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Abstract

Drucker [1] proved the following result: Unless the unlikely complexity-theoretic
collapse coNP ⊆ NP/poly occurs, there is no AND-compression for SAT. The result
has implications for the compressibility and kernelizability of a whole range of NP-
complete parameterized problems. We present a simple proof of this result.

An AND-compression is a deterministic polynomial-time algorithm that maps a
set of SAT-instances x1, . . . , xt to a single SAT-instance y of size poly(maxi |xi|)
such that y is satisfiable if and only if all xi are satisfiable. The “AND” in the
name stems from the fact that the predicate “y is satisfiable” can be written as the
AND of all predicates “xi is satisfiable”. Drucker’s result complements the result
by Bodlaender, Downey, Fellows, et al. [2] and Fortnow and Santhanam [3], who
proved the analogous statement for OR-compressions, and Drucker’s proof not only
subsumes that result but also extends it to randomized compression algorithms that
are allowed to have a certain probability of failure.

The overall structure of our proof is similar to the arguments of Ko [4] for P-
selective sets, which use the fact that tournaments have dominating sets of logarith-
mic size. We generalize this fact to hypergraph tournaments. For the information-
theoretic part of the proof, we consider a natural generalization of the average noise
sensitivity of a Boolean function, which is bounded for compressive maps. We prove
this with mechanical calculations that involve the Kullback–Leibler divergence.

1 Introduction
The influential “OR-conjecture” by Bodlaender, Downey, Fellows, et al. [2] asserts that
t instances x1, . . . , xt of SAT cannot be mapped in polynomial time to an instance y
of size poly(maxi |xi|) so that y is a yes-instance if and only if at least one xi is a
yes-instances. Conditioned on the OR-conjecture, the “composition framework” of Bod-
laender, Downey, Fellows, et al. [2] has been used to show that many different problems
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in parameterized complexity do not have polynomial kernels. Fortnow and Santhanam
[3] were able to prove that the OR-conjecture holds unless coNP ⊆ NP/poly, thereby
connecting the OR-conjecture with an existing hypothesis in complexity theory.

The results of [2, 3] can be used not only to rule out deterministic kernelization algo-
rithms, but also to rule out randomized kernelization algorithms with one-sided error,
as long as the success probability is bigger than zero; this is the same as allowing the
kernelization algorithm to be a coNP-algorithm. Left open was the question whether the
complexity-theoretic hypothesis coNP 6⊆ NP/poly (or some other hypothesis believed by
complexity theorists) suffices to rule out kernelization algorithms that are randomized
and have two-sided error. Drucker [1] resolved this question affirmatively; his results
can rule out kernelization algorithms that have a constant gap in their error probabili-
ties. This result indicates that randomness does not help to decrease the size of kernels
significantly.

With the same proof, Drucker [1] resolves another, perhaps more important question:
the question whether the “AND-conjecture”, which has also been formulated by Bod-
laender, Downey, Fellows, et al. [2] analogous to the OR-conjecture, can be derived from
existing complexity-theoretic assumptions. This is an intriguing question by itself, and
it is also relevant for parameterized complexity as, for some parameterized problems, we
can rule out polynomial kernels under the AND-conjecture, but we do not know how
to do so under the OR-conjecture. Drucker [1] proved that the AND-conjecture is true
if coNP 6⊆ NP/poly holds. This paper contains a new, comparatively simple proof of
Drucker’s theorem.

1.1 Main Theorem: Ruling out OR- and AND-compressions
Since “AND-compression of L” is the same as “OR-compression of L”, and since the
complexity consequence that we obtain for L is actually closed under complementation,
we will only consider OR-compressions. The following theorem states Drucker’s result
in a robust form.

Theorem 1.1 (Robust version of Drucker’s theorem). Let L,L′ ⊆ {0, 1}∗ be lan-
guages, let es, ec ∈ [0, 1] be error probabilities with es + ec < 1, and let ε > 0. As-
sume that there exists a randomized polynomial-time algorithm A that maps any set
x = {x1, . . . , xt} ⊆ {0, 1}n for some n and t to y = A(x) such that:

◦ (Soundness) If all xi’s are no-instances of L, then y is a no-instance of L′ with
probability > 1− es.

◦ (Completeness) If exactly one xi is a yes-instance of L, then y is a yes-instance
of L′ with probability > 1− ec.

◦ (Size bound) The size of y is bounded by t1−ε · poly(n).

Then L ∈ NP/poly ∩ coNP/poly.

The procedure A above is not a “full” OR-compression for two reasons: Firstly, it only
needs to work, or be analyzed, in the case that all input instances have the same length;
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this is useful in hardness of kernelization proofs as it allows to group similar instances
together. Secondly, it only needs to work, or be analyzed, in the case that at most one of
the input instances is a yes-instance of L. That this milder completeness requirement is
sufficient is easy to see in our simplified proof. The theorem of Fortnow and Santhanam
[3] corresponds to the special case of the above theorem in which ec = 0. However, they
only obtain the consequence L ∈ coNP/poly, which prevents their result from applying to
AND-compressions in a non-trivial way. Moreover, their proof uses the full completeness
requirement, and the milder completeness condition above does not seem to suffice.

The proof of Theorem 1.1 appears in §3 as a special case of Theorem 3.1, which allows
for finer control over the output size bound; in particular, it allows for the output size
to be up to εt for any fixed polynomial t = t(n), as long as ε > 0 is small enough
compared to the error probability. The proof in §3 does not become more complicated
by doing this. In §4, we present a slightly more complicated proof that allows for the
output size to be up to O(t log t) in the zero-error case es = ec = 0; this culminates in
Theorem 4.1. All of these results –perhaps with the exception of the milder requirement
in the completeness case– already appear in Drucker [1].

