
The Complexity of Geometric Graph Isomorphism

V. Arvind ∗ Gaurav Rattan ∗

Abstract

We study the complexity of Geometric Graph Isomorphism, in l2 and other lp metrics:
given two sets of n points A,B ⊂ Qk in k-dimensional euclidean space the problem is to
decide if there is a bijection π : A→ B such that for all x, y ∈ A, d(x, y) = d(π(x), π(y)),
where d is the distance given by the metric. Our results are the following:

• We describe algorithms for isomorphism and canonization of point sets with running
time kO(k)poly(nM), where M upper bounds the binary encoding length of numbers
in the input. This is faster than previous algorithms for the problem.

• From a complexity-theoretic perspective, we show that the problem is in NP[O(k2 log2 k)]∩
coIP[O(k2 log2 k)], where O(k2 log2 k) respectively bounds the nondeterministic wit-
ness length in NP and message length in the 2-round IP protocol.

• We also briefly discuss the isomorphism problem for other lp metrics. We describe
a deterministic logspace algorithm for point sets in Q2.

1 Introduction

Given two finite n-point sets A and B in a metric space (X, d), we say A and B are iso-
morphic if there is a distance-preserving bijection between A and B. The Geometric Graph
Isomorphism problem, denoted GGI, is to decide if A and B are isomorphic.

A well-studied version of this general problem, also the main focus for us, is the euclidean
setting where the metric space (Rk, l2) is the standard k-dimensional euclidean space equipped
with the l2 distance metric. When k is constant, there is an easy polynomial-time algorithm
for the problem [1]. When k = n, the problem is known to be polynomial-time equivalent to
the usual Graph Isomorphism problem [2] and hence can be solved in time 2O(

√
n lgn)poly(s)

[3], where s is the size of the input encoded in binary. The interesting case is when the

dimension k is much smaller than n. A randomized algorithm running in time O(n
k−1
2 · log n)

was given in [4], which was improved to O(nd
k
3
e · log n) in [5]. Both these results are in a

random access model of computation which allows for arbitrary precision real arithmetic.
In this paper we consider as input points with integer or rational coordinates in Rk, with

the l2 metric and the more general lp metric. In this setting, for the l2 metric, considering
the dimension k as parameter, there is a fixed-parameter tractable deterministic algorithm
running in time (ek

4
nM)O(1) [6], where M bounds the binary encoding of entries in any point

of A or B. The algorithm in [6] is based on nontrivial concepts from cellular algebras.
As our first result we obtain a kO(k)poly(nM) time algorithm for deciding Geometric

Graph Isomorphism in the euclidean case. Indeed, we actually give a kO(k)poly(nM) time
algorithm that computes canonical forms for point sets. This algorithm is more intuitive and

∗The Institute of Mathematical Sciences (IMSc), Chennai, India. Emails: {arvind,grattan}@imsc.res.in

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 70 (2014)

is based on integer lattices. Specifically, we apply the recent lattice isomorphism algorithm
of Haviv and Regev [8] to derive our canonization algorithm for point sets in Rk.

At this point we recall some definitions. Computing canonical forms for structures is
a fundamental algorithmic problem. Graph Canonization, which is the problem computing
canonical forms for graphs, is closely connected to Graph Isomorphism. For a graph class K,
a mapping f : K → K is a canonizing function if f(X) is isomorphic to X for each graph
X in K, and for any other graph X ′ in the class, f(X) = f(X ′) if and only if X and X ′

are isomorphic. We say that f(X) is the canonical form assigned by f to the isomorphism
class containing X. For example, f(X) can be defined as the lex-first graph in K isomorphic
to X. This canonizing function is known to be NP-hard to compute. Whether there is a
polynomial-time computable some canonizing function for graphs is open. It is also open if
graph canonization is polynomial-time equivalent to graph isomorphism. Often, graph classes
with efficient isomorphism tests have canonization algorithms [3] of comparable complexity
(usually more sophisticated and involving additional work).

Analogously, we can define canonical forms and the canonization problem for point sets
A contained in a metric space (X, d). A canonizing function f : A 7→ f(A) for a finite A ⊂ X
outputs an isomorphic point set f(A) such that f(A) = f(B) iff A and B are isomorphic
point sets.

Theorem 1. Given a finite point set A ⊂ Qk of size n there is a deterministic kO(k)poly(nM)
time algorithm that computes a canonizing function f(A) for the l2 metric. As a consequence,
the GGI problem for n element point sets in (Qk, l2) has a deterministic kO(k)poly(nM) time
algorithm B. Here, M bounds the binary encoding of entries in the input k-tuples for points
in A ∪B.

Efficient interactive proofs for GGI

It is well-known that Graph Non-Isomorphism (GI) has two-round Interactive Proof systems
[9]. In the euclidean case we obtain two-round IP protocols for Geometric Graph Nonisomor-
phism (GGI) with bounds on message lengths as a function of the parameter k.

Theorem 2. There is a two-round interactive proof system which decides GGI. More-
over, the randomness used by the verifier and the number of bits exchanged in the pro-
tocol is bounded by O(k2 log2 k). Hence k-dimensional euclidean Geometric Isomorphism
is in NP[O(k2 log2 k)] ∩ coIP[O(k2 log2 k)], where NP[O(k2 log k)] denotes NP with at most
O(k2 log k) nondeterministic bits.

Other metrics

In Section 5, we examine GGI for other lp metrics. For the 2-dimensional case Q2 we show
that the problem is in deterministic logspace (and hence in polynomial time). This is by
a reduction to the problem of isomorphism of colored graphs with color classes of size 2
(BCGI2), which is known to be solvable in deterministic logspace [14]. For higher dimensions
we do not have any nontrivial upper bounds better than general Graph Isomorphism.

