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Abstract

We provide the first communication lower bounds that are sensitive to the network
topology for computing natural and simple functions by point to point message passing
protocols for the ‘Number in Hand’ model. All previous lower bounds were either for the
broadcast model or assumed full connectivity of the network. As a special case, we obtain
bounds of the form Ω(k2n) on the randomized communication complexity of many simple
functions for a broad class of networks having k distributed nodes and each holding an
n-bit input string. The best previous bounds were of the form Ω(kn). The main tool that
we use for deriving our bounds is a new connection with the theory of metric embeddings.
This enables us to prove a variety of results that include the following: A distributed XOR
lemma; a tight bound (discarding poly-log factors) on the randomized complexity of Element
Distinctness that answers a question of Phillips, Verbin and Zhang (SODA’12, [PVZ12]) and
new lower bounds for composed functions that were also left open in the work of Phillips et
al. [PVZ12]. Finally, these bounds yield new topology-dependent bounds for several natural
graph problems considered by Woodruff and Zhang (DISC’13, [WZ13]).
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1 Introduction

Multi-party communication complexity was introduced in the work of Chandra, Furst and
Lipton [CFL83] where k players have inputs X1, . . . , Xk ∈ {0, 1}n and the k players want to
compute some common boolean function f : ({0, 1}n)k → {0, 1} with the goal of minimizing the
total communication between the k players. We assume that each player can only look at her
own input, i.e. we follow the so called Number in Hand (NIH) model.1 The NIH multi-party
model seems to have been first considered by Dolev and Feder [DF89]. The case for k = 2 is
the standard two-party communication complexity introduced by Yao [Yao79]. Both two party
and multi-party communication complexity has numerous applications: see e.g. the excellent
book on this topic [KN97].

The generalization to the multi-party communication complexity model has to decide on
various modes of communication:

1. Whether the communication is broadcast (i.e. everyone sees message sent by a player) or
point to point (messages have a single sender and single receiver);

2. If the communication is point to point, how are the player communication channels con-
nected, i.e. what is the structure of the underlying graph topology G?

For various reasons, the original model was with broadcast communication except for the
early work of Duris and Rolim [DR98] who proved lower bounds on the deterministic and non-
deterministic communication complexity in the point to point model over the complete graph.
Recently, there has been a surge of interest in the point to point model [PVZ12, WZ12, WZ13,
BEO+13]. This is because the point to point model arguably better captures many of the
modern day networks and has been studied in the many distributed models: e.g. the BSP
model of Valiant [Val90], models for MapReduce [KSV10, GSZ11], massively parallel models to
compute conjunctive queries [BKS13, KS11], distributed models for learning [BBFM12, IPSV12]
and in the core distributed computing literature [DKO12]. The recent surge in interest in
this model is also in part motivated by proving lower bounds for the distributed functional
monitoring framework (see e.g. the recent survey [Cor13]), which generalizes the popular data
streaming model [Mut05]. However, all of the recent work assumes that the underlying topology
is fully connected2. In our opinion this is a strict restriction since in many situations assuming
full connectivity would be too strong an assumption. Indeed in areas like sensor networks,
researchers have considered the effects of network topology with some success [HK12] for simple
topologies like trees.

The following is the motivating question for our work (which was also mentioned as an
interesting direction to pursue in [BEO+13]):

1The paper of Chandra, Furst and Lipton [CFL83] considered the model where each player gets to see everyone
else’s input (Number on Forehead or NOF model). To the best of our knowledge, the first paper with non-trivial
randomized lower bounds in the NIH model was the work of Alon, Matias and Szegedy [AMS99].

2It is worthwhile to note that the effect of network topology on the cost of communication has been analyzed
to quite an extent when the networks are dynamic in the context of distributed computing (see for example
the recent survey of Kuhn and Oshman [KO11]). In this work in contrast, we are mainly concerned with static
networks of arbitrary topology as embodied in the NIH model.
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Can we prove lower bounds on multi-party communication complexity for the NIH
point to point communication that are sensitive to the topology of the connections
between the player?

To see how the network topology can make a big difference in the total communication
cost, let us consider the trivial algorithm that can compute any function f : all players send
their input to one designated player. If the topology G is the complete graph (or has constant
diameter), then the trivial algorithm uses up O(kn) communication. Now consider the case
when G is the line graph. In this case it is best for all players to send their input to the
“middle” node. However, note that in this case the total communication is Ω(k2n).3 (For
general graphs, the total communication is bounded by the objective function of the 1-median
problem where the distances are the shortest path distance in G.) Thus, ignoring the topology
(as the current works do) could result in bounds that are sub-optimal by a Θ(k) factor. Our
interest is in identifying situations where we can recover this extra Θ(k) factor in our lower
bounds and in general match the bound of the trivial algorithm for any topology.

Our Contributions. Our main contribution is the first set of lower bounds for the NIH
point to point communication model that are sensitive to the network topology.4 We present
a general framework to prove lower bounds for general topologies. Our framework is able to
generalize many of the existing lower bound results for the complete graph topology and uses
a new connection to the theory of metric embeddings. To the best of our knowledge this is the
first work to apply results from metric embeddings to prove lower bounds on communication
complexity. We would like to clarify that while none of our proofs are technically difficult by
themselves, most of the tools we use are quite non-trivial. We believe our main contribution is
more conceptual: we identify certain key components and show how to combine them to obtain
topology dependent lower bounds. We also believe that our framework is fairly general and
should be widely applicable. As a partial justification of this belief, we extend many known
results on the complete graph to topology dependent, essentially tight, lower bounds for general
graphs.

A natural function to start proving strong lower bounds is for the set disjointness problem

(i.e. we want to compute ∨ni=1

(
∧kj=1Xj(i)

)
). Set disjointness is the “canonical” problem

for two party communication complexity whose hardness implies lower bounds for myriads of
problems in diverse models (see for example the survey [CP10]). It was also recently shown
by Braverman et al. [BEO+13] that for the k-party set disjointness problem on the complete
graph, the total communication is Ω(kn). However, it is not too hard to see that for any
topology, the intersection of the k sets (and in particular the set disjointness problem) as well
as the union of the k sets can be computed with O(kn) total communication.5 This implies

3The two end point players have a total communication of kn, the next pair has total communication of
(k − 2)n and so on.

4We note here that 2-party communication complexity lower bounds easily prove lower bounds of the form
Ω(d · n), where d is the diameter of G. In this work, we present bounds of the form Ω(kdn) for some situations.

5Consider a spanning tree of the underlying graph G and compute the intersection/union as one goes through
all the nodes in the spanning tree say in pre-order traversal. It is easy to check that the total communication
over each edge is O(n) and that each edge needs to communicate only twice.

3



that existing reductions (e.g. those in [WZ13] for graph problems) from set disjointness (and
related problems) cannot be used to prove topology dependent better lower bounds.

Thus, we need a problem where the players do need to send all their information to one
player. Towards this end, consider the following problem that we call Element-Distinctness:
the players want to decide if Xi 6= Xj for every i 6= j ∈ [k]. If we allow randomization, the
trivial algorithm on the line graph takes Õ(k2) amounts of communication.6 In this case it does
seem that all the pairs need to be compared and hence it seems like that the trivial algorithm
is indeed optimal. We show that this is indeed the case for the Element-Distinctness problem
as well as a bunch of other problems for all graph topology.

Our Results. We show that for all of the following problems, the trivial algorithm is optimal
(up to poly log k factors unless mentioned otherwise) for any network topology:

• Element-Distinctness: Output 1 if and only if Xi 6= Xj (as vectors) for every i 6= j ∈
[k]. This answers a question of Philips et al. [PVZ12] who asked for the communication
complexity of this function just for the case of G being a complete graph. In fact, [PVZ12]
considered Element-Distinctness to be a variant of k-Equality in which players output 1
if and only if Xi = Xj for every i 6= j ∈ [k]. They seemed to suggest that Element-
Distinctness and Equality have the same complexity. We show that while for the complete
graph they indeed have the same complexity, for general topologies the complexities of
the two problems are entirely different.

• We prove the following XOR lemma. Consider any partition of [k] for even k into two
disjoint set S and S̄ and a bijection ρ between S and S̄. Let f : {0, 1}n×{0, 1}n → {0, 1}.
Then computing the function XOR-f ≡ ⊕i∈Sf(Xi, Xρ(i)) cannot be done better than the

following trivial algorithm up to Õ(
√
k) factor: every pair (i, ρ(i)) for i ∈ S computes

f(Xi, Xρ(i)) using the best two party communication protocol for f and then, say, players
in S compute the final output bit. For certain functions we can improve the gap from
Õ(
√
k) to just poly log k factors. This extends the XOR lemma of Barak et al. [BBCR10]

from the 2-party setting to the general multi-party setting7. XOR lemmas are of general
interest in computer science.

• It is natural to consider what happens if one replaces the XOR function with OR or
AND. Woodruff and Zhang [WZ14] showed that OR-f has communication complexity
Ω
(
kRε(f)

)
for the complete graph. While our techniques recover this result for complete

graphs, we observe that such a generic OR/AND-lemma cannot have a topology dependent
extension to general graphs. However, for some specific functions of natural interest, we
prove topology dependent tight bounds. These include OR-Equality, OR-Disjointness
and AND-Disjointness, also known as the tribes function. Besides being interesting by
themselves, these results are also useful in proving lower bounds for several graph problems
described next.

6There is no linear dependence on n since, the parties can just send fingerprints of their input to the designated
player.

7We use the result of Barak et al. to prove ours.
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• We extend the lower bounds on graph problems considered in [WZ13] to the general
topology case. In particular, in these problems the k players get k subgraphs of some
graph H (edges can be duplicated) and the players want to solve one of the following five
problems: determining (i) the degree of a vertex in H, (ii) if H is acyclic; (iii) if H is
triangle-free; (iv) if H is bipartite and (v) if H is connected. In all these cases we show
that the trivial algorithm of all players sending their subgraphs to a designated player is
the best possible up to poly log k factors. Our reductions for (ii)-(v) are different from
those in [WZ13] as the hard problem in [WZ13] can be solved with O(kn) communication
for any topology.