1.2 Overview and comparison of the proof
Both Drucker’s proof and the proof presented here use the OR-compression A to con-
struct a P/poly-reduction from L to the statistical distance problem, which is known to
be in the intersection of NP/poly and coNP/poly by previous work.

To construct the polynomial advice of the reduction, Drucker uses the minimax theo-
rem and a game-theoretic sparsification argument. We avoid these arguments and con-
struct the advice in a combinatorial way more directly: We generalize the fact that tour-
naments have dominating sets of logarithmic size to hypergraph tournaments; these are
complete t-uniform hypergraphs with the additional property that, for each hyperedge,
one of its elements gets “selected”. In particular, for each set e ⊆ L of t no-instances,
we will select one element of e based on the fact that A’s behavior on e somehow proves
that the selected instance is a no-instance of L. The advice of the reduction is going to
be a small dominating set of this hypergraph tournament on the set of no-instances of L.
The crux of the reduction is that we can efficiently test, with the help of the statistical
distance problem oracle, whether an instance is dominated or not. Since any instance is
dominated if and only if it is a no-instance of L, this suffices to solve L.

The basic argument above can be seen as a generalization of Ko’s argument for P-
selective sets [4]. The arguments used by Fortnow and Santhanam [3] and Dell and Van
Melkebeek [5] for compression-type procedures and Dell, Kabanets, Melkebeek, et al. [6]
for isolation procedures have a similar flavor.

In the information-theoretic part of the proof, we consider a natural generalization of
the notion of average noise sensitivity of a Boolean function to non-Boolean functions,
and we show that compressive maps have small average noise sensitivity. This is similar
to Drucker’s “distributional stability”. Our proof consists of a mechanical calculation
that bounds the statistical distance in terms of the Kullback–Leibler divergence using
Pinsker’s inequality, and then relates it to the mutual information.
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1.3 Application: The composition framework for ruling out O(kd−ε) kernels
We briefly describe a modern variant of the composition framework that is sufficient to
rule out kernels of size O(kd−ε) using Theorem 1.1. It is almost identical to Lemma 1
of [5, 7] and Definition 2.2 of [8]. By applying the framework for unbounded d, we can
also use it to rule out polynomial kernels.

Definition 1. Let L be a language, and let Π with parameter k be a parameterized
problem. A d-partite composition of L into Π is a polynomial-time algorithm A that
maps any set x = {x1, . . . , xt} ⊆ {0, 1}n for some n and t to y = A(x) such that:

(1) If all xi’s are no-instances of L, then y is a no-instance of Π.

(2) If exactly one xi is a yes-instance of L, then y is a yes-instance of Π.

(3) The parameter k of y is bounded by t1/d+o(1) · poly(n).

This notion of composition has one crucial advantage over previous notions of OR-
composition: The algorithm A does not need to work, or be analyzed, in the case that
two or more of the xi’s are yes-instances.

Definition 2. Let Π be a parameterized problem. We call Π d-compositional if there
exists an NP-hard or coNP-hard problem L that has a d-partite composition algorithm
into Π.

The above definition encompasses both “AND-compositional” and “OR-compositional”
because an OR-composition of L into Π is the same as an AND-composition of L into Π.
We have the following corollary of Drucker’s theorem.

Corollary 1.2. If coNP 6⊆ NP/poly, then no d-compositional problem has kernels of size
O(kd−ε). Moreover, this even holds when the kernelization algorithm is allowed to be a
randomized algorithm with at least a constant gap in error probability.

Proof. Let L be an NP-hard or coNP-hard problem that has a d-partite composition A′
into Π. Assume for contradiction that Π has a kernelization algorithm with soundness
error at most es and completeness error at most ec so that es+ec is bounded by a constant
smaller than one. The concatenation of A′ with the assumed O(kd−ε′)-kernelization gives
rise to an algorithm A that satisfies the conditions of Theorem 1.1, for example with
ε = ε′/(2d). Therefore, we get L ∈ (coNP/poly ∩ NP/poly) and thus coNP ⊆ NP/poly, a
contradiction. �

Several variants of the framework provided by this corollary are possible:

1. In order to rule out poly(k)-kernels for a parameterized problem Π, we just need
to prove that Π is d-compositional for all d ∈ N; let’s call Π compositional in this
case. One way to show that Π is compositional is to construct a single composition
from a hard problem L into Π; this is an algorithm as in Definition 1, except that
we replace (3) with the bound k 6 to(1)poly(n).
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2. Since all xi’s in Definition 1 are promised to have the same length, we can consider
a padded version L̃ of the language L in order to filter the input instances of
length n of the original L into a polynomial number of equivalence classes. Each
input length of L̃ in some interval [p1(n), p2(n)] corresponds to one equivalence
class of length-n instances of L. So long as L̃ remains NP-hard or coNP-hard, it
is sufficient to consider a composition from L̃ into Π. This has been formalized in
Definition 4 of [9].

3. The composition algorithm can also use randomness, as long as the overall proba-
bility gap of the concatenation of composition and kernelization is not negligible.

4. In the case that L is NP-hard, the composition algorithm can also be a coNP-
algorithm or an oracle communication game in order to get the collapse [3, 5]. This,
however, does not seem to follow from Drucker’s proof and it seems to require the
full completeness condition for the OR-composition. This variant of the framework
has been exploited in [10, 11].

