AND-compression of NP-complete problems: Streamlined proof and minor observations

Holger Dell
Saarland University
Cluster of Excellence, MMCI*

September 23, 2014

Abstract

Drucker (2012) proved the following result: Unless the unlikely complexity-theoretic collapse coNP $\subseteq \mathrm{NP} /$ poly occurs, there is no $A N D$-compression for SAT. The result has implications for the compressibility and kernelizability of a whole range of NPcomplete parameterized problems. We present a streamlined proof of Drucker's theorem.

An AND-compression is a deterministic polynomial-time algorithm that maps a set of SAT-instances x_{1}, \ldots, x_{t} to a single SAT-instance y of size poly (max $\left.{ }_{i}\left|x_{i}\right|\right)$ such that y is satisfiable if and only if all x_{i} are satisfiable. The "AND" in the name stems from the fact that the predicate " y is satisfiable" can be written as the AND of all predicates " x_{i} is satisfiable". Drucker's theorem complements the result by Bodlaender et al. (2009) and Fortnow and Santhanam (2011), who proved the analogous statement for OR-compressions, and Drucker's proof not only subsumes their result but also extends it to randomized compression algorithms that are allowed to have a certain probability of failure.

Drucker (2012) presented two proofs: The first uses information theory and the minimax theorem from game theory, and the second is an elementary, iterative proof that is not as general. In our proof, we realize the iterative structure as a generalization of the arguments of Ko (1983) for P -selective sets, which use the fact that tournaments have dominating sets of logarithmic size. We generalize this fact to hypergraph tournaments. Our proof achieves the full generality of Drucker's theorem, avoids the minimax theorem, and restricts the use of information theory to a single, intuitive lemma about the average noise sensitivity of compressive maps. To prove this lemma, we use the same information-theoretic inequalities as Drucker.

1 Introduction

The influential "OR-conjecture" by Bodlaender et al. (2009) asserts that t instances x_{1}, \ldots, x_{t} of SAT cannot be mapped in polynomial time to an instance y of size

[^0]$\operatorname{poly}\left(\max _{i}\left|x_{i}\right|\right)$ so that y is a yes-instance if and only if at least one x_{i} is a yes-instance. Conditioned on the OR-conjecture, the "composition framework" of Bodlaender et al. (2009) has been used to show that many different problems in parameterized complexity do not have polynomial kernels. Fortnow and Santhanam (2011) were able to prove that the OR-conjecture holds unless coNP $\subseteq N P /$ poly, thereby connecting the OR-conjecture with a standard hypothesis in complexity theory.

The results of Bodlaender et al. 2009; Fortnow and Santhanam 2011 can be used not only to rule out deterministic kernelization algorithms, but also to rule out randomized kernelization algorithms with one-sided error, as long as the success probability is bigger than zero; this is the same as allowing the kernelization algorithm to be a coNPalgorithm. Left open was the question whether the complexity-theoretic hypothesis coNP $\nsubseteq N P /$ poly (or some other hypothesis believed by complexity theorists) suffices to rule out kernelization algorithms that are randomized and have two-sided error. Drucker (2012) resolves this question affirmatively; his results can rule out kernelization algorithms that have a constant gap in their error probabilities. This result indicates that randomness does not help to decrease the size of kernels significantly.

With the same proof, Drucker (2012) resolves a second important question: whether the "AND-conjecture", which has also been formulated by Bodlaender et al. (2009) analogous to the OR-conjecture, can be derived from existing complexity-theoretic assumptions. This is an intriguing question in itself, and it is also relevant for parameterized complexity as, for some parameterized problems, we can rule out polynomial kernels under the AND-conjecture, but we do not know how to do so under the OR-conjecture. Drucker (2012) proves that the AND-conjecture is true if coNP $\nsubseteq N P /$ poly holds.

The purpose of this paper is to discuss Drucker's theorem and its proof. To this end, we attempt to present a simpler proof of his theorem. Our proof in $\S 3$ gains in simplicity with a small loss in generality: the bound that we get is worse than Drucker's bound by a factor of two. Using the slightly more complicated approach in $\S 4$, it is possible to get the same bounds as Drucker. These differences, however, do not matter for the basic version of the main theorem, which we state in $\S 1.1$ and further discuss in §1.2. For completeness, we briefly discuss a formulation of the composition framework in §1.3.