In Section 4.5, we present some other results on composed functions that showcase the
generality of our techniques. While composed functions are a natural and important class
of functions that have been widely studied in communication complexity, their study in the
context of point to point communication model was suggested in the recent work of Phillips et
al. [PVZ12].

Our Techniques. We now present an overview of our proof techniques. As mentioned earlier,
each of our steps is technically simple and it is the combination of non-trivial results that seems
crucial to prove our stronger results. We believe that the technical simplicity provides for easy
and wide applicability of our techniques to many problems. Later, we will also show that our
techniques generalize most of the existing techniques used to prove lower bounds in the special
case when G is completely connected.

As usual for proving randomized lower bounds, we will prove a distributional lower bound
for the problem. One way such lower bounds for 2-party problems are obtained is by proving a
discrepancy/corruption bound for two dimensional rectangles/sub-matrices. For k players this
would generalize to analyzing k-dimensional tensors that seem very challenging for large k. A
more tractable option seems to try reducing the k-player problem to a hard 2-player problem
by finding a convenient cut in the graph, where we give inputs on each side of the cut to a
specific player. There are several obvious difficulties that come up when trying to pursue this
option. We next sketch them and broadly describe how we get around these difficulties.

Note that we cannot work with just a single cut to get better than Ω(kn) bounds. This is
because each player in the reduced 2-party problem across such a cut gets O(kn)-length inputs.
Thus, we have to work with a family of cuts such that across each (or most) of them we have a
fairly hard 2-party problem. Optimistically, one may hope then that these complexities can be
added up to take us beyond the kn barrier. There are two things to take care of immediately
before one can try implementing this idea. The global distribution on k players’ inputs have to
be chosen such that across every (or at least most) cut it becomes a hard distribution for the 2-
party instance. Even if that happens, why are we allowed to add the distributional complexities
of the various problems across cuts? Usually, the (µ, ε)-distributional complexity of a function
f , denoted by Dµ,ε

(
f
)
, is defined as the worst-case cost of the best deterministic protocol that

errs with probability ε when inputs are sampled from µ. But then, we cannot add the costs of
these various problems across cuts because the worst-case of each individual problem may not
give rise to a globally consistent input.

We get around this problem by considering the notion of expected cost for the 2-party
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problem. Using linearity of expectation, one can now add the costs of the various 2-party
problems. However, for technical reasons, we have to consider ε-error randomized expected
cost wrt µ, i.e. a protocol that like a true randomized protocol errs with small error on every
input but we measure its cost only w.r.t a distribution µ. This is a simple but subtle fix to the
problem.

To illustrate our idea with a concrete and simple example, let us consider the Element-
Distinctness problem on the line graph. Consider the following distribution on X1, . . . , Xk:
randomly pick them to be k distinct values. Note that by linearity of expectation, the total
expected communication is the sum of the expected communication over each edge. Consider
any edge e. Let us assume e is such that there are i ≤ k/2 players to the “left” of e and k − i
players to the “right” of e. Then note that any ε-error protocol for Element-Distinctness is
solving the set disjointness problem among the sets {X1, . . . , Xi} and {Xi+1, . . . , Xk} for every
input with high probability. Ignoring the size of the domain of these values, this implies an Ω(i)
lower bound on the communication on e. This is because our initial distribution is chosen so
that the induced distribution for the 2-party set disjointness problem is such that every ε-error
protocol has high expected cost w.r.t this distribution. Now just summing up the expected cost
on each edge gives us an Ω(k2) lower bound on the total expected communication, which was
our aim.

The above argument crucially used the fact that the topology is a line graph. In particular,
in the above argument when we considered an edge e, we basically used the fact that this
induces a cut on the players (which in turn induces a two-party set disjointness problem). The
more crucial aspect that might have been swept under the rug was the following fact: if one
considers the set of all k − 1 cuts, then each pair (i, j) is cut exactly |i− j| times, which is the
same as the distance between player i and j on the line graph. Moreover, each edge e appears
in precisely one cut which ensures that the summing up of expected costs is a valid counting of
the expected total cost.

It turns out that for general graphs, we just need to find a set of cuts that has the property
that every pair of players is separated as many times as (up to some slack) the shortest path
distance between them in G. Further, to generalize the sum of expectation argument, we also
need to ensure that every edge in G is not separated by many cuts. This is where the theory of
metric embeddings plays a role. It turns out that one can find such cuts by known results on
embedding metrics into `1 metric. (For those unfamiliar with metric embeddings, the connection
is not that surprising since embeddings into `1 and cuts have a very close relationship.) In fact,
for technical reasons we need the embedding to have a third property but that is also satisfied
by known embeddings (e.g. the one due to Bourgain).

Once we have the above cut technology in place, we then need to select a global distribution
of inputs such that the corresponding 2-party problems across cuts are hard wrt the expected
cost measure over induced distributions across cuts. In most cases, we are able to appeal
to a known 2-party result to finish off the argument. For instance, in the case of Element-
Distinctness, the corresponding 2-party problem is k-set disjointness. For the XOR lemma, the
induced problem exactly is the 2-party XOR problem lemma and we apply the result of Barak
et al. [BBCR13].
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Connections to Related Work. Finally, we put our techniques in the context of existing
techniques used to argue lower bounds for the case when G is fully connected. In particular,
we will argue that our techniques essentially generalize many of the existing techniques.

The first lower bounds for the message-passing NIH model seems to be due to Duris and
Rolim [DR98]. They also considered the complete graph topology (co-ordinator model) and
their bounds were for deterministic and non-deterministic complexity. In particular it uses a
generalization of 2-party fooling set argument that does not seem to apply to bounded error
randomized protocols. Very recently, the symmetrization technique was introduced by Phillips
et al. [PVZ12] and was further developed by Woodruff and Zhang [WZ12, WZ13, WZ14]. At
a very high level, the core idea in symmetrization is as follows. First we consider the case
when G is a star graph of diameter 2 with a co-ordinator node at the center. Prototypical
hard problems to consider are functions of the form ∨ki=1f(Xi, Y ), where the center gets Y and
the k leaves of G get X1, . . . , Xk. If ν is a hard distribution for (the 2-party) function f , then
the trick is to define a hard distribution µ on X1, . . . , Xk, Y such that for every i ∈ [k] the
effective distribution on (Xi, Y ) is ν. Then the argument, slightly re-phrased in our language,
proceeds as follows: pick a random cut among the k cuts corresponding to the k edges. Then by
definition of µ the induced 2-party problem across each cut is f and hence, the communication
complexity is Ω(R(f)), where R(f) is the randomized two-party communication complexity of
f . Then we note that since the cut was picked completely at random, and the distribution µ
is symmetric with respect to the leaf-nodes, the communication across such a random cut in
expectation is Θ(1/k) of the total communication, which leads to an overall Ω(k · R(f)) lower
bound on the total communication. By contrast, our technique does not need this symmetric
property though our use of linearity of expectation seems similar. Indeed in Section 4.4, we
show how to recover the lower bound on the OR of f from [WZ13] using our techniques. Note
that the cuts in a star-graph are all similar, as all leaves are symmetric with respect to the
prototypical example. As identified by the authors [PVZ12] themselves, this property seems to
be lost even for star graphs when the inputs held by leaf-nodes are not symmetric with respect
to the function that players want to compute. For general graph topology, there might be very
little symmetry left. In particular, in our technique, the cuts obtained are arbitrary with no
guarantee of symmetry. Nevertheless, our technique seems flexible enough to handle such cases.

One technique that we cannot (yet) handle with ours is the result of Braverman et al. [BEO+13]
that proves a lower bound of Ω(kn) on the set disjointness problem. It is an interesting open
question to see if we can port the techniques of Braverman et al. to our setting.

2 Preliminaries

Let f be any k-variate boolean function of the form f : ({0, 1}n)k → {0, 1} where each input
Xi takes value in {0, 1}n. Let G ≡

(
V,E

)
be a graph with k vertices, i.e. V = {1, . . . , k}. In

the message passing game on the graph G for function f , there are k players of unbounded
computational power. Player i is at vertex i of G and has access to only input Xi. This
distribution of inputs is often called the ’Number in Hand’ (NIH) model8. The players want

8There is another important multiparty communication model called the Number on Forehead model where
Player i sees every input except Xi. We do not consider this model at all in this work.
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to compute f collaboratively according to a unanimously agreed upon communication protocol
according to which players send and receive messages to and from other players. In any such
protocol, Player i is allowed to communicate with Player j if and only if their vertices are
neighbors in the graph G. Like in the standard two party communication game, what (and
to whom) Player i communicates at any round, only depends on input Xi and the messages
received by Player i from other players until that round. Further, in contrast to the broadcast
model, the message sent by Player i to j is only received by Player j and no other player.
At termination of the protocol, each player should know the value f(X1, . . . , Xk). The cost
of an execution of the protocol is the total number of bits communicated on all the edges in
all the rounds. Just as in standard two-party communication complexity, the protocols can be
deterministic or randomized. All randomized protocols considered in this paper are public in
the sense that players without communication share all public coin tosses. This is the most
powerful model of randomness and thus lower bounds for this model imply lower bounds for
weaker models.

We also need two notions of the cost of a protocol, the worst-case and the average-case/expected
cost with respect to a distribution over the input. For any fixed ε < 1/2, a randomized protocol
makes ε error if on every input the probability (over the random coin tosses) of the protocol giv-
ing the wrong answer is at most ε. The worst-case cost of such a protocol Π, over the coin tosses
and the inputs, is denoted by Cost

(
Π
)
. The randomized ε-error message passing complexity

of a function f for a graph G, denoted by Rε,G
(
f
)
, is the worst-case cost of the best ε-error

protocol. Protocols with ε = 0 are identified by a special term, called zero-error protocols. The
zero-error complexity of a function f , denoted by R0

(
f
)
, is the worst-case expected cost of the

best randomized protocol computing f with no error9.
Given a distribution µ over ({0, 1}n)k, the expected cost of a protocol Π, denoted by

ECostµ
(
Π
)

is the expectation of its cost over both the internal random coin tosses of the
protocol and the distribution µ. The µ-expected ε-error complexity of a function f over G,
denoted by ERµ,ε,G

(
f
)
, is the expected cost of the best ε-error protocol over graph G for

computing f . Naturally, Rµ,0
(
f
)
, denotes the µ-expected zero-error complexity of f .