2 Preliminaries
For any set R ⊆ {0, 1}∗ and any ` ∈ N, we write R`

.= R ∩ {0, 1}` for the set of all
length-` strings inside of R. For any t ∈ N, we write [t] .= {1, . . . , t}. For a set V , we
write

(V
6t

)
for the set of all subsets x ⊆ V that have size at most t. We will work over a

finite alphabet, usually Σ = {0, 1}. For a vector a ∈ Σt, a number j ∈ [t], and a value
y ∈ Σ, we write a|j←y for the string that coincides with a except in position j, where it
has value y. For background in complexity theory, we defer to the book by Arora and
Barak [12]. We assume some familiarity with the complexity classes NP and coNP as
well as their non-uniform versions NP/poly and coNP/poly.

2.1 Distributions and Randomized Mappings
A distribution on a finite ground set Ω is a function D : Ω→ [0, 1] with

∑
ω∈ΩD(ω) = 1.

The support of D is the set suppD = {ω ∈ Ω : D(ω) > 0}. The uniform distribution
UΩ on Ω is the distribution with UΩ(ω) = 1

|Ω| for all ω ∈ Ω. We often view distributions
as random variables, that is, we may write f(D) to denote the distribution D′ that first
produces a sample ω ∼ D and then outputs f(ω), where f : Ω→ Ω′. We use any of the
following notations:

D′(ω′) = Pr(f(D) = ω′) = Pr
ω∼D

(f(ω) = ω′) =
∑
ω∈Ω
D(ω) · Pr(f(ω) = ω′) .

The last term Pr(f(ω) = ω′) in this equation is either 0 or 1 if f is a deterministic
function, but we will also allow f to be a randomized mapping, that is, f has access to
some “internal” randomness. This is modeled as a function f : Ω × {0, 1}r → Ω′ for
some r ∈ N, and we write f(D) as a short-hand for f(D,U{0,1}r ). That is, the internal
randomness consists of a sequence of independent and fair coin flips.
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2.2 Statistical Distance
The statistical distance d(X,Y ) between two distributions X and Y on Ω is defined as

d(X,Y ) = max
T⊆Ω

∣∣Pr(X ∈ T )− Pr(Y ∈ T )
∣∣ . (1)

The statistical distance between X and Y is a number in [0, 1], with d(X,Y ) = 0 if and
only if X = Y and d(X,Y ) = 1 if and only if the support of X is disjoint from the
support of Y . It is an exercise to show the standard equivalence between the statistical
distance and the 1-norm:

d(X,Y ) = 1
2 ·
∥∥X − Y ∥∥1 = 1

2
∑
ω∈Ω

∣∣Pr(X = ω)− Pr(Y = ω)
∣∣ .

2.3 The Statistical Distance Problem
For U = U{0,1}n and 0 6 δ < ∆ 6 1, let SD>∆

6δ be the following promise problem:

yes-instances: Pairs of circuits C,C ′ : {0, 1}n → {0, 1}∗ so that d(C(U), C ′(U)) > ∆.

no-instances: Pairs of circuits C,C ′ : {0, 1}n → {0, 1}∗ so that d(C(U), C ′(U)) 6 δ.

The statistical distance problem is not known to be polynomial-time computable, and
in fact it is not believed to be. On the other hand, the problem is also not believed to
be NP-hard because the problem is computationally easy in the following sense.

Theorem 2.1 ([13] + [14]).
If δ < ∆ are constants, we have SD>∆

6δ ∈
(
NP/poly ∩ coNP/poly

)
.

Moreover, the same holds when δ = δ(n) and ∆ = ∆(n) are functions of the input length
that satisfy ∆− δ > 1

poly(n) .

This is the only fact about the SD-problem that we will use in this paper.
Slightly stronger versions of this theorem are known: For example, Xiao [13, p. 144ff]

proves that SD>∆
6δ ∈ AM∩coAM holds. In fact, Theorem 2.1 is established by combining

his theorem with the standard fact that AM ⊆ NP/poly, i.e., that Arthur–Merlin games
can be derandomized with polynomial advice [14]. Moreover, when we have the stronger
guarantee that ∆2 > δ holds, then SD>∆

6δ can be solved using statistical zero-knowledge
proof systems [15, 16]. Finally, if ∆ = 1, the problem can be solved with perfect zero-
knowledge proof systems [15, Proposition 5.7]. Using these stronger results whenever
possible gives slightly stronger complexity collapses in the main theorem.

3 Ruling out OR-compressions
In this section we prove that any language L that has an OR-compression A into a lan-
guage L′ is in coNP/poly∩NP/poly, provided some conditions on the error probabilities
and the compression ratio are satisfied.
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Theorem 3.1 (εt-compressive version of Drucker’s theorem). Let L,L′ ⊆ {0, 1}∗
be languages and es, ec ∈ [0, 1] be some constants denoting the error probabilities. Let
t = t(n) > 0 be a polynomial and ε > 0. Let

A :
(
{0, 1}n

6 t

)
→ {0, 1}εt (2)

be a randomized P/poly-algorithm such that, for all x ∈
({0,1}n

6t

)
,

◦ if |x ∩ L| = 0, then A(x) ∈ L′ holds with probability > 1− es, and

◦ if |x ∩ L| = 1, then A(x) ∈ L′ holds with probability > 1− ec.
If es + ec < 1−

√
(2 ln 2)ε, then L ∈ NP/poly ∩ coNP/poly.

