
Depth Lower Bounds against Circuits with Sparse

Orientation

Sajin Koroth∗ Jayalal Sarma M.N.∗

April 29, 2014

Abstract

We study depth lower bounds against non-monotone circuits, parametrized by a
new measure of non-monotonicity: the orientation1 of a function f is the characteristic
vector of the minimum sized set of negated variables needed in any DeMorgan2 circuit
computing f . We prove trade-off results between the depth and the weight/structure
of the orientation vectors in any circuit C computing the CLIQUE function on an n

vertex graph. We prove that if C is of depth d and each gate computes a Boolean func-
tion with orientation of weight at most w (in terms of the inputs to C), then d×w must
be Ω(n). In particular, if the weights are o(n

logk n
), then C must be of depth ω(logk n).

We prove a barrier for our general technique. However, using specific properties of the
CLIQUE function (used in [5]) and the Karchmer-Wigderson framework [12], we go
beyond the limitations and obtain lower bounds when the weight restrictions are less
stringent. We then study the depth lower bounds when the structure of the orienta-
tion vector is restricted. Asymptotic improvements to our results (in the restricted
setting), separates NP from NC. As our main tool, we generalize Karchmer-Wigderson
game [12] for monotone functions to work for non-monotone circuits parametrized by
the weight/structure of the orientation. We also prove structural results about orien-
tation and prove connections between number of negations and weight of orientations
required to compute a function.

1 Introduction

Deriving size/depth lower bounds for Boolean circuits computing NP-complete problems
has been one of the main goals in circuit complexity. Attempts to prove size lower bounds
against constant depth circuits has yielded useful results (see survey [1, 2] and textbook [11]).

∗Department of CSE, Indian Institute of Technology Madras, Chennai 600036, India.
1A generalization of monotone functions are studied under the name unate functions(cf. [8]). We inherit

the terminology of orientation from that setting. We remark that our definition is universal unlike the case
of unate functions.

2Circuits where negations appear only at the leaves.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 72 (2014)

However, despite many efforts, for computing explicit functions, the best size lower bound
known against general circuits is still a constant factor on the number of inputs [9], and
the best depth lower bound known against general bounded fan-in circuits is (derived from
formula size lower bound due to H̊astad [18]) which is less than 3 log n.

Notable progress has been made in proving lower bounds against monotone circuits.
Razborov [16] proved a super-polynomial size lower bound against monotone circuits com-
puting the CLIQUE function which is NP-hard. This was further strengthened to expo-
nential lower bounds by Alon and Boppana [3]. A super polynomial monotone size lower
bound is also known [17] for the PMATCH problem. The latter result also showed that
non-monotonicity helps in size restricted settings as PMATCH is known to be in P[6].

Moving in the direction of non-monotonicity, Amano and Maruoka [5] established super-
polynomial lower bounds against circuits with at most 1

6
log log n negations computing the

CLIQUE function. A chasm was already known at the log n negations; Fisher [7] proved
that any circuit of polynomial size can be converted to a circuit of polynomial size that has
only log n negations. In particular, this implies that if we are able to extend the technique of
lower bounds to work against circuits having log n negations, then it separates P from NP.
The gap was further tightened by Jukna [10] (for multi-output functions), where he showed
a super-polynomial size lower bound against circuits with log n− 16 log log n negations.

In terms of depth lower bounds, it is known that CLIQUE function and the PMATCH
function on graphs of n vertices require Ω(n) depth for any bounded fan-in monotone circuit
computing them [15]. Thus, non-monotonicity is useful in the depth restricted setting also,
as PMATCH is known to be in non-uniform NC

2 [13]. One main technique involved in
the monotone depth lower bound for PMATCH [15] is a characterization of circuit depth
using a communication game defined between two players. Raz and Wigderson [14] used this
framework to obtain a lower bound of Ω(n2) on the number of negations at the leaves for any
O(log n) depth DeMorgan circuit solving the s-t connectivity problem. However, we do not
know3 depth lower bounds against circuits where there are negations at arbitrary locations
using the Karchmer-Wigderson framework.

1.1 Our Results

We study an alternative way of limiting the non-monotonicity in the circuit. To arrive at
our restriction, we define a new measure called orientation of a Boolean function.

Definition 1. A function f : {0, 1}n → {0, 1} is said to have orientation β ∈ {0, 1}n if there
is a monotone function h : {0, 1}2n → {0, 1} such that : ∀x ∈ {0, 1}n , f(x) = h(x, (x⊕ β)).

The orientation of a Boolean function is simply the indicator vector of the set of inputs
which are required to be negated in any DeMorgan circuit computing the function f . In-
deed, if f itself is monotone, the orientation is simply the all-0s vector. The weight of the

3Indeed, size lower bounds against bounded fan-in circuits in the presence of negations [5] also imply
depth lower bounds against them. In particular, [5] implies that any circuit with 1

6
log log n negation gates

computing CLIQUE(n, (log n)
√
logn) requires depth Ω((log n)

√
logn).

2

orientation is simply the number of 1s in β, and can be thought of as a parameter indicating
how “close” f is to a monotone function.

The same definitions can be extended to circuits as well. We consider circuits where the
function computed at each gate can be non-monotone, but the corresponding orientation
(with respected to the inputs to the circuit) must be of limited weight. We say a circuit C is
weight w oriented if every internal gate of C computes a function which has an orientation
β with |β| ≤ w. The semantic restriction we study limits the weight of the orientation of the
function computed at each gate of the circuit (in terms of the original inputs of the circuit).
We prove the following theorem which presents a depth vs weight trade-off.

Theorem 1. If C is a Boolean circuit of depth d and weight of the orientation w (w > 0),
computing CLIQUE then, d× w must be Ω(n).

In particular, if the weights are o(n
logk n

), the CLIQUE function requires ω(logk n) depth.

By contrast, any circuit computing CLIQUE has weight of the orientation at each gate at
most n2. We prove the above theorem by extending the Karchmer-Wigderson framework
to the case of non-monotone sparsely oriented circuits. The proof critically requires the
route via Karchmer-Wigderson games since it is unclear how to directly simulate the above
non-monotone circuit model using a monotone circuit. We remark that the above theorem
applies even to circuits computing PMATCH.

The difficulty in extending the above lower bound to more general lower bounds is the
potential presence of gates computing densely oriented functions. In this context, we explore
the usefulness of having gates with non-zero orientation in the circuit. We argue that allow-
ing even a constant number of non-zero (but dense) oriented gates makes the circuit more
powerful in the limited depth setting. In particular, we show (see Theorem 11) that:

Theorem 2. There exists a monotone function f which cannot be computed by poly-log depth
monotone circuits, but there is a poly-log depth circuit computing it such that there are at
most two internal gates which has a non-zero orientation β.

We note that the function in Theorem 11 is derived as a restriction from the non-uniform
NC

2 circuit computing PMATCH and hence is not explicit. The above theorem indicates
that the densely oriented gates are indeed useful, and that Theorem 1 cannot be improved in
terms of the number of densely oriented gates it can handle, without using specific properties
about the function(for example, CLIQUE) being computed.

Going beyond the above limitations, we exploit the known properties of the CLIQUE
function and the generalized Karchmer-Wigderson games to prove lower bounds against less
stringent weight restrictions (in particular, we can restrict the weight restrictions to only
negation gates and their inputs).