Let G ≡
(
V,E

)
be a graph. A cut C is a partition of its set of vertices, V , into two parts

A,B. A pair of vertices u, v ∈ V are separated by cut C if they lie in two different parts of
the cut. The set of all pairs of vertices separated by C is denoted by M(C). An edge in E is
a cut-edge if its endpoints are separated by the cut. The set of cut-edges of C is denoted by
E(C). Given vertices u, v in graph G, we will use dG(u, v) (or just d(u, v) when G is clear from
the context) to denote the length of the shortest path between u and v in G. Throughout this
paper, the underlying network graph G will be a connected graph.

Let f be any k-party problem associated with the graph G, where k = |V (G)| and µ a
distribution on the inputs to f . For any edge e ∈ E(G), let ECostµ

(
Π, e

)
denote the expected

total number of bits sent over e in both directions. Then, for any protocol Π and cut C of
G, let ECostµ

(
Π, C

)
denote the expected total communication across C: ECostµ

(
Π, C

)
≡∑

e∈E(C) ECostµ
(
Π, e

)
. Let C ≡ {C1, . . . , Ct} be a set of cuts. Define the expected cost of Π

over C as ECostµ
(
Π, C

)
≡
∑t

i=1 ECostµ
(
Π, Ci

)
.

We state below a simple but useful consequence of the linearity of expectation.

9Note here the expectation is only over the internal coin tosses of a protocol.
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Observation 2.1 Let C be a set of cuts of G such that any edge e of G appears as a cut edge

in at most m cuts in C. Then, ECostµ
(
Π
)
≥ ECostµ

(
Π,C
)

m .

We will need the following results from basic 2-party communication complexity where the
graph of communication is just an edge connecting Player 1 and 2, often called Alice and Bob
respectively. In general, k-party Set-Disjointness, denoted by k-DISJ, is defined as the following
function: there is some universe [N ] and Player i gets a subset Xi of the universe. The function
outputs 1 if and only if there is no element that appears in each Xi. The game in which the
players are promised that the input sets further satisfy the condition |Xi| = ` and there is at
most one element that is common to all Xi, is denoted by k-UDISJ`. Let µ[`] be the distribution
defined in the following way10 on the inputs of 2 − UDISJ`: with probability 3/4, you sample
uniformly a pair of sets from the space of all pairs of non-intersecting sets, each of size `, and
with probability 1/4 you sample uniformly a pair of sets that intersect precisely at one element.
For notational convenience, we will often drop ` from µ[`] when the context makes the value of
` clear.

Theorem 2.2 (Razborov[Raz92]) There exists some universal constants δ, β such that Dµ,δ

(
2−

UDISJ`
)

is Ω
(
β`
)
, provided the size of the universe is at least 4`+ 1.

The following result will be useful for us for proving lower bounds.

Lemma 2.3 Let ν be a distribution on the inputs of f , where f is any 2-party function. Let ν0

(ν1) be the marginal distribution on the zeroes (ones) of f induced by ν. Then, ERν0,ε′
(
f
)
≥(

ε− ε′
)
·Dν,ε

(
f
)
, where we have assumed ε′ < ε.

Proof: Assume that there is an ε′-erring randomized protocol Π with expected cost w.r.t ν0

(ν1) being c, where ε′ < ε. Consider the following new protocol Π′: let εd = ε − ε′. Π′ runs
Π until c/εd bits have been communicated or Π has halted. If Π has halted, Π′ outputs the
answer of Π. Otherwise, Π′ halts and outputs 1 (0).

We claim the following is true: Prr∼R,x∼ν
[
Π′(x, r) 6= f(x)

]
≤ ε Let x be a zero (one) of

f . Conditioned on this, x is being sampled from ν0 (ν1). Hence, applying Markov’s inequality,
with probability less than εd , Π does not output an answer within communicating c/εd bits.
Hence,

Pr
r∼R,x∼ν

[
Π′(x, r) = 1|f(x) = 0

]
< εd.

Now consider the other case, where x is a one (zero) of f . Note that for every input Π
makes error with probability at most ε′. However, when x is a one (zero) of f , Π′ does not
make an error if Π did not. Thus,

Pr
r∼R,x∼ν

[
Π′(x, r) = 1 ∧ f(x) = 1

]
< ε′.

10Razborov [Raz92] describes this distribution in another equivalent way that is more convenient for his
analysis.

9



Combining these two cases immediately gives us our claim (2) The worst-case cost of Π′ is at
most c/εd. By fixing the randomness r of this Π′, we get a deterministic protocol Π′′ of cost at
most c/εc and that errs w.r.t ν at most with probability ε. Thus, c ≥ εd ·Dν,ε

(
f
)
. �

Combining Theorem 2.2 with Lemma 2.3, the following corollary easily follows: let µ0[`]
(µ1[`]) be the uniform distribution on pairs of disjoint (uniquely-intersecting) sets, each of size
`. When the context makes it clear, we drop ` from the notation.

Corollary 2.4 For each fixed ε < 1/2, there exists β such that ERµ0,ε
(
2 − UDISJ`

)
and

ERµ1,ε
(
2−UDISJ`

)
are both at least β.`, if the size of the universe is at least 4`+ 1.

We derive the following direct but useful consequence of Lemma 2.3:

Corollary 2.5 Let ν be a distribution on the inputs of f , where f is any 2-party function.
Then, ERν,ε′

(
f
)
≥
(
ε− ε′

)
·Dν,ε

(
f
)
, where we have assumed ε′ < ε.

Proof: Using Lemma 2.3, we know that for any ε′-error protocol Π for f , ECostνi
(
Π
)
≥

(ε − ε′)Dν,ε

(
f
)
, for i = {0, 1}, where νi is the marginal of ν supported on points at which f

evaluates to i. The corollary follows. �

Another function that is classical in communication complexity is Equality. We consider its
natural k-party version, denoted by k − EQ, which outputs 1 if and only if all of its k-many
n-bit input strings are equal. While EQ is relatively easy for bounded-error protocols, the cost
of zero-error protocols is large under the following distribution: let S ⊆ {0, 1}n let Uk=,S be
the uniform distribution on k tuples of equal strings from S. When S = {0, 1}n, we drop S
from subscript of U . Whenever the value of k becomes obvious from the context, we drop the
superscript of U . We outline a proof of the following classical result for the sake of completeness.

Theorem 2.6 RU=,S
(
2-EQ

)
= Ω

(
log |S|

)
.

Proof: This uses a simple fooling set argument. Let µ ≡ U=,S . Let Π be a zero-error random-
ized protocol. Then, there exists a fixing a of the random coins of Π such that the deterministic
protocol Πa has worst-case cost at most ECostµ

(
Π
)
. Since Π was a zero-error protocol for every

input, Πa makes no errors as well. Hence, a standard fooling set argument shows, for every
input in the support of µ, Πa must generate a unique transcript. Thus, the length of one of
those transcripts must be at least log |S|. �

2.1 Information Theoretic Techniques

Information theory techniques have been increasingly used to prove lower bounds in communi-
cation complexity (see for example [BYJKS04, JKS03, BBCR13, BEO+13]). We will also use
some of these techniques here. We quickly recall the basic notions needed here. Let X,Y, Z
be discrete random variables taking values in some (discrete) set D. Then, the entropy of X,
denoted by H(X), is defined as follows:

H(X) = −
∑
x∈D

Pr
[
X = x

]
log
(

Pr[X = x]
)
.

10



Informally, the entropy of X measures the uncertainty associated with it. Given two ran-
dom variables X,Y , knowing the value of one may reduce the uncertainty associated with the
other. More formally, the conditional entropy H

(
X |Y

)
, is defined as follows: H

(
X |Y

)
=

EyH
(
X |Y = y

)
, where H

(
X |Y = y

)
is the entropy of the conditional distribution of X given

Y = y. It can be shown that H
(
X |Y

)
≤ H

(
X
)
. The mutual information between X,Y ,

denoted by I
(
X ; Y

)
, is defined as follows:

I
(
X ; Y

)
= H

(
X
)
−H

(
X |Y

)
.

It is a non-trivial and useful property that mutual information is non-negative and symmetric.
One can also define the conditional mutual information I

(
X ; Y |Z

)
as follows:

I
(
X ; Y |Z

)
= H

(
X |Z

)
−H

(
X |Y Z

)
.

Given a 2-party randomized communication protocol Π and some input distribution µ, its
external µ-information cost, denoted by ICµ

(
Π
)
, is defined as follows:

ICµ

(
Π
)

= I(X,Y )∼µ
(
X,Y ; Π(X,Y )

)
,

where Π(X,Y ) is the random transcript of the protocol.

Remark 1 The transcript of an execution of a protocol will contain the concatenation of mes-
sages sent by each player along with the public random coin tosses of the protocol.

The ε-error (external) information complexity of a function f wrt distribution µ, denoted
by ICµ,ε

(
f
)
, is the µ-information cost of the best ε-error protocol for f . An input distribution µ

is called product if it can be decomposed as the product of one distribution µX on Alice’s input
and that of another one µY on Bob’s input, i.e. µ(X,Y ) = µX(X)µY (Y ). Product distributions
are convenient to analyze. However, the kind of distribution µ that we will need to analyze will
not always be product, but a convex combination of product distributions. Such combinations
are convenient to express in terms of an auxiliary random variable D. In particular, µ may be
a non-product distribution for (X,Y,D). However, the conditional distribution

(
X,Y |D = d

)
will be product for every d. Towards analyzing the cost of protocols wrt such distributions, we
need the slightly more general notion of conditional information cost of a protocol Π, denoted
by CICµ

(
Π
)
, and defined as follows:

CICµ

(
Π
)

= Iµ
(
X,Y ; Π(X,Y ) |D

)
.

This gives rise, just as in the case of information cost, to the notion of the ε-error conditional
information complexity of a function f wrt µ, denoted by CICµ,ε

(
f
)
.