We optimized our proof for simplicity and not for the optimality of the conditions on the
parameters es, ec, and ε. Drucker’s original bound is es + ec < 1−

√
(ln 2/2)ε. Using the

slightly more complicated setup of §4, we would be able to achieve this bound. However,
to obtain the robust version of Drucker’s theorem, Theorem 1.1, as a corollary, these
differences do not matter; we now fill in the technicalities for obtaining Theorem 1.1
from Theorem 3.1 before we prove the latter.
Proof (of Theorem 1.1). Let A be the algorithm assumed in Theorem 1.1, and let C > 2
be large enough so that the output size of A is bounded by t1−1/C ·C ·nC . We transform A
into an algorithm as required for Theorem 3.1. Let ε > 0 be a small enough constant
so that es + ec < 1 −

√
(2 ln 2)ε. Moreover, let t(n) be a large enough polynomial so

that (t(n))1−1/C · C · nC < εt(n) holds. Then we restrict A to a family of functions
An :

({0,1}n

6t(n)
)
→ {0, 1}<εt(n). Now a minor observations is needed to get an algorithm of

the form (2): The set {0, 1}<εt can be efficiently encoded in {0, 1}εt (which changes the
output language from L′ to some L′′). Thus we constructed a family An as required by
Theorem 3.1, which proves the claim. �

3.1 ORs are sensitive to Yes-instances
The first basic fact about OR-compressions is that they are “L-sensitive”: They show a
dramatically different behavior for all-no input sets vs. input sets that contain a single
yes-instance of L. The following simple fact is the only place where we use the semantic
properties of A in the overall proof.

Lemma 3.2. For all distributions X on
( L
<t

)
and all v ∈ L, we have

d
(
A(X) , A(X ∪ {v})

)
> ∆ .= 1− (es + ec) . (3)

Proof. The probability that A(X) outputs an element of L′ is at most es, and similarly,
the probability that A(X ∪ {v}) outputs an element of L′ is at least 1− ec. By (1) with
T = L′, the statistical distance between the two distributions is at least ∆. �

Despite the fact that OR-compressions are sensitive to the presence or absence of a
yes-instance, we argue next that their behavior within the set of no-instances is actually
quite predictable.
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3.2 The average noise sensitivity of compressive maps is small
OR-compressions are in particular compressive maps. The following lemma says that the
average noise sensitivity of any compressive map is low. Here, “average noise sensitivity”
refers to the difference in the behavior of a function when the input is subject to random
noise; in our case, we change the input in a single random location and notice that the
behavior of a compressive map does not change much.

Lemma 3.3. Let t ∈ N, let X be the uniform distribution on {0, 1}t, and let ε > 0.
Then, for all randomized mappings f : {0, 1}t → {0, 1}εt, we have

E
j∼U[t]

d
(
f
(
X|j←0

)
, f
(
X|j←1

))
6 δ

.=
√

2 ln 2 · ε . (4)

We defer the purely information-theoretic and mechanical proof of this lemma to §3.5.
We remark that, in the special case where f : {0, 1}t → {0, 1} is a Boolean function, the
left-hand side of (4) coincides with the usual definition of the average noise sensitivity.

We translate Lemma 3.3 to our OR-compression A as follows.

Lemma 3.4. Let A :
({0,1}n

6t

)
→ {0, 1}εt. For all e ∈

({0,1}n

t

)
, there exists v ∈ e so that

d
(
A
(
U2e \ {v}

)
, A

(
U2e ∪ {v}

))
6 δ . (5)

Here U2e samples a subsets of e uniformly at random. Note that we replaced the expec-
tation over j from (4) with the mere existence of an element v in (5) since this is all we
need; the stronger property also holds.

Proof. To prove the claim, let v1, . . . , vt be the elements of e in lexicographic order. For
b ∈ {0, 1}t, let g(b) ⊆ e be such that vi ∈ g holds if and only if bi = 1. We define the
randomized mapping f : {0, 1}t → {0, 1}εt as follows:

f(b1, . . . , bt)
.= A

(
g(b)

)
.

Then f(X|j←0) = A(U2e \ {vj}) and f(X|j←1) = A(U2e ∪ {vj}). The claim follows from
Lemma 3.3 with v

.= vj for some j that minimizes the statistical distance in (4). �

The lemma suggest the following tournament idea. We let V = Ln be the set of no-
instances, and we let them compete in matches consisting of t players each. That is, a
match corresponds to a hyperedge e ∈

(V
t

)
of size t and every such hyperedge is present,

so we are looking at a complete t-uniform hypergraph. We say that a player v ∈ e is
“selected” in the hyperedge e if the behavior of A on U2e \ {v} is not very different from
the behavior of A on U2e ∪ {v}, that is, if (5) holds. The point of this construction is
that v being selected proves that v must be a no-instance because (3) does not hold. We
obtain a “selector” function S :

(V
t

)
→ V that, given e, selects an element v = S(e) ∈ e.

We call S a hypergraph tournament on V .
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3.3 Hypergraph tournaments have small dominating sets
Tournaments are complete directed graphs, and it is well-known that they have domi-
nating sets of logarithmic size. A straightforward generalization applies to hypergraph
tournaments S :

(V
t

)
→ V . We say that a set g ∈

( V
t−1
)

dominates a vertex v if v ∈ g or
S(g ∪ {v}) = v holds. A set D ⊆

( V
t−1
)

is a dominating set of S if all vertices v ∈ V are
dominated by at least one element in D.

Lemma 3.5. Let V be a finite set, and let S :
(V
t

)
→ V be a hypergraph tournament.

Then S has a dominating set D ⊆
( V
t−1
)

of size at most t log |V |.