Theorem 3. For any circuit family C = {Cm} (where m =
(

n
2

)

) computing CLIQUE(n, n
1
6α)

where there are ℓ+ k negation gates, with ℓ ≤ 1/6 log log n, α = 2ℓ+1 − 1 and the k negation
gates in Cm are computing functions which are sensitive only on w inputs (i.e., the orien-
tation of their input as well as their output is at most w) and the remaining ℓ negations

compute functions of arbitrary orientation: Depth(Cm) ≥ n
1

22
ℓ+8 − kw − ℓ

3

This theorem implies that CLIQUE cannot be computed by circuits with depth no(1)

even if we allow some constant number of gates to have non-zero (even dense) orientation -
thus going beyond the earlier hurdle presented for PMATCH. We remark that the above
theorem also generalizes the case of circuits with negations at the leaves (ℓ = 0, and w = 1).

As far as we know, the above theorem is the first instance of a lower bound which
combines the approximation method with the Karchmer-Wigderson games. It also gives
hope that by using properties of CLIQUE (like hardness of approximation [4] used by [5])
we can possibly push the technique further.

We also explore the question of the number of densely oriented gates that are required in
an optimal depth circuit. We establish the following connection to the number of negations
in the circuit.

Theorem 4. For any circuit C with t negations, there is a circuit C ′ computing the same
function such that Size(C ′) ≤ 2t × (Size(C) + 2t) + 2t, and there are at most 2t−1(t+2)− 1
internal gates whose orientation is a non-zero vector.

We now turn to circuits where the structure of the orientation is restricted. The restriction
is on the number of vertices of the input graph involved in edges indexed by β.

Theorem 5. If C is a circuit computing the CLIQUE function and for each gate g of C,
the number of vertices of the input graph involved in edges indexed by βg (the orientation
vector of gate g) is at most w, then d× w must be Ω(n

logn
).

We also study a sub-class of the above circuits for which we prove lower bound results
very close to the required ones. A circuit is said to be of uniform orientation if there exists
a β ∈ {0, 1}n such that every gate in it computes a function which has orientation β.

Theorem 6. Let C be a circuit computing the CLIQUE function, with uniform orientation
β ∈ {0, 1}n such that there is a subset of vertices U , |U | ≥ logk+ǫ n for which βe = 0 for all
edges e within U , then C must have depth ω(logk n).

We remark that a DeMorgan circuit has an orientation of weight exactly equal to the
number of negated variables. However, this result is incomparable with that of [14] against
DeMorgan circuits for two reasons : (1) this is for the CLIQUE function. (2) the lower
bounds and the class of circuits are different.

In contrast to the above theorem, we show that an arbitrary circuit can be transformed
into one having our structural restriction on the orientation with |U | = O(logk n).

Theorem 7. If there is a circuit C computing CLIQUE with depth d then for any set of
c log n vertices U , there is an equivalent circuit C

′
of depth d + c log n with orientation β

such that none of the edges e(u, v), u, v ∈ U has βe(u,v) = 1.

Thus if either Theorem 6 is extended to |U | = Ω(logk n) or the transformation in Theo-
rem 7 can be modified to give |U | = O(logk+ǫ n) for some constant ǫ > 0, then a depth lower
bound for CLIQUE function against general circuits of depth O(logk n) will be implied.

4

2 Preliminaries

For x, y ∈ {0, 1}n, x ≤ y if and only if for all i ∈ [n], xi ≤ yi. A Boolean function f is said
to be monotone if for all x ≤ y, f(x) ≤ f(y). In other words value of a monotone function
does not decrease when input bits are changed from 0 to 1.

For a set U , we denote by
(

U
2

)

the set {{u, v} |u, v ∈ U}. In an undirected graph G =

(V,E), a clique is a set S ⊆ V such that
(

S
2

)

⊆ E(G). CLIQUE(n, k) is a Boolean function

f : {0, 1}(
n
2) → {0, 1} such that for any x ∈ {0, 1}(

n
2), f(x) = 1 if Gx, the undirected graph

represented by the undirected adjacency matrix x has a clique of size k. CLIQUE(n, k)
is a monotone function as adding edges (equivalent to turning 0 to 1 in adjacency matrix)
cannot remove a k-clique, if one already exists. By CLIQUE, we denote CLIQUE(n, n

2
).

A perfect matching of an undirected graph G = (V,E) is a M ⊆ E(G) such that no two
edges in M share an end vertex and it is such that every vertex v ∈ V is contained as an end

vertex of some edge in M . Corresponding Boolean function PMATCH : {0, 1}(
n
2) → {0, 1}

is defined as PMATCH(x) = 1 if Gx contains a perfect matching. It is easy to note that
PMATCH is also a monotone function.

A circuit is a directed acyclic graph whose internal nodes are labeled with ∧, ∨ and ¬
gates, and leaf nodes are labeled with inputs. The function computed by the circuit is the
function computed by a designated “root” node. All our circuits are of bounded fan-in.
The depth of a circuit C, denoted by Depth(C) is the length of the longest path from root
to any leaf, and Depth(f) denotes the minimum possible depth of a circuit computing f .
By Deptht(f) we denote the minimum possible depth of a circuit computing f with at
most t negations. Size of a circuit is simply the number of internal gates in the circuit, and
is denoted by Size(C). Size(f),Sizet(f) are defined analogous to Depth(f),Deptht(f)
respectively. We refer the reader to a standard textbook (cf. [19]) for more details.

We now review the Karchmer-Wigderson games and the related lower bound framework.
The technique is a strong connection between circuit depth and communication complexity
of a specific two player game where the players say Alice and Bob are given inputs x ∈ f−1(1)
and y ∈ f−1(0), respectively. In the case of general circuits, the game is denoted by KW(f)
and the goal is to find an index i such that xi 6= yi. In the case of monotone circuits, the game
is denoted by KW+(f) and the goal is to find an index i such that xi = 1 and yi = 0. We
abuse the notation and use KW(f) and KW+(f) to denote the number of bits exchanged in
the worst case for the best protocols for the corresponding communication games. Karchmer
and Wigderson [12] proved that for any function f depth of the best circuit computing f ,
denoted by Depth(f) is equal to KW(f). For any monotone function f the depth of the
best monotone circuit computing f , denoted by Depth+(f) is equal KW+(f). Raz and
Wigderson [15] showed that KW+(CLIQUE) and KW+(PMATCH) are both Ω(n).

2.1 Characterization of Orientation

We recall the definition of orientation, A function f : {0, 1}n → {0, 1} is said to have
orientation β ∈ {0, 1}n if there is a monotone function h : {0, 1}2n → {0, 1} such that :

5

∀x ∈ {0, 1}n , f(x) = h(x, (x ⊕ β)). Thus, if β ∈ {0, 1}n is an orientation for a function f ,
then any β′ ≥ β is also an orientation for f by definition of orientation.