1.1 Main Theorem: Ruling out OR- and AND-compressions

An AND-compression A for a language $L \subseteq\{0,1\}^{*}$ is a polynomial-time reduction that maps a set $\left\{x_{1}, \ldots, x_{t}\right\}$ to some instance $y \doteq A\left(\left\{x_{1}, \ldots, x_{t}\right\}\right)$ of a language $L^{\prime} \subseteq\{0,1\}^{*}$ such that $y \in L^{\prime}$ holds if and only if $x_{1} \in L$ and $x_{2} \in L$ and \ldots and $x_{t} \in L$. By De Morgan's law, the same A is an OR-compression for $\bar{L} \doteq\{0,1\}^{*} \backslash L$ because $y \in \overline{L^{\prime}}$ holds if and only if $x_{1} \in \bar{L}$ or $x_{2} \in \bar{L}$ or \ldots or $x_{t} \in \bar{L}$. Drucker (2012) proved that an OR-compression for L implies that $L \in \mathrm{NP} /$ poly \cap coNP/poly, which is a complexity consequence that is closed under complementation, that is, it is equivalent to $\bar{L} \in$ $\mathrm{NP} /$ poly \cap coNP/poly. For this reason, and as opposed to earlier work Bodlaender et al. 2009; Dell and van Melkebeek 2014; Fortnow and Santhanam 2011, it is without loss of generality that we restrict our attention to OR-compressions for the remainder of this paper. We now formally state Drucker's theorem.

Theorem 1 (Drucker's theorem). Let $L, L^{\prime} \subseteq\{0,1\}^{*}$ be languages, let $e_{s}, e_{c} \in[0,1]$ be error probabilities with $e_{s}+e_{c}<1$, and let $\epsilon>0$. Assume that there exists a randomized polynomial-time algorithm A that maps any set $x=\left\{x_{1}, \ldots, x_{t}\right\} \subseteq\{0,1\}^{n}$ for some n and to $y=A(x)$ such that:

- (Soundness) If all x_{i} 's are no-instances of L, then y is a no-instance of L^{\prime} with probability $\geq 1-e_{s}$.
- (Completeness) If exactly one x_{i} is a yes-instance of L, then y is a yes-instance of L^{\prime} with probability $\geq 1-e_{c}$.
- (Size bound) The size of y is bounded by $t^{1-\epsilon} \cdot \operatorname{poly}(n)$.

Then $L \in \mathrm{NP} /$ poly \cap coNP/poly.
The procedure A above does not need to be a "full" OR-compression, which makes the theorem more general. In particular, A is relaxed in two ways: it only needs to work, or be analyzed, in the case that all input instances have the same length; this is useful in hardness of kernelization proofs as it allows similar instances to be grouped together. Furthermore, A only needs to work, or be analyzed, in the case that at most one of the input instances is a yes-instance of L; we believe that this property will be useful in future work on hardness of kernelization.

The fact that "relaxed" OR-compressions suffice in Theorem 1 is implicit in the proof of Drucker (2012), but not stated explicitly. Before Drucker's work, Fortnow and Santhanam (2011) proved the special case of Theorem 1 in which $e_{c}=0$, but they only obtain the weaker consequence $L \in$ coNP/poly, which prevents their result from applying to ANDcompressions in a non-trivial way. Moreover, their proof uses the full completeness requirement and does not seem to work for relaxed OR-compressions.

1.2 Comparison and overview of the proof

The simplification of our proof stems from two main sources: 1. The "scaffolding" of our proof, its overall structure, is more modular and more similar to arguments used previously by Ko (1983), Fortnow and Santhanam (2011), and Dell and Van Melkebeek Dell and van Melkebeek 2014 for compression-type procedures and Dell et al. (2013) for isolation procedures. 2. While the information-theoretic part of our proof uses the same set of information-theoretic inequalities as Drucker's, the simple version in $\S 3$ applies these inequalities to distributions that have a simpler structure. Moreover, our calculations have a somewhat more mechanical nature.

Both Drucker's proof and ours use the relaxed OR-compression A to design a $\mathrm{P} /$ polyreduction from L to the statistical distance problem, which is known to be in the intersection of NP/poly and coNP/poly by previous work (cf. Xiao (2009)). Drucker (2012) uses the minimax theorem and a game-theoretic sparsification argument to construct the polynomial advice of the reduction. He also presents an alternative proof Drucker 2013, Section 3 in which the advice is constructed without these arguments and also without any explicit invocation of information theory; however, the alternative proof
does not achieve the full generality of his theorem, and we feel that avoiding information theory entirely leads to a less intuitive proof structure. In contrast, our proof achieves full generality up to a factor of two in the simplest proof, it avoids game theoretic arguments, and it limits information theory to a single, intuitive lemma about the average noise sensitivity of compressive maps.

