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Abstract

We show that there exists a family of groups Gn and nontrivial irreducible representations ρn
such that, for any constant t, the average of ρn over t uniformly random elements g1, . . . , gt ∈ Gn
has operator norm 1 with probability approaching 1 as n→∞. More quantitatively, we show that
there exist families of finite groups for which Ω(log log |G|) random elements are required to bound
the norm of a typical representation below 1. This settles a conjecture of A. Wigderson.

1 Introduction

The Alon-Roichman theorem [1] asserts that O(log |G|/ε2) elements, chosen independently and uniformly
from a finite group G, yield with high probability a Cayley graph with second eigenvalue no more than ε.
As there are groups for which O(log |G|) elements are necessary to even generate the group, this bound
is tight up to a constant when ε = Ω(1). The condition that a collection of group elements g1, . . . , gt
yield a graph with second eigenvalue ε is equivalent to the condition that every nontrivial irreducible
representation ρ of G is approximately annihilated in the sense that
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≤ ε . (1)

where if the graph is undirected we demand that {g1, . . . , gt} is closed under inverse.
This invites a more refined analysis of the Alon-Roichman theorem popularized by a question of A.

Wigderson [3, Conjecture 2.8.4]: Are there universal constants t and δ > 0 such that
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≤ 1−δ (2)

holds for all finite groups G and all nontrivial irreducible representations ρ of G? As above, the gi are
selected independently and uniformly from G.
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To support this notion, we remark that there are known families of “highly nonabelian” finite groups,
such as SL2(Fp) as p→∞, which yield expanding Cayley graphs over a constant number of uniformly
random group elements g1, . . . , gt [2]. It follows that (2) holds for every representation. Likewise, (2)
holds for all nontrivial irreducible representations of abelian groups: for example, while no constant
number of elements suffice to make Zn

2 into an expander, or even to generate the group, just t = 2
uniformly random elements suffice to bound the expected norm of any one irreducible representation to
1−δ, with a universal constant δ > 0.

Distinct irreducible representations of a finite group possess various independence properties when
viewed as random variables by selecting a uniformly random group element: for example, their entries
are pairwise uncorrelated in any basis. Intuitively, Wigderson’s question asks whether the dependence
on log |G| in the Alon-Roichman theorem is an artifact of the requirement that every representation be
annihilated—a collection of ostensibly independent events which one might imagine occur with constant
probability with the selection of each new group element—or is a feature that can manifest even in a
single irreducible representation. Indeed, a positive answer to the question would imply that O(log |bG|)
random elements suffice to turn any group G into an expanding Cayley graph, where Ĝ denotes the set
of irreducible representations of G.

We answer this question in the negative. Our strategy will be to work in a family of finite groups of the
form G = Kn, where K has constant size, is nonabelian, and has trivial center. Such groups simultaneously
possess high-dimensional representations and the property that any collection of a bounded number
of group elements generate a subgroup of bounded size. In this setting, for each constant t > 0, we
establish two results:

• When K has a faithful irreducible representation ρ of dimension at least two, we show that the
representation ρn = ρ ⊗ · · · ⊗ρ of G = Kn has the property that
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≥ 1− exp(−Ω(n)) ,

where the gi are elements of G chosen uniformly and independently at random. See Theorem 1
for a more precise statement.

This result holds, for instance, if K = S3, the group of permutations of three elements, and ρ is its
two-dimensional representation. We also show

• When ρ is selected according to the Plancherel measure, which assigns each irreducible represen-
tation probability mass proportional to the square of its dimension, we show that with probability
1−O(1/ 4pn), ρ has the property that
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,

where the gi are elements of G chosen uniformly and independently at random. See Theorem 2
for a more precise statement.

In fact, these estimates establish that there are infinite families of groups for which there is a
representation ρ such that Ω(log log |G|) uniformly random elements are necessary to bound the norm
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of ρ as in (2), for any constant δ > 0. Recall that the Alon-Roichman theorem guarantees that O(log |G|)
random elements suffice with high probability to bound the norm of every irrep ρ, and thus turn G into
an expander. Closing this gap remains an interesting open question.