Theorem 3. Given subsets A and B of Q2 as input, for any lp metric, there is a deterministic
logspace bounded algorithm for checking if A and B are isomorphic in that metric.

2

2 Preliminaries

We denote the set {1, . . . , k} by [k]. We denote the k-dimensional euclidean space by Rk.
Since we consider points in Rk with rational coordinates, we are effectively working with Qk.
Let the projection of a vector v on a subspace S be denoted by vS . The inner product of

two vectors u = (u1, . . . , uk) and v = (v1, . . . , vk) is 〈u, v〉 =
∑
i∈[k]

uivi. The euclidean norm

of a vector u, denoted by ‖u‖, is defined to be
√
〈u, u〉. The distance d(u, v) between two

points u and v in Rk is ‖u − v‖. Two vectors u, v are orthogonal if 〈u, v〉 = 0. In general,
Rk can be equipped with different norms. For any p ≥ 1, the p-norm of a vector x ∈ Rk is
‖x‖p = (‖x1‖p + · · ·+ ‖xk‖p)1/p. Also we define ‖x‖∞ as max {|x1|, . . . , |xk|}. The euclidean
norm is the 2-norm.

Given a set S of vectors {u1, . . . , un}, we define the n× n Gram matrix of S as G(S)i,j =
〈ui, uj〉. It is well-known that two sets S and T have the same Gram matrix iff there is
an orthogonal matrix O such that T = OS. Moreover, a Gram matrix G is known to be
Cholesky decomposable as LLT for a unique lower triangular matrix L. The factorization can
be computed efficiently.

Given two point sets A and B in Qk, a bijection π : A → B is a geometric isomorphism
if for every x, y ∈ A, d(x, y) = d(π(x), π(y)). Given two vector spaces U and V , a bijection
τ : U → V is called an isometry if for every x, y ∈ U , d(x, y) = d(π(x), π(y)). Additionally,
if τ is a linear transformation, we call it linear isometry. It is natural to ask whether an
isomorphism between point sets can also be extended to an isometry between the vector
spaces which are spanned by these sets. In Section 3, we will show that this it true for
Euclidean distances in Lemmata 2 and 3.

We recall some definitions and results from the theory of lattices [12]. A lattice LB is the
set of all integer linear combinations of a finite basis set of vectors B = {b1, . . . , bm} ⊂ Rk.
The numbers k is the dimension of the lattice. We assume that the entries of the set B are
rational and are described by bit vectors. Let M be the upper bound on the bit-size of any
entry of bi. Then, we can always recover a linearly independent basis of r ≤ k vectors for
the lattice in time polynomial in k,M and m (using the Hermite Normal Form construction
[12]). The number r is called the rank of the lattice LB.

A fundamental quantity for a lattice L is the length λ1(L) of a shortest vector in it.
Computing shortest vectors in lattices is a well-known NP-hard computational problem. There
have been several algorithms for exactly computing shortest vectors and for approximating
them in the literature. For our purposes, we state a relatively recent algorithmic result [7] for
enumerating all the shortest vectors in a given lattice.

Theorem 4 ([7], Corollary 5.8). There is a deterministic algorithm that takes as input a
basis of some lattice Λ ⊂ Rk, and a target vector t∈ Rk, and an integer p ≥ 2, and in time
Õ((4p)k) · poly(M,n) it outputs all vectors in Λ within distance pλ1(Λ) from t. (The Õ(·)
notation suppresses polylogarithmic factors).

We also recall the following well-known fact about the number of short vectors in a lattice
(see [7]).

Lemma 1. In a lattice L of rank k, the number of vectors of length at most pλ1(L) is bounded
by (2p+ 1)k.

3

Haviv and Regev, in their interesting paper [8], showed a very general isolation lemma
which they applied to lattices to give a kO(k)poly(nM) time algorithm for checking if two rank-
k lattices are isomorphic under orthogonal transformations. They introduced the following
notion of a linearly independent chain in a set which we recall as we will apply it to obtain
our canonization algorithm for point sets. For a finite set A ⊆ Rk and a vector v ∈ Rk, we
say that v uniquely defines a linearly independent chain of length n in A if there are n vectors
x1, . . . , xn ∈ A such that for every 1 ≤ j ≤ n, the minimum inner product of v with vectors
in A\Span(x1, . . . , xj−1) is uniquely achieved by xj .

Given a lattice L, its dual lattice L∗ is defined as the set of vectors in Span(L) such that
they have an integer inner product with every vector in L. The following theorem shows
that there exists a suitably short vector in the dual lattice which defines a unique linearly
independent chain in the set of shortest vectors of the lattice.

Theorem 5 ([8],Theorem 4.2). Let L be a lattice of rank k. Let S be the set of shortest vectors
in L. Suppose dimension of Span(S) is k. Then, there exists a vector v ∈ L∗ that uniquely
defines a linearly independent chain of length k in S and satisfies ‖v‖ ≤ 5k17/2 · λ1(L∗).

3 Geometric Isomorphism and Canonization in l2-metric

We prove Theorem 1 in this section. We start with some observations about isomorphisms of
point sets. We first note that any isomorphism between point sets can be naturally extended
to a linear isometry between the vector spaces spanned by these sets. Since this well-known
fact can be considered folklore (e.g. see [4]) we summarize in the statements below. For
simplicity we assume that the input sets A and B contain the element 0̄.

Lemma 2. Suppose π is a geometric isomorphism between A and B such that π(0̄) = 0̄.
Then there exists a linear isometry µ : Span(A)→ Span(B) such that µ agrees with π on the
set A.

The proof of the above lemma follows from the following observations about geometric
isomorphisms.

Lemma 3. Let π be an isomorphism from A to B such that π(0̄) = 0̄. Let ui, uj ∈ A.

(a) π preserves inner products, i.e. 〈ui, uj〉 = 〈π(ui), π(uj)〉.

