
Õ(
√
n)-Space and Polymomial-time Algorithm

for the Planar Directed Graph Reachability Problem

Tetsuo Asano∗, David Kirkpatrick†, Kotaro Nakagawa‡and Osamu Watanabe‡

Draft for ECCC, May 4, 2014

1 Introduction

We consider the reachability problem in planar directed graphs. For its formal definition, we
begin by defining the reachability in general directed graphs.

Directed Graph Reachability Problem

Input: Directed graph G = (V,E), start vertex v0, and goal vertex v∗.
Task: Determine whether there exists a path from v0 to v∗ in G.

Throughout this paper we will use n to denote the number of vertices of an input graph, which
is the unique input size parameter.

For a directed graph G = (V,E), its underlying graph is the undirected graph ‘G = (V, ‘E),
where the vertex pair {u, v} belongs to ‘E if and only if at least one of (u, v) or (v, u) belongs to
E. The planar directed graph reachability problem is a special case of the reachability problem
where we restrict attention to input graphs whose underlying graph is planar. For a simpler
setting to introduce some of our algorithmic ideas, we also consider the grid directed graph
reachability problem, where we restrict attention to input graphs whose underlying graph is an
edge-induced subgraph of a square grid. We will frequently refer to these problems with the
shorter names “planar reachability” and “grid reachability.”

The directed graph reachability problem is a core problem in computational complexity theory.
It is a canonical complete problem for the nondeterministic log-space, NL, and the famous open
question L = NL is essentially asking whether the problem is solvable deterministically in log-
space. The standard breadth first search algorithm and Savitch’s algorithm are two of the most
fundamental algorithms known for solving the directed graph reachability problem. The former
has a (roughly) linear space and time implementation, and the latter uses only O((log n)2)-space
but requires Θ(nlogn) time. Hence a natural and significant question is whether we can design an
algorithm for directed graph reachability that is efficient in both space and time. In particular,
can we design a polynomial-time algorithm for the directed graph reachability problem that
uses only O(nε)-space for some small constant ε < 1? This question was asked by Wigderson
in his excellent survey paper [13], and it remains unsettled. The best known result in this
direction is the two decades old bound due to Barns, Buss, Ruzzo and Schieber [4], who showed
a polynomial-time algorithm for the problem that uses O(n/2

√
logn) space. Note that this space

bound is only slightly sublinear, and improving this bound remains a significant open question.
In fact, there are indications that it may be difficult to improve this bound because there are

∗Japan Advanced Institute of Technology, Japan
†Dept. of Comp. Sci., Univ. British Columbia, Canada (kirk@cs.ubc.ca)
‡Dept. of Math. and Comput. Sci., Tokyo Inst. of Tech., Japan ({nakagaw1, watanabe}@is.titech.ac.jp)

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 71 (2014)

matching lower bounds known for solving the directed graph reachability problem on a certain
model of computation known as NNJAG; see, e.g., [5]. Though NNJAG is a restrictive model,
all the known algorithms for the directed reachability can be implemented in NNJAG without
significant blow up in time and space.

Some important progress has been made for restricted graph classes. The most remarkable
one is the log-space algorithm of Reingold (which we will refer as UReach) for the undirected
graph reachability [12]. Recently, Asano and Doerr [2] gave a Õ(n1/2+ε)-space and polynomial-
time algorithm for the grid reachability. (In this paper “Õ(s(n))-space” means O(s(n))-words
intuitively and precisely O(s(n) log n)-space.) Inspired by this result Imai et al. proposed [8]
an Õ(n1/2+ε)-space and polynomial-time algorithm for the planar graph reachability. In both
algorithms, due to their recursive computation structure, the degree of their polynomial time
bounds grow in proportion to 1/ε, and it has been left open to design an Õ(n1/2)-space and yet
polynomial-time algorithm. More recently, Asano and Kirkpatrick [3] introduced a more efficient
way to control the recursion, thereby succeeding to obtain an Õ(

√
n)-space algorithm with some

polynomial time complexity. The main result of this paper is to show that this technique also
works to design an Õ(

√
n)-space and polynomial-time algorithm for the planar reachability.

Although the above two Õ(n1/2+ε)-space algorithms have similar space and time complexity
bounds, their algorithmic approaches differ in some important aspects. The key idea of the
Õ(n1/2+ε)-space algorithm of Imai et al. is to use an algorithmic version of the Planar Separator
Theorem shown first by Lipton and Tarjan [10]. Specifically, given any n-vertex undirected
planar graph, there is a polynomial-time algorithm for computing an O(

√
n)-size “separator”,

i.e. a set of O(
√
n) vertices whose removal separates the graph into two subgraphs of similar size.

For a given input instance (G, v0, v∗), we first compute a separator S of the underlying planar
graph of G that separates G into two smaller subgraphs G0 and G1. We then consider a new
directed graph H on S ∪ {v0, v∗}; it has a directed edge (a, b) if and only if there is a path from
a to b in either G0 or G1. Clearly, reachability (of v∗ from v0) in H is equivalent to the original
reachability. On the other hand, since S has O(

√
n) vertices, we can use the standard linear-

space and polynomial-time algorithm for solving the reachability in H by using our algorithm
recursively on G0 and G1 whenever we need to know whether an edge (a, b) exists in H. It
should be mentioned that the idea of using separators to improve algorithms for the reachability
and related problems is natural, and in fact it has been proposed by several researchers; see,
e.g., [7]. The main contribution of [8] is to show that this idea indeed works by giving a space
efficient separator algorithm based on the parallel separator algorithms of Miller [9] and Gazit
and Miller [6].

The algorithm of Asano and Kirkpatrick uses a similar algorithmic approach. It uses a re-
cursive separation of a grid graph; at each level a separator is formed by the set of vertices on
one of the grid center lines. In order to get a polynomial time bound, Asano and Kirkpatrick
introduce a “universal sequence” to control the time complexity of each recursive execution on
smaller grids. Here we use the same idea for the general planar graph reachability. To achieve
this we need a simple separator that allows us to express/identify a hierarchy of subgraphs suc-
cinctly/simply as was the case with grid graphs. The main technical contribution of this paper
is to show a space efficient way to get such a simple separator and some succinct way to express
separated subgraphs. (Note that it has been known that some separator algorithm, e.g., the
one by Gazit and Miller [6], yields a simple cycle separator; but we are not sure whether the
sublinear-space algorithm of [8] always yields such a simple separator. Here instead of analyzing
the separator algorithm of [8], we show an algorithm to obtain cycle-separators from a given
separator. Also our notion of a cycle-separator is slightly specific as explained later.)

It should be noted that, though restricted to grid graphs, the problem studied by Asano et
al. in [2, 3] is the shortest path problem (a natural generalization of the reachability problem).
The focus there is on space efficient and yet practically useful algorithms, including time-space

2

tradeoffs. In this paper, on the other hand, we are interested in extending a graph class that
is solvable in Õ(

√
n)-space and polynomial-time, and the specific time complexity of algorithms

is not so important so long as it is within some polynomial. In fact, since the algorithm of
Reingold for the undirected reachability is used heavily, we need very large polynomial to bound
our algorithm’s running time. In order to keep our discussion as simple as possible, and focus
on the key ideas, we restrict our attention here to the reachability problem. However, it is not
hard to see that our algorithm for reachability can be modified to the shortest path problem
(with a modest increase in the polynomial time bound).

Since we use Reingold’s undirected reachability algorithm, our algorithm (and also the one
by Imai et al.) have no natural implementation in the NNJAG model. While the worst-case
instances for NNJAG given in [5] are non-planar, it is an interesting question whether we have
similar worst-case instances based on some planar directed graphs. A more important and chal-
lenging question is to define some model in which our algorithm can be naturally implemented
and show some limitation of space efficient computation.