Proof. We construct the set D inductively. Initially, it has k = 0 elements. After the
k-th step of the construction, we will preserve the invariant that D is of size exactly k
and that |R| 6 (1 − 1/t)k · |V | holds, where R is the set of vertices that are not yet
dominated, that is,

R =
{
v ∈ V : v 6∈ g and S(g ∪ {v}) 6= v holds for all g ∈ D

}
.

If 0 < |R| < t, we can add an arbitrary edge g∗ ∈
( V
t−1
)

with R ⊆ g∗ to D to finish
the construction. Otherwise, the following averaging argument, shows that there is an
element g∗ ∈

( R
t−1
)

that dominates at least a 1/t-fraction of elements v ∈ R:

1
t

= E
e∈(R

t )
Pr
v∈e

(
S(e) = v

)
= E

g∈( R
t−1)

Pr
v∈R−g

(
S(g ∪ {v}) = v

)
.

Thus, the number of elements of R left undominated by g∗ is at most (1− 1/t) · |R|, so
the inductive invariant holds. Since (1−1/t)k · |V | 6 exp(−k/t) · |V | < 1 for k = t log |V |,
we have R = ∅ after k 6 t log |V | steps of the construction, and in particular, D has at
most t log |V | elements. �

3.4 Proof of the main theorem: Reduction to statistical distance
Proof (of Theorem 3.1). We describe a deterministic P/poly reduction from L to the
statistical distance problem SD>∆

6δ with ∆ = 1 − (es + ec) and δ =
√

(2 ln 2)ε. The
reduction outputs the conjunction of polynomially many instances of SD>∆

6δ . Since SD>∆
6δ

is contained in the intersection of NP/poly and coNP/poly by Theorem 2.1, and since this
intersection is closed under taking polynomial conjunctions, we obtain L ∈ NP/poly ∩
coNP/poly. Thus it remains to find such a reduction. To simplify the discussion, we
describe the reduction in terms of an algorithm that solves L and uses SD>∆

6δ as an oracle.
However, the algorithm only makes non-adaptive queries at the end of the computation
and accepts if and only if all oracle queries accept; this corresponds to a reduction that
maps an instance of L to a conjunction of instances of SD>∆

6δ as required.
To construct the advice at input length n, we use Lemma 3.4 with t = t(n) to obtain

a hypergraph tournament S on V = Ln, which in turn gives rise to a small dominating
set D ⊆

( V
t−1
)

by Lemma 3.5. We remark the triviality that if |V | 6 t = poly(n), then we
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can use V , the set of all no-instances of L at this input length, as the advice. Otherwise,
we define the hypergraph tournament S for all e ∈

(V
t

)
as follows:

S(e) .= min
{
v ∈ e

∣∣∣ d(A(U2e \ {v}) , A(U2e ∪ {v})
)
6 δ

}
.

By Lemma 3.4, the set over which the minimum is taken is non-empty, and thus S is
well-defined. Furthermore, the hypergraph tournament has a dominating set D of size
at most tn by Lemma 3.5. As advice for input length n, we choose this set D. Now we
have v ∈ L if and only if v is dominated by D. The idea of the reduction is to efficiently
check the latter property.

The algorithm works as follows: Let v ∈ {0, 1}n be an instance of L given as input. If
v ∈ g holds for some g ∈ D, the algorithm rejects v and halts. Otherwise, it queries the
SD-oracle on the instance (A(U2g ), A(U2g ∪ {v})) for each g ∈ D. If the oracle claims
that all queries are yes-instances, our algorithm accepts, and otherwise, it rejects.

First note that distributions of the form A
(
U2g

)
and A

(
U2g ∪ {v}

)
can be be sampled

by using polynomial-size circuits, and so they form syntactically correct instances of
the SD-problem: The information about A, g, and v is hard-wired into these circuits,
the input bits of the circuits are used to produce a sample from U2g , and they serve as
internal randomness of A in case A is a randomized algorithm.

It remains to prove the correctness of the reduction. If v ∈ L, we have for all g ∈ D ⊆ L
that v 6∈ g and that the statistical distance of the query corresponding to g is at least
∆ = c− s by Lemma 3.2. Thus all queries that the reduction makes satisfy the promise
of the SD-problem and the oracle answers the queries correctly, leading our reduction
to accept. On the other hand, if v 6∈ L, then, since D is a dominating set of L with
respect to the hypergraph tournament S, there is at least one g ∈ D so that v ∈ g
or S(g ∪ {v}) = v holds. If v ∈ g, the reduction rejects. The other case implies
that the statistical distance between A(U2g ) and A(U2g ∪ {v}) is at most δ. The query
corresponding to this particular g therefore satisfies the promise of the SD-problem,
which means that the oracle answers correctly on this query and our reduction rejects.�

3.5 Information-theoretic arguments
We now prove Lemma 3.3. The proof uses the Kullback–Leibler divergence as an inter-
mediate step. Just like the statistical distance, this notion measures how similar two
distributions are, but it does so in an information-theoretic way rather than in a purely
statistical way. In fact, it is well-known in the area that the Kullback–Leibler divergence
and the mutual information are almost interchangeable in a certain sense. We prove
a version of this paradigm formally in Lemma 3.6 below; then we prove Lemma 3.3
by bounding the statistical distance in terms of the Kullback–Leibler divergence using
standard inequalities.

We introduce some basic information-theoretic notions. The Shannon entropy H(X)
of a random variable X is

H(X) = E
x∼X

log
( 1

Pr(X = x)

)
.