These negative results for independent and uniformly random group elements suggest the following
question, which is existential rather than probabilistic: Are there constants t and δ > 0 such that, for any
group G and any nontrivial irreducible representation ρ, there exist t elements g1, . . . , gt ∈ G such that
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≤ 1−δ ?

Our construction cannot rule out this possibility.

Notation and actions on the group algebra

Given a finite group G, let bG denote its set of irreducible representations. We assume throughout that all
representations are unitary. For a representation ρ, we let χρ(g) = trρ(g) denote its character, and let
dρ = χρ(1) denote its dimension. For two class functions, χ and ψ on G, we define

〈χ,ψ〉G =
1
|G|

∑

g

χ(g)ψ(g)∗ (3)

and remark that the characters of the irreducible representations of G form an orthonormal basis for
the space of class functions with respect to the inner product (3). Thus if ρ is irreducible and σ is a
representation, 〈ρ,σ〉G is the number of copies of ρ appearing in σ.

If H is a subgroup of G and χ is the character of a representation of G, we let ResH χ denote this
class function restricted to the subgroup H; when we wish to emphasize the ambient group G, we write
ResG

H χ. If G = Kn and ρ is a representation of K , we let ρn denote the representation of G given by the
rule

ρn(g1, . . . , gn) = ρ(g1)⊗ · · · ⊗ρ(gn)

and remark that χρn(g1, . . . , gn) =
∏n

j=1χρ(g j). We overload this notation, defining

χρn(g) = ResK χρn(g, . . . , g)

to be the character obtained on K by restricting χρn to the “diagonal” subgroup {(g, . . . , g) | g ∈ K} ∼= K .
Let C[G] denote the group algebra on G. The left action of G on C[G] obtained by linearly extending

the rule g : g ′ 7→ g g ′ induces the (left) regular representation R of G, with character

χR(g) =

¨

|G| if g = 1 ,

0 otherwise.

As a consequence of character orthogonality, one can express R as the sum

R=
⊕

ρ∈bG

dρρ ,

i.e., it contains dρ copies of each irreducible representation ρ. Thus its character can be written

χR =
∑

ρ∈bG

dρχρ .
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The algebra C[G] can likewise be given the structure of a G × G representation B by linearly extending
the rule (g1, g2) : g 7→ g1 g g−1

2 . Its character χB thus satisfies

χB(g1, g2) =
�

�

�

g : g1 g g−1
2 = g

	�

� .

Again applying character orthogonality, B can be expressed as the sum

B =
⊕

ρ∈bG

ρ ⊗ρ∗

and thus
χB(g1, g2) =

∑

ρ∈bG

χρ(g1) ·χ∗ρ(g2) .

Finally, the Plancherel measure P on bG assigns each representation ρ the probability mass

P (ρ) =
d2
ρ

|G|
.

If G = Kn, then selecting ρ = ρ1 ⊗ · · · ⊗ρn from the Plancherel measure on bG is the same as selecting
the ρi independently from the Plancherel measure on bK .

2 Remarks on the subgroup structure of groups of the form Kn

Anticipating the proofs, we collect a few facts about subgroups of G = Kn. Given g ∈ G, let gi ∈ K denote
its ith coordinate; note that πi(g) = gi is a homomorphism from G to K . We consider the subgroup H
generated by a collection of t elements h(1), . . . , h(t) of Kn. Given such a collection, define the function
S : {1, . . . , n} → K t so that S(i) lists their ith coordinates:

S(i) = (h(1)i , . . . , h(t)i ) . (4)

Let ∼S denote the equivalence class on {1, . . . , n} given by the level sets of S, so that

i ∼S j⇔ S(i) = S( j) .

That is, i ∼S j if and only if h(m)i = h(m)j for all 1 ≤ m ≤ t. As a consequence, we also have hi = h j for
any h ∈ H. Thus if we define the subgroup of elements of Kn that respect this equivalence,

H̃ = {(g1, . . . , gn) | i ∼S j⇒ gi = g j} ⊆ Kn , (5)

we have h(m) ∈ H̃ for all m, and hence H ⊂ H̃. (Note that S, ∼S , and H̃ depend implicitly on the collection
h(1), . . . , h(t).)

