}i∈[n′] = {(ri, ti)}i∈[n′] be the commitment given to A on left and
c′ = {c′j}j∈[n′] = {(r′j , t′j)}j∈[n′]. Our goal is to construct f ∈ F∗ without violating the hiding of the
commitments on left. To do this, we have to be careful to not query the oracle OG on any value
which might violate the hiding of commitments on left. Indeed, A might carefully select string ri
sent on left, or, t′j sent on right which reveal useful information via the answers of OG. Therefore,
we will ensure that we never query such strings. These strings of interest are: t′j , t

′
j ⊕ r′j , t′j ⊕ ri,

t′j ⊕ r′j ⊕ ri for every j and i in [n′].13

Recall that we defined set Si = {ti, ti ⊕ ri} for commitments on left; define S′j = {tj , tj ⊕ rj}
analogously for commitments on right. Further recall that Si∩Si′ = ∅ for all distinct i, i′ w.h.p. for
honestly generated commitments, and the commitment on right is accepted if and only if S′j∩S′j′ = ∅
for all distinct j, j′. Observe that except with negligible probability, it holds that for every j there
do not exist distinct indices i, i′ (corresponding to left commitments) such that S′j ∩ Si 6= ∅ and
S′j ∩ Si′ 6= ∅. This is because Si and Si′ do not intersect, and therefore if the claim were false,
we must have, w.l.o.g., t′j ∈ Si and t′j ⊕ rj ∈ Si′ ; but the later can only happen with negligible
probability since rj and ti′ are honestly generated.

This allows us to define the parent of every right commitment j as follows. If there exists an i-th
on left such that Si ∩ S′j 6= ∅, define parent(j) = i. Note that by the argument above, for every j, if
there exists a parent then such a parent is unique with high probability.

Given c′, we now construct f = {actionj}j∈[n′] as follows. For every j on the right:

1. if parent(j) does not exist, query the oracle OG on all strings in the setXj := S′j∪(∪iSi ⊕ rj).14

It is easy to check that the j-th commitment sent by A on right appears in Xj ; let bj be the
bit committed to in this commitment. Since all strings in Xj are sent to OG, the value of bj
is also known. Define actionj = set if bj = 0 and reset otherwise. Observe that no strings in
set Xj are likely to appear in any of the sets Si on left, for all i, with high probability.

2. if parent(j) = i, define actionj as follows.

(a) IF ri = r′j then: (1) if t′j = ti, define actionj = copyi, (2) if t′j = ti ⊕ ri let , define
actionj = togglei;

(b) ELSE: (in this case it will be one of the defeat channels as follows:) (1) if t′j = ti then
actionj = defeat0→0,1→⊥, (2) if t′j ⊕ r′j = ti ⊕ ri then actionj = defeat0→⊥,1→1, (3) if
t′j = ti⊕ri then actionj = defeat0→⊥,1→0, (4) if t′j⊕r′j = ti then actionj = defeat0→1,1→⊥.

13Of course, A is also free to commit to its own values by sending appropriate strings in/out of the range of G;
however, such strings will be “easy cases”: they will simply translate to fix types of attacks on the underlying codeword,
as we describe shortly.

14Si ⊕ rj means the set where each element of Si is XORed with rj .
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This completes the description of our f . Therefore, with the help of the inversion oracle, attack on
the outer commitment has been translated to an attack on the inner codeword w. Further, note
that in defining this attack f ∈ F∗, no string that belong to any of the left sets Si for all i were
queried to the inversion oracle. Therefore, it is possible to learn f with the help of the oracle without
compromising the hiding of left commitment to w. Therefore, it holds that for every two messages
x0, x1, if we let w0, w1 their respective non-malleable codewords sampled uniformly, c0, c1 honestly
generated commitments to wo, w1 respectively, c′b ← A(cb) the commitment produced by A on input
cb for b ∈ {0, 1}, and fb ∈ F∗ the tampering functions corresponding to c′b; then by the adaptive
security of G it holds that:

f0 ≈c f1

Using this observation, we can design a simple hybrid argument to show that f0(w0) ≈c f1(w1). To
see this, define the following Gamea,b for bits a, b: the game samples codewords w0 and w1 uniformly
corresponding to messages x0 and x1 respectively; the game then samples a commitment ca to the
codeword wa and gives it to A who produces a commitment c′. Let fa be the tampering function
w.r.t. c′ and ca (defined according to the procedure above). Function f is applied to wb to yield
w′ = fa(wb). The game decodes w′ and outputs the resulting message, denoted Xa,b.