10



The conditional Shannon entropy H(X|Y ) is

H(X|Y ) = E
y∼Y

H(X|Y = y)

= E
y∼Y

∑
x

Pr(X = x|Y = y) · log
( 1

Pr(X = x|Y = y)

)
.

The mutual information between X and Y is I(X : Y ) = H(X) −H(X|Y ) = H(Y ) −
H(Y |X). Note that I(X : Y ) 6 log | suppX|, where | suppX| is the size of the support
of X. The conditional mutual information can be defined by the chain rule of mutual
information I(X : Y | Z) = I(X : Y Z)− I(X : Z). If Y and Z are independent, then a
simple calculation reveals that I(X : Y ) 6 I(X : Y | Z) holds.

We now establish a bound on the Kullback–Leibler divergence. The application of
Lemma 3.3 only uses Σ = {0, 1}. The proof does not become more complicated for
general Σ, and we will need the more general version later in this paper.

Lemma 3.6. Let t ∈ N, let ε > 0, let X1, . . . , Xt be independent distributions on some
finite set Σ, and let X = X1, . . . , Xt. Then, for all randomized mappings f : Σt → {0, 1}∗
with I

(
f(X) : X

)
6 εt, we have the following upper bound on the expected value of the

Kullback–Leibler divergence:

E
j∼U[t]

E
x∼Xj

DKL
(
f
(
X
)
|| f
(
X|j←x

))
6 ε .

Proof. The result follows by a basic calculation with entropy notions. The first equality
is the definition of the Kullback–Leibler divergence, which we rewrite using the logarithm
rule log(a/b) = log(1/b)− log(1/a) and the linearity of expectation:

E
j

E
x
DKL

(
f
(
X
)
|| f
(
X|j←x

))
= E

j
E
x

∑
z

log
(Pr(f(X|j←x) = z)

Pr(f(X) = z)

)
· Pr

(
f(X|j←x) = z

)
= E

j

∑
z

log
( 1

Pr(f(X) = z)

)
·E
x

Pr
(
f(X|j←x) = z

)
−E

j
E
x

∑
z

log
(

1
Pr(f(X|j←x) = z)

)
· Pr

(
f(X|j←x) = z

)
.

As Ex Pr
(
f(X|j←x) = z

)
= Pr(f(X) = z), both terms of the sum above are entropies,

11



and we can continue the calculation as follows:

. . . = H(f(X))−E
j

E
x
H(f(X)|Xj = x) (definition of entropy)

= H(f(X))−E
j
H(f(X)|Xj) (definition of conditional entropy)

= E
j
I(f(X) : Xj) (definition of mutual information)

6
1
t
·
∑
j∈[t]

I
(
f(X) : Xj

∣∣ X1 . . . Xj−1
)

(by independence of Xj ’s)

= 1
t
· I(f(X) : X) 6 ε . (chain rule of mutual information) �

We now turn to the proof of Lemma 3.3, where we bound the statistical distance in
terms of the Kullback–Leibler divergence.

Proof (of Lemma 3.3). We observe that I(f(X) : X) 6 log | supp f(X)| 6 εt, and so we
are in the situation of Lemma 3.6 with Σ = {0, 1}. We first apply the triangle inequality
to the left-hand side of (4). Then we use Pinsker’s inequality [17, Lemma 11.6.1] to
bound the statistical distance in terms of the Kullback–Leibler divergence, which we can
in turn bound by ε using Lemma 3.6.

E
j∼U[t]

d
(
f
(
X|j←0

)
, f
(
X|j←1

))
6 E

j∼U[t]
d
(
f
(
X
)
, f
(
X|j←0

))
(triangle inequality)

+ E
j∼U[t]

d
(
f
(
X
)
, f
(
X|j←1

))
= 2 · E

j∼U[t]
E

x∼Xj

d
(
f
(
X
)
, f
(
X|j←x

))

6 2 ·E
j

E
x

√
ln 2
2 ·DKL

(
f
(
X
)
|| f
(
X|j←x

))
(Pinsker’s inequality)

6 2 ·
√

ln 2
2 ·E

j
E
x
DKL

(
f
(
X
)
|| f
(
X|j←x

))
(Jensen’s inequality)

6 2 ·

√
ln 2
2 · ε = δ . (Lemma 3.6)

The equality above uses the fact that Xj is the uniform distribution on {0, 1}. �

4 Extension: Ruling out OR-compressions of size O(t log t)

In this section we tweak the proof of Theorem 3.1 so that it works even when the t
instances of L are mapped to an instance of L′ of size at most O(t log t). The draw-
back is that we cannot handle positive constant error probabilities for randomized
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OR-compression anymore. For simplicity, we restrict ourselves to deterministic OR-
compressions of size O(t log t) throughout this section.

Theorem 4.1 (O(t log t)-compressive version of Drucker’s theorem).
Let L,L′ ⊆ {0, 1}∗ be languages. Let t = t(n) > 0 be a polynomial. Assume there exists
a P/poly-algorithm

A :
(
{0, 1}n

6 t

)
→ {0, 1}O(t log t)

such that, for all x ∈
({0,1}n

6t

)
,

◦ if |x ∩ L| = 0, then A(x) ∈ L′, and

◦ if |x ∩ L| = 1, then A(x) ∈ L′.

Then L ∈ NP/poly ∩ coNP/poly.