(b) π preserves linear combinations inside the set, i.e. for any linear combination αui +
βuj ∈ A, π(αui + βuj) = απ(ui) + βπ(uj). Similarly, for any linear combination
αvi + βvj ∈ B, π−1(αvi + βvj) = απ−1(vi) + βπ−1(vj).

(c) U ⊆ A is a basis for Span(A) iff π(U) ⊆ B is a basis for Span(B).

Proof. (a) For any two vectors ui, uj ∈ A, we must have ‖ui‖ = ‖π(ui)‖ (since π(0̄) = 0̄). Since
‖ui−uj‖ = ‖π(ui)−π(uj)‖, squaring both sides and simplifying gives 〈ui, uj〉 = 〈π(ui), π(uj)〉.

(b) The vector x = π(α1u1 +α2u2)− (α1π(u1) +α2π(u2)) is in Span(B). Using part (a),
the inner product of x with every vector in B can be easily verified to be zero. Therefore, x
must be zero. The other case is symmetric.

(c) Since U is a basis for Span(A), it is linearly independent. Part (b) implies that π(U)
is also linearly independent (since the linear combination 0̄ ∈ B). Since U generates A, Part
(b) implies that π(U) must generate π(A) = B and therefore Span(B). Therefore, π(U) must
be a basis for Span(B). The other direction is symmetric.

4

Proof of Lemma 2. Fix a basis J ⊆ A of Span(A). By Lemma 3 (c), the set π(J) ⊆ B must
be a basis for Span(B). Define the bijective linear transformation µ : Span(A) → Span(B)
which maps the basis vectors J to the basis vectors π(J) (as ordered sets). Since µ agrees with
π on J ⊆ A, Lemma 3 (b) implies that it must agree with π on A and therefore, µ(A) = B. It
remains to show that µ is an isometry. Inner product of any two vectors in Span(A) is a linear
combination of the inner products among the vectors in J . Therefore, it suffices to show that
µ preserves the inner products between vectors in J and their images in π(J). Since µ agrees
with π on J , Lemma 1(a) implies that µ is an isometry.

We assumed for the above lemmata that 0̄ ∈ A,B and 0̄ is fixed by the isometry. We now
argue that it suffices to search for such isometries. It suffices to observe that the distance of
point ui in set A from the centroid of the points in A is:

‖ui −
1

n

n∑
j=i

uj‖2 =
1

n2
· ‖

n∑
j=1

(ui − uj)‖2 =
1

n2
·
n∑
j=1

n∑
k=1

〈ui − uj , ui − uk〉

=
1

n2
·
n∑
j=1

n∑
k=1

1

2
· (‖ui − uj‖2 + ‖ui − uk‖2 − ‖uj − uk‖2).

Therefore, if sets A and B are isomorphic via a permutation π, the distance of any point
ui from the centroid of set A must be equal to the distance of π(ui) from the centroid of set B.
Now, in both A and B we do the following: (a) add its centroid to the set, and (b) translate
the sets such that the centroid is mapped to origin. Clearly, the sets A and B are isomorphic
if and only if the modified sets Ã and B̃, obtained above, are isomorphic via a permutation
that maps 0̄ ∈ Ã to 0̄ ∈ B̃. Hence, it suffices to solve the following polynomial time equivalent
problem: Given two point sets A and B in Qk, check if there exists an isomorphism mapping
A to B that fixes 0̄.

Before we describe the canonization algorithm, we outline our algorithm for deciding
geometric isomorphism. Consider the lattices LA and LB generated by sets A and B. By
Lemma 3, any linear isometry µ that maps A bijectively to B also bijectively maps LA to LB.
Therefore, the set of shortest vectors in the lattice LA must be mapped to the corresponding
set in LB. Moreover, by Lemma 2 this linear isometry µ also maps the subspace spanned by
the shortest vectors of LA to the subspace spanned by the shortest vectors of LB. We follow
a natural geometric approach. We fix a maximal linearly independent collection of shortest
vectors S in lattice LA. Compute all possible (injectively mapped) images of S into the set
of shortest vectors of the lattice LB and branch on these choices. Project the set A to the
orthogonal complement of the subspace spanned by S and B to the orthogonal complement of
the subspace spanned by π(S). Recursively continue to compute a geometric isomorphism for
these projected point sets that are in subspaces of strictly smaller dimension. If A and B are
isomorphic then, for one path of choices for the image set of S we can recover an isomorphism.

We will now directly describe our kO(k)poly(nM) time algorithm for computing canonical
forms. Let A be the input set. The algorithm initially computes the set of shortest vectors
in the lattice LA generated by the basis A. Assume that this set spans Span(A), otherwise
we will proceed by subspace projections similar to the strategy explained above.

Using Theorem 5 of [8], we identify short vectors in the dual lattice which yield a unique
linearly independent chain in the set of shortest vectors. Effectively, we have a small number
of special bases for Span(A). For each such basis B we generate a description of the set A

5

as follows. We compute the Gram matrix G(B) for B. Also for each vector ui in A, we
compute the k-tuple Γi of the coordinates of ui in basis B. The description of A is the tuple
(G(B),Γ1, . . . ,Γn).

The important observation is that if two point-sets are isomorphic, then the sets of de-
scriptions computed for each point-set are equal. This holds because the underlying linear
isometry is an isometric map between the lattices LA and LB which preserves inner products.
Therefore, the isometry sends a linear independent chain (a basis for Span(A)) in LA to a
linear independent chain in LB (a basis for Span(B)). The descriptions generated for these
bases will be identical since (a) Gram matrices for isometric bases are equal and (b) since the
sets (A and B) and the bases (corresponding to the chains) are isometric, the coordinates of
the sets in terms of the bases remain the same.

This suggests that the lexicographically least description is a canonical representation for
a point set, and can be used to generate a canonical form. Now, we formally describe the
algorithm, prove its correctness and analyze its time complexity.