Using this information-theoretic lemma as a black box, we design the $\mathrm{P} /$ poly-reduction in a purely combinatorial way: We generalize the fact that tournaments have dominating sets of logarithmic size to hypergraph tournaments; these are complete t-uniform hypergraphs with the additional property that, for each hyperedge, one of its elements gets "selected". In particular, for each set $e \subseteq \bar{L}$ of t no-instances, we select one element of e based on the fact that A 's behavior on e somehow proves that the selected instance is a no-instance of L. The advice of the reduction is going to be a small dominating set of this hypergraph tournament on the set of no-instances of L. The crux is that we can efficiently test, with the help of the statistical distance problem oracle, whether an instance is dominated or not. Since any instance is dominated if and only if it is a no-instance of L, this suffices to solve L.

In the information-theoretic lemma, we generalize the notion of average noise sensitivity of Boolean functions (which can attain two values) to compressive maps (which can attain only relatively few values compared to the input length). We show that compressive maps have small average noise sensitivity. Drucker's "distributional stability" is a closely related notion, which we make implicit use of in our proof. Using the latter notion as the anchor of the overall reduction, however, leads to some additional technicalities in Drucker's proof, which we also run into in $\S 4$ where we obtain the same bounds as Drucker's theorem. In $\S 3$ we instead use the average noise sensitivity as the anchor of the reduction, which avoids these technicalities at the cost of losing a factor of two in the bounds.

1.3 Application: The composition framework for ruling out $O\left(k^{d-\epsilon}\right)$ kernels

We briefly describe a modern variant of the composition framework that is sufficient to rule out kernels of size $O\left(k^{d-\epsilon}\right)$ using Theorem 1. It is almost identical to Lemma 1 of Dell and Marx 2012; Dell and van Melkebeek 2014 and the notion defined by Hermelin and Wu (2012, Definition 2.2). By applying the framework for unbounded d, we can also use it to rule out polynomial kernels.

Definition 2. Let L be a language, and let Π with parameter k be a parameterized problem. A d-partite composition of L into Π is a polynomial-time algorithm A that maps any set $x=\left\{x_{1}, \ldots, x_{t}\right\} \subseteq\{0,1\}^{n}$ for some n and t to $y=A(x)$ such that:
(1) If all x_{i} 's are no-instances of L, then y is a no-instance of Π.
(2) If exactly one x_{i} is a yes-instance of L, then y is a yes-instance of Π.
(3) The parameter k of y is bounded by $t^{1 / d+o(1)} \cdot \operatorname{poly}(n)$.

This notion of composition has one crucial advantage over previous notions of ORcomposition: The algorithm A does not need to work, or be analyzed, in the case that two or more of the x_{i} 's are yes-instances.

Definition 3. Let Π be a parameterized problem. We call Πd-compositional if there exists an NP-hard or coNP-hard problem L that has a d-partite composition algorithm into Π.

The above definition encompasses both AND-compositions and OR-compositions because an AND-composition of L into Π is the same as an OR-composition of \bar{L} into $\bar{\Pi}$. We have the following corollary of Drucker's theorem.

Corollary 4. If coNP $\nsubseteq \mathrm{NP} /$ poly, then no d-compositional problem has kernels of size $O\left(k^{d-\epsilon}\right)$. Moreover, this even holds when the kernelization algorithm is allowed to be a randomized algorithm with at least a constant gap in error probability.

Proof. Let L be an NP-hard or coNP-hard problem that has a d-partite composition A^{\prime} into Π. Assume for the sake of contradiction that Π has a kernelization algorithm with soundness error at most e_{s} and completeness error at most e_{c} so that $e_{s}+e_{c}$ is bounded by a constant smaller than one. The concatenation of A^{\prime} with the assumed $O\left(k^{d-\epsilon^{\prime}}\right)$ kernelization gives rise to an algorithm A that satisfies the conditions of Theorem 1, for example with $\epsilon=\epsilon^{\prime} /(2 d)$. Therefore, we get $L \in$ (coNP/poly $\cap \mathrm{NP} /$ poly $)$ and thus coNP \subseteq NP/poly, a contradiction.