The main reason why the proof in §3 breaks down for compressions to size εt with ε =
O(log t) is that the bound on the statistical distance in Lemma 3.3 becomes trivial. This
happens already when ε > 1

2 ln 2 ≈ 0.72. On the other hand, the bound that Lemma 3.6
gives for the Kullback–Leibler divergence remains non-trivial even for ε = O(log t). To
see this, note that the largest possible divergence between f(X) and f(X|j←x), that is,
the divergence without the condition on the mutual information between f(X) and X,
is t · log |Σ|, and the bound that Lemma 3.6 yields for ε = O(log t) is logarithmic in that.

Inspecting the proof of Lemma 3.3, we realize that the loss in meaningfulness stems
from Pinsker’s inequality, which becomes trivial in the parameter range under consid-
eration. Luckily, there is a different inequality between the statistical distance and the
Kullback–Leibler divergence, Vajda’s inequality, that still gives a non-trivial bound on
the statistical distance when the divergence is > 1

2 ln 2 . The inequality works out such
that if the divergence is logarithmic, then the statistical distance is an inverse polynomial
away from 1. We obtain the following analogue to Lemma 3.3.

Lemma 4.2. Let t ∈ N let X1, . . . , Xt be independent uniform distributions on some
finite set Σ, and write X = X1, . . . , Xt. Then, for all randomized mappings f : Σt →
{0, 1}∗ with I

(
f(X) : X

)
6 O(t · log t), we have

E
j∼U[t]

E
x∼Xj

d
(
f
(
X|Xj 6=x

)
, f
(
X|Xj=x

))
6 1− 1

poly(t) + 1
|Σ| . (6)

The notation X|Xj 6=x refers to the random variable that samples xi ∼ Xi = UΣ indepen-
dently for each i 6= j as usual, and that samples xj from the distribution Xj conditioned
on the event that Xj 6= x, that is, the distribution UΣ\{a}. The notation X|Xj=x = X|j←x
is as before, that is, xj = x is fixed.

We defer the proof of the lemma to the end of this section and discuss now how
to use it to obtain the stronger result for O(t log t) compressions. First note that we
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could not have directly used Lemma 4.2 in place of Lemma 3.3 in the proof of the main
result, Theorem 3.1. This is because for Σ = {0, 1}, the right-hand side of (6) becomes
bigger than 1 and thus trivial. In fact, this is the reason why we formulated Lemma 3.6
for general Σ. We need to choose Σ with |Σ| = poly(t) large enough to get anything
meaningful out of (6).

4.1 A different hypergraph tournament
To be able to work with larger Σ, we need to define the hypergraph tournament in a
different way; not much is changing on a conceptual level, but the required notation
becomes a bit less natural. We do this as follows.
Lemma 4.3. Let A :

({0,1}n

6t

)
→ {0, 1}εt. There exists a large enough constant C ∈ N

such that with Σ = [tC ] we have: For all e = e1 ∪̇ e2 ∪̇ . . . ∪̇ et ⊆ {0, 1}n with |ei| = |Σ|,
there exists an element v ∈ e so that

d
(
A
(
Xe|v 6∈Xe

)
, A

(
Xe|v∈Xe

))
6 1− 1

poly(t) , (7)

where Xe is the distribution that samples the t-element set {Ue1 , . . . ,Uet}, and Xe|E is
the distribution Xe conditioned on the event E.
For instance if v ∈ e1, then Xe|v 6∈Xe samples the t-element set {Ue1\{v},Ue2 , . . . ,Uet} and
Xe|v∈Xe samples the t-element set {v,Ue2 , . . . ,Uet}. The proof of this lemma is analogous
to the proof of Lemma 3.4.
Proof. We choose C as a constant that is large enough so that the right-hand side of (6)
becomes bounded by 1 − 1/poly(t). Let eia ∈ {0, 1}n for i ∈ [t] and a ∈ Σ be the
lexicographically a-th element of ei. We define the function f : Σt → {0, 1}O(t log t) as
follows: f(a1, . . . , at)

.= A(e1a1 , . . . , etat). Finally, we let the distributions Xi be Xi = UΣ
for all i ∈ [t]. We apply Lemma 3.3 to f and obtain indices j ∈ [t] and x ∈ Σ minimizing
the statistical distance on the left-hand side of (6). Since f(Xe|ejx 6∈Xe) = A(X|Xj 6=x)
and f(Xe|ejx∈Xe) = A(X|Xj=x), we obtain the claim with v

.= ejx. �

4.2 Proof of Theorem 4.1
Proof (of Theorem 4.1). As in the proof of Theorem 3.1, we construct a deterministic
P/poly reduction from L to a conjunction of polynomially many instances of the statisti-
cal distance problem SD>∆

6δ , but this time we let D = 1 and δ = 1− 1
poly(t) be equal to the

right-hand side of (7). Since there is a polynomial gap between d and D, Theorem2.1
implies that SD>∆

6δ is contained in the intersection of NP/poly and coNP/poly. Since the
intersection is closed under polynomial disjunctions, we obtain L ∈ NP/poly∩coNP/poly.
Thus it remains to find such a reduction.