Preliminaries

We use standard notions and notation for graphs. We specify a graph as a pair of its vertex set
and edge set. For a graph G, by V(G) and E(G) we denote respectively the set of vertices of G
and the set of edges of G. For any subset U of V(G), we use G[U] to denote the subgraph of
G induced by U ; similarly, for any subset F of E(G), G[F] denotes the subgraph of G induced
by F . Like this notation, by notation using a symbol, e.g., G, we mean a graph defined from
G. For two graph F and G, by F ∪G we mean a graph (V(F) ∪ V(G),E(F) ∪ E(G)). For any
graph G, consider any subgraph H of G and any vertex v of G that is not in H; then by H tG v
we denote an induced subgraph of G obtained from H by adding vertex v; that is, H tG v =
G[V(H) ∪ {v}]. We also use H tG A to denote G[V(H) ∪ A]. Notions and notation for planar
graphs will be explained in Section 3.

2 Planar Reachability Algorithm

We now describe our algorithm for planar reachability. To illustrate the idea of the algorithm we
consider an instance (G, v0, v∗) of gird reachability. That is, G is a graph obtained by removing
some of the edges of a bi-directed grid graph like Figure 1(a). Here we assume that the original
bi-directed grid graph is a (2h− 1)× (2h− 1) square grid. Let ‘G denote the undirected version
of this original grid; for the planar reachability this corresponds to the underlying undirected
graph of an input directed graph. Note that both G and ‘G have n = (2h−1)× (2h−1) vertices.

(a) (b) (c)

Figure 1: Example grid graph G and a path from v0 to v∗

Though the reachability is determined on G, the computation is designed based on the undi-
rected graph ‘G. Consider a set S of vertices that are on the horizontal center line. We call
S a grid-separator because ‘G is separated to two disconnected subgraphs by removing S. Our

3

strategy is to determine, for every vertex v ∈ G, the reachability from v0 in each subgraph
independently, thereby saving the space for the computation. More specifically, we consider a
subgraph ‘G0 (resp., ‘G1) of ‘G consisting of vertices below (resp., above) S including S (cf.
Figure 1(b)), and compute the reachability from v0 on G in the area defined by each subgraph.
A crucial point is that we need to keep the reachability information only for vertices in S in order
to pass the reachability information to the next computation on the opposite subarea. Also for
showing the Õ(

√
n)-space bound, it is important that S consists of 2h − 1 =

√
n vertices, and

that both subgraphs ‘G0 and ‘G1 are almost half of ‘G.
Suppose that v∗ is reachable from v0 in G, and let p be a directed path witnessing this. We

explain concretely our strategy to identify p and to confirm that v∗ is reachable from v0 in G.
Notice here that path p is divided into some x subpaths p1, . . . , px such that the following holds
for each j ∈ [x−1] (cf. Figure 1(c)): (i) the end vertex wj of pj (that is the start vertex of pj+1)
is on S, and (ii) all inner vertices of pj are in the same V b for some b ∈ {0, 1}, where V 0 and
V 1 are respectively the set of vertices below and above the separator S. Then it is easy to see
that we can find that w1 is reachable from v0 by searching vertices in S that are reachable from
v0 in G[V 0 ∪S]. Next we can find that w2 is reachable (from v0) by searching vertices in S that
are reachable in G[V 1 ∪ S] from some vertex in S for which we know already its reachability;
in fact, by the reachability from w1 we can confirm that w2 is reachable from v0. Similarly,
the reachability of w3, . . . , wx−1 is confirmed, and then by considering the subgraph G[V 1 ∪ S]
we confirm that v∗ is reachable from v0 because it is reachable from wx−1. This is our basic
strategy. Note that the reachability in each subgraph can be checked recursively.

We need one more idea in order to achieve the polynomial-time computability. To control the
computation time for checking the reachability in each subgraph, we bound the length of paths
by using some appropriately chosen numbers. (In this paper by “length of a path” we mean
the number of edges on the path.) Asano and Kirkpatrick [3] proposed to use numbers from
a “universal sequences”, designed for this purpose. The notion of a universal sequence can be
found in, e.g., [11]. Here we consider the following version.

For any s ≥ 0, the universal sequence σs order s is defined inductively by

σs =

{
〈1〉 if s = 0, and

σi−1 � 〈2i〉 � σi−1 otherwise,

where � signifies concatenation of sequences. By the definition, each element of the sequence is
a power of 2. The length of the sequence σs is 2s+1 − 1. For example, σ2 = 〈1, 2, 1, 4, 1, 2, 1〉.
We will use the following properties of universal sequences in the design and analysis of our
algorithm; for the sake of completeness, we also give a brief proof outline from [3].

Lemma 1. (a) The sequence σs = 〈c1, . . . , c2s+1−1〉 is 2s-universal in the sense that for any posi-
tive integer sequence 〈d1, . . . , dx〉 such that

∑
i∈[x] di ≤ 2s, there exists a subsequence 〈ci1 , . . . , cix〉

of σs such that dj ≤ cij holds for all j ∈ [x]; (b) the sequence σs contains exactly 2s−i appear-
ances of the integer 2i (and nothing else); and (c) the sequence σs is computable in O(2s)-time
and Õ(1)-space.

Proof. (a) Let m be such an index that d1 + · · ·+ dm > dm+1 + · · ·+ dk and d1 + · · ·+ dm−1 ≤
dm+1 + · · · + dk. Then, we have d + . . . + dm−1 ≤ 2s−1 and dm+1 + · · · + dk < 2s−1. Thus, by
induction 〈d1, . . . , dm−1〉 is dominated by a subsequence of σs−1 and so is 〈dm+1, . . . , dk〉. The
result follows since dm ≤ 2s.
(b) Straightforward, by induction on s.
(c) The i-th element of the universal sequence σs is given by 2k where 2k is the largest power of
2 which divides i. This computation is done by a naive algorithm using simple only O(1)-words.
Although it takes O(log i) time to produce the i-th element in general, a simple analysis shows
that the total time required is is O(2s).

4

Now we define our reachability algorithm following the strategy explained above. The technical
key point here is to define a sequence of separators dividing subgraphs into two parts in a way
that we can specify a current target subgraph succinctly. For this we introduce the notion of
“cycle-separator.” Intuitively, a cycle-separator S of a graphG is a set of cycles S = {C1, . . . , Ch}
that separates G into two subgraphs, those consisting of vertices located left (resp., right) of
the cycles (including cycle vertices). We can show that such a simple cycle-separator can be
efficiently computed from any given separator. Based on this we have the following lemma.

Lemma 2. There exists an Õ(
√
n)-space and polynomial-time algorithm (which we refer as

CycleSep) that computes a cycle-separator S for a given undirected graph G = (V,E) with its
triangulated planar embedding. The size of the separator is at most csep

√
n. Furthermore, there

is a way to define subsets V 0 and V 1 of V with the following properties: (a) V 0 ∪ V 1 = V ,
V 0 ∩ V 1 = S, and (b) |V b| ≤ (2/3)|V |+ csep

√
n for each b ∈ {0, 1}.

Intuitively we can use cycle-separators like grid-separators to define a sequence of progres-
sively smaller subgraphs of a given planar directed graph G. (Note that its underlying graph
‘G is used for defining the subgraphs.) From technical reason1, however, we need to add some
edges to the outer faces of ‘G[V b] to get it triangulated under the current embedding. We will
show (see Lemma 8) that the number of added edges is bounded by O(|S|) and that there is
an algorithm AddTri that computes these edges and their planar embedding in Õ(|S|)-space
and polynomial-time. We refer this information as an additional triangulation edge list T and
consider it with a cycle-separator S and a Boolean label b. By [‘G]bS,T we mean both a graph

obtained from ‘G[V b] by adding those triangulation edges specified by T and its planar embed-
ding obtained by modifying the original planar embedding by T . In general, for any sequence
S = 〈(b1, S1, T1), . . . , (bt, St, Tt)〉 of such triples of a label, a cycle-separator and an edge list, we
define [‘G]S by

[‘G]S =

[
· · ·

[
[‘G]b1S1,T1

]b2
S2,T2

· · ·
]bt
St,Tt

,

which we call a depth t subarea of G. We should note here that one can efficiently identify a
depth t subarea by using S; that is, there is an algorithm that, for given S and v ∈ V , determines
whether v is in the subarea [‘G]S by using only O(log n)-space.