We first show that any function f(x) can be written in the form of definition as an
h(x, x⊕ β) for a monotone function h. Let C be any circuit computing f . Convert C into a
DeMorgan circuit C ′ by pushing down the negations by repeated application of De-Morgan’s
laws. In C ′ replace every x̄i with a new variable yi for every i ∈ [n]. Thus C ′ on inputs
x, y is a monotone function. Since there are n input variables at most n yi’s are needed.
Let h = C ′(x1, . . . , xn, y1, . . . , yn) be the monotone function computed by C ′ after replacing
the negated inputs by fresh variables. Clearly h satisfies the required form with β defined
as βi = 1 if and only if x̄i appears in C ′. Now if the function f has such a form, take any
monotone circuit Ch computing h. Replace all the inputs xi⊕βi where βi = 1 with x̄i and all
the inputs xi ⊕ βi where βi = 0 with xi in Ch. Thus we get a circuit C ′′ computing f , which
is De-Morgan and has negations only on variables where βi = 1. Thus for any function f
whose orientation is β, there is a circuit C of uniform orientation β. Because any sub-circuit
rooted at a gate of C ′′ is once again De-Morgan and has only negated variables which are a
subset of negated variables required for computing f .

We now establish that orientation is a well-defined measure. First we prove a sufficient
condition for the βi to be 1 in the orientation for a function f .

Proposition 8. For any function f , if there exists a pair (u, v) such that ui = 0, vi = 1,
u[n]\{i} = v[n]\{i} and f(u) = 1, f(v) = 0 then any orientation β of the function must have
βi = 1.

Proof. Let h be the monotone function corresponding to f for β such that ∀x, f(x) = h(x, x⊕
β). Assume to the contrary that βi = 0. Since u[n]\{i} = v[n]\{i}, we have that u[n]\{i} ⊕ β =
v[n]\{i} ⊕ β for any β. Hence (u, u⊕ β), (v, v ⊕ β) differs only in two indices, namely i, n+ i.
At i, ui = 0, vi = 1, and at n + i since βi = 0, un+i = 0, vn+i = 1. Hence we get that
(u, u⊕ β) < (v, v ⊕ β), but h(u, u⊕ β) = 1, h(v, v ⊕ β) = 0 a contradiction to monotonicity
of h.

It is not a priori clear that the minimal (with respect to < relation on the Boolean
hypercube) orientation for a function f is unique. We prove that it is indeed the case.

Proposition 9. Minimal orientation for a function f : {0, 1}n → {0, 1} is well defined
and it is β ∈ {0, 1}n such that βi = 1 if and only if there exists a pair (u, v) such that
ui = 0, vi = 1, u[n]\{i} = v[n]\{i} and f(u) = 1, f(v) = 0.

Proof. From Proposition 8 it is clear that any orientation β′ of a function f is such that
β ≤ β′. We claim that negations of variables in β suffices to compute f using a DeMorgan
circuit. Define a partial function h : {0, 1}2n → {0, 1} associated with orientation β of f as
h(x, x⊕β) , f(x). We claim that this partial function has an extension which is a monotone
function. We claim that for any u, v ∈ {0, 1}n such that u ≤ v and f(u) = 1, f(v) = 0,
there exists an i ∈ [n] such that ui = 0, vi = 1 and βi = 1. Let w0 = u ≤ w1 ≤ · · · ≤
wj ≤ wj+1 ≤ · · · ≤ wk = v be a chain between u and v. Take the minimum j such that
f(wj) = 1 and f(wj+1) = 0. Since wj, wj+1 satisfies assumptions of Proposition 8, for the

6

i where wj and wj+1 differs, βi = 1. Since u ≤ wj and ith bit of wj is 0, we get ui = 0.
Similarly vi = 1 as v ≥ wj+1 and jth bit of wj+1 is 1. With this claim we can prove that
for any (s, s ⊕ β) and (t, t ⊕ β) either they are incomparable or f(s) ≥ f(t) if and only if
(s, s ⊕ β) ≥ (t, t ⊕ β). Assume to the contrary that f(s) < f(t) and (s, s ⊕ β) ≥ (t, t ⊕ β).
Since (s, s ⊕ β) ≥ (t, t ⊕ β), s ≥ t and f(s) = 0, f(t) = 1 as f(s) < f(t). But then we are
guaranteed by the earlier claim an i ∈ [n] such that si = 1, ti = 0, βi = 1. Since βi = 1,
si ⊕ βi = 0 and ti ⊕ βi = 1 whereas si = 1, ti = 0 implying that (s, s ⊕ β) 6≥ (t, t ⊕ β),
a contradiction. Thus the partial function we defined will never have a chain with a 1 to
0 transition. It is easy to verify for any partial function h which does not have a 1 → 0
transition on any of its chains, a monotone function extending it can be obtained.

3 Lower Bound Argument for Sparsely Oriented Cir-

cuits

In this section, we prove Theorem 1 which shows the trade-off between depth and weight
of orientation of the internal gates of a circuit. We prove the following main lemma of our
paper.

Lemma 1. If C is a circuit of depth d such that each internal gate computes a Boolean
function whose orientation has weight at most w and C is computing a monotone function
f : {0, 1}n → {0, 1} which is sensitive on all its inputs, then d× (4w + 1) ≥ KW+(f).

Proof. The proof idea is to devise a protocol for KW+(f) using C having Depth(C) rounds
and each round having a communication cost of 4w + 1.

Alice is given x ∈ f−1(1) and Bob is given y ∈ f−1(0). The goal is to find an index i
such that xi = 1, yi = 0. The protocol is described in Algorithm 1.

We now prove that the protocol (Algorithm 1) solves KW+(f). The following invariant
which is maintained during the run of the protocol is crucial for the proof.

Invariant: When the protocol is at a node which computes a function f with orientation
vector β it is guaranteed a priori that the inputs held by Alice and Bob, x′ and y′ are equal
on the indices where βi = 1, f(x′) = 1, f(y′) = 0 and restriction of f obtained by fixing
variables where βi = 1 to x′

i(= y′i) is a monotone function.
Assuming that the invariant is maintained, we claim that when the protocol stops at an

input node of the circuit computing a function f with f(x′) = 1 and f(y′) = 0 then f = xi for
some i ∈ [n]. If the input node is a negative literal, say x̄i then by Proposition 8, orientation
of x̄i has βi = 1. By the guarantee that x′

β = y′β, x
′
i = y′i, contradicting f(x′) 6= f(y′).

Hence whenever the protocol stops at leaf node it is guaranteed that the leaf is labeled by a
positive literal. And when input node is labeled by a positive literal xi, then a valid solution
is output as f(x′) = 1, f(y′) = 0 implies x′

i = 1 and y′i = 0. Note that during the run of the
protocol we only changed x, y at some indices i, xi 6= yi to x′

i = y′i. Hence, any index where
x′
i 6= y′i it is the case that xi = x′

i and yi = y′i.

7

Algorithm 1 Modified Karchmer-Wigderson Protocol

1: {Let x′ and y′ be the current inputs. At the current gate g computing f , with the
input gates g1 and g2, f1 and f2 be the corresponding sub-functions and β1, β2 be the
corresponding orientations (and are known to both Alice and Bob). If g1 or g2 is a
negation gate, let γ1 and γ2 be the orientation vectors of input functions to g1 and g2,
otherwise they are 0-vectors. Let α = β1 ∨ β2 ∨ γ1 ∨ γ2. Let S = {i : αi = 1}, xS is the
substring of x indexed by S. }

2: if g is ∧ then
3: Alice sends x′

S to Bob. Bob compares x′
S with y′S.