Several variants of the framework provided by this corollary are possible:

1. In order to rule out poly (k)-kernels for a parameterized problem Π, we just need to prove that Π is d-compositional for all $d \in \mathbb{N}$; let's call Π compositional in this case. One way to show that Π is compositional is to construct a single composition from a hard problem L into Π; this is an algorithm as in Definition 2, except that we replace (3) with the bound $k \leq t^{o(1)} \operatorname{poly}(n)$.
2. Since all x_{i} 's in Definition 2 are promised to have the same length, we can consider a padded version \tilde{L} of the language L in order to filter the input instances of length n of the original L into a polynomial number of equivalence classes. Each input length of \tilde{L} in some interval $\left[p_{1}(n), p_{2}(n)\right]$ corresponds to one equivalence class of length- n instances of L. So long as \tilde{L} remains NP-hard or coNP-hard, it is sufficient to consider a composition from \tilde{L} into Π. Bodlaender, Jansen, and Kratsch (2014, Definition 4) formalize this approach.
3. The composition algorithm can also use randomness, as long as the overall probability gap of the concatenation of composition and kernelization is not negligible.
4. In the case that L is NP-hard, Fortnow and Santhanam (2011) and Dell and van Melkebeek (2014) prove that the composition algorithm can also be a coNPalgorithm or even a coNP oracle communication game in order to get the collapse.

Interestingly, this does not seem to follow from Drucker's proof nor from the proof presented here, and it seems to require the full completeness condition for the OR-composition. Kratsch (2012) and Kratsch, Philip, and Ray (2014) exploit these variants of the composition framework to prove kernel lower bounds.

2 Preliminaries

For any set $R \subseteq\{0,1\}^{*}$ and any $\ell \in \mathbb{N}$, we write $R_{\ell} \doteq R \cap\{0,1\}^{\ell}$ for the set of all length- ℓ strings inside of R. For any $t \in \mathbb{N}$, we write $[t] \doteq\{1, \ldots, t\}$. For a set V, we write $\binom{V}{\leq t}$ for the set of all subsets $x \subseteq V$ that have size at most t. We will work over a finite alphabet, usually $\Sigma=\{0,1\}$. For a vector $a \in \Sigma^{t}$, a number $j \in[t]$, and a value $y \in \Sigma$, we write $\left.a\right|_{j \leftarrow y}$ for the string that coincides with a except in position j, where it has value y. For background in complexity theory, we defer to the book by Arora and Barak (2009). We assume some familiarity with the complexity classes NP and coNP as well as their non-uniform versions NP/poly and coNP/poly.

2.1 Distributions and Randomized Mappings

A distribution on a finite ground set Ω is a function $\mathcal{D}: \Omega \rightarrow[0,1]$ with $\sum_{\omega \in \Omega} \mathcal{D}(\omega)=1$. The support of \mathcal{D} is the set $\operatorname{supp} \mathcal{D}=\{\omega \in \Omega \mid \mathcal{D}(\omega)>0\}$. The uniform distribution \mathcal{U}_{Ω} on Ω is the distribution with $\mathcal{U}_{\Omega}(\omega)=\frac{1}{|\Omega|}$ for all $\omega \in \Omega$. We often view distributions as random variables, that is, we may write $f(\mathcal{D})$ to denote the distribution \mathcal{D}^{\prime} that first produces a sample $\omega \sim \mathcal{D}$ and then outputs $f(\omega)$, where $f: \Omega \rightarrow \Omega^{\prime}$. We use any of the following notations:

$$
\mathcal{D}^{\prime}\left(\omega^{\prime}\right)=\operatorname{Pr}\left(f(\mathcal{D})=\omega^{\prime}\right)=\operatorname{Pr}_{\omega \sim \mathcal{D}}\left(f(\omega)=\omega^{\prime}\right)=\sum_{\omega \in \Omega} \mathcal{D}(\omega) \cdot \operatorname{Pr}\left(f(\omega)=\omega^{\prime}\right)
$$

The last term $\operatorname{Pr}\left(f(\omega)=\omega^{\prime}\right)$ in this equation is either 0 or 1 if f is a deterministic function, but we will also allow f to be a randomized mapping, that is, f has access to some "internal" randomness. This is modeled as a function $f: \Omega \times\{0,1\}^{r} \rightarrow \Omega^{\prime}$ for some $r \in \mathbb{N}$, and we write $f(\mathcal{D})$ as a short-hand for $f\left(\mathcal{D}, \mathcal{U}_{\{0,1\}^{r}}\right)$. That is, the internal randomness consists of a sequence of independent and fair coin flips.