Armed with this method of constructing/specifying subareas we now implement our algorithm
idea discussed above as a recursive procedure ExtendReach (see Algorithm 1). First we explain
what it computes. We use global variables to keep the input graph G, the triangulated planar
embedding of its underlying graph ‘G, the start vertex v0, and the goal vertex v∗. As we will see
in the next section, the triangulated planar embedding is O(log n)-space computable. Hence,
we can compute it whenever needed; thus, for simplicity we assume here that the embedding is
given also as a part of the input. Note that for the space complexity these input data is not
counted. On the other hand, we define global variables A and R that are kept in the work space.
The variable A is for keeping separator vertices that are currently considered; the vertices v0 and
v∗ are also kept in A. The array R captures the reachability information for vertices in A; for any
v ∈ A, R[v] = true iff the reachability of v from v0 has been cofirmed. Besides these data in the
global variables, the procedure takes arguments S and `, where S specifies the current subarea
of ‘G and ` is a bound on the length of path extensions. Our task is to update the reachability
from v0 for all vertices in A by using paths of length ≤ ` in the current subarea. More precisely,
the procedure ExtendReach(S, `) does the following: for each vertex v ∈ A, it sets R[v] = true

if and only if there is a path to v in G[A∪ VS] of length ≤ ` from some vertex u ∈ A whose value
R[u] before the execution equals true, where VS is the set of vertices of the current subarea of ‘G

1The algorithm CycleSep is defined based on the separator algorithm of Lemma 4 that assumes a triangulated
graph as input. Thus, in order to apply CycleSep to divide ‘G[V b] further, we need to get it triangulated.

5

specified by S. Since any vertex in G that is reachable from v0 is reachable by a path of length
at most 2dlogne, the procedure ExtendReach can be used to determine the reachability of vertex
v∗ from v0 as follows, which is our planar reachability algorithm: (1) Set A ← {v0, v∗}, R[v0] ←
true, and R[v∗] ← false; and (2) Execute ExtendReach(〈 〉, 2dlogne), and then output R[v∗].

Next we give some explanation on how to compute ExtendReach by going through the de-
scription of Algorithm 1. Consider any execution of ExtendReach for given arguments S and `
(together with data kept in its global variables). Let VS be the set of vertices of the subarea [‘G]S
specified by S. There are two cases. If VS has less than 144c2sep vertices, then the procedure
updates the value of R in a straightforward way. As we will see later G[A ∪ VS] has at most
O(
√
n) vertices; hence, we can use any standard linear-space and polynomial-time algorithm

(e.g., Bellman-Ford algorithm) to do this task. Otherwise, ExtendReach divides the current
subarea [‘G]S into two smaller subareas with new separator vertex set S′

t+1 that is added to A.
It then explore two subareas by using numbers in the universal sequence σs to control the length
of paths in recursive calls.

Algorithm 1 ExtendReach(S, `)

Given: (as arguments) A sequence S = 〈(b1, S1, T1), . . . , (bt, St, Tt)〉 of triples of a binary label,
a cycle-separator, and an additional triangulation edge list, and a bound ` = 2s on the
length of path.
// In this description we use VS to denote the set of vertices of [‘G]S.
(as global variables) The input graph G, its triangulated planar embedding, the source
vertex v0, the goal vertex v∗, a set A of the currently considered vertices, and a Boolean
array R specifying known reachability from v0, for all v ∈ A.

Task: For each vertex v ∈ A, set R[v] = true if there is a path to v in G[A ∪ VS] of length at
most 2s from some vertex u ∈ A whose value R[u] before the current procedure execution
equals true.
// Invariant: A = {v0, v∗} ∪

∪
i∈[t] Si. R[v] = true ⇒ v is reachable from v0 in G.

1: if the number of vertices of Vt is less than 144c2sep then
2: Rt ← {u ∈ A : R[u] = true};
3: for each vertex v ∈ A do
4: R[v] ← true iff v is reachable from some u ∈ Rt in G[A ∪ VS] by a path of length ≤ `;

// Use any linear space and polynomial-time algorithm here.
5: end for
6: else
7: Use CycleSep and AddTri to create a new cycle separator St+1 of [‘G]S and its additional

triangulation edge lists T 0
t+1 and T 1

t+1;
8: S′

t+1 ← St+1 \ A; A ← A ∪ S′
t+1;

9: R[v] ← false for each vertex v ∈ S′
t+1;

10: for each ci = 2si in the universal sequence σs (where i ∈ [2s+1 − 1]) do
11: ExtendReach(〈(b1, S1, T1), . . . , (b2, St, Tt), (0, St+1, T

0
t+1)〉, ci);

12: ExtendReach(〈(b1, S1, T1), . . . , (b2, St, Tt), (1, St+1, T
1
t+1)〉, ci);

13: end for
14: A ← A \ S′

t+1;
15: end if

The correctness of Algorithm 1 is demonstrated in Lemma 3 below. From this, as summarized
in Theorem 1, it is clear that our algorithm correctly determines the reachability of vertex v∗
from vertex v0 in the input graph G.

Lemma 3. For any input instance G, v0, and v∗ of the planar reachability, consider any execu-
tion of ExtendReach(S, `) for some S = 〈(b1, S1, T1), . . . , (bt, St, Tt)〉 and ` = 2s. Let VS denote

6

the set of vertices of [‘G]S. For each vertex v that is in A before the execution, R[v] is set to true
during the execution if and only if there is a path to v in G[A ∪ VS] of length at most 2s, from
some vertex u ∈ A whose value R[u] before the execution equals true.

Proof. Suppose that there is a path p = u0, u1, . . . , uh in G[A ∪ VS], where (i) u0 and uh both
belong to A, (ii) h ≤ 2s, and (iii) R[u0] = true before executing the procedure. For the lemma,
it suffices to show that R[uh] is set true during the execution of the procedure.

We prove our assertion by induction on the size of VS. If |VS| ≤ 144c2sep, then it is clear from
the description of the procedure. Consider the case where |VS| > 144c2sep. Then the part from
line 7 of the procedure is executed. Let St+1, T

0
t+1, and T 1

t+1 be the separator and the edge lists
computed there. For any b ∈ {0, 1}, let Sb denote 〈(b1, S1, T1), . . . , (bt, St, Tt), (b, St+1, T

b
t+1)〉;

also let ‘Gb = [‘G]Sb (= [[‘G]S](b,St+1,T b
t+1)

) and V b = V(‘Gb) \ St+1.

We observe that p can be decomposed into some number x ≤ |A ∪ St+1| − 1 of subpaths
p1, p2, . . . , px, such that (i) both start(pj) and end(pj) belong to A∪St+1 for each j ∈ [x], (ii) the
internal vertices of pj belong either to V 0 or V 1 for each j ∈ [x], and (iii) end(pj) = start(pj+1)
for each j ∈ [x − 1], where by start(pj) and end(pj) we mean the start and end vertices of pj
respectively. Let hj denote the number of edges in path pj . By construction (i) hj ≥ 1 for all j ∈
[x], and (ii)

∑
j∈[x] hj = h ≤ 2s. Then by Lemma 1(a), the sequence 〈h1, . . . , hx〉 is dominated by

the universal sequence σs = 〈c1, . . . , c2s+1〉. That is, there exists a subsequence 〈ck1 , ck2 , . . . ckx〉
of σs such that hj ≤ ckj for all j ∈ [x]. Thus, for any j ∈ [x], if R[start(pj)] = true before the
execution of ExtendReach(S0, ckj), then we have R[end(pj)] = true after the execution because
of the induction hypothesis. Hence, by executing the fragment:

ExtendReach(S0, ck1); ExtendReach(S1, ck1); · · ·
· · · ExtendReach(S1, ckx−1); ExtendReach(S0, ckx); ExtendReach(S1, ckx);

we have R[end(px)] = true since R[start(p1)] = true by our assumption. Therefore, R[uh] (where
uh = end(px)) is set true as desired since the above fragment must be executed as a part of the
execution of line 10–13 of the procedure.