4: if there is an index i ∈ S such that x′
i = 1 and y′i = 0 then

5: Output i.
6: else
7: Define y′′ ∈ {0, 1}n: y′′S = x′

S and y′′[n]\S = y′[n]\S.

8: Bob sends i ∈ {1, 2} such that fi(y
′′) = 0 to Alice. They recursively run the protocol

on gi with x′ = x′ and y′ = y′′.
9: end if

10: end if
11: if g is ∨ then
12: Bob sends y′S to Alice. Alice compares y′S with x′

S.
13: if there is an index i ∈ S such that x′

i = 1 and y′i = 0 then
14: Output i.
15: else
16: Define x′′ ∈ {0, 1}n: x′′

S = y′S and x′′
[n]\S = x′

[n]\S.

17: Alice sends i ∈ {1, 2} such that fi(x
′′) = 1 to Bob. They recursively run the protocol

on gi with x′ = x′′ and y′ = y′.
18: end if
19: end if

Now we prove the invariant. Note that it is vacuously true at the root gate as f is a
monotone function implying β = 0n, and in the standard KW+(f) game x ∈ f−1(1) and
y ∈ f−1(0). We argue that, while descending down to one of the children of the current node
the invariant is maintained. To begin with, we show that the protocol does not get stuck in
step 8 (and similarly for step 17). To prove this, we claim that at an ∧ gate f = f1 ∧ f2,
if the protocol failed to find an i in step 4 such that x′

i = 1, y′i = 0 then on the modified
input y′′ at least one of f1(y

′′) or f2(y
′′) is guaranteed to be zero. Since the protocol failed

to output an i such that x′
i = 1, y′i = 0, it must be the case that x′

i ≤ y′i for indices indexed
by β1, β2. Let U be the subset of indices indexed by β1 and β2 where xi = 0 and yi = 1. Bob
obtains y′′ from y′ by setting y′′i = 0 for all i ∈ U . Thus we have made sure that x′ and y′′

are the same on the variables whose negations are required to compute f, f1 and f2.
Consider the functions f ′, f ′′ : {0, 1}n−|β1∨β2| → {0, 1} which are obtained by restricting

the variables indexed by orientation vectors of f1 and f2 to the value of those variables in x′.
Both f ′ and f ′′ are monotone as they are obtained by restricting all negated input variables

8

of the DeMorgan circuits computing f1 and f2 for orientations β1 and β2 respectively. The
changes made to x′, y′ were only at places where they differed. Thus at all the indices where
x′, y′ were same, x′, y′′ is also same. Hence monotone restriction fx′

β
of f obtained by setting

variables indexed by β to their values in x′ is a consistent restriction for y′′ also. It is easy to
note that y′′ ≤ y′. Hence f(y′′) = 0 because y′′ agrees with y′ on variables indexed by β (as
x′′ agrees with y′ and y′′ on variables indexed by β) implying fx′

β
(y′′[n]\β) ≤ fx′

β
(y′[n]\β) = 0.

Since f(y′′) = 0, it is guaranteed that one of f1(y
′′), f2(y

′′) is equal to 0. Bob sets y′ = y′′ and
sends 0 if it is f1(y

′′) = 0 or 1 otherwise, indicating Alice which node to descend to. Note
that x′

β1
= y′′β1

, x′
β2

= y′′β2
and restriction of f1, f2 to x′

β1
, x′

β2
respectively gives monotone

functions f ′, f ′′ thus maintaining the invariant for both f1 and f2.
We claim that if any of the input gates g1, g2 to the current ∧ gate g is a ¬ gate then

the protocol will not take the path through the negation gate. To argue this, we use the
following lemma.

Lemma 2. If ℓ, ℓ̄ are functions with orientations β, γ, then for all x, y ∈ {0, 1}n such that
xβ∨γ = yβ∨γ, ℓ(x) = ℓ(y).

Proof. We know that for a function ℓ, if there exists a pair (u, v) ∈ {0, 1}n×{0, 1}n with u ≤
v, ui 6= vi, u[n]\{i} = v[n]\{i} and ℓ(u) = 1, ℓ(v) = 0 then by Proposition 8 for every orientation
β, βi = 1 . Let i be an index on which ℓ is sensitive, i.e., there exists (u, v) ∈ {0, 1}n×{0, 1}n

with u ≤ v, ui 6= vi, u[n]\{i} = v[n]\{i} and ℓ(u) 6= ℓ(v). Note that l is sensitive on i need
not force βi = 1, as it could be that ℓ(u) = 0 and ℓ(v) = 1. But in this case ℓ̄(u) = 1 and
ℓ̄(v) = 0, hence γi = 1 for ℓ̄. Hence, ℓ is sensitive only on indices in β ∨ γ.

The lemma establishes that at every negation gate in weight w oriented circuit, a function
which is sensitive on at most 2w indices is computed. Hence, the root gate cannot be a
negation gate for a function sensitive on all inputs if 2w < n. Suppose only one child is a
negation gate, say f1. Since we ensure x′

β1∨γ1
= y′′β1∨γ1

, the above lemma implies f1(x
′) =

f1(y
′′). But the protocol does not descend down a path where x′, y′′ are not separated. Hence

the claim.
This also proves that when the protocol reaches an ∧ node with both children negated,

at the round for that node protocol outputs an index i and stops. Otherwise, since we ensure
x′
S = y′′S, f1(y

′′) = f1(x
′) = 1 and f2(y

′′) = f2(x
′) = 1. But this contradicts the fact that at

a node f = f1 ∧ f2 either f1(y
′′) = 0 or f2(y

′′) = 0 (or both).
Proof of equivalent claims for an ∨ gate is similar except for the fact that Alice modifies

her input.
Thus, using the above protocol we are guaranteed to solve KW+(f). Communication

complexity of the protocol is upper bounded by Depth(C)× (4w+1). Communication cost
of a round is 4w + 1. Because if any of the children is a negation gate then we have to send
its orientation along with the orientation of its complement. The protocol clearly stops after
Depth(C) many rounds.

9

4 Dense Orientation

Currently our depth lower bound technique cannot handle orientations of weight n
logk n

or

more for obtaining ω(logk n) lower bounds. In light of this, we explore the usefulness of
densely oriented gates in a circuit. First we prove that any polynomial sized circuit can be
transformed into an equivalent circuit of polynomial size but having only O(n log n) gates of
non-zero orientation by studying the connection between orientations and negations. Next
we present a limitation of our technique in a circuit having only two gates of non-zero (but
dense) orientation. Thus, strengthening of our technique will have to use some property of
the function being computed. Finally we show how to use a property of CLIQUE function
to slightly get around the limitation.

4.1 From Negation Gates to Orientation

Since weight of the orientation can be thought of as a measure of non-monotonicity in a
circuit, a natural question to explore is the connection between the number of negations and
number of non-zero orientations required to compute a function f . We show the following:

Theorem 10. For any function f : {0, 1}n → {0, 1}, if there is a circuit family {Cn}
computing f with t(n) negations then there is also a circuit family {C ′

n} computing f such
that Size(C ′

n) ≤ 2t× (Size(Cn)+2t)+2t, and there are at most 2t−1(t+2)−1 internal gates
whose orientation is non-zero.