Note that X0,0 and X1,1 are identical to f0(w0) and f1(w1) respectively (defined above), and we
want to show that X0,0 ≈c X1,1. First, observe that due to computational hiding of commitments,
X0,0 ≈c X1,0 and X1,1 ≈c X0,1. We now argue that X1,0 ≈c X0,1 to conclude the argument.

Towards this end, recall that f0, f1 are well defined distribution over tampering functions and that
f0 ≈c f1. Let Y0,0 be the output of the following experiment: the experiment samples f0; it then
samples a codeword w∗0 independently of f0, and then outputs the decoding of the codeword f0(w∗0).
By computational hiding of the commitment scheme, we have that X1,0 ≈c Y0,0. Further, from
the non-malleability of our code against functions in F∗, it follows that Y0,0 ≈c X0,1. Therefore:
X1,0 ≈c Y0,0 ≈c X0,1. This completes the sketch of our proof.

F Mathematical Tools

In this section we prove some useful mathematical tools relevant for our results.

Lemma 8 (Density Lemma [Chv79]). Let c ∈ (0, 1) be a constant, m,n ∈ N and m ∈ [cn, (1− c)n].
Let X[n] = U[n]

m

. For every t ∈ N, we have:

Pr
x[n]∼X[n]

∑
i∈[t]

Xi = t
(m
n
± ε
) 6 2 exp

(
−DKL

(m
n

+ ε,
m

n

)
· t
)
6 2 exp(−ε2t/3),

where DKL (α, β) :=α ln α
β + (1− α) ln 1−α

1−β . In particular:

Pr
x[n]∼X[n]

∑
i∈[t]

Xi ∈ [(c− ε)t, (1− c− ε)t]

 6 2 exp(−ε2t/3)

41



Lemma 9 (Unpredictability Lemma). Let c ∈ (0, 1) be a constant, m,n ∈ N and m ∈ [cn, (1−c)n].
Define X[n] = U[n]

m

. Let p ∈ N be a constant. Given any t ∈ [n − 1], let parityn,m,t,p be the

random variable:
∑

i∈[t]Xi mod p. Then, there exists a constant µ ∈ (0, c) such that parityn,m,t,p
is µ-unpredictable.

Proof. We consider two cases.

Case (n− t+ 1) > n/2. A random sample of X[n], satisfies the following condition with 1− ν(n)
probability (where, ν(n) = negl(n)): The random variable X[n]\[t−1] is (c− ε)-dense and (1− c+ ε)-
sparse (by Lemma 8), for any constant ε ∈ (0, 1). Lets call this a good event. This implies that
the random variable Xt is (c− ε)-balanced. Therefore, conditioned on a good event, parityn,m,t,p is
(c− ε)-unpredictable.

Since there are
(
p
2

)
pairs of parity values, by an averaging argument, parityn,m,t,p is (c − ε)(1 −

ν(n))

(
p
2

)−1

-unpredictable. Any constant µ < (c− ε)
(
p
2

)−1

suffices.

Case (n − t + 1) < n/2. This implies that t − 1 > n/2. With 1 − ν(n) probability, where
ν(n) = negl(n), X[t+1] is (c − ε)-dense and (1 − c + ε)-sparse (by Lemma 8), for any constant
ε ∈ (0, 1). Lets call this a good event. This implies that the random variable Xt+1 is (c − ε)-
balanced. Therefore, conditioned on a good event, parity of last (n− t) bits is (c−ε)-unpredictable.
Which implies that conditioned on a good event, parityn,m,t,p is (c− ε)-unpredictable.

Consequently, parityn,m,t,p is (c−ε)(1−ν(n))

(
p
2

)−1

-unpredictable. Any constant µ < (c−ε)
(
p
2

)−1

suffices.