By analyzing the time and space complexity of our algorithm, we conclude as follows.

Theorem 1. For any input instance G, v0, and v∗ of the planar directed graph reachability
problem (where n is the number of vertices of G), our planar reachability algorithm determines
whether there is a path from v0 to v∗ in G in Õ(

√
n) space and polynomial-time.

Proof. The correctness of the algorithm follows immediately from Lemma 3. For the complexity
analysis, we consider the essential part, that is, the execution of ExtendReach(〈 〉, 2dlogne).

First we bound the depth of recursion during the execution. Let tmax denote the maximum
depth of recursive calls in the execution, for which we would like to show that tmax ≤ 2.5 log n
holds. Consider any depth t recursive call of ExtendReach; in other words, the execution of
ExtendReach(S, `) with a sequence S of length t. (Thus, the inital call of ExtendReach is
regarded as depth 0 recursive call.) Here some depth t subarea [‘G]S is examined; let nt be the
number of vertices of this subarea. Assume that nt ≥ 144c2sep. Then two smaller subareas of
[‘G]S are created and ExtendReach is recursively executed on them. Let nt+1 denote the number
of vertices of a lager one of these two smaller subareas. Then by Lemma 2 we have

nt+1 ≤
2nt

3
+ csep

√
nt ≤

3nt

4

since nt ≥ 144c2sep. Hence, tmax is bounded by 2.5 log n as desired because n(3/4)2.5 logn <
144c2sep.

For bounding the memory space used in the execution ExtendReach(〈 〉, 2dlogne), it is enough
to bound the number of vertices in A because the number of words needed to keep in the work

7

memory space during the execution is proportional to |A|. Note further that A= {v0, v∗}∪
∪

i∈[t] Si

at any depth t recursive call of ExtendReach. On the other hand, by using the above notation,
it follows from the above and Lemma 2 we have

|A \ {v0, v∗}| ≤
∑

i∈[tmax]

|Si| ≤
∑

i∈[tmax]

csep
√
ni

≤
∑

i∈[tmax]

csep

√(
3

4

)i−1

n ≤
(
csep
√
n
)∑

i≥0

(
3

4

)i/2
 = O(

√
n),

which gives us the desired space bound.
For bounding the time complexity by some polynomial, it suffices to show that the total

number of calls of ExtendReach is polynomially bounded. To see this, we estimate N(t, 2s), the
max. number of calls of ExtendReach during any depth t recursive call of ExtendReach(S, 2s)
that occurs in the execution of ExtendReach(〈 〉, 2dlogne). (Precisely speaking, N(t, 2s) = 0 if no
call of type ExtendReach(S, 2s) occurs.) Clearly, N(tmax, 2

s) = 0 for any s. Also it is easy to see
that N(t, 20) = 2 + 2N(t+ 1, 20) for any t < tmax; hence, we have N(t, 20) ≤ 2 · (2tmax−t − 1) ≤
2tmax−t+1. Consider any t < tmax and s ≥ 1. From the description of ExtendReach and the
property of the universal sequence σs (Lemma 1(b)), we have

N(t, 2s) = 2
∑

i∈[2s+1]

(1 +N(t+ 1, ci)) = 2s+2 +
∑

0≤j≤s

2s−jN(t+ 1, 2j),

from which we can derive N(t, 2s) = 2N(t+1, 2s)+2N(t, 2s−1). Then by induction we can show

N(t, 2s) ≤ 2tmax−t+s+1

(
tmax − t+ s

s

)
.

Thus, N(0, 2dlogne), the total number of calls of ExtendReach is polynomially bounded.

3 Cycle-separators

We define the notion of a cycle-separator. Throughout this section, we consider only undirected
graphs. In particular, we fix any sufficiently large planar undirected graph G = (V,E) and
discuss a method for defining/constructing a cycle-separator for G; all symbols containing G
(resp., V and E) are related to G (resp., V and E).

We begin with some basic notions and facts on planar graphs. A graph is planar if it can be
drawn on a plane so that the edges intersect only at end vertices. Such a drawing is called a
planar embedding. Here we use the standard way to specify a planar embedding of G; that is, a
sequence of vertices adjacent to v in a clockwise order around v under the planar embedding, for
all v ∈ V . We use N(v) to denote this sequence for v, which is often regarded as a set. We say
that a planar graph is triangulated if addition of any edge results in a nonplanar graph. For a
planar graph and its planar embedding, its triangulation (w.r.t. this planar embedding) means to
add edges to the planar graph until all its faces under the planar embedding (including the outer
one) are bounded by three edges. Allender and Mahajan [1] reduced the problem of computing
a planar embedding to the undirected reachability. Hence, by using the algorithm UReach of
Reingold, we can compute a planar embedding of G by using O(log n)-space. Once some planar
embedding is computed, it is also easy to obtain some triangulation w.r.t. this embedding. For
example, we can compute as follows: (i) identify all cycles (with some direction) with no edge
in its left or right side, and then (ii) triangulate each cycle by adding edges connecting all
vertices of the cycle to the vertex with the smallest index in the cycle. Altogether we have

8

an O(log n)-space algorithm that computes a triangulated planar embedding for a give planar
graph. In our reachability algorithm, the above O(log n)-space algorithm is used (implicitly)
before starting the actual computation to obtain some triangulated planar embedding for the
underlying graph of a given planar directed graph; after this, the algorithm keeps necessary
information to maintain some triangulated planar embedding for the current graph. Thus, we
may assume in the following that our target graph G is given with some triangulated planar
embedding.

3.1 Definition and construction of a cycle-separator

The Planar Separator Theorem guarantees that every planar graph has a separator of size O(
√
n)

that disconnects a graph into two subgraphs each of which has at most 2n/3 vertices, which we
call a 2/3-separator. Several efficient separator algorithms have been proposed, and based on
separator algorithms of Miller [9] and Gazit and Miller [6], Imai et al. [8] has shown O(

√
n)-space

and polynomial-time separator algorithm that yields a 2/3-separator. We use such a separator
algorithm as a black box in this paper. On the other hand, we introduce here a way to specify
two subgraphs disconnected by a separator in order to use them in the context of sublinear-space
computation.

A labeled-separator of G is a pair of a separator S and a set τ = {v1, . . . , vk} of vertices of G
(which we simply denote by Sτ) such that no two vertices of τ belong to the same connected
component of G[V \S]. Graphs G0

Sτ and G1
Sτ are two disconnected subgraphs of G[V \S] defined

by Sτ ; G0
Sτ =

∪k
i=1Ki where each Ki is the connected component of G[V \ S] containing vi,

and G1
Sτ is a subgraph of G consisting of all the other connected components of G[V \ S].

By the planarity, we can show that G[V \ S] has at most 2|S| − 4 connected components.
(Recall that we assumed G is triangulated and hence connected.) Thus, each labeled-separator
can be stored in Õ(|S|)-space. Furthermore, by using UReach, we can identify, for each vi ∈ τ ,
the connected component Ki containing vi in O(log n)-space. Since counting is also possi-
ble in O(log n)-space, for a given 2/3-separator, we can in fact collect connected components
K1, . . . ,Kk of G[V \ S] (and their representative vertices v1, . . . , vk) so that |V(G0

Sτ)| ≤ 2|V |/3
and |V(G1

Sτ)| ≤ 2|V |/3 hold with τ = {v1, . . . , vk}. The following lemma summarize these
observations.

Lemma 4. There exists an Õ(
√
n)-space and polynomial-time algorithm that yields a 2/3-

labeled-separator of size ≤ csep
√
n for a given triangulated planar graph, where csep is some

constant, which has been used in the previous section.

For using separators in our reachability algorithm, we need simple separators that can be used
like grid-separators for grid graphs. For this we introduce the notion of a cycle-separator and
show an efficient way to transform a given separator to a cycle-separator.