Proof. In Cn replace input of each negation by new variables y1, . . . , yt, thus obtaining a
circuit C

′′

n(x1, . . . , xn, y1, . . . , yt). Let g1, . . . , gt be the input to the t negation gates (in
topologically sorted order) in Cn. Note that for each setting of y1, . . . , yt to some b ∈
{0, 1}t, C

′′

n(x, b) is monotone circuit computing a monotone function on x1, . . . , xn. Hence
the orientation of each internal gate in C

′′

n(x, b) is zero. Let gi,b for i ∈ [t], b ∈ {0, 1}t denote
the monotone function computed by the sub-circuit Cgi of Cn rooted at gate gi, where
g1, . . . , gi−1 are set to b1, . . . , bi−1 respectively. Thus we can write f as:

f(x1, . . . , xn) =
∨

b∈{0,1}t

(

t
∧

i=1

gbii,b(x)

)

C
′′

n(x, b),

where g0 denotes g and g1 denotes g. When t = 1, then the above expression becomes
f(x) = g(x)C(x, 1)+g(x)C(x, 0). Thus in this case, ¬ computing g, ∧ computing g(x)C(x, 0)
and the root gate if it is computing a non-zero orientation function are the only gates with
non-zero orientation. Hence when t = 1 the circuit has at most three gates with non-zero
orientation if the root gate is non-monotone and two otherwise.

Consider the above formulation of a circuit C ′ computing f . Clearly Size(C ′) ≤ 2t ×
(Size(Cn) + 2t) + 2t. All internal gates in C ′′

n(a, b) are monotone. Non-zero orientation is
needed for computing:

•
∧

i∈[t],bi=0

gi,b

10

• ∧ of
∧

i∈[t],bi=0

gi,b with
∧

i∈[t],bi=1

gi,b ∧ C
′′
(x, b)

• the ∨-tree, computing
∑

of 2t terms which are potentially of non-zero orientation.

For computing
∧

i∈[t],bi=0

gi,b, we need an ∧ tree of t − |b|1 many leaves. Number of internal

nodes in the tree is t−|b|1−1 (for t > 1). To compute the ∧ of this intermediate product with
∧

i∈[t],bi=1

gi,b∧C
′′
(x, b) one more gate is need. Thus total number of gates needed is t−|b|1. Let

us call number of such gates K1. By the above analysis, K1 =
∑

b∈{0,1}t(t− |b|1) = t× 2t−1.
The remaining gates are the internal gates in the ∨ tree implementing the sum of terms.
Since there are 2t leaves, number of internal nodes in the tree, say K2 is 2t − 1. Hence total
number of nodes with non-zero orientation is at most K1 +K2 = 2t−1(t+ 2)− 1.

Remark 1. In conjunction with the result of Fisher [7], this implies that it is enough to prove
lower bounds against circuits with at most O(n log n) internal nodes of dense orientations,
to obtain lower bounds against the general circuits.

4.2 Power of Dense Orientation

We show that even as few as two densely oriented internal gates can help to reduce the depth
from super poly-log to poly-log for some functions.

Theorem 11. There exists a monotone Boolean function f such that it cannot be computed
by poly-log depth monotone circuits, but there is a poly-log depth circuit computing it such
that at most two internal gates have non-zero orientation β.

Proof. It is known [15] that PMATCH does not have monotone circuits of poly-log depth
and if arbitrary negations are allowed then there is a O(log2 n) depth circuit computing
PMATCH [13]. Monotone function f claimed in the theorem is obtained from poly-log
depth circuit C computing PMATCH. Fischer’s theorem guarantees that C will have at
most log n negations.

If there is a poly-log depth circuit having exactly one negation, then Theorem 4 can be
applied to get a circuit of poly-log depth having at most two non-zero orientation gates.
Otherwise, the circuit has t ≥ 2 negations, and there is no poly-log depth circuit computing
the same function with one negation. Let g1 denote the input to the first negation gate(in the
topological sorted order) in C. From C obtain C ′ by replacing g1 with a new variable, say y1.
Let C ′

0, C
′
1 denote the circuits obtained by setting y1 to 0,1 respectively. The corresponding

functions f0, f1 need not be monotone. Hence we define monotone functions f ′
0, f

′
1 from

f1, f0 :

f ′
0 (x) = f0 (x) ∨ g1 (x)

f ′
1 (x) = f1 (x) ∧ g1 (x)

11

When g1 (x) = 0, f0 (x) = f (x) and when g1 (x) = 1, f ′
0 (x) = 1. Hence f ′

0 is monotone. A
similar argument can be used to establish that f ′

1 is monotone. Note that both f ′
0, f

′
1 have

poly-log depth circuits computing it with at most t− 1 negation gates.
We claim that one of f ′

0, f
′
1 does not have a monotone circuit of poly-log depth. Otherwise

from poly-log depth monotone circuits computing f ′
0, f

′
1 and the monotone circuit of poly-log

depth computing g1 we can get a poly-log depth circuit computing f with one negation : use
g1(x) as a selector to select f ′

1 (x) or f
′
0 (x) as which is appropriate. This circuit computes

f because, by definition, (g1(x) ∧ f ′
1(x)) ∨ (g1(x) ∧ f ′

0(x)) = f(x). This contradicts our
assumption that there is no circuit of poly-log depth computing f with one negation.

Applying the procedure once, we get a monotone function f ′ which has a t− 1 negation
poly-log depth circuit computing it, but it has no monotone circuit of poly-log depth com-
puting it. If the function f ′ has a poly-log depth circuit with one negation then Theorem 4
can be applied to get the desired function. Otherwise apply the procedure on f ′ as f ′ is a
monotone function which does not have any poly-log depth circuit with at most one negation
computing it. Applying the procedure at most t (t ≤ log n) times we get to a monotone
function f ′ having a poly-log depth circuit with one negation, but has no monotone poly-log
depth circuit computing it. Applying Theorem 4, a poly-log depth circuit with at most two
non-zero orientation gates is obtained.

This theorem combined with the sparse orientation protocol implies that the two non-zero
orientations β1, β2 is such that |β1|+ |β2| is not only non-zero but is super poly-log. Because
our protocol will spend |β1|+ |β2| for handling these two gates, and on the remaining gates
in the circuit it will spend 1 bit each. Hence the cost of the sparse orientation protocol will
be at most |β1|+ |β2|+Depth(C), thus |β1|+ |β2| is at least KW+(f)−Depth(C) which
is super poly-log as Depth(C) is poly-log and KW+(f) is super poly-log.

Remark 2. By Theorem 11 we get a function which has an NC
2 circuit with two non-zero

orientation gates which has no monotone circuit of poly-log depth. Thus our bounds cannot
be strengthened to handle higher weight without incorporating the specifics of the function
being computed. In section 4.3, we rescue the situation slightly using the specific properties
of the CLIQUE function.

Remark 3. The proof of Theorem 11 also implies that there is a monotone function f (not
explicit) such that there is a one negation circuit in NC

2 computing it, but any monotone
circuit computing f requires super-poly-log depth.

4.3 Lower Bounds for CLIQUE function

The number of gates with high orientations can be arbitrary in general. In this subsection
we give a proof for Theorem 3. We first extend our technique to handle the low weight
negations efficiently so that we get a circuit on high weight negations (see Lemma 3 below).
To complete the proof of Theorem 3, we appeal to depth lower bounds against negation-
limited circuits computing f .