We will need a relationship to be established between the information complexity of a
function and its expected bounded error randomized complexity. Towards that, let us recall
a useful inequality that lower bounds the compressibility of a random variable by its entropy.
The proof of this can be found in any standard text on information theory like [CT91].
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Theorem 2.7 (Theorem 5.3.1 in [CT91]) The expected length L of any instantaneous q-
ary code for a random variable X satisfies the following:

L ≥ 1

log q
H(X).

We are now ready to make the connection between the two notions of complexity of a
function:

Theorem 2.8 For any distribution µ over the inputs to a function f , and ε < 1, the following
is satisfied:

ERµ,ε

(
f
)

= Ω

(
ICµ,ε

(
f
))
.

Proof: For any 2-party protocol Π, let us write its transcript as Π−
(
X,Y

)
R, where R is the

public coin tosses of Π and Π−
(
X,Y

)
are the concatenation of messages sent by the protocol.

Note that we may assume that either the protocol uses a prefix-free code over the binary
alphabet or it uses a special character to delimit the messages sent by players to each other,
making the encoding of transcript prefix-free over the alphabet of size 3. Using the chain rule
of information, the information cost of Π can be re-written as follows:

ICµ

(
Π
)

= Iµ
(
X,Y ; R

)
+ Iµ

(
X,Y ; Π−(X,Y ) |R

)
.

But, Iµ
(
X,Y ; R

)
= 0 as the public coin tosses are independent of X,Y . Hence, expanding the

conditional information term, we have

ICµ

(
Π
)

= ER
[
Iµ
(
X,Y ; Π−(X,Y ) |R = r

)]
.

However, invoking Theorem 2.7, we get

ECostµ
(
Π |R = r

)
≥ 1

log 3
H
(
Π− |R = r

)
≥ 1

log 3
Iµ
(
X,Y ; Π−(X,Y ) |R = r

)
.

Now the claimed bound of our theorem easily follows. �

Now we state some results about the information complexity of functions which we will
use. Let (U, V,W ) be a triple of random variables sampled from {0, 1}3 as follows: sample W
uniformly at random from {0, 1}. If W = 0, fix U = 0 and sample V at random from {0, 1}. If
W = 1, fix V = 0 and sample U at random. Call this distribution τ . Note that the conditional
distribution

(
U, V |W = i

)
, denoted by τi, for any i ∈ {0, 1} is product. Let ν be the marginal

distribution of (U, V ). Let (X,Y,D) ∼ τn ≡def η. Let µ be the marginal of η on (X,Y ), which
is the same as νn. Then, Bar-Yossef et al. obtained the following remarkable result:

Theorem 2.9 (Bar-Yossef et al. [BYJKS04])

ICµ,ε

(
UDISJn

)
≥ CICη,ε

(
UDISJn

)
≥ n

4

(
1− 2

√
ε

)
.
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The following simple corollary will be useful for us.

Corollary 2.10

ERµ,ε

(
UDISJn

)
≥ n

4

(
1− 2

√
ε

)
.

Proof: Easily follows by combining Theorem 2.9 and Theorem 2.8. �

We next consider another important function in communication complexity. This is the
tribes function, defined as follows:

TRIBESm,n
(
X,Y

)
≡def

m∧
i=1

DISJn
(
Xi, Yi

)
,

where X = (X1, . . . , Xm), Y = (Y1, . . . , Ym) and each Xi, Yi ∈ {0, 1}n. In a 2-party game
for tribes, Alice gets X and Bob gets Y . Let S = (S1, . . . , Sm) with each Si ∈ [n] and let
D = (D1, . . . , Dm) with each Di ∈ {0, 1}n. Each (Xi, Yi, Si, Di) are i.i.d. random variables
sampled from a distribution γ. We sample (U, V, S,D) from γ as follows: sample S uniformly
at random from [n] and D at random from {0, 1}n. For every j ≤ n, do the following: if j 6= S,
then sample

(
Uj , Vj

)
from τ` where11 ` = Dj . If j = S, then set

(
Uj , Vj

)
= (1, 1). Note that the

conditional distribution
(
U, V |S = s,D = d

)
is product. The common marginal distribution

for each
(
Xi, Yi

)
is denoted by ρ. This implies that

(
X,Y

)
has distribution ρm. We state the

following result of Jayram et al.

Theorem 2.11 (Jayram et al. [JKS03])

ICρm,ε

(
TRIBESm,n

)
≥ m(n− 1)

16

(
1− 2

√
ε

)
.

Just as before, we derive the following:

Corollary 2.12

ERρm,ε

(
TRIBESm,n

)
≥ m(n− 1)

16

(
1− 2

√
ε

)
.

Proof: Easily follows by combining Theorem 2.11 and Theorem 2.8. �

3 A set of special cuts

Using Bourgain’s theorem of embedding any graph metric with low distortion, we can derive
the following:

Theorem 3.1 (Key Tool) Let G be any graph with k vertices. Then there exists a set of cuts
C that satisfies the following properties:

11Distributions τ0 and τ1 were described just before Theorem 2.9.
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1. Every pair of vertices u, v in G are separated by at least Ω(log k · d(u, v)) many cuts in C.

2. Each edge in G appears as a cut-edge in at most O(log2 k) many cuts in C.

We will prove the above theorem by first connecting the question about cuts to the problem
of embedding a graph into `1 space. In particular, an embedding with specific properties
immediately implies the required set of cuts:

Lemma 3.2 Let G = (V,E) be a graph and f : V → RD be a map for some dimension D that
has the following properties:

(i) For every u, v ∈ V , we have that ‖f(u)− f(v)‖1 ≥ α · d(u, v);

(ii) For every edge (u, v) ∈ E, we have that ‖f(u)− f(v)‖1 ≤ β; and

(iii) For any dimension i ∈ [D], we have that the set {f(u)i|u ∈ V } is the set {0, 1, 2, . . . ,M}
for some integer M .

Then there exists a collections of cuts C such that

1. Every pair of vertices u, v in G are separated by at least α · d(u, v) many cuts in C.

2. Each edge in G appears as a cut-edge in at most β many cuts in C.

We note that just conditions (i) and (ii) imply that the mapping f is an embedding with
distortion β/α. We need property (iii) to construct the required set of cuts C. Next, we note
that Bourgain’s embedding of graphs (and in particular, any metric) into `1 satisfies properties
(i)-(iii) in Lemma 3.2.

Theorem 3.3 For any graph G with k vertices, there exists a mapping f such that it satisfies
properties (i)-(iii) with α = Ω(log k) and β = O(log2 k).

Note that Lemma 3.2 and Theorem 3.3 immediately implies Theorem 3.1. In the rest of the
section, we will prove Lemma 3.2 and outline why Bourgain’s embedding proves Theorem 3.3.

Proof of Lemma 3.2: Let f be a mapping that satisfies property (iii). Next we define the
set of cuts C and show that the number of cuts that separate any pair of vertices u, v ∈ V is
exactly ‖f(u)− f(v)‖1. Properties (i) and (ii) will then complete the proof.

For every dimension i ∈ [D], we will define a family of cuts Ci and the final set of cuts will
be their union ∪i∈[D]Ci. Fix any i ∈ [D]. Let {f(u)i|u ∈ V } = {0, 1, 2, . . . ,M}. Then for every

j ∈ [M ] include the cut Cij =
{
u|f(u)i < j − 1

2

}
in Ci. By property (iii), note that these cuts

Cij are distinct (for fixed i).
To complete the proof, we need to argue that for every u, v ∈ V exactly ‖f(u)−f(v)‖1 many

cuts in C separate u and v. Towards this end, note that for any fixed i ∈ [D], the number of
cuts in Ci that separate u and v is exactly |f(u)i−f(v)i| (this just follows from the construction
of Ci and property (iii)). Thus, the total number of cuts in C that separate u and v is exactly

D∑
i=1

|f(u)i − f(v)i| = ‖f(u)− f(v)‖1,

14



as desired. �

Theorem 3.3 without the added property (iii) is the usual statement of Bourgain’s theorem
for `1 embedding. Next we sketch why Bourgain’s construction also satisfies property (iii).

Proof of Theorem 3.3: Bourgain’s map f is defined as follows. Pick D = O(log2 k) random
subsets of V . For a given u ∈ V and coordinate i ∈ [D] that corresponds to the random subset
S, define f(u)i = d(u, S), i.e. the distance of u to the closest vertex in S. Since the graph G
is unweighted and connected, it is easy to check that this construction would satisfy property
(iii). Indeed, consider a graph G′ where S is contracted into a “super vertex” s (and (s, u) is
an edge if and only if (u, s′) is an edge for some s′ ∈ S). Now run BFS starting from s in G′.
Note that d(u, S) is the level of u in the corresponding BFS tree. Further, by the fact that G′

is connected (since G was connected), the f(u)i will take values in the set {0, 1, . . . ,M} where
there are M levels in the BFS tree.

Property (i) and (ii) with β = D and α = Ω(log k) for Bourgain’s map is well-known.
In particular, Lemma 6.3 in Lecture 3 from [R0̈6] proves (ii) and Theorem 6.4 in Lecture 3
from [R0̈6] proves property (i). �

We end with two remarks. First we note that property (iii) is a bit stronger than what
we need. Indeed, we can relax the condition that the distinct values in any dimension be
consecutive integers to the following: all the consecutive values are separated by Θ(1). The
in proof of Lemma 3.2, we would have that the number of cuts separating u and v would
be Θ(‖f(u) − f(v)‖1). This only affects the constants and thus, Theorem 3.1 would still be
true. We chose the stronger version because it makes the proof a bit simpler and the fact that
Bourgain’s embedding already satisfies this stronger property.

Second, one might wonder if one can bypass the embeddings connections but it is easy to
check that a set of cuts as defined in Theorem 3.1 indeed defines an embedding of G into `1
and further, the ratio β/α = Ω(log k) is true since this lower bound on distortion into `1 holds
for expander graphs (see e.g. Section 7 in Lecture 3 from [R0̈6]).

4 Application

4.1 Element Distinctness

We prove an almost tight result on the randomized complexity of the Element-Distinctness
function. Recall that this function outputs 1 if and only if each of the k strings are distinct and
no string is repeated.

For any graph G and a vertex v, let ∆(v) ≡
∑

u∈V (G) d
(
u, v
)
. We call vertex c a center of

G if ∆(c) ≤ ∆(v), for every other vertex v. Let the diameter of G be denoted by D(G).