We first explain why we need this new separator notion. For using the above lemma, we
need to have a graph triangulated. Although we may assume that each connected component is
triangulated, some edges need to be added to triangulate its outer face; see, e.g., Figure 2. Then
some of the connected components created afterwards may use those added triangulation edges,
and in order to identify such connected components, we need to keep separator vertices and
the connectivity information around them. While we can identify G0

Sτ and G1
Sτ with S and τ ,

what we actually need is a way to identify G0
Sτ tGS and G1

Sτ tGS with additional triangulation
edges, and for this we need the information of edges incident to vertices in S that should be
cut to define, e.g., G0

Sτ tG S. This is easy for the grid case; for example, ‘G0 of Figure 1(b)
is obtained by simply cutting edges “above” the separator vertices of S. Unfortunately, on the
other hand, the number of such cut edges may become large to keep in the general planar graph
case, and there is no trivial way to compute them in polynomial-time on-the-fly in our recursive

9

v
0

K

K
1

K
1

K is one of the connected components separated from
the shaded part by separator vertices indicated by
small circles. After adding some edges in the outer
face ofK, K (with the triangulation edges) is divided
further (by the separator algorithm), and this yields
a connected component K1 and its label vertex v0.
Note that the triangulation edge added to the separa-
tor vertices is used in the connected component K1;
hence, the connectivity around separator vertices is
crucial for defining connected components.

Figure 2: An example that a labeled separator does not work

procedure. Thus, we introduce the notion of a cycle-separator, which may be regarded as a
generalization of the grid-separator.

Recall that we assume some planar embedding of G; the following notions are defined with
respect to this embedding. For any cycle C of G, we use a sequence 〈u1, . . . , ur〉 of vertices
of G in the order of appearing in C under one direction. We call such a sequence as a cycle
representation. In the following, we identify a cycle and its cycle representation; furthermore,
a cycle may be treated as a vertex set or an edge set. For any cycle representation C, let
Gin[C] (resp., Gout[C]) denote the subgraph of G consisting of vertices of G located in the left
(resp., right) of the cycle following the cycle representation. We note here that Gin[C] and
Gout[C] are disconnected in G[V \ C]. Thus, each cycle can be used as a separator. Intuitively,
a cycle-separator is a separator that is specified by a set of cycle representations; our notion of
cycle-separator is more restrictive, which will be defined later. The following lemma shows that
one can find some separator S′ consisting of cycles as a subset of a given separator S. Its proof
will be given in Subsection 3.3.

Lemma 5. Consider any labeled-separator Sτ of G with τ = {v1, . . . , vk}, and let K1, . . . ,Kk be
its associated connected components. Then we can define a labeled-separator S′τ ′ of G with τ ′ =
{v′1, . . . , v′k′} and a set {C1, . . . , Ch} of cycle representations satisfying the following properties
for the set {K ′

1, . . . ,K
′
k′} of connected components associated with S′τ ′:

(1) S′ ⊆ S, V(Gb
S′τ ′) ⊆ V(Gb

Sτ) ∪ S for any b ∈ {0, 1}, and G0
S′τ ′ =

∪
i∈[k′]K

′
i;

(2)
∪

i∈[h]G[Ci] = G[S′] (that is,
∪

i∈[h]Ci = S′);

(3) every two cycles Ci and Cj, i 6= j, are edge disjoint; and

(4) for each i ∈ [k′], there exist some t and some Cj1 , . . . , Cjt such that K ′
i =

∩
r∈[t]Gin[Cjr]

holds.

Using the notation above. From the property (4) of the lemma, each K ′
i is expressed as∩t

r=1Gin[Cjr] by using some cycles Cj1 , . . . , Cjt of S′. In fact, we show here a way to express
G0

S′τ ′ and G1
S′τ ′ by using the cycles {C1, . . . , Ch} of S′. Consider any cycle C of S′; recall that it

is a cycle representation with a certain orientation. Let E1(C) (resp., E0(C)) denote intuitively
the set of all edges of G that are incident from some vertex of C from its right (resp., left); let
E1(S′) =

∪
C∈S′ E1(C) and E0(S′) =

∪
C∈S′ E1(C). Then for each b ∈ {0, 1}, we define V b

S′ by

V b
S′ = { v ∈ V : v is connected to S′ by a path with no edge from E1−b(S′) }.

10

(a) (b)

S′ consists of three cycles C1, C2, C3, each of which has an orientation speci-
fied as in the figure. Dashed lines indicate the cuts corresponding to edges in
(a) E1(S′) and (b) E0(S′) respectively. Then shadow parts are respectively
(a) G[V 0

S′] and (b) G[V 1
S′].

Figure 3: (a) G[V 0
S′] and (b) G[V 1

S′]

Then G[V b
S′] is a subgraph of G consisting of vertices that are connected to some vertex of S′ in

G after cutting all edges in E1−b(S′); see Figure 3. We show below (i.e., Lemma 2) that G[V b
S′]

indeed represents Gb
S′τ ′ tG S′.

Now we define E1(S′) and E0(S′) formally. Consider any vertex u ∈ S′. It should be on some
cycle of S′, and let (v′, u) and (u, v) denote two edges adjacent to u in one of such cycles. Let
w1 be the right triangle adjacent vertex of (u, v), and let w1, . . . , wi, wi+1 be a clockwise ordered
sequence of N(v) starting from w1 such that wi+1 is the first vertex in S′. Usually wi+1 is v′,
but it could be a vertex on some other cycle of S′ (when these cycles share vertex u). We then
define E1

(u,v) by

E1
(u,v) = { {u,w1}, . . . , {u,wi} },

and define E1(S′) = ∪(u,v)∈S′E1
(u,v). We define E0(S′) similarly by using the reverse order (i.e.,

the counterclockwise order) of the planar embedding. Note that V b
S′(G) is defined as above with

these formally defined Eb(S′)’s.
The following lemma shows that this definition of E1(S′) and E0(S′) is consistent with our

intuition.

Lemma 6. For each b ∈ {0, 1}, Eb(S′) is the set of all edges of G that has one end point in S′

and the other end point in Gb
S′τ ′ .

Proof. We show the lemma only for E1(S′); the lemma for E0(S′) is proved similarly. Let Ê
denote the set of edges of G that has one end point in S′ and the other end point in G1

S′τ ′ . For

each cycle edge (u, v) of S′, it is easy to see that E1
(u,v) = {{u,w1}, . . . , {u,wi}} is a subset of Ê

because w1, which is the right adjacent vertex of (u, v), is in G1
S′τ ′ and other w2, . . . , wi, which

are all connected to w1 by some path not crossing any cycle of S′, are in G1
S′τ ′ . Hence, E1(S′)

⊆ Ê.
Next we show that Ê ⊆ E1(S′). For this, consider any edge {x, y} ∈ Ê. We may assume

that x ∈ S′ and y ∈ G1
S′τ ′ . Note that y ∈ N(x). We consider the reverse order (i.e., the

counterclockwise order) of the planar embedding of N(x) from y; let z be the first vertex that
is in S′, and w is the one that is just before z under this ordering. Note that (z, x) must be
an edge of some cycle of S′ so that w, which is also in G1

S′τ ′ , becomes the right adjacent vertex

11

of (z, x). Then it is easy to see that {x, y} appears in E1
(z,x) ⊆ E1(S′). Thus, Ê ⊆ E1(S′) as

desired. �

Lemma 7. For each b ∈ {0, 1}, we have V(Gb
S′τ ′) ∪ S′ = V b

S′ .

Proof. First note that V 0
S′ ∪ V 1

S′ = V and that V 0
S′ ∩ V 1

S′ = S′; the latter holds because removing
E0(S′) ∪ E1(S′) disconnects S′ from the other vertices of G. Thus, for the proof, it suffices to
show that V(G0

S′τ ′) ⊆ V 0
S′ and V(G1

S′τ ′) ⊆ V 1
S′ .