Input: A set of vectors A ⊂ Qk s.t. |A| = n and 0̄ ∈ A.
Output: A canonical set of vectors CA.

1. While dim(Span(A)) 6= 0

(a) Compute the set SA of shortest vectors in LA using Theorem 4.

(b) Define the lattice Λ1 = LA ∩ Span(SA).

(c) Compute the set of vectors W in the dual lattice Λ∗1 which are of length at
most 5k17/2 · λ1(Λ∗1) using Theorem 4.

(d) For each vector in W , check if it defines a linearly independent chain in SA. If
yes, compute the chain. Otherwise, discard w from W .

(e) Update set A to its component orthogonal to Span(SA). I.e. replace every
u ∈ A by u− proj(u, SA).

2. Let W1, . . . ,Wl be the sets computed during the l iterations of Step 1(c)-(d). For
every tuple (w1, . . . , wl) ∈W1 × · · · ×Wl,

(a) Define the basis B = C1 ∪ · · · ∪Cl, where Ci is the unique chain corresponding
to vector wi.

(b) Compute the Gram matrix G(B) for the set B.

(c) For each ui in the input set A, let Γi = (γ1, . . . , γk) be the linear combination
of the vectors in B which generates ui. We can compute this tuple by solving
a system of linear equations.

(d) Define the string σ for the tuple (w1, . . . , wl) to be (G(B), (Γ1, . . . ,Γn)).

3. Let Σ be the set of all strings generated in the previous step. Search the lexico-
graphically least string σ0 in Σ.

4. Given the string σ0 = (G, (Γ1, . . . ,Γn)),

(a) Let L be the unique lower triangular matrix such that G = LLT .

6

(b) Let B0 be the set of rows of L.

(c) Compute the set CA of vectors {u1, . . . , un} where ui is the Γi-linear-
combination of B0.

5. Output CA as the canonical form for the set A.

The following two lemmas show that the algorithm indeed computes a canonical form.

Lemma 4. Set A is isomorphic to set CA.

Proof. The lexicographically least description string σ0 = (G, (Γ1, . . . ,Γn)) used to construct
CA is generated using a certain basis B = {b1, . . . , bl}. By construction, a vector ui ∈ A is
a Γi-linear-combination of B. Similarly, a vector vi ∈ CA is Γi-linear-combination of the set
L′ = {l1, . . . , lk}, the rows of the unique matrix L obtained in Step 4 (a). Since the sets L
and B have the same Gram matrix, there exists an orthogonal matrix O such that bi = Oli
for all i ∈ [k]. By linearity, vector ui = Ovi for each i ∈ [n]. Therefore, the set A can be
obtained from set CA by an orthogonal transformation. This shows that the two sets are
isomorphic.

Lemma 5. Two sets A and B are isomorphic iff sets CA and CB are equal.

Proof. Suppose the point sets A and B are isomorphic via a permutation π. It will suffice to
show that the sets of all strings generated for A and B, denoted by ΣA and ΣB, are equal.
The reason is that the lexicographically least description string will be equal for both sets,
and the output sets CA and CB depend only on the string used to generate them. It further
suffices to show that ΣA ⊆ ΣB since the other containment is symmetric. We continue with
the proof. Lemma 2 implies that there exists an orthogonal map O : Span(A) → Span(B)
which agrees with π on A. Let (w1, . . . , wl) be a tuple processed in Step 2 in the computation
of the canonical form of A and B1 be the basis discovered in Step 2(a). We claim that
(Ow1, . . . , Owl) will be processed in the computation of the canonical form of B. This is true
for Ow1 because (a) LB = OLA and therefore, (b) for any v ∈ LB, 〈Ow1, v〉 = 〈Ow1, Ou〉 ∈ Z
for some u in LA. Also ‖w1‖ = ‖Ow1‖. Therefore, Ow1 is a vector in the dual lattice L∗B
and is short enough to be discovered. Moreover, for any b in the chain generated by w1,
〈w1, bj〉 = 〈Ow1, Obj〉 which implies that Ob is in the chain generated by Ow1. Hence, by
uniqueness, the chain for set B is exactly the chain for set A transformed by the map O. In
the next iteration, the computations for sets A and B proceeds by projecting the bases A and
B out of the subspaces spanned by shortest vectors. Since O maps Span(SA) to Span(SB)
and preserves inner products, it must map the updated lattice LA to the updated lattice LB.
Inductively, we can argue that (Ow1, . . . , Owl) will be discovered in the computation for set B.
Moreover, the basis B2 obtained for this tuple must be OB1. Therefore, the Gram matrices
will be equal. Since O agrees with the isomorphism π, the linear combinations generated will
also be equal. I.e. if ui ∈ A is equal to Γi-linear-combination of B1, then Oui ∈ B must be
the Γi-linear-combination of B2 = OB1 as well. Therefore, the signatures generated in these
computations will be equal. Therefore, ΣA ⊆ ΣB.

Conversely, let CA = CB. Then, there exist bases B1 and B2 such that the strings
generated using them for set A and set B respectively are equal. Since this implies that B1

7

and B2 have the same Gram matrix, there must be an orthogonal map O such that B1 = OB2.
Since the strings are equal, the points in A and B are identical linear combinations of vectors
in B1 and B2 respectively. This implies that the set A = OB, and therefore A and B are
isomorphic.

Now, we are ready to finish the proof of Theorem 1.

Proof of Theorem 1. It suffices to verify that (a) the algorithm computes a canonical form
on all inputs correctly and (b) the running time of the algorithm is bounded by kO(k)poly(nM).
Theorem 5 ensures that the sets W1, . . . ,Wl are non-empty since by its construction, the
lattice Λ1 defined in Step 1(b) has as many linearly independent shortest vectors as its rank.
Therefore, the algorithm always outputs a point set. Lemmata 4 and 5 show that the output
set is a canonical form.