Theorem 4.1 Let G be any graph with k vertices and c a center. The bounded-error ran-
domized k-party complexity of Element-Distinctness over G is Θ

(
∆(c)

)
, ignoring poly-log(k)

factors. The zero-error randomized complexity of Element-Distinctness is Θ
(
D(G) · n+ ∆(c)

)
,

again ignoring poly-log(k) factors.
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Proof: Let τ be the following distribution: randomly pick k distinct strings Z1, . . . , Zk from
{0, 1}n. Randomly assign them to the k nodes of G so that each node gets exactly one string.
For the first part of the theorem, we first show that ERε,τ

(
ELMT-DIST

)
is Ω

(
∆(c)

)
.

Using Theorem 3.1, we obtain our set of cuts C. Let Ci be any cut in C. Let Π be any
randomized ε-error protocol over G for Element-Distinctness. The simple but useful claim is the
following: let V 0

i and V 1
i be the two sets of vertices separated by cut Ci and `i = min

{
|V 0
i |, |V 1

i |
}

.

Claim 4.2 There is an ε-error randomized 2-party protocol solving UDISJ`i with expected cost
w.r.t µ0[`i] at most ECostτ

(
Π, Ci

)
.

Let us first show why this claim gives us our desired bound. The claim along with Corollary 2.4
immediately yields that

ECostτ
(
Π, Ci

)
≥ β · `i.

Note that `i ≥ |V 0
i | · |V 1

i |/k. Hence,

t∑
i=1

ECostτ
(
Π, Ci

)
≥ β · 1

k

t∑
i=1

|V 0
i ||V 1

i |.

Observe that |V 0
i ||V 1

i | is exactly the number of pairs of vertices separated by cut Ci. Using
property (1) of C from Theorem 3.1, we bound it further:

t∑
i=1

ECostτ
(
Π, Ci

)
≥ β · 1

k

∑
u,v∈V (G):u6=v

d(u, v) =
β

k

∑
u

∆(u) ≥ β ·∆(c).

Combining these with Observation 2.1 and Theorem 3.1, we get our bound as follows:

ECostτ
(
Π
)
≥ ECostτ

(
Π, C

)
/O(log k) ≥ β∆(c)/O(log k),

where β just depends on ε.
What remains to prove is Claim 4.2. W.l.o.g., let |V 0

i | − |V 1
i | = mi ≥ 0. Consider any fixed

assignment a of distinct strings to the first mi nodes of V 0
i . Let τ |a denote the conditional

distribution of inputs on the other nodes. We derive a 2-party ε-error protocol Πa for UDISJ`i ,
where sets have elements from a universe of size 2n −mi. Alice and Bob, on getting two sets
X,Y respectively from this universe with |X| = |Y | = `i, simulate Π as follows: Alice naturally
encodes her set X as `i strings, each n-bit long and Bob does the same with his set Y . Alice
assigns the encoded elements of her set and the fixed assignment a to nodes in V 0

i and Bob
assigns his elements to nodes in V 1

i . Then they simulate Π in the natural way, with Alice
(Bob) communicating bits to Bob (Alice) whenever in Π a message is communicated along
a cut-edge from V 0

i (V 1
i ) to V 1

i (V 0
i ). Using properties of Π, it is easily verified that this is

an ε-error protocol for UDISJ`i . Observe that τ |a is the same distribution as µ0[`i]. Using
Corollary 2.4, we immediately get ECostτ |a

(
Π, Ci

)
= ECostµ0[`i]

(
Πa

)
≥ β`i, for each fixed a.

Thus, we conclude that ECostτ
(
Π, Ci

)
≥ β`i, establishing Claim 4.2.

The upper bound for the first part of the theorem follows from the natural fingerprinting
algorithm. Every player sends a fingerprint of its input to the vertex c using O(log k) sized
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hashes. The player at c then looks all the
(
k
2

)
pairs of players and checks if the hashes of the

corresponding inputs are the same or not. Note that this solves the problem as long as the
collision probability of the hashes is O(1/k2), which can be arranged to be true with O(log k)
sized hashes.

For proving the bound on zero-error protocols, we need to consider another distribution.
Let γ be the distribution on k inputs, each n-bit long, generated by the following sampling
method: consider two vertices u, v in G such that d(u, v) = D(G). Let Z = {z1, . . . , zk−2} be a
set of k−2 distinct strings and set S = {0, 1}n−Z. Let M be the output of a random coin-toss.
If M = 1, sample inputs from τ , else sample inputs from ν, where ν is given as follows: assign
each vertex, other than u, v, one distinct string from Z and sample a string x at random from
S and assign x to both Xu and Xv. Let Π be any zero-error protocol for Element-Distinctness.
We next bound ECostγ

(
Π
)
: clearly,

ECostγ
(
Π
)

=
1

2

[
ECostτ

(
Π
)

+ ECostν
(
Π
)]
.

The first term is at least Ω (∆(c)/ log k) from the first part of the theorem. We now bound
the second term on the RHS above. Using a standard breadth-first search tree, we generate
t = D(G) many cuts, C1, . . . , Ct, such that each Ci separates u and v and the set of cut-edges
of Ci and Cj are disjoint, if i 6= j. Thus, ECostν

(
Π
)

=
∑

i ECostν
(
Π, Ci

)
. We claim that

ECostν
(
Π, Ci

)
≥ RU=,S

(
2−EQ

)
. Given this claim, one immediately gets the desired bound on

the RHS.
To prove the claim, consider the following protocol Π′ for Alice and Bob to solve 2-EQ,

given inputs x, y ∈ S: Alice and Bob simulate, according to Π, respectively the nodes on the
sides of Ci that have vertex u and v. Alice assigns x to Xu and Bob assigns y to Yv. Then the
follow Π assuming the other vertices got fixed inputs from Z. Clearly, this solves correctly 2-EQ
for x, y ∈ S. Further, it easily follows ECostU=,2

(
Π′
)

= ECostν
(
Π, Ci

)
= Ω

(
log |S|

)
, where the

last step uses Theorem 2.6. This completes the argument for the lower bound.
The upper bound for the second part of the theorem follows from the following modification

of the protocol from the first part. In the first phase, each player sends a hash of size O(log nk)
to the player at vertex c. Using the hashes the player at vertex c will check which pairs of player
can safely ruled to have distinct inputs. Call a pair of players that cannot be ruled out to have
distinct inputs after the first phase to be surviving. In the second phase, the player at vertex c
consider all surviving pairs (i, j) in some arbitrary order. For each surviving pair (i, j), players
i and j send their inputs to c. If Xi = Xj , then the protocol terminates with a 0. Otherwise
the protocol moves to the next surviving pair. If all surviving pairs have distinct inputs then
the algorithm terminates with a 1. It is easy to check that the protocol always terminates with
the correct answer. To complete the proof we briefly argue the claimed communication upper
bound. First we note that the protocol needs at most one pair (i, j) such that Xi = Xj to send
their inputs to c with total communication O(D(G) · n). Now for every fixed pair (i, j) such
that Xi 6= Xj , the probability that it survives the first phase is O(1/(nk2)). This implies that
the expected communication between (i, j) and c in second phase is O(1/k2). Thus, the total
communication in the second phase for all the pairs with distinct inputs is O(1). The total
communication for the first phase is Õ(∆(c)) from the same argument as in the upper bound
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for the first part of the theorem. Adding up all the communication costs completes the proof.
�

4.2 Distributed XOR Lemma

So far we have proved lower bounds that showed that the trivial algorithm of sending all inputs
(or hashes) to one player was optimal. In this section, we will consider functions for which
the trivial algorithm can potentially have a smaller communication cost. In particular, we will
consider functions where players are paired up and one only needs to send information from
one player to its matched player. (However, there is no difference for the worst-case pairing:
see Lemma 5.1 for a formal statement.)

To be more precise, let M be a disjoint pairing12 of vertices in G = (V,E) with |V | = k
(where k is even) and let f : {0, 1}n × {0, 1}n → {0, 1} be a boolean function. Consider the
function f⊕G,M : ({0, 1}n)k → {0, 1} defined as follows:

f⊕G,M
(
(Xu)u∈V

)
=

⊕
(u,v)∈M

f(Xu, Xv),

where ⊕ denotes the XOR operator.
Here is the trivial algorithm to compute f⊕G,M : for each pair (u, v) ∈ M , the players

corresponding to u and v run the best possible (say randomized) protocol to compute f(Xu, Xv).
Note that this would have communication cost at most a factor D(M) times the optimal
communication complexity of computing f , where

D(M) =
∑

(u,v)∈M

d(u, v).

Next, we show that the above in general, is tight to within a Õ(
√
k) factor. Further, for

functions f where the optimal lower bound on communication complexity of f can be proved
via distributional complexity under a product distribution, the above trivial algorithm is tight
with poly-logarithmic factors.

Theorem 4.3 For every constant ε > 0 and every binary function f the following are true:

1.

Rε,G
(
f⊕G,M

)
≥ Ω

(
(R2ε(f)− 2) · D(M)√

k · log k · log(nk)

)
,

where Rγ(f) is the optimal 2-party communication complexity of f with randomized pro-
tocols that err with probability γ.

2.

Rε,G
(
f⊕G,M

)
≥ Ω

((
R′2ε(f)− 2

)
· D(M)

poly log(nk)

)
,

12We stress that the pairs (u, v) ∈M need not be an edge.
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where R′γ(f) is the optimal 2-party communication complexity of f with randomized proto-
cols that err with probability γ that can be proved via distributional complexity on product
distributions.

In addition to Theorem 3.1, the main tool that we will use is the following slightly modified
result of Barak et al. (see the remark following the theorem):

Theorem 4.4 (Barak et al. [BBCR13]) For every real numbers α, ρ > 0, integer k ≥ 1,
binary function f and a distribution ν on the inputs of f , we have:

(i)

ERνk,ρ(f
⊕k) · log

(
ERνk,ρ(f

⊕k)/α
)
≥ Ω

(
(Dν,ρ+α(f)− 2)α

√
k
)
,

where f⊕k is the 2-party equivalent13 of the f⊕G,M and νk is the product distribution
where one takes k independent samples from ν.