Consider any vertex v of G0
S′τ ′ and any vertex u in S′. Since G is connected, there is some path

p from v to u. We trace this path from v to u, and let x be the first vertex on this path that is in
S′ and let y be the one before x on this path. Clearly, y ∈ G0

S′τ ′ ; hence, from the above lemma,
{x, y} is an edge in E0(S′), and it is not in E1(S′). Also the above lemma guarantees that no
other edges {x, y} on the subpath of p from v to x belongs to E1(S′). Thus, v is connected to
x ∈ S′ even if we remove all edges in E1(S′); that is, v ∈ V 0

S′ . This proves that V(G0
S′τ ′) ⊆ V 0

S′ .
Similarly we can show that V(G1

S′τ ′) ⊆ V 1
S′ . �

Let us summarize what we have discussed. For a given labeled-separator Sτ , we showed a
way to define a subset S′ of S that can be used as a labeled-separator with some τ ′ ⊆ τ and
that is represented by a set {C1, . . . , Ch} of cycle representations. Furthermore, we can use
these cycle representations to determine G0

S′τ ′ and G1
S′τ ′ without using the label τ ′; that is,

G[V b
S′] = Gb

S′τ ′ tG S′ holds for each b ∈ {0, 1}. Also from our discussion above, it is easy to see
that there is an O(log n)-space algorithm that determines whether v ∈ V b

S′ for given b ∈ {0, 1},
S, and v ∈ V . In this paper, by a cycle-separator we mean a set S′ of cycle representations that
is obtained from some labeled-separator in the way we explained. Now Lemma 2 is immediate.
By using the algorithm given in Lemma 4, we can compute a 2/3-labeled-separator S of size
≤ csep

√
n from which we can compute a cycle separator S′ such that |V b

S′ | ≤ |V(Gb
Sτ)| + |S| ≤

(2/3)|V |+ csep
√
n holds (Lemma 5(1)). The computation can be done using O(

√
n)-space and

in polynomial-time.

3.2 Depth t subarea

In this subsection we use S to denote a cycle-separator. Intuitively, we can use G[V 0
S] and G[V 1

S]
to determine subareas. But in order to compute the reachability in each subarea recursively,
these subareas also need to be triangulated. We may assume that G is triangulated, and hence
the inside of each G[V b

S] is triangulated; but we need to triangulate its outer face. The following
lemma gives a way to do this triangulation.

Lemma 8. There exists a polynomial-time algorithm (which we refer as AddTri) that, for given
undirected graph G with its planar embedding, its cycle-separator S, and b ∈ {0, 1}, computes
edges added to triangulate G[V b

S] together with their planar embedding by using Õ(|S|)-space.
Remark. Recall that a planar embedding of G is specified as a sequence N(v) of v’s neighbors
for all vertices v. What the algorithm actually produces is a set T of revised N(v) for all vertices
v ∈ S, which we call additional triangulation edge list. Note that this edge list is expressed
in Õ(|S|)-space. Let [G]bS,T denote a graph obtained from G[V b

S] by adding triangulation edges
specified by T .

Proof. We explain a way that the algorithm AddTri adds new edges to vertices in S. The way
to modify N(v) follows easily, and we omit explaining it. In the algorithm, we need to identify
which vertex (resp., edge) of G belongs to G[V b

S]; we provide O(log n)-space algorithms for these
tasks in Lemma 9.

The algorithm adds edges for every “face” of G[V b
S], namely, a connected component of G

that is separated from G[V b
S] by cutting edges in E1−b(S). Consider one of such faces, and let

12

(a) (b)

(c)

(d) (e)

This figure shows how edges are added at each step of the triangulation algorithm
explained in Lemma 8. In this example, the situation where G[V b

S] has a face with
three cycles as (a). The other side of each cycle (i.e., the shadow parts) is a part of
G[V b

S].

Figure 4: Each step of the triangulation algorithm

13

This figure illustrates the idea of
checking whether a given vertex v ex-
ists in [G]01(S1,T1),(S2,T2)

. K1 and K2 are

connected components of G0
(S1,T1)

that
are surrounded by cycles C1 and C2

respectively. On the other hand, C3

is a cycle-separator of S2 that defines
([G]0(S1,T1)

)1(S2,T2)
(the shaded parts).

We cut edges along dashed lines and
check whether v is reachable to S2

(= C3).

Figure 5: The idea of testing whether v exists in [G]01(S1,T1),(S2,T2)

F denote it. The algorithm identifies all cycles, say, C1, . . . , Cr, of S facing to F (Figure 4(a));
that is, these are cycles incident to F with edges in E1−b(S). Note that the order of these cycles
is not essential because there is no edge among them in G[V b

S]. Once these cycles are identified,
the algorithm ignore vertices and edges not in G[V b

S].
The algorithm transforms each of these cycles to a triangle as Figure 4(b); that is, for each

Ci, the algorithm identifies its vertex v with the smallest index, and connect the other vertices
of Ci to v except for two vertices adjacent to v in Ci. Then we obtain triangulated cycles, which
we still refer as C1, . . . , Cr.

Consider now triangle C1. We assume (by reversing the order if necessary) that the face is on
the left side of C1 under the cycle representation of its three vertices, and let 〈u, v, w〉 be this
cycle representation. We name u, v, and w as vout1 , vin1 , and vtop1 respectively. Similarly, we give
names to three vertices of the other cycles. Then the algorithm adds an edge connecting vout1

and vin2 , vout2 and vin3 , . . ., voutt and vin1 (Figure 4(c)).
We now have two faces, one surrounded by cycle Cout := (vout1 , vin2 , vout2 ,

. . . , vint , voutt , vin1) and one surrounded by cycle Cin := (vout1 , vin2 , vtop2 , vout2 , . . . ,
vtopt , voutt , vin1 , vtop1). Remaining work is similar to the previous step. For the former face, edges
are added to connect vout1 and all other vertices of Cout; Figure 4(d)). For the latter face, edges
are added to connect vout1 and all other vertices of Cin; Figure 4(e)).

The algorithm considers only edges and vertices of S. Therefore, Õ(|S|)-space is sufficient for
running this algorithm. �

Finally we explain a way to identify a depth t subarea of G. Recall that it is specified by a
sequence S = 〈(b1, S1, T1), . . . , (bt, St, Tt)〉 as follows:

[G]S =

[
· · ·

[
[G]b1S1,T1

]b2
S2,T2

· · ·
]bt
St,Tt

,

The task of identifying this subarea is to determine a given vertex (resp., an edge) is in the
graph [G]S. We show a O(log n)-space algorithm for these tasks.

Lemma 9. There exist O(log n)-space algorithms that recognize respectively vertices and edges
of [G]S that is specified by S = 〈(b1, S1, T1), . . . , (bt, St, Tt)〉.

Proof. For any k ∈ [t], let Vk = V
(
[G]Sk

)
and Ek = E

(
[G]Sk

)
, where Sk = 〈(b1, S1, T1), . . . , (bk, Sk, Tk)〉.

Also define Ẽk and T̃k by

Ẽk =
∪
i∈[k]

E1−bi(Si), and T̃k =
∪
i∈[k]

Ti.

14

Then for any {u, v}, it is an edge in Et if and only if both u and v are vertices of Vt and it is an
edge in E ∪ T̃t \ Ẽt. Hence, the task of checking whether a given edge is in [G]S is reduced to
that of checking its two end points are in [G]S. Thus, we only need to design an algorithm that
checks whether a given v ∈ V exists in [G]S.

The idea of the algorithm is illustrated in Figure 5. It checks whether v is reachable to some
vertex in St by using only edges from E∪ T̃t \ Ẽt We can implement this check as some O(log n)-
space algorithm by using UReach. Note that whenever UReach asks whether an edge exists in
E ∪ T̃t \ Ẽt, it can be answered in O(log n)-space by using S given as input.