2.2 Statistical Distance

The statistical distance $d(X, Y)$ between two distributions X and Y on Ω is defined as

$$
\begin{equation*}
d(X, Y)=\max _{T \subseteq \Omega}|\operatorname{Pr}(X \in T)-\operatorname{Pr}(Y \in T)| \tag{1}
\end{equation*}
$$

The statistical distance between X and Y is a number in $[0,1]$, with $d(X, Y)=0$ if and only if $X=Y$ and $d(X, Y)=1$ if and only if the support of X is disjoint from the support of Y. It is an exercise to show the standard equivalence between the statistical distance and the 1-norm:

$$
d(X, Y)=\frac{1}{2} \cdot\|X-Y\|_{1}=\frac{1}{2} \sum_{\omega \in \Omega}|\operatorname{Pr}(X=\omega)-\operatorname{Pr}(Y=\omega)|
$$

2.3 The Statistical Distance Problem

For $\mathcal{U}=\mathcal{U}_{\{0,1\}^{n}}$ and $0 \leq \delta<\Delta \leq 1$, let $\mathrm{SD}_{\leq \delta}^{\geq \Delta}$ be the following promise problem:
yes-instances: Pairs of circuits $C, C^{\prime}:\{0,1\}^{n} \rightarrow\{0,1\}^{*}$ so that $d\left(C(\mathcal{U}), C^{\prime}(\mathcal{U})\right) \geq \Delta$.
no-instances: Pairs of circuits $C, C^{\prime}:\{0,1\}^{n} \rightarrow\{0,1\}^{*}$ so that $d\left(C(\mathcal{U}), C^{\prime}(\mathcal{U})\right) \leq \delta$.
The statistical distance problem is not known to be polynomial-time computable, and in fact it is not believed to be. On the other hand, the problem is also not believed to be NP-hard because the problem is computationally easy in the following sense.

Theorem 5 (Xiao (2009) + Adleman (1978)).
If $\delta<\Delta$ are constants, we have $\mathrm{SD} \underset{\leq \delta}{\geq \Delta} \in(\mathrm{NP} /$ poly \cap coNP/poly).
Moreover, the same holds when $\delta=\delta(n)$ and $\Delta=\Delta(n)$ are functions of the input length that satisfy $\Delta-\delta \geq \frac{1}{\operatorname{poly}(n)}$.

This is the only fact about the SD-problem that we will use in this paper.
Slightly stronger versions of this theorem are known: For example, Xiao (2009, p. 144ff) proves that $\mathrm{SD} \underset{<}{\geq \Delta} \in \mathrm{AM} \cap$ coAM holds. In fact, Theorem 5 is established by combining his theorem with the standard fact that $A M \subseteq$ NP/poly, i.e., that Arthur-Merlin games can be derandomized with polynomial advice (Adleman 1978). Moreover, when we have the stronger guarantee that $\Delta^{2}>\delta$ holds, then $\mathrm{SD}_{\leq \delta}^{\geq \Delta}$ can be solved using statistical zero-knowledge proof systems (Goldreich and Vadhan 2011; Sahai and Vadhan 2003). Finally, if $\Delta=1$, the problem can be solved with perfect zero-knowledge proof systems (Sahai and Vadhan 2003, Proposition 5.7). Using these stronger results whenever possible gives slightly stronger complexity collapses in the main theorem.

3 Ruling out OR-compressions

In this section we prove Theorem 1: Any language L that has a relaxed OR-compression is in coNP/poly $\cap \mathrm{NP} /$ poly. We rephrase the theorem in a form that reveals the precise inequality between the error probabilities and the compression ratio needed to get the complexity consequence.

Theorem 6 (ϵt-compressive version of Drucker's theorem). Let $L, L^{\prime} \subseteq\{0,1\}^{*}$ be languages and $e_{s}, e_{c} \in[0,1]$ be some constants denoting the error probabilities. Let $t=t(n)>0$ be a polynomial and $\epsilon>0$. Let

$$
\begin{equation*}
A:\binom{\{0,1\}^{n}}{\leq t} \rightarrow\{0,1\}^{\epsilon t} \tag{2}
\end{equation*}
$$

be a randomized $\mathrm{P} /$ poly-algorithm such that, for all $x \in\binom{\{0,1\}^{n}}{\leq t}$,

- if $|x \cap L|=0$, then $A(x) \in \overline{L^{\prime}}$ holds with probability $\geq 1-e_{s}$, and
- if $|x \cap L|=1$, then $A(x) \in L^{\prime}$ holds with probability $\geq 1-e_{c}$.