Next, we bound the running time of the algorithm on an input set of size n. Step 1 runs
for at most k steps since the projection step (e) ensures that the dimension of the subspace
Span(A) strictly decreases. Claim 2 shows that the bit-size of the entries in S can increase
by a multiplicative factor O(k log k) in each iteration of Step 1. (The proof is deferred to the
Appendix). Therefore, the bit-size of any entry can increase from M to at most M ′ = kO(k)M
during execution. Let us bound the time spent in an iteration of Step 1. Computing shortest
vectors in Step (a) requires 2O(k)poly(nM ′) time by Theorem 4. Computing the set W in
Step (c) requires time kO(k)poly(nM ′) (set p = 5k17/2 in Theorem 4). Checking for a chain
in Step (d) can be done by scanning all the shortest vectors which are at most 2O(k) in
number by Lemma 1. Therefore, we spend at most kO(k)poly(nM) time in Step 1. Next,
we bound the time spent in Step 2. By Lemma 1, the size of any set Wi must be at most
(25k17/2 + 1)k = kO(k). The number of tuples examined are at most |W1| · · · · · |Wl| which is

at most k
O(k1)
1 · · · · · kO(kl)

l ≤ kO(k). The operations inside Step 2 are usual polynomial time
operations. Therefore, we spend at most kO(k)poly(nM) time in Step 2. Steps 3-5 are usual
polynomial time operations. Therefore the overall running time is bounded by kO(k)poly(nM).

Clearly, we have a kO(k)poly(nM) running time canonization procedure. A kO(k)poly(nM)
time isomorphism algorithm follows directly from Lemma 5: we compute the canonical forms
for both the input sets, and accept iff the canonical forms are equal.

Finally, we discuss a consequence of obtaining faster algorithms for Geometric Graph Iso-
morphism. As observed in the introduction, it is known that Graph Isomorphism is reducible
to GGI, where, in the reduced instance, the output point sets are contained in Rn. We first
show a similar observation even for hypergraph isomorphism. Note that there is a standard
reduction that reduces hypergraph isomorphism for n-vertex and m-edge hypergraphs to bi-
partite graph isomorphism on n+m vertices. We can combine this with the reduction from
Graph Isomorphism to GGI to obtain a reduction from hypergraph isomorphism to GGI.
However, the point sets thus obtained will be in Rn+m and m could be much larger than n.
The aim is to ensure that in the reduced GGI instance we have point sets in O(n) dimensions.

Theorem 6. Hypergraph Isomorphism can be reduced to Geometric Graph Isomorphism in
polynomial time. More precisely, given a pair of hypergraphs (X1, X2) on n vertices the
reduction outputs a pair of point sets (A,B), where A,B ⊂ Q5n, such that X1 and X2 are
isomorphic if and only if A and B are isomorphic.

Proof. Given a n-vertex hypergraph G having m hyperedges, we can construct a set A of
(n + m + 1) points in Q5n. First, add 0̄ to A. Then, add n vectors e1, . . . , en as follows.

8

Set the first n coordinates of ei to zero except the ith coordinate. The next 2n coordinates
are set to zero. The last 2n coordinates are set to 1. Finally, for each hyperedge E in the
hypergraph, add a vector uE as follows. Set the first n coordinates of uE to 1 (or 0) if the
vertex i ∈ E (or not). The remaining 4n coordinates are set to 1. Clearly, the construction
takes poly(n,m) time.

Given two hypergraphs G and H, we can construct the corresponding sets A and B. We
claim that G and H are isomorphic iff A and B are isomorphic. Suppose G and H are
isomorphic via a mapping π. Then, the mapping µ sends 0̄ to 0̄, ei to eπ(i) for i ∈ [n], and uE
to uπ(E) for each hyperedge E. Here, π(E) = {π(i) | i ∈ E}. The map µ can be easily verified
to be a natural isomorphism between sets A and B. Conversely, suppose that A and B are
isomorphic via a mapping µ : A → B. We claim that µ maps 0̄ to 0̄. Indeed, 0̄ ∈ A has at
least one point which is at distance at least 4n (any point corresponding to an hyperedge).
If 0̄ ∈ A does not map to 0̄ ∈ B, then its image can be seen to have no points at a distance
at least 4n which is a contradiction. Therefore, µ(0̄) = 0̄. This implies that the distance
preserving map µ maps the points e1, . . . , en in A to e1, . . . , en in B from which we recover a
natural permutation π : [n]→ [n]. It is easy to verify that π is an isomorphism between the
hypergraphs.

The current best algorithm for Hypergraph Isomorphism is group theoretic. It uses
a group-theoretic algorithm for the Coset-Intersection problem [15] and has running time
2O(n).poly(m) for n-vertex hypergraphs. However, the only canonization algorithm for hy-
pergraphs is nO(n) time. As a consequence of Theorem 6, obtaining a 2O(k).poly(nM) canon-
ization algorithm for GGI would imply a 2O(n) time canonization algorithm for hypergraphs,
which is a long standing open problem.

4 Interactive Proofs for Geometric Non-Isomorphism

In this section we prove Theorem 2. We first recall that the complexity class IP[2] consists of
languages L that are accepted by 2-round interactive proof systems [9]. This class coincides
with AM (it can also be defined as BP.NP). An interactive proof system for L consists of
a Prover-Verifier protocol (where the verifier V is polynomial-time bounded and prover P
is unrestricted) such that for all inputs x: (a) if x ∈ L, there is a prover P such that the
verifier accepts x with probability at least 3/4, and (b) if x /∈ L, for all provers P , the verifier
accepts the instance with probability at most 1/4. More details can be found in a standard
textbook [10].