We show that this idea indeed works. More precisely, we prove

v ∈ Vt ⇔ v is connected to some vertex in St in G[E ∪ T̃t \ Ẽt] (1)

holds inductively.
The case where t = 1 is explained right after the proof of Lemma 7. (Note that the triangu-

lation does not change the connectivity of vertices not in S1.)
For the induction step, for any t ≥ 2, we suppose (1) holds for t − 1 and show that it holds

for t. First we note that no w 6∈ Vt−1 is reachable to St in G[E ∪ T̃t \ Ẽt]. To see this, first note
that St ⊆ Vt−1; hence, every vertex in St is reachable to St−1 in G[E ∪ T̃t−1 \ Ẽt−1]. Thus, if
some w 6∈ Vt−1 were reachable to St by using edges in E ∪ T̃t \ Ẽt, then it must be reachable to
St−1 by using edges in E ∪ T̃t−1 \ Ẽt−1, contradicting the induction hypothesis. (Note that Tt, a
set of edges among St, does not change the reachability.) Therefore, for any v 6∈ Vt−1, we have
that (i) v 6∈ Vt and (ii) v is not reachable to St in G[E ∪ T̃t \ Ẽt], implying (1).

Now consider any v ∈ Vt−1, i.e., a vertex of [G]St−1 . Then by inductive definition of Vt

(= V
(
[G]St

)
), we see that

v ∈ Vt ⇐⇒ v ∈ V
([

[G]St−1

]bt
St

)
.

That is,

v ∈ Vt ⇐⇒ v is reachable to St by using edges in Et−1 \ E1−bt

⇐⇒ v is reachable to St by using edges in
(
E ∪ T̃t−1 \ Ẽt−1

)
\ E1−bt ,

where the last characterization follows from the following facts: (i) Et−1 is the set of edges in
E ∪ T̃t−1 \ Ẽt−1 whose two end points are in Vt−1, and (ii) no vertex w 6∈ Vt−1 is reachable
to St by using edges in E ∪ T̃t−1 \ Ẽt−1. From the last characterization, we have (1) since(
E ∪ T̃t−1 \ Ẽt−1

)
\ E1−bt = E ∪ T̃t−1 \ Ẽt and adding Tt does not change the reachability

situation. �

3.3 Proof of Lemma 5

We give a proof of our main technical lemma.
First, define S′ and τ ′. We define vertices for S′ by using edges of G[S] that are “borders”

of G0
S and G1

S . More precisely, for any edge {u, v} of G[S], we consider two triangles {w, u, v}
and {w′, u, v} adjacent to {u, v}. (Below we refer these w and w′ as adjacent triangle vertices
of {u, v}.) Edge {u, v} is regarded as a border edge if and only if

¬
[
∃b ∈ {0, 1}

[
w ∈ Gb

S ∧ w′ ∈ Gb
S

]]
holds, that is, they do not belong to the same subgraphs defined by S. Let E′

all be the set of
all such border edges. We define S′ to be the set of end points of E′

all. Clearly S′ is a subset
of S, and we have V [Gb

S′] ⊆ V [Gb
S] ∪ S for any b ∈ {0, 1}. Then define τ ′ by removing all vj

15

Suppose that some vertex v ∈ G[E′]
is connected only to u in G[E′]. Then
only u is included in S′ from N(v), and
two adjacent triangle vertices w and w′

of {u, v} are connected in G[V \ S′].

Figure 6: Two triangle vertices of edge {u, v} (for Claim 1)

from τ = {v1, . . . , vk} that are connected to some vi for some i < j in G[V \ S′]. Also for each
vi ∈ τ ′, we define K ′

i to be a connected component of G[V \ S′] containing vi. Then it is easy
to see that S′ is a labeled-separator of G, and that K ′

1, . . . ,K
′
k′ are the connected components

associated with S′ such that G0
S′ =

∪
i∈[k′]K

′
i holds. Thus, the property (1) of the lemma holds.

Next we define a set of cycle representations consisting of vertices of S′. Consider connected
components K ′

1, . . . ,K
′
k′ associated with S′. For each K ′

i, we define cycle representations corre-
sponding to it. Fix one K ′

i and let K ′ denote it. Let E′ denote the set of edges of E′
all such that

K ′ contains one of its adjacent triangle vertices. We define cycle representations corresponding
to K ′ one by one (in any order) as follows:

(i) select one edge in E′ that has not been selected so far;

(ii) give a direction (u, v) to this edge so that its left adjacent triangle vertex belongs to K ′;
record it as the first edge of a new constructing cycle representation; record u as u0;

(iii) repeat the following until v becomes u0: let N′(v) be the set of vertices of G[E′] that are
adjacent to v; select w in N′(v) that is the immediately before vertex of u in the embedding
order around v; give a direction (v, w) to the edge; record (v, w) as the next cycle edge;
(u, v) := (v, w);

(iv) go back to (i) to create a new cycle representation.

We show below that the process yields desired cycle representations for K ′. Before showing
this, we prove some basic facts by the following three claims.

Claim 1. Degree of any vertex of G[E′] is at least 2.

Proof. Since G[E′] has no isolated vertex, degree of any vertex in G[E′] is at least 1. Hence, we
only need to prove that no vertex of v in G[E′] has degree 1. To prove this by contradiction,
suppose that there exists a vertex v in G[E′] with degree 1 in G[E′]. Let {u, v} be the only edge
incident to v in G[E′], and let w and w′ be its adjacent triangle vertices. Since {u, v} ∈ E′,
exactly one of its adjacent triangle vertices is in K ′, and we may assume that w belongs to K ′

and that w′ does not. Note on the other hand, since {u, v} is the unique edge incident to v in
G[E′], considering edges incident to v (in G), it is easy to see that w and w′ are connected in
K ′ ⊆ G[V \ S′] (see Figure 6); hence, w′ is also in K ′. A contradiction. � (Claim 1)

Claim 2. Let (v, w) be a directed edge recorded as a cycle edge in the above process. Then its
left adjacent triangle vertex belongs to K ′.

Proof. We prove this by induction. The base case is due to step (ii) where we give a direction
to the first recorded edge so that its left adjacent triangle vertex belongs to K ′.

For induction step, we consider some point in step (iii) when some vertex w is selected from
N′(v). Let (u, v) be the directed edge just have been recorded before this point. By induction

16

(a) (b)

Figure 7: Situation when w is selected twice (for Claim 3)

hypothesis, we may assume that the left adjacent triangle vertex of (u, v) belongs to K ′. Since
(u, v) ∈ E′, its right adjacent triangle vertex does not belong to K ′. By construction, w is the
vertex of N′(v) that is located immediately before u in the embedding order around v. Let
(w,w1, . . . , wr, u) be the embedding order around v in G. Note that w1, . . . , wr 6∈ G[E′]. For
showing the left adjacent triangle vertex of (v, w) is in K ′, it suffices to show that w1, the right
adjacent triangle vertex of (v, w), does not belong to K ′. To show that w1 is not in K ′, observe
first that wr is the right adjacent triangle vertex of (u, v); hence, wr is not in K ′ as confirmed
above. Consider wr−1 next. Since {v, wr} is not in E′, both of adjacent triangle vertices of
{v, wr} belong to K ′, or neither of them belongs to K ′. Since u, the one of adjacent triangle
vertex of {v, wr}, does not belong to K ′, wr−1, the other one of adjacent triangle vertex of
{v, wr}, does not belongs to K ′ either. Similarly, we can show that none of wr−2, . . . , w1 is in
K ′; in particular, w1 is not in K ′ as desired. � (Claim 2)

Claim 3. Consider the iterations at step (iii), and let w be the vertex selected at one of the
iterations. Then w is not selected during the current cycle construction unless w = u0.

Proof. To prove the claim by contradiction, suppose that w 6= v0 is selected again at step (iii)
and that (v, w) is recorded as the next cycle edge. Let (x,w) and (w, y) be two edges recorded
as parts of the current cycle before.

First we show that v is not on the right of (x,w). For this, suppose that v were on the right
of (x,w) and consider the iteration at (iii) where u, v, w correspond to x, w, y (see Figure 7(a));
that is, (x,w) has been recorded and y is selected as a vertex in N′(w) that is immediately before
x in the embedding around w. Recall that our embedding is given in the clockwise order; hence,
v must have been selected instead of y. A contradiction.