12

Lemma 3. For any circuit family C = {Cn} computing a monotone function f where there
are k negations in Cn computing functions which are sensitive only on w inputs (i.e., the
orientation of their input as well as their output is at most w) and the remaining ℓ negations
compute functions of arbitrary orientation: Depth(Cn) ≥ Depth2ℓ(f)− kw − ℓ

Proof. First the given circuit Cn is transformed by replacing the ℓ negations with new inputs
variables y1, y2, y3, . . . , yℓ. Note that for each setting of y1, . . . , yℓ to some b ∈ {0, 1}ℓ, C

′′

n(x, b)
is monotone circuit computing a monotone function on x1, . . . , xn. Hence C

′′

n(x, b) is a
monotone circuit. Let g1, . . . , gℓ be the inputs to the ℓ negation gates (in topologically sorted
order) in Cn. Let gi,b for i ∈ [ℓ], b ∈ {0, 1}ℓ denote the monotone function computed by the
sub-circuit Cgi of Cn rooted at gate gi, where g1, . . . , gi−1 are set to b1, . . . , bi−1 respectively.
It is easy to verify that,

f(x1, . . . , xn) =
∨

b∈{0,1}ℓ

(

ℓ
∧

i=1

gbii,b(x)

)

C
′′

n(x, b)

where g0 denotes g and g1 denotes g.
Let K denote the k negation gates stated in the lemma. We play the game as follows: To

begin, for each negation gate h in K, Alice sends w bits of her input on which h is sensitive.
This takes up kw bits of communication. Bob checks if there is any index i in the input bits
revealed to him by Alice where xi = 1, yi = 0 and accepts if that is the case. Otherwise, he
sends to Alice a bit indicating that no such index exists. In this case, on any index i where
at least one of the negation gates in K is sensitive, xi ≤ yi. Also, Bob knows xi for such
indices. He sets yi = xi for all such i, obtaining a new input y′. By monotonicity of f , and
the fact that y′ ≤ y, f(y′) = 0.

Now they play the standard Karchmer-Wigderson game starting at the root of the circuit
described by the above equation. Since we made sure that for any of the k negation gates
x, y′ agree on the w bits on which they are sensitive, these negation gates evaluates to the
same value on x and y′. Since the standard Karchmer-Wigderson game traces a path in the
circuit where evaluation of x and y′ are different, we are guaranteed to never reach any of
the gates in K. Note that the circuit corresponding to a Karchmer-Wigderson protocol is a
formula and the first ℓ levels of the circuit described in the equation is also a formula. Hence
the circuit corresponding to the protocol will have only 2ℓ negation gates corresponding to
the ℓ negation gates in the circuit Cn we started with. Thus we obtain a 2ℓ negation gate
circuit computing f of depth kw + ℓ+Depth(Cn). Hence the theorem.

By a straight forward application of technique used in [5] to prove size lower bounds
against circuits with limited negations we obtain the size version of following lemma (For
completeness, we include the relevant part in the Appendix A).

Lemma 4. For any circuit C computing CLIQUE(n, n
1
6α) with ℓ negations where ℓ ≤

1/6 log log n and α = 2ℓ+1 − 1,

Depthℓ(f) ≥ n
1

81α

Combining Lemma 3 and Lemma 4 completes the proof of Theorem 3.

13

5 Structural Restrictions on Orientation

In this section we study structural restrictions on the orientation and prove stronger lower
bounds.

5.1 Restricting the Vertex Set indexed by the Orientation

We first consider restrictions on the set of vertices4 indexed by the orientation - in order to
prove Theorem 5 stated in the introduction. As in the other case, we argue the following
lemma, which establishes the trade-off result. By using the lower bound for KW+ games
for CLIQUE function, the theorem follows.

Lemma 5. Let C be a circuit of depth d computing CLIQUE, with each gate computing a
function whose orientation is such that the number of vertices of the input graph indexed by

the orientation β is at most w
logn

, then d is Ω
(

KW
+(f)

4w+1

)

.

Proof. It is enough to solve the KW+(f) on the min-term, max-term pairs which in case of
CLIQUE(n, k) is a k-clique and a complete k− 1-partite graph. We play the same game as
in the proof of Theorem 1, but instead of sending edges we send vertices included in the edge
set indexed by β with some additional information. If it is Alice’s turn, then x′

β defines an
edge sub-graph of her clique. Both Alice and Bob know β and hence knows which vertices
are spanned by edges eu,v such that βe(u,v) = 1. So Alice can send a bit vector of length at
most w (in the case of Alice we can handle up to w), indicating which of these vertices are
part of her clique. This information is enough for Bob to deduce whether any eu,v indexed
by β is present in Alice’s graph or not. Since Bob makes sure that x′

β = y′β by modifying his
input, and Alice keeps her input unchanged, Alice knows what modifications Bob has done
to his graph.

Similarly on Bob’s turn, he sends the vertices in the partition induced by yβ and the
partition number each vertex belongs to (hence the log n overhead for Bob) to Alice. With
this information Alice can deduce whether any eu,v ∈ β is present in Bob’s graph or not.
Inductively they maintain that they know of the changes made to other parties input in each
round. Hence the game proceeds as earlier. This completes the proof of the theorem.

5.2 Restricting the Orientation to be Uniform

In this section, we consider the circuits where the orientation is uniform and study its
structural restrictions. We proceed to the proof of Theorem 6. Theorem 6: Let C be
a circuit computing the CLIQUE function with uniform orientation β ∈ {0, 1}n such that
there is subset of vertices U and ǫ > 0 such that |U | ≥ logk+ǫ n for which βe = 0 for all edges
e within U , then C must have depth ω(logk n).

4Notice that the input variables to the CLIQUE function represents the edges. This makes the results
of this section incomparable with the depth lower bounds of [14].

14

Proof. We prove by contradiction. Suppose there is a circuit C of depth c logk n. In the
argument below we assume c = 1 for simplicity. Without loss of generality, we assume that
|U | = logk+ǫ n. Fix inputs to circuit C in the following way:

• Choose an arbitrary Kn
2
−

|U|
2

comprising of vertices from [n] \U and set those edges to

1.

• For every edge in
(

[n]\U
2

)

which is not in the clique chosen earlier, set to 0.

• For every edge between [n] \ U and U set it to 1.

Since every edge e(x, y) which has βe = 1 has at least one of the end points in [n] \ U , by
above setting, all those edges are turned to constants. Thus we obtain a monotone circuit
C ′′ computing CLIQUE(|U |, |U |

2
) of depth at most (log n)k. In terms of the new input,

(log n)k = ((log n)k+ǫ)
k

k+ǫ = (|U |)
k

k+ǫ , this contradicts the Raz-Wigderson [15] lower bound
of Ω(|U |), as k

k+ǫ
< 1 for ǫ > 0.

Note that for Clique function, with the above corollary we can handle up to weight
n2

(logn)2+2ǫ if the vertices spanned by β is up to n
(logn)1+ǫ and still get a lower bound of (log n)1+ǫ.

This places us a little bit closer to the goal of handling β of weight n2, from handling just
(log n)1+ǫ.
A contrasting picture: Any function has a circuit with a uniform orientation β = 1n

(|β| = n). We show that the weight of the orientation can be reduced at the expense of
depth, when the circuit is computing the CLIQUE function.