(ii) If ν itself is a product distribution on the input space of f , then

ERνk,ρ(f
⊕k) · poly log

(
ERνk,ρ(f

⊕k)/α
)
≥ Ω ((Dν,ρ+α(f)− 2)α · k) ,

where f⊕k and νk are as defined above.

Remark 2 The LHS in both (i) and (ii) are slight modifications of the original statements in
Theorem 2.8 and Theorem 2.9 of [BBCR13]. Their LHS was Dνk,ρ(f

⊕k). Our modification
immediately follows from Corollary 2.5 of this work.

We now prove Theorem 4.3.

Proof of Theorem 4.3: By Yao’s lemma, there exists a distribution ν on {0, 1}n × {0, 1}n
such that

R2ε(f) = Dν,2ε(f).

Define
µ = νk.

By definition, Rε,G
(
f⊕G,M

)
≥ ERµ,ε,G(f⊕G,M ). Thus, to prove the bounds in the theorem

statement it suffices to just lower bound ERµ,ε,G(f⊕G,M ), which is what we will do next.
Let Π be a protocol that computes f⊕G,M with error ε such that

ECostµ(Π) = ERµ,ε,G(f⊕G,M ). (1)

Let C = {C1, . . . , Ct} be the set of special cuts on G guaranteed by Theorem 3.1. Recall that
M
(
Ci
)

denotes the set of pairs of vertices separated by Ci. We first claim that

13That is, G and M are both a single edge. In particular, all of the k/2 pairs are across the same edge.

19



Claim 4.5 For every 1 ≤ i ≤ t:

ECostµ(Π, Ci) ≥ Ω

(
(R2ε(f)− 2) ·

√
|M(Ci) ∩M |

log(kn)

)
.

We will defer the proof of the claim above and complete the rest of the proof. Consider the
following sequence of relationships:

t∑
i=1

ECostµ(Π, Ci) ≥ Ω

(
(R2ε(f)− 2) ·

∑t
i=1

√
|M(Ci) ∩M |

log(kn)

)
(2)

≥ Ω

(
(R2ε(f)− 2) ·

∑t
i=1 |M(Ci) ∩M |√
k · log(kn)

)
(3)

≥ Ω

(
(R2ε(f)− 2) · D(M) · log k√

k · log(kn)

)
. (4)

In the above (2) follows from Claim 4.5, (3) follows from the fact that |M | = k/2 and (4) follows
from part (1) of Theorem 3.1.

Next, note that (4) along with Observation 2.1 and part (2) of Theorem 3.1 implies that

ECostµ(Π) ≥ Ω

(
(R2ε(f)− 2) · D(M)√

k · log k · log(kn)

)
.

The above along with (1) completes the proof of part (1), modulo the proof of Claim 4.5.
To complete the argument, we now prove Claim 4.5. The basic idea is to show that we

can use Π to solve the 2-party problem of computing f⊕|M(Ci)∩M |, where Alice gets one half
of the inputs indexed by E(Ci) ∩M and Bob gets the other half and then invoke part (i) of
Theorem 4.4. Next we present the details.

For notational convenience define k′ = |M(Ci) ∩ M |. Let a be an arbitrary assignment
to inputs that correspond to pairs of vertices on the same side of the cut Ci. Let µ|a be the
distribution conditioned on this choice. Note by the definition of µ, this is just νk

′
. Given Π,

Alice and Bob solve for f⊕k
′

as follows. They assign inputs for vertices that lie on the same side
of the cut Ci with the specific instances from a. For the rest of the vertices in G, they assign
the corresponding inputs to f⊕k

′
. The rest of the simulation is the obvious one: whenever Π

needs to communicate over an edge in E(Ci), they just exchange the corresponding messages
(other communication in Π can be done by Alice or Bob on their own). It is easy to check that
this protocol is an ε-error protocol for f⊕k

′
(or its complement given the constants in a) given

that Π is an ε-error protocol. Hence, part (i) of Theorem 4.4 implies that

ECostµ|a(Π) ≥ Ω

((
Dν,2ε(f)− 2

)
·
√
|M(Ci) ∩M |

log(kn)

)
,

where we have used the fact that we can WLOG assume that the total communication for Π is
O(k2n) (which corresponds to the trivial algorithm). Since the above holds for every fixed a,
and Dν,2ε(f) = R2ε(f) by our choice of ν, Claim 4.5 follows.

The proof of part (2) is exactly the same as above except we use of part (ii) of Theorem 4.4
instead of part (i) and is omitted. �
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4.3 Distributed AND/OR

In the previous section, we considered the distributed computation of the XOR of several
instances of a function f . It is natural to investigate the distributed computation of OR (AND).
More formally, let G be a graph with k vertices and M a disjoint pairing of its vertices as before.
Then for any f : {0, 1}n × {0, 1}n → {0, 1}, we define f∨G,M , f∧G,M : ({0, 1}n)k → {0, 1} as
follows:

f∨G,M
(
(Xu)u∈V

)
=

∨
(u,v)∈M

f(Xu, Xv),

f∧G,M
(
(Xu)u∈V

)
=

∧
(u,v)∈M

f(Xu, Xv).

As before in the case of XOR, trivial protocols compute it in O
(
D(M) ·Rε(f)

)
cost. It turns

out for specific f , one can design much more efficient protocols as stated below:

Observation 4.6 For any G,M , both Rε,G
(
NEQ∨G,M

)
and Rε,G

(
EQ∧G,M

)
are O

(
k
)
.

Proof: We point out a simple protocol Π for NEQ∨G,M and omit the very similar argument for
EQ∧G,M . We divide the set of k players into two groups arbitrarily such that the two players of
each pairing in M go to different groups. Call one group X and the other Y such that the ith
player in X (input Xi) is paired with ith player in Y (input Yi). Let T be a rooted spanning
tree of G. In Π, players sample k/2 public random strings r1, . . . , rk/2, each n-bit long. A player
at a node waits for all players at its child-nodes in T to communicate messages to it. Each
player sends a two-bit message (bX , bY ) to its parent in T , where bX , bY are called the X and Y
part of the message respectively. Player i in X (Y ) computes 〈ri, Xi〉(mod 2) (〈ri, Yi〉(mod 2))
and then xors this bit and the X (Y ) part of all the messages from its child-nodes. This new
bit is the X (Y ) part of its message to its parent. The Y (X) part is the xor of all the Y (X)
part of the messages from its child nodes.

The protocol Π begins from the players at the leaf-nodes of T and propagates towards the
root player. Finally, the root player checks if the X-bit and Y -bit computed by it are equal. If
they are not, Π outputs 1 otherwise it outputs 0. It is simple to verify Π is a 1-sided protocol
(never errs if it says 1) and it errs with probability 1/2. �

Observation 4.6 essentially rules out a topology dependent lower bound in general for f∨G,M

and f∧G,M , analogous to Theorem 4.3. However, we show that for some simple functions f ,
we do get tight topology-dependent bounds. Moreover, some of these will be useful for proving
lower bounds in Section 5 on the message passing complexity of solving some natural graph
problems.

We complement Observation 4.6 by proving below topology-dependent tight bounds for
EQ∨G,M (and thus NEQ∧G,M ).

Theorem 4.7 For any G, n ≥ 2 and a disjoint pairing M of the nodes of G, Rε,G
(
EQ∨G,Mn

)
is Θ̃

(
D(M)

)
, ignoring poly log(k) factors.
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Proof: The upper bound follows easily using fingerprinting14. Using public coins, one of the
nodes of each pair in M sends an O(log k)-bit fingerprint to its mate. The mate checks it its
fingerprint matches with the sent one. Clearly, with probability less than, say, 1

2k , a pair of
nodes will not detect an inequality. Thus, in total, they communicate O

(
D(M) log k

)
bits.

We next prove the lower bound. As before, we naturally divide the players arbitrarily
into two groups X and Y of equal size, with Xi, Yi paired in M . Consider any three distinct
strings s0

x, s
0
y, s

1 ∈ {0, 1}n, which exist as n ≥ 2. We consider the following distribution: let
D1, . . . , Dk/2 be independent 0/1 valued random variables, each Di has equal probability of
being 1 and 0. If Di = 0 (Di = 1), we set Xi = s0

x (Yi = s0
y) and sample Yi (Xi) at random

from {s0
y, s

1} ({s0
x, s

1}). Call ν the marginal of this distribution on (Xi, Yi). Let Π be any

ε-error protocol for EQ∨G,Mn . We next show that ECostνk
(
Π
)

= Ω
(
D(M)/ log(k)

)
, which will

establish the claimed lower bound of our theorem.
Let C = {C1, . . . , Ct} be the special family of cuts of G guaranteed by Theorem 3.1. We

make the following claim:

Claim 4.8 For each 1 ≤ i ≤ t: ECostνk
(
Π, Ci

)
≥ Ω

(
|M(Ci) ∩M |

)
.

The proof of the lower bound on ECostνk
(
Π
)

using Claim 4.8 is very similar to the proof
of Theorem 4.3 using Claim 4.5 as given in the previous section. Hence, we omit that and just
prove Claim 4.8 below.

Let ψ = νk and let m = |M(Ci) ∩M |. Let a be an arbitrary assignment to inputs that
correspond to pairs of vertices on the same side of the cut Ci such that a is consistent with
assignments in the support of ψ. Let ψ|a be the distribution conditioned on this choice. Let
Πa be the protocol induced from Π with this fixing. We first derive an ε-error protocol Γ for
DISJm, using Π. Alice and Bob replace each of their 0’s by strings s0

x and s0
y respectively.

They both replace their 1’s by s1. Then they simulate Πa in the natural way. Alice and Bob
communicate to each other only when Πa communicates message across cut Ci. It is easy to
verify Γ is an ε-error protocol for DISJm. On any execution its cost is the same as Πa. Recall
the hard distribution µ for DISJ from Theorem 2.9 and Corollary 2.10. It is easily verified that

ECostψ|a
(
Πa

)
= ECostµ

(
Γ
)
≥ m

4

(
1− 2

√
ε

)
,

where the last inequality follows from Corollary 2.10. Observing that this is true for every a,
we immediately establish Claim 4.8.