Next suppose that v were on the left of (x,w). Then we have a cycle C ′ starting from (w, y)
ending by (v, w), and x is not Cin[C

′] (see Figure 7(b)). Let a (resp., b) be the left adjacent
triangle vertex of (x,w) (resp., (w, y)). Then it is easy to see that a is in Gin[C

′] and b is in
Gout[C

′]; thus, a and b are not connected in G[E \ C ′] (and hence not connected in G[E \ E′]
either). On the other hand, by Claim 2, both a and b must be in K ′, a connected component of
G[E \ E′]. A contradiction. � (Claim 3)

Now from the above claims, it is clear that one cycle representation is constructed by step
(i)-(iii). Also it is easy to see that our process defines a set of cycles using all edges in E′. This
set of cycles is defined for each K ′

i, and the final set of cycle representations is the union of all
these sets of cycles. Note that every edge of E′

all is chosen in E′ for some K ′
i. Hence, every edge

in E′
all appears in some cycle; on the other hand, only edges in E′

all are used for cycle edges.
From these observations, the property (2) of the lemma follows.

For the property (3), suppose that we created two cycles Ci and Cj that share some edge
{u, v} (in either direction) and derive a contradiction. Note that {u, v} belongs to E′

all, that is,
{u, v} is a border edge.

17

First consider the case where these cycles are defined for different K ′
i (for Ci) and K ′

j (for
Cj). Then {u, v} is selected in E′ when K ′ = K ′

i; hence, one of its triangle vertex must be in
K ′

i. Then similarly, the other triangle vertex must be in K ′
j . Thus, these two triangle vertices

are both in G0
S , which contradicts to the assumption that {u, v} is a border edge.

Next consider the case where Ci and Cj are created for the same K ′. Suppose first that Ci

has (u, v) while Cj has (v, u). Since Ci has (u, v), by Claim 2 K ′ has the left adjacent triangle
vertex of (u, v). Similarly, the assumption that Cj has (v, u) implies that K ′ has the left adjacent
vertex of (v, u), which is the right adjacent vertex of (u, v). This contradicts to the assumption
that {u, v} is a border edge. Suppose next that (u, v) is a directed edge of both Ci and Cj ; we
may assume that (v, w) (resp., (v, w′)) is selected as the next edge of Ci (resp., Cj) for some
w 6= w′. Consider the process that defines Ci. This process selects w after recording (u, v).
Therefore w is the vertex of N′(v) that is located immediately before u in the embedding order
around v. The situation is the same for w′, and then w′ must be the vertex of N′(v) that is
located immediately before u in the embedding order around v. A contradiction.

For the property (4), recall that we have shown that G0
S′ =

∪k′

i=1K
′
i. Thus, it suffices to show

that each K ′
i is expressed as

∩
r Gin[Cjr] by using some Cj1 , . . . , Cjt defined by our process.

Let us focus any K ′
i; as above, let K ′ denote it, and let E′ denote the set of edges of G[S′]

such that one of its adjacent triangle vertex belongs to K ′. Also let C1, . . . , Cr denote cycles
that our process defines for K ′. Below we show that K ′ =

∩
j∈[r]Gin[Cj].

We first show thatK ′ ⊆
∩

j∈[r]Gin[Cj]. Consider any C ′ of C1, . . . , Cr. SinceK
′ is a connected

component of G[V \ S′] and C ′ ⊆ G[S′], K ′ is a connected component of G[V \ C ′]. Thus, due
to the property of cycles, we have either K ′ ⊆ Gin[C

′] or K ′ ⊆ Gout[C
′] and (and not both).

Here, consider step (ii) of the process for defining C ′; as explained there the edge direction is
determined so that Gin[C

′] has some vertex in K ′. Thus we have K ′ ⊆ Gin[C
′].

Next we show that K ′ ⊇
∩

j∈[r]Gin[Cj]. For this, we show that for any v ∈ V , we have

v ∈
∩

j∈[r]Gin[Cj]⇒ v ∈ K ′. To prove its contraposition, consider any vertex v0 6∈ K ′, and show
v0 6∈

∩
j∈[r]Gin[Cj]. This conclusion is clear when v0 is in some cycle of C1, . . . , Cr. Thus, we

assume that v0 6∈ K ′ ∪
∪

j∈[r]Cj . Consider any path (v0, . . . , vp) in G such that vp ∈
∪

j∈[r]Cj

while none of v1, . . . , vp−1 belongs to
∪

j∈[r]Cj . Note that v0 and vp−1 are connected by a path
not intersecting with any cycle of C1, . . . , Cr. Let (vp−1, w1, . . . , wq−1, wq) be a subsequence
of planar embedding N(vp) around vp such that wq is the first vertex in

∪
j∈[r]Cj . Let C ′ be

one of C1, . . . , Cr that contains {vp, wq}. We show below that wq 6∈ Gin(C
′), which implies

v0 6∈ Gin(C
′) as desired because wq is connected to vp−1 (and hence, connected to v0) by a path

not intersecting with any cycle of C1, . . . , Cr.
Suppose contrary that wq ∈ Gin(C

′). Then by definition of Gin(C
′), wq must be located in the

left of C ′, and it must be the left triangle adjacent vertex of either (vp, wq) or (wq, vp). Thus,
by Claim 2, wq belongs to K ′, and this implies that v0 ∈ K ′ since wq is connected to v0 by a
path not intersecting with any cycle of C1, . . . , Cr. A contradiction. This completes the proof
of Lemma 5.

References

[1] E. Allender and M. Mahajan, The complexity of planarity testing, Information and Com-
putation, 189(1):117–134, 2004.

[2] T. Asano and B. Doerr, Memory-constrained algorithms for shortest path problem,p in
Proc. of the 23th Canadian Conf. on Comp. Geometry (CCCG’93), 2011.

[3] T. Asano and D. Kirkpatrick, A O(
√
n)-space algorithm for reporting a shortest path on a

grid graph, in preparation.

18

[4] G. Barnes, J.F. Buss, W.L. Ruzzo, and B. Schieber, A sublinear space, polynomial time
algorithm for directed s-t connectivity, in Proc. Structure in Complexity Theory Conference,

[5] J. Edmonds, C.K. Poon, and D. Achlioptas, Tight lower bounds for st-connectivity on the
NNJAG model, SIAM J. Comput., 28(6):2257–2284, 1999.

[6] H. Gazit and G.L. Miller, A parallel algorithm for finding a separator in planer graphs, in
Proc. of the 28th Ann. Sympos. on Foundations of Comp. Sci. (FOCS’87), 238–248, 1987.

[7] M.R. Henzinger, P. Klein, S. Rao, and S. Subramanian, Faster shortest-path algorithms for
planar graphs, Journal of Comput. Syst. Sci. 55:3–23, 1997.

[8] T. Imai, K. Nakagawa, A. Pavan, N.V. Vinodchandran, and O. Watanabe, An O(n
1
2
+ε)-

space and polynomial-time algorithm for directed planar reachability, in Proc. of the 28th
Conf. on Comput. Complexity (CCC’13), 277–286, 2013.

[9] G.L. Miller, Finding small simple cycle separators for 2-connected planar graphs, J. Comput.
Syst. Sci., 32(3):265–279, 1986.

[10] R.J. Lipton and R.E. Tarjan, A separator theorem for planar graphs, SIAM Journal on
Applied Mathematics 36 (2):177–189, 1979.

[11] N. Pippenger and M.J. Fischer, Relations among complexity measures, J. ACM, 26 (2):361–
381, 1979.

[12] O. Reingold, Undirected connectivity in log-space, J. ACM, 55(4), 2008.

[13] A. Wigderson, The complexity of graph connectivity, in Proc. 17th Math. Foundations of
Comp. Sci. (MFCS’92), LNCS 629, 112–132, 1992.

19

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