Theorem 7: If there is a circuit C computing CLIQUE with depth d then for any set
of c log n vertices U , there is an equivalent circuit C

′
of depth d+ c log n with orientation β

such that none of the edges e(u, v), u, v ∈ U has βe(u,v) = 1.

Proof. The proof idea is to devise a KW protocol based on circuit C such that for e(u, v)
where u, v ∈ U the protocol is guaranteed to output in the monotone way, i.e., xe(u,v) = 1
and ye(u,v) = 0. The modified protocol is as follows:

• Alice chooses an arbitrary clique Kn
2
∈ Gx (which she is guaranteed to find as x ∈

f−1(1)). She then obtains x′ by deleting edges e(x, y) from
(

U
2

)

which are outside the
chosen clique Kn

2
. Note that since Kn

2
∈ Gx′ , f(x′) = 1.

• Alice then sends the characteristic vector of vertices in Kn
2
∩ U which is of length at

most c log n to Bob.

• Bob then obtains y′ from y by removing edges in
(

U
2

)

which are outside the clique

formed by Kn
2
∩
(

U
2

)

. By monotonicity of CLIQUE f(y′) = 0.

• If there is an edge e(u, v) ∈ Kn
2
∩
(

U
2

)

which is missing from y′ Bob outputs the index
e(u, v). Otherwise they run the standard Karchmer-Wigderson game on x′, y′ using
the circuit C to obtain an e(x, y) such that e(x, y) is exclusive to either Gx′ or Gy′ .

15

The cost of the above protocol is d+ c log n. For any e(u, v) ∈ E(G)\
(

U
2

)

, x′
e(u,v) = xe(u,v)

and y′e(u,v) = ye(u,v). The protocol never answers non-monotonically(i, x′
i = 0, y′i = 1) for an

edge e(u, v) with u, v ∈ U . Because our protocol ensures that for any e ∈
(

U
2

)

, x′
e ≥ y′e,

ruling out such a possibility. By the connection between KW(f) and circuit depth, we get
a circuit having desired properties.

Thus we get the following corollary.

Corollary 1. If there is a circuit C ∈ NC
k computing CLIQUE(n, k), then there is a circuit

C
′
∈ NC

k of uniform orientation β computing CLIQUE(n, k) such that there are (c log n)k

vertices V
′
with none of the edges e(u, v)having βe(u,v) = 1.

Proof. It follows by setting d = O((log n)k) and modifying the protocol to work over a V
′
of

size (c log n)k. The analysis and proof of correctness of the protocol remains the same, but
the communication cost becomes O((log n)k) + (c log n)k = O((log n)k).

In other words, if we improve Theorem 5 to the case when the orientation “avoids” a set
of log n vertices (instead of (log n)(1+ǫ) as done), it will imply NC

1 6= NP.

6 Discussion and Open Problems

In this work, we studied lower bounds against non-monotone circuits with a new measure
of non-monotonicity - namely the orientation of the functions computed at each gate of the
circuit. As the first step, we proved that the lower bound can be obtained by modifying
the Karchmer-Wigderson game. We studied the weight of the orientation of the functions at
internal gates as a parameter of the circuit, and explored the usefulness of densely oriented
gates. We also showed the connections between negation limited circuits and orientation
limited circuits. A main open problem that arises from our work is to improve upon the
weight restriction of the orientation vector (Ω(n

logn
)) for which we can prove depth lower

bounds.

7 Acknowledgements

We thank the anonymous referees for the useful comments.

References

[1] Eric Allender. Circuit Complexity before the Dawn of the New Millennium. In Proceed-
ings of FST & TCS, volume 1180 of LNCS, pages 1–18. 1996.

[2] Eric Allender. Cracks in the defenses: Scouting out approaches on circuit lower bounds.
In Proc. of 3rd CSR, pages 3–10, 2008.

16

[3] Noga Alon and Ravi B. Boppana. The Monotone Circuit Complexity of Boolean Func-
tions. Combinatorica, 7(1):1–22, 1987.

[4] K. Amano and A. Maruoka. Potential of the approximation method. In Proceedings
of 37th Annual Symposium on Foundations of Computer Science, pages 431 –440, oct
1996.

[5] Kazuyuki Amano and Akira Maruoka. A superpolynomial lower bound for a circuit
computing the clique function with at most (1/6) log log n negation gates. SIAM
Journal on Computing, 35(1):201–216, 2005.

[6] Jack Edmonds. Paths, trees, and flowers. Canad. J. Math., 17:449–467, 1965.

[7] Michael Fischer. The Complexity of Negation-limited Networks — a Brief Survey. In
Automata Theory and Formal Languages 2nd GI Conference Kaiserslautern, volume 33
of Lecture Notes in Computer Science, pages 71–82. 1975.

[8] Russell Impagliazzo, Ramamohan Paturi, and Michael E. Saks. Size-depth tradeoffs for
threshold circuits. SIAM Journal of Computing, 26(3):693–707, 1997.

[9] Kazuo Iwama and Hiroki Morizumi. An explicit lower bound of 5n-o(n) for boolean
circuits. In MFCS, volume 2420 of LNCS, pages 353–364. 2002.

[10] Stasys Jukna. On the minimum number of negations leading to super-polynomial sav-
ings. Information Processing Letters, 89(2):71 – 74, 2004.

[11] Stasys Jukna. Boolean Function Complexity: Advances and Frontiers, volume 27 of
Series: Algorithms and Combinatorics. Springer New York Inc., 2012.

[12] Mauricio Karchmer and Avi Wigderson. Monotone Circuits for Connectivity Require
Super-logarithmic Depth. In STOC, pages 539–550, 1988.

[13] László Lovász. On determinants, matchings, and random algorithms. In Symposium on
Fundamentals of Computation Theory (FCT), pages 565–574, 1979.

[14] Ran Raz and Avi Wigderson. Probabilistic communication complexity of boolean rela-
tions. In Proc. of the 30th FOCS, pages 562–567, 1989.

[15] Ran Raz and Avi Wigderson. Monotone circuits for matching require linear depth.
Journal of ACM, 39(3):736–744, July 1992.

[16] AA Razborov. Lower Bounds for Monotone Complexity of Some Boolean Functions.
Soviet Math. Doklady., pages 354–357, 1985.

[17] Alexander A Razborov. Lower bounds on monotone complexity of the logical permanent.
Mathematical Notes, 37(6):485–493, 1985.

17

[18] Johan H̊astad. The shrinkage exponent of de morgan formulas is 2. SIAM Journal on
Computing, 1998.

[19] Heribert Vollmer. Introduction to Circuit Complexity: A Uniform Approach. Springer
New York Inc., 1999.

18

Appendix

A Proof of Lemma 4 - Choice of parameters in [5]

In this section we give the arguments for Lemma 4. Since the trade-off result stated in
Lemma 4 is not explicitly stated and proved in [5], in this section, we present the relevant
part of the proof technique in [5] with careful choice of parameters obtaining the trade-off.
For consistency with notation used in [5], for the remainder of this section we will be denoting
the number of vertices in the graph by m.