While the group H may have quite complicated structure, H̃ is isomorphic to K` for some ` ≥ 1,
where `≤ n is the number of equivalence classes of ∼S. Moreover, as the function S takes no more than
|K |t different values, `≤ |K |t and |H| ≤ |H̃| ≤ |K ||K |

t
. Thus, as recorded in the following lemma, if |K |

and t are constant than H is of constant size.

Lemma 1. Let H be the subgroup of Kn generated by t elements h(1), . . . , h(t). Then |H| ≤ |K ||K |
t
.
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The size of the smallest equivalence class of ∼S plays an essential role in both proofs. To name this
quantity, for a sequence of elements h(1), . . . , h(t), let

d = d(h(1), . . . , h(t)) = min
i∈{1,...,n}

�

�{ j | i ∼S j}
�

� .

We set down two straightforward tail bounds on d(h(1), . . . , h(t)), when the h(m) are selected independently
and uniformly at random from Kn.

Lemma 2. Let h(1), . . . , h(t) be t independent and uniformly random elements of Kn. Then

1. Pr
�

d(h(1), . . . , h(t))≤
n

2|K |t

�

≤
4|K |2t

n
and,

2. for any `≥ 1, Pr
�

d(h(1), . . . , h(t))< `
�

≤ n`|K |t e−n/|K |t .

Proof. For a given s ∈ K t , let Xs be the random variable equal to the size of the corresponding set in the
partition, {i : S(i) = s}. Since Xs is binomially distributed as Bin(n, 1/|K |t), we have EXs = n/|K |t and
Var Xs ≤ n/|K |t . By Chebyshev’s inequality,

Pr

��

�

�

�

Xs −
n
|K |t

�

�

�

�

≥
n

2|K |t

�

≤
4|K |t

n
.

Since there are |K |t elements of K t , the union bound implies the statement (1) of the lemma. As for
statement (2), for any s the probability that Xs < ` is no more than

`−1
∑

i=0

�

n
i

��

1
|K |t

�i �

1−
1
|K |t

�n−i

≤
`−1
∑

i=0

�

n
i

��

1−
1
|K |t

�n

≤

�

`−1
∑

i=0

�

n
i

�

�

�

e−1/|K |t
�n
≤ n` e−n/|K |t .

Then the union bound implies the statement (2) of the lemma.

Note that the random variable Xs obeys the Chernoff bound, making it much more concentrated than
the second moment calculation of (1) suggests, but this is not important to our results.

3 An explicit construction

Theorem 1. Let G = Kn where K is a finite nonabelian group with trivial center. Let ρ a faithful irreducible
representation of K of dimension dρ ≥ 2. Then there is an integer κρ ≥ 2 such that for every t > 0,

Pr
h(1),...,h(t)




















1
t

t
∑

m=1

ρn(h(m))
















op

= 1



≥ 1− nκρ |K |t exp(−n/|K |t) ,

where h(1), . . . , h(t) ∈ G are independent and uniform.

We begin by observing that a representation satisfying the conditions of the theorem above has the
property that

ρ⊗k = ρ ⊗ · · · ⊗ρ
︸ ︷︷ ︸

k times

contains a copy of the trivial representation for all sufficiently large k. For instance, if K = S3 and ρ
is its two-dimensional representation, then this holds for any k ≥ 2. The following is a classic fact of
representation theory, but we give a proof for completeness:
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Lemma 3. Let K be a finite group with trivial center and ρ a faithful irreducible representation of K of
dimension dρ ≥ 2. Then there is an integer κρ ≥ 2 so that for all k ≥ κρ, 〈χk

ρ, 1〉K > 0.

Proof. As ρ is faithful, the only element h ∈ K such that ρ(k) is a scalar matrix is the identity:

{h | ρ(h) = λ1 for some λ ∈ C}=Z (K) = {1} ,

where Z (K) denotes the (trivial) center of K. By unitarity, it follows that |χρ(h)| < dρ for all h 6= 1.
Expanding

〈χk
ρ, 1〉K =

1
|K |

∑

h∈K

χρ(h)
k =

dk
ρ

|K |

�

1+
∑

h 6=1

�

χρ(h)

dρ

�k

︸ ︷︷ ︸

(†)

�

,

it is evident that, for sufficiently large k, each term of the sum (†) is strictly less than 1/(|K | − 1) in
absolute value. For such k, the quantity in brackets above is strictly positive, as desired.