Lemma 10 (Unpredictability of Dirty Matchings). Let c ∈ (0, 1) be a constant, m,n ∈ N and
m ∈ [cn, (1 − c)n]. Define X[n] = U[n]

m

. Consider non-constant channels fi1 , . . . , fiz , I =

{i1, . . . , iz} ⊆ [n]. Define Y as follows: For all i ∈ [n], define Yi = fi(Xi) if i ∈ I, else Yi = Xi.
Consider the random variable PY =

∑
i∈[n] Yi mod 3. Then there exists a constant µ ∈ (0, 1) such

that PY is µ-unpredictable.

Proof. A channel f is “confusing” if there exists b ∈ {0, 1} such that Supp(f(b)) = {0, 1}.

Case 1. There exists a confusing channel in {fi1 , . . . , fiz}. Without loss of generality assume that f1

is confusing and Supp(f(0)) = {0, 1}. We have Pr[X1 = 0] ∈ [c, 1−c]. Fix a setting of X conditioned
on X1 = 0. Fix the internal randomness of all remaining channels. This fixes Y2 +· · ·+ Yn mod 3.
Now, we have Pr(Y1 = 0) and Pr(Y1 = 1) are at least a constant conditioned on these fixings. So,
overall we can set µ = Pr(X1 = 0) ·min{Pr[Y1 = 0|X1 = 0],Pr[Y1 = 1|X1 = 0]}.

42



Case 2. There are no confusing channels. This implies that all channels are “toggle” channels.
Without loss of generality assume that {i1, . . . , iz} = [z]. If fi is a toggle then note that Yi = 1−Xi

over Z3. So,

Y1 +· · ·+ Yn mod 3 = z − (X1 +· · ·+Xz) + (Xz+1 +· · ·+Xn) mod 3

= z +m− 2(X1 +· · ·+Xz) mod 3

= z +m+ (X1 +· · ·+Xz) mod 3

Note that X1 + · · · + Xz is µ unpredictable, for some constant µ Lemma 9. Hence, Y1 + · · · + Yn
mod 3 is µ unpredictable.

Lemma 11 (Unpredictability w.r.t. Channels). Let c ∈ (0, 1) be a constant, m,n ∈ N and m ∈
[cn, (1− c)n]. Define X[n] = U[n]

m

. For any t ∈ [n− 1], let f1, . . . , ft be non-constant channels;

and define Yi = fi(Xi), for all i ∈ [t]. Let parityn,m,t,3 be the random variable:
∑

i∈[t] Yi mod 3.
Then, there exists a constant µ ∈ (0, c) such that parityn,m,t,3 is µ-unpredictable.

Further, for t = n and (n−m) 6= 0 mod 3, if there exists fi such that it is not the identity mapping
(i.e. it is not f(b) = b), then Pr[parityn,m,t,3 6= 0] is at least a constant.

Proof. When t ∈ [n − 1], the proof follows by combining the proofs of Lemma 9 and Lemma 10.
We just show the proof for the case (n − t + 1) > n/2. The final case (n − t + 1) < n/2 follows
analogously.

A channel f is “confusing” if there exists b ∈ {0, 1} such that Supp(f(b)) = {0, 1}.

Case 1. Suppose there exists a confusing channel in {f1, . . . , ft}. Without loss of generality assume
that ft is confusing and Supp(f(0)) = {0, 1}.

We know that with probability 1 − negl(n), the random variable X[n]\[t−1] is (c − ε)-dense and
(1 − c + ε)-sparse (by Lemma 8), for any constant ε ∈ (0, 1). Let us call this a good event. This
implies that the random variable Xt is (c − ε) balanced. Therefore, conditioned on a good event
Pr[Xt = 0] > (c− ε).

Conditioned on Xt = 0 and the good event, choose a fixing of X[n] and also fix the internal
randomness of all channels {f1, . . . , ft−1}. Now, it is clear that parityn,m,t,3 is at least (c − ε) ·
min{Pr[Yt = 0|Xt = 0],Pr[Yt = 1|Xt = 0]} − negl(n).

Case 2. Suppose there are no confusing channels; that is all channels are toggle channels. Again
we condition on the good event mentioned above and mimic the proof of Lemma 10 for the corre-
sponding case.

Let us consider the case of t = n. Suppose there exists a confusing channel. Without loss of
generality assume that f1 is a confusing channel with Supp(f(0)) = {0, 1}. Then we know that
Pr[X1 = 0] ∈ [c, 1 − c]. By fixing a choice of X2,...,n and internal randomness of f2, . . . , ft we get
that parityn,m,t,3 is constant unpredictable.