It is well-known that GI has an IP[2] protocol that uses O(n log n) random bits to achieve
constant success probability (n is the number of vertices in the graphs). In this section we give
a more efficient IP[2] protocol for k-dimensional Geometric Graph Non-Isomorphism, where
the number of random bits and message sizes can reduced to O(k2 log2 k).

Informally, the interactive proof system for GGI works as follows. Given sets A and B in
Qk, the verifier first checks if nM > kk. If so, the verifier can use the algorithm of Section 3
to solve such an instance of GGI in time polynomial in the input representation. Otherwise,
nM ≤ kk. Then, the Verifier randomly picks one of the sets. The verifier randomly generates
a description of that set, sends it to the prover and asks the prover to identify the set used.
The descriptions are generated with the following property. If the sets are isomorphic, the
descriptions generated are identically distributed and therefore, no prover can identify the
set with probability more than 1/2. If the sets are not isomorphic, then the distributions

9

generated for A and B have disjoint support. Hence, the prover can identify the distribution
from a sample point with probability 1. For a small dimension k, we show that we can save
the number of random bits used and the length of messages exchanged in the protocol.

First, we describe the randomized algorithm that samples the descriptions. Given a set
S, the algorithm samples a basis B of Span(S) for this purpose.

Input: Set S = {v1, . . . , vn} of points in Qk s.t. 0̄ ∈ S.

1. Let B = ∅. Denote |S| by n.

2. Perform the following steps exhaustively.

(a) Using log n random bits pick a point u from S uniformly at random and include
it in the basis B.

(b) Remove every vector in S which is in Span(B). (This can be done using
Gaussian Elimination).

3. Using the ordered set B = (v1, . . . , vl), l ≤ k obtained above.

(a) define a l × l matrix K such that Ki,j = 〈vi, vj〉.
(b) define a set S̃ as follows. For each v ∈ S\B, add the tuple of rational numbers

(〈v, v1〉, . . . , 〈v, vl〉) to the set S̃.

4. Output the signature σ = (K, S̃).

Given a set S, the above algorithm generates a distribution σS on the pairs (K, S̃) as
above. We say that distributions σ1 and σ2 have disjoint support if their ranges do not
intersect. We have the following simple claim about the distribution σU and σV generated by
the above procedure for two point sets U and V .

Claim 1. If sets U and V are isomorphic, the distributions σU and σV are identical. If they
are not isomorphic, the distributions have disjoint supports.

Proof. Suppose U and V are isomorphic via a permutation π. We observe that the algorithm
samples the vectors from the set S independent of the indices of the vectors. This implies
that if the basis B is sampled for set U with a certain probability, then the basis π(B) is
sampled for set V with equal probability and vice-versa. The signatures constructed using B
and π(B), for U and V respectively, must be equal by Lemma 3.

Next, suppose the two distributions do not have disjoint supports. In other words, there
exist ordered bases B1 ⊆ U and B2 ⊆ V such that the signature (K1, S̃1) constructed using
B1 for U and the signature (K2, S̃2) constructed using B2 for V are equal. Consider the
mapping µ which sends ith vector of B1 to ith vector of B2. Since K1 = K2, µ preserves inner
products between sets B1 and B2. Therefore, µ is a isomorphism between B1 and B2. Next,
no two vectors in U can contribute the same tuple to the set S̃1 since their difference must be
a vector which has zero inner product with every vector in B1. For any vector u ∈ U which
contributes the tuple su = (〈u, u1〉, . . . , 〈u, ul〉) to S̃1, its representation in the basis B1 can
be verified to be (K1)

−1su. Therefore, a vector v ∈ U which contributes the same tuple to S̃2

10

must have the identical representation K−12 su = K−11 su in the basis B2. Therefore, we define
a map µ′ which maps a vector u ∈ U to a vector v ∈ V iff they contribute the same tuples.
Such a mapping is well-defined since S̃1 = S̃2. Using bilinearity of inner products and the
identical representation of vectors under mapping by µ′, we can verify that µ′ preserves inner
products. Therefore, the sets U and V must be isomorphic.

Now, we can present the IP[2] protocol for GGI and complete the proof of Theorem 2. We
note that the signature generated by the algorithm above can be represented as a string in
{0, 1}r where r is upper bounded as follows. Let M be the bit-size of largest entry in a vector
in S. Each of the l2 entries in the matrix K is an inner product of k-dimensional vectors and
will have size at most 2M + log k. Similarly, each of the (n− l) k-tuples in S̃ has size at most
k · (2M + log k). Therefore, r ≤ k2(2M + log k) + nk(2M + log k).

Input: Sets U and V in Rk.

1. If nM > kk, the Verifier runs the algorithm of Section 3 on sets U and V and
accepts iff the algorithm accepts.

2. Otherwise, nM ≤ kk. Then, the Verifier gets a random bit b. If b is 0 (or 1), he
samples a signature σ ∈ {0, 1}r from the distribution µU (or µV). Let the number
represented by the binary string σ be R ∈ [0, 2r − 1].

3. Verifier also picks a random prime p in the range [0, . . . , T] where T = r3k. He sends
the string (R mod p, p) to the prover.

4. Prover examines the string and sends back a bit b′.

5. Verifier accepts if and only if b′ = b.

Proof of Theorem 2. If nM > kk, the protocol runs in time kO(k) · poly(M,n) which is
polynomial in the input size n,M . Therefore, in polynomial time, the Verifier works correctly
using zero randomness and interaction. Otherwise, nM ≤ kk. In this case, let us first verify
the correctness of the protocol. If the sets U and V are isomorphic, the two distributions
coincide. Therefore, no prover can determine the bit b with probability better than 1/2. If the
sets U and V are not isomorphic, the two original distributions are disjoint by Claim 1. We
need to upper bound the probability (over the randomly picked prime p) that the modified
distributions (R mod p, p) obtained in Step 3 do not remain disjoint. Since the algorithm for
generating a basis uses l log n random bits, clearly R is bounded by nk (since l ≤ k). Now, by
chinese remaindering and a union bound argument it follows that the distributions obtained
in Step 3 for U and V have disjoint support with probability more than 0.9. Therefore, we
have a protocol with completeness error 0.1 and soundness error 0.5. A standard parallel
repetition can be used to guarantee a protocol with desired error probability for IP[2].