�

Of particular interest for applications, would be DISJ∨G,Mn and DISJ∧G,Mn , where the sub-
script n refers to the fact that each of the k players holds an n-bit string. We will show the
following:

Theorem 4.9 1.

Rε,G
(
DISJ∨G,Mn

)
= Ω

(
D(M)

poly log(k)
· n
)

.
14There is a more careful protocol that can save an O(log k) factor over the one described here. In this version,

we do not describe it for the sake of simplicity.
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2.

Rε,G
(
DISJ∧G,Mn

)
= Ω

(
D(M)

poly log(k)
· n
)

.

Proof: The proof of the two bounds are very similar. The bound for the complexity of
DISJ∨G,Mn makes use of Corollary 2.10 and the bound for DISJ∧G,Mn makes use of Corollary 2.12
in almost identical fashion. We therefore only prove the bound for the latter and omit the
former.

The basic argument of the proof follows the same outline as those for Theorems 4.3 and
4.7. We first select ρk as our global distribution on inputs, where ρ is defined as in Corol-
lary 2.12. This choice is natural because DISJ∧G,Mn defines a distributed version of the function
TRIBESk,n. Assume Π is an ε-error k-party randomized protocol solving DISJ∧G,Mn . We will
bound ECostρk

(
Π
)

by the quantity appearing in the RHS of item 2 in the theorem above. This
will finish the argument.

As in the arguments before, Theorem 3.1 provides us with the family of cuts C ≡ {C1, . . . , Ct}.
Then, we make the following claim:

Claim 4.10 For each 1 ≤ i ≤ t,

ECostρk
(
Π, Ci

)
≥ Ω

(∣∣M(Ci) ∩M
∣∣ · (n− 1)

16

(
1− 2

√
ε
))
.

Given this claim, the bound of the theorem follows in very similar way as Theorem 4.3
followed from Claim 4.5 before. We omit these, by now, routine steps. All that remains is to
prove Claim 4.10, which we do next. Note that the argument below is quite similar, in fact
slightly simpler, to the proof of Claim 4.8 above.

Let φ = ρk and let m = |M(Ci) ∩M |. Let a be an arbitrary assignment to inputs that
correspond to pairs of vertices on the same side of the cut Ci such that a is consistent with
assignments in the support of φ. Let φ|a be the distribution conditioned on this choice. Let
Πa be the protocol induced from Π with this fixing. We first derive an ε-error protocol Γ for
TRIBESm,n, using Πa. Alice and Bob, given an input instance of TRIBESm,n just simulate
Πa in the natural way. Alice and Bob communicate to each other only when Πa communicates
message across cut Ci. Observing that the partial assignment a does not fix the output of
DISJ∧G,Mn , it is easy to verify Γ is an ε-error protocol for TRIBESm,n. On any execution its
cost is the same as Πa. Noting that φ|a is the same as ρm, it follows that

ECostφ|a
(
Πa

)
= ECostρm

(
Γ
)
≥ m(n− 1)

16

(
1− 2

√
ε

)
,

where the last inequality follows from Corollary 2.12. Observing that this is true for every a,
we immediately establish Claim 4.10. �
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4.4 OR of f on Star Graph

In this section, we show that our technique can recover the lower bound of Phillips et al. [PVZ12]
(and strengthened by Woodruff and Zhang in [WZ13]) on the following function:

f∨,∗(X1, . . . , Xk, Y ) = ∨ki=1f(Xi, Y ),

where the underlying topology G is the star graph with k leaves with the center getting Y and
the k leaves get X1, . . . , Xk separately. The following result is known:

Theorem 4.11 ([PVZ12, WZ13]) For any ε > 0 and boolean function f , we have for the
star graph G on k leaves:

Rε,G(f∨,∗) ≥ Ω (k ·R2ε(f)) .

Proof: By Yao’s lemma, there exists a distribution ν on {0, 1}n × {0, 1}n such that

R2ε(f) = Dν,2ε(f).

Let ν0 be the marginal distribution on inputs where f evaluates to 0. Define the global distri-
bution µ on the k+ 1 inputs as follows. Pick (X1, Y ) according to ν0. Then conditioned on the
choice of Y , pick X2, . . . , Xk according to the conditional distribution on ν0.

By definition, Rε,G(f∨,∗) ≥ ERµ,ε,G(f∨,∗). Thus, we will lower bound the latter quantity.
Let Π be a protocol that computes f∨,∗ with error ε such that

ECostµ(Π) = ERε,µ,G(f∨,∗).

Let C = {C1, . . . , Ck} be the set of cuts defined by picking a leaf to be one side of the cut.
We first claim that:

Claim 4.12 For every 1 ≤ i ≤ k:

ECostµ(Π, Ci) ≥ Ω (R2ε(f)) .

Since each cut separates each of the k edges of G exactly once, Observation 2.1 completes the
proof.

The proof of Claim 4.12 follows exactly the same argument as for similar claims in earlier
proofs so we just sketch the argument here. WLOG consider the cut C1 and assume that
player 1 (with X1) is on one side of the cut. The idea is that using Π we construct an ε-error
randomized 2-party protocol Γ for f . Then we show that ECostµ(Π, C1) = ECostν0(Γ). This
will allow us to conclude the argument as Lemma 2.3 yields ECostν0(Γ) ≥ D2ε,ν

(
f
)

= R2ε

(
f
)
.

So, here is how we construct such a protocol Γ. Given inputs, X,Y , Bob samples X2, . . . , Xk

according to ν0 conditioned on Y . Let a be such a sampling of the values of X2, . . . , Xk that is
in the support of µ. Alice sets X1 = X. Then, they simulate Π across the cut as usual. As each
(Xj , Y ) is in the support of ν0, for j ≥ 2, the effective function across the cut is f(X1, Y ). This
shows that Γ is an ε-error randomized protocol for f . Further, note that when the inputs to Γ
are sampled from ν0, Γ simulates Π on an input sampled from µ. This establishes the second
property of Γ and we are done.

�
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4.5 Composed Functions

In this section, we demonstrate further applicability of our technique by considering composed
functions. These functions have been widely studied in the communication complexity litera-
ture. It is convenient to consider the following k×n Boolean matrix M representing the inputs
of the players: each row i of M is the input string of Player i. Let f : {0, 1}n → {0, 1}
and g : {0, 1}k → {0, 1} be two boolean functions. Then, f ◦ g :

(
{0, 1}n

)k → {0, 1}
is defined as follows: the input to f ◦ g is naturally viewed as a k × n matrix M . Then,
(f ◦ g)(M) = f

(
g(M1), g(M2), . . . , g(Mn)

)
, where M j is the k-bit string in the j-th column of

M .
For instance,

(
OR◦AND

)
is the k-party set-disjointness problem. Very recently, Braverman

et.al. [BEO+13] proved Ω
(
kn
)

lower bounds for any network topology. This is also tight,
independent of the topology for the following simple reason. Let T be a rooted spanning tree.
Staring from the players at leaf-nodes, every Player u computes the intersection of sets held by
players in the tree rooted at u. Player u forwards this result using n-bits to its parent-node in
T . Thus every player in T forwards an n-bit string to its parent resulting in a deterministic
zero-error protocol of cost (k − 1)n.

The main question that we are interested in is what combination of inner and outer functions
makes the composed function’s complexity sensitive to the graph topology, i.e. the complexity
grows superlinearly with k the number of nodes for some topology. Clearly if the inner function
g over k variables itself can be computed, by randomized protocols in O(k) communication over
a topology, then for any outer function f ,

(
f ◦ g

)
can be computed in Õ(kn) cost. This rules

out several functions like XOR, AND, Equality as inner functions.
On the other hand, we show that for hard inner functions like Inner Product or Set-

Disjointness we indeed get topology sensitive complexity bounds. Let G be any graph on a
set of k nodes {1, . . . , k}, and M a disjoint pairing of its nodes, assuming k is even. Then,(
fn ◦ IPk

)G,M
is defined as follows on any input X1, . . . , Xk: let Yj = ⊕(u,v)∈M

(
Xu

)
j
·
(
Xv

)
j
,

i.e. we apply the IP function, as defined by pairing M , on the jth column of k × n matrix A
formed naturally from the inputs of the k players. Then,(

fn ◦ IPk
)G,M(

X1, . . . , Xk

)
≡ f

(
Y1, . . . , Yn

)
.

Theorem 4.13 The k-party ε-error randomized complexity of both
(
XORn ◦ IPk

)G,M
and(

ORn ◦ IPk
)G,M

are Θ̃
(
D(M) · n

)
.

Proof: Recall the distribution ν defined just before the statement of Theorem 2.9 in Section 2.
We consider the following input distribution γ: let

(
(Xu)j , (Xv)j

)
be i.i.d according to ν, for

(u, v) ∈ M and j ∈ [n]. Note that γ ≡ ν`, where ` = k
2n. We show that for every protocol Π

computing
(
f ◦ IPk

)G,M
, where f is either XORn or ORn, ECostγ

(
Π
)

= Ω̃
(
D(M) · n

)
which

will establish the theorem.
We make the following claim:

Claim 4.14 Let C be any cut of G: ECostν`
(
Π, C

)
= Ω

(
|M(C) ∩M | · n

)
.
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The proof of the lower bound on ECostνk
(
Π
)

using Claim 4.14 and the set of special cuts
of G using Theorem 3.1, is very similar to the proof of Theorem 4.3 using Claim 4.5 as given
in Section 4.2. Hence, we omit that and just prove Claim 4.14 below.

We note that the following argument is quite similar to proof of Claim 4.8 and Claim 4.10.
Let φ = ν` and let m = |M(C)∩M |. Let a be an arbitrary assignment to inputs that correspond
to pairs of vertices on the same side of the cut C such that a is consistent with assignments in
the support of φ. Let φ|a be the distribution conditioned on this choice. Let Πa be the protocol
induced from Π with this fixing. We first derive an ε-error protocol Γ for UDISJmn, using Πa.
Alice and Bob, given an input instance of UDISJmn just simulate Πa in the natural way. They
communicate to each other only when Πa communicates message across cut C. Observing that

the partial assignment a does not fix the output of
(
f ◦ IPk

)G,M
, it is easy to verify Γ is an

ε-error protocol for UDISJmn. On any execution its cost is the same as Πa. Noting that φ|a is
the same as νmn, it follows that

ECostφ|a
(
Πa

)
= ECostνmn

(
Γ
)
≥ mn

4

(
1− 2

√
ε

)
,

where the last inequality follows from Corollary 2.10. Observing that this is true for every a,
we immediately establish Claim 4.14. �

Similarly, define
(
fn ◦DISJk

)G,M
on inputs X1, . . . , Xk as follows: let Zj = ∨(u,v)∈M

(
Xu

)
j
·(

Xv

)
j
, i.e. we apply the DISJ function, as specified by pairing M , on the jth column of k × n

matrix A formed naturally from the inputs of the k players.