Proof of Theorem 1. In light of Lemma 3, let K be a finite group with trivial center and ρ a faithful,
irreducible representation of K of dimension dρ > 2. Consider now the representation ρn of the group
Kn. For a sequence of elements h(1), . . . , h(t) ∈ Kn, recall that the subgroup H̃, defined in (5) above,
contains all h(m) and that

ResH̃ ρ
n =

⊗

C: equivalence
class of ∼S

ResK |C |
K ρ|C | .

If each equivalence class C of ∼S has size at least κρ, each factor in the tensor product above has a copy
of the trivial representation, and thus ResH̃ ρ

n has a copy of the trivial representation. In that case,










1
t

t
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m=1

ρn(h(m))









op
= 1 .

As each equivalence class of ∼S has size at least d(h(1), . . . , h(t)), we conclude that
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t
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m=1

ρn(h(m))
















op

= 1



≥ 1− Pr
�

d(h(1), . . . , h(t))< κρ
�

≥ 1− nκρ |K |t e−n/|K |t ,

by statement 2 of Lemma 2.

4 The behavior of random representations

Focusing on the same family of groups G = Kn where K is nonabelian with a trivial center, we establish that
a representation ρ selected according to the Plancherel measure has the property, with high probability,
that

Pr
h(1),...,h(t)




















1
t

t
∑

m=1

ρn(h(m))
















op

= 1



≥ 1−O
�

1
4pn

�

,

where h(1), . . . , h(t) ∈ G are independent and uniform.
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Our proof focuses on the random variable

XH =
〈ResH χρ, 1〉H

dρ
, (6)

where H is a fixed subgroup of a group G and ρ is selected according to the Plancherel measure. Since
XH is the dimensionwise fraction of ρ that restricts to the trivial representation under H, whenever
XH > 0 we have








 E
h∈H
ρ(h)










op
= 1 .

The proof will show that for groups of the form Kn, if H = 〈h(1), . . . , h(t)〉 then XH > 0 with high
probability. We do this by computing the first two moments of XH , first for general group-subgroup pairs,
and then specializing to the groups Kn.

The expectation For the first moment, observe that if ρ ∈ bG is distributed according to the Plancherel
measure, then

E
ρ

XH = E
ρ

〈ResH χρ, 1〉H
dρ

=
∑

ρ

d2
ρ

|G|
〈ResH χρ, 1〉H

dρ
=

1
|G|

∑

ρ

dρ〈ResH χρ, 1〉H

=
1
|G|

®

ResH

∑

ρ

dρχρ, 1

¸

H

=
1
|G|
〈ResH χR, 1〉H =

1
|H|

.

The second moment For the second moment, observe that

E
ρ

X 2
H =

∑

ρ

d2
ρ

|G|
〈ResH χρ, 1〉2H

d2
ρ

=
1
|G|

∑

ρ

〈ResH×H χρ⊗ρ∗ , 1〉H×H

=
1
|G|
〈ResH×H χB, 1〉H×H =

1
|G|

1
|H|2

∑

h1,h2∈H

|{g : h−1
1 gh2 = g}| .

Thus

Var
ρ
[XH] = E

ρ
X 2

H −
1
|H|2

=
1
|H|2

 

∑

(h1,h2)∈H×H

Pr
g
[h1 = g−1h2 g] − 1

!