The verifier uses at most k log n random bits for the sampling algorithm and log T =
3k log r = O(k log k · log(n)) random bits for sampling a prime. Since nM ≤ kk, the number
of random bits and message lengths can be easily upper bounded by O(k2 log2 k).

11

5 Geometric Isomorphism in other lp metrics

In this section we include some observations about the GGI problem for other lp metrics.
We describe a deterministic logspace algorithm for the two-dimensional case (Theorem 3).
We will prove the theorem for the case p = ∞ and explain how the algorithm can be easily
adapted for all p 6= ∞. The algorithm works as follows. Given two point sets A and B
of size n, we fix three points in set A and branch on their possible images in B under an
isomorphism. Using these points, we will construct two colored graphs G and H such that
(a) each graph has color class size at most two and (b) the point sets A and B are isomorphic
iff the graphs G and H are isomorphic via a color-preserving isomorphism. This computation
can be performed by a deterministic logspace transducer. The isomorphism problem for color
class size two graphs, denoted by BCGI2 is known to have a deterministic logspace algorithm
[14]. By composing the logspace computations, we obtain a deterministic logspace algorithm
for our problem.

Input: Two sets A and B of size n in Q2 (the l∞ case).

1. Check if sets A and B are collinear by iterating over all triples and checking whether
the three points are collinear.

• If no, we store the first triple of non-collinear points {a, b, c} that we discover.

• If yes,

– Construct two colored graphs G and H as follows. The graph G is (A, ∅).
The color of a vertex ui is defined to be the set {d1, d2} of the distances of
ui from the two extreme points in the set A. Similarly define H for set B.

– Return accept iff G and H are isomorphic. The isomorphism can be
decided using the logspace algorithm of [14].

2. Otherwise, assume w.l.o.g that a, b, c ∈ A (the other case is symmetric). Branch on
all possible images of {a, b, c} in B, denoted by {a′, b′, c′}.

3. First, we compute a coloring of sets A and B. For set A, we color a point u by the
ordered triple (du,a, du,b, du,c) of its distances from a, b, c.

4. Second, we refine these colorings and ensure that each color class is of size two.

• If some points form a color class of size more than two, they will lie on a line
segment parallel to x-axis or y-axis (proof is given later). Each such color class
has two extreme points.

• For each vertex u ∈ A,B, check whether it lies in a color class of size more
than two. If yes, update the color of u, say C, with the color (C, {d1, d2})
where d1, d2 are the distances of u from the extreme points in the color class.

5. Third, we construct weighted colored graphs G′ and H ′ over vertex sets A and B
respectively. The graphs G′ and H ′ are complete graphs. Every edge {u, v} in G′

or H ′ is labeled with the weight duv, the distance between points u and v. The
coloring of the vertices have been already computed in Step 4.

12

6. Finally, we can use standard gadgets and modify the weighted graphs G′ and H ′

to obtain unweighted graphs G and H such that G is isomorphic to H iff G′ is
isomorphic to H ′.

7. Test whether G is isomorphic to H using the algorithm of [14]. If the answer is
yes accept, else move to the next branch in Step 2. If all branches are exhausted,
return reject.

Proof of Theorem 3, case p =∞. It is easy to verify that the algorithm works correctly
for the case when the sets are collinear. Therefore, we concentrate on the general case. If
the above algorithm accepts, clearly the sets are isomorphic. Conversely, suppose there is
a isomorphism π from A and B. In Step 2, one of the branches for the image of {a, b, c}
will coincide with (π(a), π(b), π(c)). Furthermore, π must respect the color classes defined by
the algorithm based on the distance triples in Step 3. It also respects the color refinements
in Step 4 due to the following fact which can be easily verified by induction. A color class
of collinear points must map to another class of collinear points in a manner that preserves
the order of vertices (therefore, in at most two possible ways). Hence, π respects the colors
assigned by the algorithm.

Next, we verify the bound on the color class sizes. The set of points Sr,x at l∞-distance
r from a point x is easily seen to be a square in R2 centered at x. It has sides of length 2r
parallel to the coordinate axes. Consider the squares Sα,a and Sβ,b. Their intersection is one
of the following: (a) empty, or (b) at most two points, or (c) a common edge, or (d) two
common incident edges. If we consider the third square Sγ,c, its intersection with Sα,a ∩ Sβ,b
is therefore one of these cases: (a) empty or (b) at most two points or (c) a common edge.
The last case is ruled our since three squares with non-collinear centres cannot have more
than two edges common. Therefore, every color class is bounded by two unless the points in
the color class lie on a common edge of three squares. Such a class is refined in Step 4 to
have size at most two. Therefore, π must be an isomorphism between the weighted graphs
G′ and H ′ since it preserves mutual distances. By construction, the graphs G and H must
be isomorphic and therefore, the algorithm accepts in Step 7.

It remains to verify that space complexity of the algorithm is upper bounded by a logarith-
mic function of the input size. It can be verified that (a) Step 1 can be performed by a logspace
machine (b) Step 2 requires O(log n) space to store the indices of points {a, b, c, a′, b′, c′} (c)
Steps 3-6 can be seen to be implemented by logspace transducers and (d) Step 7 can be done
in deterministic logspace [14].

We now briefly explain how the above algorithm can be adapted to solve the 2-dimensional
GGI problem for any lp-metric.