Theorem 4.15 The k-party ε-error randomized complexity of
(
fn ◦DISJk

)G,M
is Θ̃

(
D(M) ·n

)
when fn is any of the following functions: XORn, ORn.

Proof: The proof is almost identical to that of the previous argument for Theorem 4.13. We
choose the same global input distribution ν` as there, where ` = k

2n. Then, just as there, for

any cut C, and any bounded-error protocol Π computing
(
f ◦ DISJk

)G,M
, where f is either

XORn or ORn, we claim the following:

Claim 4.16 ECostν`
(
Π, C

)
= Ω

(
|M(C) ∩M | · n

)
.

Both the proof of this claim and the application of the claim to prove our theorem is identical
to the proof and use of Claim 4.14 for proving Theorem 4.13. �

5 Lower Bounds for Graph Problems

In this section, we will consider the case when the k players are trying to compute a function
about a graph H = (V,E) that is distributed among the k players. In particular, for player
i ∈ [k], we will denote its subgraph by Hi. We consider the graph based problems considered
in [WZ13] and show that in all of them the trivial algorithm where all players send their input to
one player is the best possible algorithm. In particular, these give topology dependent extensions
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to the corresponding results in [WZ13]. In this section, we will not explicitly differentiate
whether the edge sets of Hi are disjoint for every i or not. In what follows we will use m to
denote the total number of edges in Hi (i ∈ [k]) with duplication.

We begin with a technical result that we will use multiple times:

Lemma 5.1 For any graph G on k vertices for even k, let M(G) denote the set of all disjoint
pairings of the k vertices. Then for any k ≥ 2,

1

2
·∆(c) ≤ max

M∈M(G)
D(M) ≤ ∆(c).

Proof: The upper bound easily follows from the triangle inequality. Indeed consider any pairing
M . Then note that for any pair u and v, we have d(u, v) ≤ d(u, c) + d(v, c). Summing up both
side over all pairs in M (and noting that when u or v is c then we only need one term in the
RHS of the inequality) proves the upper bound.

For the lower bound, we first claim that there exists k− 1 pairings M1, . . . ,Mk−1 such that
every pair of distinct vertices of G appears in exactly one Mj . (This follows from the fact that
a complete graph on even number of vertices has a 1-factorization.) This implies that

k−1∑
j=1

D(Mj) =
1

2

∑
u6=v

d(u, v) ≥ k

2
·∆(c),

where the equality follows from the definition of M1, . . . ,Mk−1 while the inequality follows from
the same argument used in proof of Theorem 4.1. Thus, by a counting argument there exists
an Mj such that

D(Mj) ≥
k

2(k − 1)
·∆(c) ≥ ∆(c)

2
,

as desired. �

5.1 Reductions from Element-Distinctness

Degree. In this problem in addition to Hi each player also receives a vertex v ∈ V . Together
they have to compute the degree of v. The following result follows from the same reduction as
in [WZ13].

Theorem 5.2 Solving the degree problem on graph G needs Ω
(

∆(c) · m
k·poly log k

)
communica-

tion.

Proof: We use the reduction from [WZ13]. Consider an instance of Element-distinctness
problem where the k inputs are X1, . . . , Xk ∈ {0, 1}n with n = O(log k). Now consider H as
follows. V = {0, 1}n ∪{v}. Then player i ∈ [k] gets the edge (v,Xi). Note that each player can
construct Hi from its input Xi, that m = k and that the degree of v is k if and only if all of
X1, . . . , Xk are distinct. The claimed lower bound then follows from Theorem 4.1. �
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5.2 Reductions from OR-DISJ

In this section, we consider the following three problems.

Acyclicity. Given Hi to player i ∈ [k], the players need to decide if H is acyclic or not.

Triangle-Freeness. Given Hi to player i ∈ [k], the players have to decide if H has a triangle
or not.

Bipartitiness. Given Hi to player i ∈ [k], the players have to decide if H is bipartite or not.
We will show that for all of the problems above, the trivial algorithm is the best.

Theorem 5.3 Each of the problems of acyclicity, triangle-freeness and bipartitenes on graph

G needs Ω
(

∆(c) · m
k·log k

)
communication.

Proof: We will prove the claimed lower bounds by showing the claimed lower bound on the
problem where the players have to decide if (i) H is a forest vs (ii) H has a triangle. (Note
that solving any of acyclicity, triangle-freeness or bipartitenes will determine which of the two
cases H falls in.)

Consider the OR-DISJ problem with pairing M , where we pick M so that it maximizes
D(M) (and hence, we can apply Lemma 5.1). For notational convenience let us assume that

M = {(i, i′)|i ∈ [k/2] and i′ = i+ k/2}.

Assume that for the DISJ∨G,Mn problem, player i ∈ [k] gets a set/vector Xi ∈ {0, 1}n. We now
define the subgraphs Hi. To begin with we have

V = ∪k/2j=1Uj ∪ {w
1, . . . , wk},

where
Uj = {uj1, . . . , u

j
n}.

For every p ∈ [k], Hp has the following edges: (wp, wp
′
) and (wp, up

′

j ) for every j ∈ [n] such
that Xp(j) = 1, where p′ = p if p ≤ k/2 and p′ = p − k/2 otherwise. See Figure 5.2 for an
illustration of this reduction.

Note that each player p can construct its subgraph just from its Xp and that H is in case (i)

if DISJ∨G,Mn (X1, . . . , Xk) = 0 and is in case (ii) otherwise. Theorem 4.9 along with the lower
bound in Lemma 5.1 completes the proof. �

5.3 Reductions from AND-DISJ

In this section, we prove lower bounds for the following connectivity problems.

Connectivity. Given Hi to player i ∈ [k], the players need to decide if H is connected or not.
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Figure 1: Illustration of the reduction in proof of Theorem 5.3 for n = k = 4. The pairing
M = (1, 3), (2, 4) is denoted by the paired players having the same colored boxes. In this
example the overall graph H = ∪4

i=1Hi has a triangle and the three participating nodes are
colored in orange.

Connected Components. Given Hi to player i ∈ [k], the players need to compute the
number of connected components in H.

Since a lower bound for the first problem implies a lower bound for the second problem, we
only present a lower bound for the connectivity problem.

Theorem 5.4 The problem of connectivity on graph G needs Ω
(

∆(c) · m
k·log k

)
communication.

Proof: We will reduce from AND-DISJ. As in proof of Theorem 5.3, we pick M so that it
maximizes D(M) (and hence, we can apply Lemma 5.1). For notational convenience let us
assume that

M = {(i, i′)|i ∈ [k/2] and i′ = i+ k/2}.

Consider the AND-DISJ problem with pairing M , where player i ∈ [k] gets the set Xi ∈
{0, 1}n. We now define the subgraphs Hi. To begin with we have

V = ∪k/2j=1Uj ∪ {`1, . . . , `k/2, r},

where
Uj = {uj1, . . . , u

j
n}.
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For every player p ∈ [k], player p has the following edges in Hp. If p ≤ k/2, then it has the

edges (`j , u
p
j ) for every j such that Xp(j) = 1. Otherwise it has the edges (r, up

′

j ) for every j
such that Xp(j) = 1 where p′ = p− k/2. See Figure 5.3 for an illustration of this reduction.
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Figure 2: Illustration of the reduction in proof of Theorem 5.4 for n = k = 4. The pairing
M = (1, 3), (2, 4) is denoted by the paired players having the same colored boxes. In this
example the overall graph H = ∪4

i=1Hi is connected.

It is easy to check that each player p can constructHp just fromXp and thatH is connected if

and only if DISJ∧G,Mn (X1, . . . , Xk) = 1. Theorem 4.9 along with the lower bound in Lemma 5.1
completes the proof. �

6 Conclusion and Open Questions

In this paper we obtained the first lower bounds in NIH point to point communication model
that non-trivially depend on the underlying network topology. We presented a simple technique
based on the theory of embeddings and the linearity of expectation that is able to prove our
results. Our results include topology dependent lower bounds on the Element-Distinctness
problem, an XOR lemma, various results on OR and AND of functions as well as natural graph
problems. We also showed that our techniques are powerful enough to recover results from
existing techniques.

Many questions still remain unresolved. The biggest question is arguably to determine the
complexity of composed functions. We know that we cannot have non-trivial topology depen-
dent lower bounds for every composed functions: broad sufficient conditions on the composed
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functions that lead to non-trivial topology dependent lower bounds would be very interesting.
Resolving this question even for the special case of the outer function being OR/AND seems
non-trivial.

Another special case of this question would be fix the inner functions to be a hard function
like DISJ and to consider outer functions that are lower degree polynomials over F2. We can
handle the very special cases of linear outer functions but even handling quadratic polynomials
seems challenging.

There is one aspect of our technique that we find intriguing. To explain this, note that
a key step of the technique is to reduce the problem to a bunch of 2-player communication
games played across a nice family of cuts. But in each of these 2-player communication games,
Alice gets access to all inputs lying on one side of the cut and Bob gets similar access to
all inputs lying on the other side. However, in the original k-player game, each player gets
access to only his/her input. In other words, it seems natural to expect that our technique for
proving lower bounds is still not able to capture all the bottleneck in the original point to point
communication problem. What then explains the many tight lower bounds that the technique
establishes nevertheless? Is it possible that for a certain class of functions f , one can formulate
a set of conditions for induced 2-party games across cuts of a graph G that are sufficient (and
necessary) to yield a genuine point to point k-party efficient communication protocol for f over
topology G. This would be an interesting direction to investigate.
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