=
1
|H|2

∑

(h1,h2)∈H×H
(h1,h2)6=(1,1)

Pr
g
[h1 = g−1h2 g] =

1
|H|2

∑

h∈H
h 6=1

|hG ∩H|
|hG|

≤
1
|H|

∑

h∈H
h 6=1

1
|hG|

,

where hG = {g−1hg : g ∈ G} is the conjugacy class of h in G.
Applying Chebyshev’s inequality, we conclude that

Pr
ρ
[XH = 0]≤ Pr

�
�

�

�XH −
1
|H|

�

�

�≥
1
|H|

�

≤ |H|
∑

h∈H
h 6=1

1
|hG|

. (7)

Returning to the statement of the theorem, we will show the following.
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Theorem 2. Let K be a finite nonabelian group with trivial center and let G = Kn. Let t be such that
2|K |t ≤ α

p
n, let h(1), . . . , h(t) be independent elements selected uniformly from G, and let ρ = ρ1⊗· · ·⊗ρn

be chosen according to the Plancherel measure on bG. Then

Pr
ρ,{h(m)}

[XH = 0]≤
2α
p

n
+
�

2−1/α|K |α
�

p
n

,

where H is the subgroup generated by the elements h(1), . . . , h(t) and XH is defined as in (6). When
4|K |t

p

log |K | ≤
p

n, it follows that with probability at least

1−
p

2
4
p

n log |K |
(8)

a representation ρ selected according to the Plancherel measure has the property that

Pr
{h(m)}




















1
t

t
∑

m=1

ρ(h(m))
















op

= 1



≥ 1−
p

2
4
p

n log |K |
. (9)

Note that when |K |t
p

log |K | = o(
p

n) we may choose α = o(1/
p

log |K |) in the theorem above,
which guarantees that Pr[XH = 0] = o(1). Thus, in order to bring the expected norm of ρ down to 1− ε
for any constant ε > 0, we need t = Ω(log n) = Ω(log log |G|) random elements.

For an element g = (g1, . . . , gn) ∈ Kn, let supp(g) = |{i : gi 6= 1}| denote the size of the support of g.
We extend the definition to subgroups: for a subgroup L < Kn, define

supp(L) =min
g∈L
g 6=1

supp(g) .

An essential parameter of the proof below is supp(H), where H is generated by the collection h(1), . . . , h(t).
We may estimate this quantity by observing that supp(H)≥ supp(H̃) and that supp(H̃) is the size of the
smallest equivalence class of ∼S. Then we have the bound

supp(H)≥ d(h(1), . . . , h(t)) .

We finally return to the proof of Theorem 2.

Proof of Theorem 2. Let h(1), . . . , h(t) be t elements chosen independently and uniformly at random from
Kn, and let H denote the subgroup they generate. Additionally, let ρ = ρ1 ⊗ · · · ⊗ρn be a representation
of Kn selected according to the Plancherel measure. Then with d = d(h(1), . . . , h(t)) as above,

Pr
ρ,{h(m)}

[XH = 0]≤ Pr
{h(m)}

�

d <
n

2|K |t

�

+ Pr
ρ,{h(m)}

�

XH = 0 d ≥
n

2|K |t

�

≤
4|K |2t

n
+ max
{h(m)} such that

d≥n/2|K |t

Pr
ρ
[XH = 0] ,

(10)

the second line following from Lemma 2.
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As K has trivial center, all nontrivial conjugacy classes of K have size at least two. In particular, the
centralizer Zg = {h | g = h−1 gh} is a proper subgroup of K . It follows that for an element h 6= 1 of Kn

the conjugacy class hKn
has cardinality |hKn

| ≥ 2supp(h). If d ≥ n/2|K |t , then supp(H)≥ n/2|K |t and

|H|
∑

h 6=1

1
|hKn |

≤ |H|2 2− supp(H) ≤ |K |2|K |
t
2−n/2|K |t ,

by Lemma 1. Writing 2|K |t ≤ α
p

n, we have

|H|
∑

h6=1

1
|hKn |

≤
�

2−1/α|K |α
�

p
n

.

Combining equations (7) and (10) gives

Pr
ρ,{h(m)}

[XH = 0]≤
2α
p

n
+
�

2−1/α|K |α
�

p
n

,

completing the proof. The bounds of (8) and (9) are achieved by setting α= 1/(2
p

log |K |), in which
case

2α
p

n
+
�

2−1/α|K |α
�

p
n
≤

1
p

n log |K |
+
�

1

2
p

2

�

p
n log |K |

≤
2

p

n log |K |
.
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