Proof of Theorem 3, for all p ∈ [1,∞). The set Sr,x is a lp-metric circle of radius r cen-
tered at the point x. For p = 1, such circles are squares of side 2r centered at x which have
been rotated by π/4. The intersection of such squares is similar to the l∞ case above. Hence,
the above algorithm adapts to this case. For the case p ∈ (1,∞), it is known that lp balls
are strictly convex sets I.e., for any two distinct points u, v on the boundary of such a set,
any convex combination θu + (1 − θ)v for 0 < θ < 1 is in the interior of the set. For R2,

13

this implies that any two lp circles can intersect in at most two points ([13], Theorem 1).
Therefore, any color class can be of size two and therefore, a similar algorithm which reduces
the problem to BCGI2 works.

6 Concluding Remarks

We give a kO(k).poly(n,M) time algorithm for Geometric Isomorphism in the l2 metric. It
is asymptotically faster than previous algorithms. A natural question is to improve the
running time. It would be interesting to obtain a “geometric” algorithm of running time
2O(k).poly(nM) because that would imply a non-group theoretic algorithm for Graph Isomor-
phism of running time 2O(n) (the simplest known algorithm for it requires solving the coset
intersection problem in 2O(n) time, which is a group-theoretic algorithm).

One approach to solving GGI for a metric space (X, d) is to try and efficiently embed
the given points sets A and B isometrically into another metric space (X ′, d′) for which we
already know an efficient GGI algorithm. For instance it is easy to observe from known
results about embedding metric spaces that there is a reduction from lk1 -GGI to l2

k

∞-GGI in
time 2k · poly(k, n,M), where lkp denotes the lp metric on Rk. We do not know of a reduction

that avoids the blow-up from k to 2k in dimension.

References

[1] H. Alt, K. Mehlhorn, H. Wagener, E. Welzl. Congruence, similarity, and symmetries of
geometric objects. Discrete Computational Geometry, 3:237-256, 1988.

[2] Christos H. Papadimitriou and Shmuel Safra. The complexity of low-distortion embed-
dings between point sets. In SODA, pages 112–118, 2005.

[3] László Babai and Eugene M. Luks. Canonical labeling of graphs. In STOC, pages 171–183,
1983.

[4] Tatsuya Akutsu. On determining the congruence of point sets in d dimensions. Comput.
Geom., 9(4):247–256, 1998.

[5] Peter Braß and Christian Knauer. Testing the congruence of d-dimensional point sets. In
Symposium on Computational Geometry, pages 310–314, 2000.

[6] S.A. Evdokimov and I.N. Ponomarenko. On the geometric graph isomorphism problem.
Pure and Applied Algebra, 117-118:253–276, 1997.

[7] Daniele Micciancio and Panagiotis Voulgaris. A deterministic single exponential time
algorithm for most lattice problems based on voronoi cell computations. In STOC, pages
351–358, 2010.

[8] Ishay Haviv and Oded Regev. On the lattice isomorphism problem. In Proceedings of the
SODA 2014 Conference, to appear.

[9] Ravi B. Boppana, Johan H̊astad, and Stathis Zachos. Does co-NP have short interactive
proofs? Inf. Process. Lett., 25(2):127–132, 1987.

14

[10] Sanjeev Arora and Boaz Barak. Computational Complexity, a modern approach. Cam-
bridge University Press, 2009.

[11] Merrick L. Furst, John E. Hopcroft, and Eugene M. Luks. Polynomial-time algorithms
for permutation groups. In FOCS, pages 36–41, 1980.

[12] Alexander Schrijver. Theory of integer and linear programming. Wiley-Interscience series
in discrete mathematics and optimization, 1998.

[13] A. G. Corbalan, Marisa Mazon, and Tomas Recio. About Voronoi Diagrams for Strictly
Convex Distances. In 9th European Workshop on Computational Geometry, 1993.

[14] Birgit Jenner, Johannes Köbler, Pierre McKenzie and Jacobo Torán. Completeness
results for graph isomorphism. J. Comput. Syst. Sci., 66(3), 2003.

[15] Eugene M. Luks, Hypergraph Isomorphism and Structural Equivalence of Boolean Func-
tions, STOC, 1999.

15

Appendix

Bounding the bit-sizes

Claim 2. The binary encoding length of the largest entry in the set A ⊂ Qk can increase by
a multiplicative factor of at most O(k log k) during an iteration of Step 1 of Algorithm 3.

Proof. In an iteration of Step 1, we have two main operations. In Step (a), we compute
the shortest vector set in LA. In Step (b), we project set A. We will bound the increase
in bit complexity in each step. Initially, the entries in A can be rewritten with a common
denominator such that each entry has at most M1 = knM bits for denominator (multiply
all the denominators) and M1 = knM bits for numerator. This allows us to think of A as a
integral matrix times (1/r) for some integer r.

Computing shortest vectors in LA yields vectors which can be described by M1 bits in
denominator, and at most M1 bits for the numerator (use Minkowski’s bound along with the
determinant upper bound: for any n× n matrix A, det(A) ≤ A11 · · · · ·Ann).

Next, we bound the increase in bit size in Step (b). Let the projection of a vector u ∈ A
onto Span(SA) be p =

∑
αiui. We can compute αi’s from the linear system Gᾱ = u′ where

the matrix G has Gi,j = 〈ui, uj〉, the column vector ᾱ = (α1, . . . , αk) and the column vector
u′ = (〈u, u1〉. . . . , 〈u, uk〉). The entries in G and u′ can be easily seen to have the bit sizes
bounded by M2 = O(log k) ·M1. By Cramer’s rule, any αi must be a ratio of determinants of
Gi and G, where Gi is the matrix obtained by replacing ith column of G by u′. The bit-size
of these determinants is bounded by M3 = kM2 (use determinant upper bound). Overall, we
increase the bit sizes by at most a factor of O(k log k).

16

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