Suppose all channels are toggles. In this case, we use the fact that Yi = 1 − Xi, for each i ∈ [t].
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Now we have: ∑
i∈[n]

Yi mod 3 =
∑
i∈[t]

1−Xi mod 3

= (n−m) mod 3

G Algebraic Geometric Codes Parameters

This section contains explicit AG code constructions over Fq and constructing secret sharing schemes
based on it (similar to Massey’s secret sharing [Mas95]). These results are roughly based on [CC06].
For completeness, we include these results.

Secret Sharing Scheme X(AG,n,k,d,`,t,Fq):

1. Sample space: Λ0 = F`q, Λ1 = · · · = Λn−` = Fq.

2. Conditions: Let α, β, α′, δ, q be constants such that:

(a) k = αn, d = (1− α− β)n, ` = α′n and t = δn.

(b) α ∈ (0, 1) and β ∈ (0, 1− α).

(c) α′ ∈ (0, α) and δ ∈ (0, α− α′).

(d) q > max

{(
1 + 1

β

)2
,
(

1 + 1
α−α′−δ

)2
,
(

1 + 1
1−α−α′

)2
, 49

}
and q is an even power of a

prime.

3. Joint Distribution (X0, . . . ,Xn−`) is defined via the following sampling procedure:

(a) Consider the [n, k, d]q AG code over Fq as described in Theorem 3.

(b) Sample a random AG codeword (x−`, . . . , x−1, x1, . . . , xn−`).

(c) Define x0 = (x−`, . . . , x−1) ∈ F`q.
(d) Output (x0, x[n−`]).

Efficient Encoding and Decoding. Follows from [CC06]. The scheme is t-private and
n
(
α+ 1√

q−1

)
-reconstructible.

Figure 9: Algebraic-Geometric Code based Secret Sharing.

Theorem 3 (Asymptotic AG Code Parameter Choices [CC06]). For every n, k = αn, d = (1 −
α− β)n, ` = α′n, t = δn and q such that:

1. α, β, α′ and δ are constants.

2. α ∈ (0, 1), β ∈ (0, 1− α).
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3. α′ ∈ (0, α) and δ ∈ (0, α− α′)

Then, there exists a constant q∗ such that, for all q > q∗ and q is an even power of a prime, there
exists an [n, k, d]q linear code over Fq.

Further, using the share-packing technique in Figure 9, it is possible to pack F`q such that reconstruc-
tion is possible while still ensuring t-privacy.

Proof. We choose q as an even prime power such that:

q > q∗ := max

{(
1 +

1

β

)2

,

(
1 +

1

α− α′ − δ

)2

,

(
1 +

1

1− α− α′

)2

, 49

}

Let {Cm}m∈N be the infinite family of Garcia and Stichtenoth curves [GS96]. For any curve Cm we
have:

1. The number of Fq-rational points on Cm is: #Cm(Fq) > (
√
q − 1)qm/2 =: n, and

2. The genus of the curve Cm is: g = g(Cm) 6 qm/2.

Goppa codes [Gop81, CC06] using the projective non-singular curve Cm over Fq and divisor D on
Cm such that degD = αn+ (qm/2 − 1), provide [n, k, d]q linear codes, such that:

1. k = degD + 1− g > αn, and

2. d > n− degD = n− k − g + 1 = n− αn− βn+ 1 > n(1− α− β).

This code is (degD + 1)-reconstructible.

We use the share packing technique of [CC06] and pack F`q. So, we get (k − `− g)-privacy for this
scheme [CC06].

1. Privacy. Note that we have:

(k − `− g) > αn− α′n− qm/2

= αn− α′n− n/(√q − 1)

> n[α− α′ − (α− α′ − δ)]
= δn

So, we have δn-privacy.

2. Reconstruction. Note that we have degD + 1 reconstruction and, therefore, we must have:
(n− `) > (degD + 1).

(n− `)− (degD + 1) = n− α′n− αn− qm/2

= n(1− α− α′)− n
√
q − 1

> n(1− α− α′)− n(1− α− α′) = 0
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The generator matrix can be efficiently constructed [SAK+01], when q > 49 is an even power of a
prime. Efficient decoding up to half the distance is provided by [O’S95].
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