To construct the advice at input length n, we use Lemma 4.3 with t = t(n), which
guarantees that the following hypergraph tournament S :

( V
|Σ|·t

)
→ V with V = Ln is

well-defined:

S(e) .= min
{
v ∈ e

∣∣∣ d(A(Xe|v 6∈Xe) , A(Xe|v∈Xe)
)
6 δ

}
.
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We remark that if |V | 6 |Σ|t = poly(n), then we can use V as the advice. Otherwise, the
advice at input length n is the dominating set D ⊆

( V
Σ·t−1

)
guaranteed by Lemma 3.5;

in particular, its size is bounded by t · |Σ| · n = poly(n).
The algorithm for L that uses SD>∆

6δ as an oracle works as follows: Let v ∈ {0, 1}n
be an instance of L given as input. If v ∈ g holds for some g ∈ D, the reduction
rejects v and halts. Otherwise, for each g ∈ D, it queries the SD-oracle on the instance(
A(Xe|v 6∈Xe) , A(Xe|v∈Xe)

)
with e = g ∪ {v}. If the oracle claims that all queries are

yes-instances, our reduction accepts, and otherwise, it rejects.
The correctness of this reduction is analogous to the proof Theorem 3.1: If v ∈ L,

then Lemma 3.2 guarantees that the statistical distance of all queries is one, and so all
queries will detect this. If v ∈ L, then since D is a dominating set of S, we have v ∈ g or
S(g ∪ {v}) = v for some g ∈ D. The latter will be detected in the query corresponding
to g since δ < D. This completes the proof of the theorem. �

4.3 Information-theoretic arguments
Proof (of Lemma 4.2). We use Vajda’s inequality [18, 19] instead of Pinsker’s inequality
to bound the statistical distance in terms of the Kullback–Leibler divergence, which we
in turn bound by the mutual information using Lemma 3.6 (with ε = C · log t for a
constant C large enough so that I(f(X) : X) 6 εt holds):

E
j

E
x
d
(
f
(
X
)
, f
(
X|j←x

))
6 E

j
E
x

(
1− exp

(
− 1−DKL

(
f(X) || f(X|j←x)

)))
(Vajda’s inequality)

6 1− exp
(
−1−E

j
E
x
DKL

(
f
(
X
)
|| f
(
X|j←x

)))
(Jensen’s inequality)

6 1− e−1−C log t = 1− 1/poly(t) (Lemma 3.6)

Now (6) follows from the triangle inequality as follows.

E
j

E
x
d
(
f
(
X|Xj 6=x

)
, f
(
X|Xj=x

))
6 E

j
E
x
d
(
f
(
X|Xj 6=x

)
, f
(
X
))

+ E
j

E
x
d
(
f
(
X
)
, f
(
X|Xj=x

))
6

1
|Σ| + 1− 1

poly(t) .

For this, note that a simple calculation from (1) shows that

d
(
f(X|Xj 6=x), f(X)

)
6 d

(
X|Xj 6=x, X

)
6 Pr(Xj 6= x) · d

(
X|Xj 6=x, X|Xj 6=x

)
+ Pr(Xj = x) · d

(
X|Xj 6=x, X|Xj=x

)
6 Pr(Xj 6= x) · 0 + Pr(Xj = x) · 1 = Pr(Xj = x)

always holds, and the latter equals 1
|Σ| since Xj is uniformly distributed on Σ. �
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5 Extension: f -compression
We end this paper with a small observation: Instead of OR-compressions or AND-
compressions, we could just as well consider f -compressions for a Boolean function f :
{0, 1}t → {0, 1}. If the function f is symmetric, that is, if f(x) depends only on the
Hamming weight of x, then we can represent f as a function f : {0, . . . , t} → {0, 1}. We
make the observation that Drucker’s theorem applies to f -compressions whenever f is a
non-constant, symmetric function.
Definition 3. Let f : {0, . . . , t} → {0, 1} be any function. Then an f -compression of L
into L′ is a mapping

A :
(
{0, 1}n

6 t

)
→ {0, 1}εt ,

such that, for all x ⊆
({0,1}n

6t

)
, we have A(x) ∈ L′ if and only if f(|x ∩ L|) = 1.

Examples:
◦ OR-compressions are f -compressions with f(i) = 1 if and only if i > 0.

◦ AND-compressions are f -compressions with f(i) = 1 if and only if i = t.

◦ Majority-compressions are f -compressions with f(i) = 1 if and only if i > t/2.

◦ Parity-compressions are f -compressions with f(i) = 1 if and only if i is odd.
We can apply Theorem 3.1 and 4.1 whenever f is not a constant function.
Lemma 5.1. Let f : {0, . . . , t} → {0, 1} be non-constant. Then every f -compression
for L with size εt can be transformed into a compression for L or for L, in the sense of
Theorem 3.1 and with size bound at most 2εt.
Proof. Let A be an f -compression from L into L′. Then A is also a (1− f)-compression
from L into L′, an (f(t− i))-compression from L into L′, and a (1−f(t− i))-compression
from L into L′. Since f is not constant, at least one of these four views corresponds to
a function f ′ for which there is an index i 6 t/2 so that f ′(i) = 0 and f ′(i + 1) = 1,
holds. Assume without loss of generality that this holds already for f . Then we define
A′ :

({0,1}n

6t−i
)
→ {0, 1}εt as follows:

A′({xi, xi+1, . . . , xt})
.= A({>1, . . . ,>i−1, xi, xi+1, . . . , xt}) ,

where >1, . . . ,>i−1 are arbitrary distinct yes-instances of L. For the purposes of The-
orem 3.1, these instances can be written in the non-uniform advice of A′. If this many
yes-instances do not exist, then the language L is trivial to begin with. To ensure that
the xj ’s are distinct from the >j ’s, we actually store a list of 2t yes-instances >j and
inject only i− 1 of those that are different from the xj ’s
A′ is just like A, except that i−1 inputs have already been fixed to yes-instances. Then

A′ is a compressive map that satisfies the following: If |x∩L| = 0 then A′(x) 6∈ L′, and if
|x∩L| = 1 then A′(x) ∈ L′. Since the number of inputs has decreased to t′ = t− i > t/2,
the new size of the compression is εt 6 2εt′ in terms of t′. �
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