The main idea in [5] is to consider the boundary graph of a function f , defined as
Gf = {(u, v)|∆(u, v) = 1, f(u) 6= f(v)} where ∆(u, v) is the hamming distance. They prove
that if there is a t negations circuit C computing f then the boundary graph f must be
covered by union of boundary graphs of 2t+1 functions obtained by replacing the negations
in C by variables and considering the input functions of t negation gates and the output
gate where the negations in the sub-circuit considered are restricted to constants.

They prove that,

Lemma 6. [5, Theorem 3.2] Let f be a monotone function on n variables. For any positive
integer t,

Sizet(f) ≥ min
F ′={f1,...,fα}⊆Mn

{

max {sizemon(f
′)}

f ′∈F ′

|
⋃

f ′∈F ′

G(f ′) ⊇ G(f)

}

where α = 2t+1 − 1 and G(f ′) denotes the boundary graph of the function f ′.

The size lower bound they derive crucially depends on the following lemma which states
that no circuit of “small” size can “approximate” clique in the sense that either it rejects all
the “good” graphs or accepts a huge fraction of “bad” graphs.

Lemma 7. [5, Theorem 4.1] Let s1, s2 be positive integers such that 64 ≤ s1 ≤ s2 and

s
1/3
1 s2 ≤ m

200
. Suppose that C is a monotone circuit and that the fraction of good graphs in

I(m, s2) such that C outputs 1 is at least h = h(s2). Then at least one of the following holds:

• The number of gates in C is at least (h/2)2s
1/3/4.

• The fraction of bad graphs in O(m, s1) such that C outputs 0 is at most 2/s
1/3
1 .

where a “good” graph in I(m, s2) is a clique of size s2 on m vertices and no other edges
and a “bad” graph in O(m, s1) is an (s1 − 1)-partite graph where except for at most one
partition the partitions are balanced and of size ⌈ m

s1−1
⌉ each.

Lemma 8. For any circuit C computing CLIQUE(m,m
1
6α) with t negations with t ≤

1/6 log logm, size of C is at least 2m
1

81α where α = 2t+1 − 1.

19

Proof. The proof is similar to the proof ([5, Theorem 5.1]) by Amano and Maruoka except
for change of parameters. Assume to the contrary that there is a circuit C with at most t

negations computing CLIQUE(m,m
1
6α) with size M , M < 2m

1
81α . By Lemma 6 there are

α , 2t+1 − 1 functions f1, . . . , fα of size at most M (as they are obtained by restrictions of

the circuit C) such that ∪α
i=1G(fi) ⊇ G(f). Let s = m

1
6α and let l0, l1, . . . , lα be a mono-

tonically increasing sequence of integers such that l0 = s, lα = m and li = m1/10+(i−1)/(3α).
Note that s1/3li ≤ li+1 as s1/3li = m1/(18α)+1/10+(i−1)/(3α) < m =1/10+(i)/(3α)= li+1. Also
[

l0 = s = m
1
6α

]

<
[

l1 = m1/10
]

as α = 2t+1 − 1 ≥ 22 − 1, lα−1 < m1/10+1/3 < m. Thus,

l0 < l1 < · · · < li < li+1 < · · · < lα. The definition of “bad” graphs and “good” graphs
at layer li remains the same as in [5]. Note that [5, Corollary 5.2] is true for our choice
of parameters as s1/3li−1 ≤ li. Equations 5.1 to 5.3 of [5] is valid in our case also as these
equations does not depend on the value of the parameters. The definition of a dense set

remains the same, and h ≥ 1
α
≥ 1

m
(as m ≥ logm ≥ α) is such that (h/2)2s

1/3/4 ≥ 1
m
2m

1
18α /4

is strictly greater than M = 2m
1

81α . Hence Equation 5.4 of [5] is also true in our setting.
Claim 5.3 of [5] is independent of choice of parameters, hence is true in our setting also.

Claim 12. [5, Claim 5.3]
Suppose c1 > 1 and c2 > 1. Put c3 = α. Let f1, . . . , fc3 be the monotone functions such

that ∪c3
i=1G(fi) ⊇ G(CLIQUE(m, s)) and sizemon(fi) ≤ M for any 1 ≤ i ≤ c3. Suppose that

for distinct indices i1, . . . , ik ∈ [c3],

Pr
Lk∈Lk

[

Pr
u∈OLk

[fi1(u) = · · · = fik(u) = 1] ≥
1

c1

]

≥
1

c2

holds. If c1c2c3 ≤ s
1/3
1 /8, then there exists ik+1 ∈ [c3] \ {i1, . . . , ik} such that

Pr
Lk+1∈Lk+1

[

Pr
u∈OLk+1

[fi1(u) = · · · = fik(u) = 1] ≥
1

4c1c2c3

]

≥
1

2c1c2

Now for any k ∈ [α] there are k distinct indices i1, . . . , ik ∈ [α] such that

Pr
Lk∈Lk

[

Pr
u∈OLk

[fi1(u) = · · · = fik(u) = 1] ≥
1

2k2(t+2)

]

≥
1

2k(t+2)
(1)

The proof is by induction on k. Base case is when k = 1 and follows from Equation 5.4
of [5] which is established to be true in our setting also. Suppose the claim holds for k ≤ l
and let k = l + 1. From induction hypothesis we get that

Pr
Ll∈Ll

[

Pr
u∈OLl

[fi1(u) = · · · = fil(u) = 1] ≥
1

2l2(t+2)

]

≥
1

2l(t+2)
(2)

Like in [5] put c1 = 2l
2(t+2), c2 = 2l(t+2) and c3 = α. Note that the bounds 4c1c2c3 ≤

2(l+1)2(t+2), 2c1c1 ≤ 2(l+1)(t+2) and c1c2c3 ≤ 22
3t
/8 are valid in our setting also as they do

not depend on values of these parameters. Since t ≤ 1/6 log logm, 23t ≤ (logm)1/3 and

20

22
3t
≤ 2(logm)1/3 whereas s1/3 is m

1
18α ≥ 2

(logm)(1

18(logm)1/6
)
= 2(logm)5/6/18 > 2(logm)1/3 . Hence

s1/3/8 ≥ 22
3t
/8. . Thus Claim 12 applies giving us

Pr
Ll+1∈Ll+1

[

Pr
u∈OLl+1

[

fi1(u) = · · · = fil+1
(u) = 1

]

≥
1

2(l+1)2(t+2)

]

≥
1

2(l+1)(t+2)
(3)

The proof of the main theorem is completed by noting that Lα = {V } and setting k in
Equation (1) to α gives Pru∈OV

[∀i ∈ [α], fi(u) = 1] > 0. Thus there exists a bad graph u
belonging to CLIQUE(m, s)−1(0) on which all of f1, . . . , fα outputs 1, and hence (u, u+),
where u+ ∈ CLIQUE(m, s)−1(1) is a graph obtained from u by adding an edge, which is in
G(f) is not covered by any of the G(fi)’s. A contradiction. Hence the proof.

Since for a bounded fan-in circuit size lower bound of 2m
1

81α implies a depth lower bound
of m

1
81α we have,

Lemma 4: For any circuit C computing CLIQUE(m,m
1
6α) with ℓ negations where ℓ ≤

1/6 log logm , where α = 2ℓ+1 − 1

Depthℓ(f) ≥ m
1

81α

21

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