If $e_{s}+e_{c}<1-\sqrt{(2 \ln 2) \epsilon}$, then $L \in \mathrm{NP} /$ poly \cap coNP/poly.
This is Theorem 7.1 in Drucker (2013). However, there are two noteworthy differences:

1. Drucker obtains complexity consequences even when $e_{s}+e_{c}<1-\sqrt{(\ln 2 / 2) \epsilon}$ holds, which makes his theorem more general. The difference stems from the fact that we optimized the proof in this section for simplicity and not for the optimality of the bound. He also obtains complexity consequences under the (incomparable) bound $e_{s}+e_{c}<2^{-\epsilon-3}$. Using the slightly more complicated setup of $\S 4$, we would be able to achieve both of these bounds.
2. To get a meaningful result for OR-compression of NP-complete problems, we need the complexity consequence $L \in \mathrm{NP} /$ poly \cap coNP/poly rather than just $L \in$ NP/poly. To get the stronger consequence, Drucker relies on the fact that the statistical distance problem $\mathrm{SD}_{\leq \delta}^{\geq \Delta}$ has statistical zero knowledge proofs. This is only known to be true when $\Delta^{2}>\delta$ holds, which translates to the more restrictive assumption $\left(e_{s}+e_{c}\right)^{2}<1-\sqrt{(\ln 2 / 2) \epsilon}$ in his theorem. We instead use Theorem 5, which does not go through statistical zero knowledge and proves more directly that $\mathrm{SD}_{\leq \delta}^{\geq \Delta}$ is in $\mathrm{NP} /$ poly \cap coNP/poly whenever $\Delta>\delta$ holds. Doing so in Drucker's paper immediately improves all of his $L \in \mathrm{NP}$ /poly consequences to $L \in N P /$ poly \cap coNP/poly.

To obtain Theorem 1, the basic version of Drucker's theorem, as a corollary of Theorem 6, none of these differences matter. This is because we could choose $\epsilon>0$ to be sufficiently smaller in the proof of Theorem 1, which we provide now before we turn to the proof of Theorem 6.

Proof (of Theorem 1). Let A be the algorithm assumed in Theorem 1, and let $C \geq 2$ be large enough so that the output size of A is bounded by $t^{1-1 / C} \cdot C \cdot n^{C}$. We transform A into an algorithm as required for Theorem 6. Let $\epsilon>0$ be a small enough constant so that $e_{s}+e_{c}<1-\sqrt{(2 \ln 2) \epsilon}$. Moreover, let $t(n)$ be a large enough polynomial so that $(t(n))^{1-1 / C} \cdot C \cdot n^{C}<\epsilon t(n)$ holds. Then we restrict A to a family of functions $A_{n}:\binom{(0,1\}^{n}}{\leq t(n)} \rightarrow\{0,1\}^{<\epsilon t(n)}$. Now a minor observation is needed to get an algorithm of the form (2): The set $\{0,1\}^{<\epsilon t}$ can be efficiently encoded in $\{0,1\}^{\epsilon t}$ (which changes the output language from L^{\prime} to some $L^{\prime \prime}$). Thus we constructed a family A_{n} as required by Theorem 6, which proves the claim.

3.1 ORs are sensitive to Yes-instances

The semantic property of relaxed OR-compressions is that they are " L-sensitive": They show a dramatically different behavior for all-no input sets vs. input sets that contain a single yes-instance of L. The following simple fact is the only place in the overall proof where we use the soundness and completeness properties of A.

Lemma 7. For all distributions X on $\binom{\bar{L}}{<t}$ and all $v \in L$, we have

$$
\begin{equation*}
d(A(X), A(X \cup\{v\})) \geq \Delta \doteq 1-\left(e_{s}+e_{c}\right) \tag{3}
\end{equation*}
$$

Proof. The probability that $A(X)$ outputs an element of L^{\prime} is at most e_{S}, and similarly, the probability that $A(X \cup\{v\})$ outputs an element of L^{\prime} is at least $1-e_{c}$. By (1) with $T=L^{\prime}$, the statistical distance between the two distributions is at least Δ.

Despite the fact that relaxed OR-compressions are sensitive to the presence or absence of a yes-instance, we argue next that their behavior within the set of no-instances is actually quite predictable.

3.2 The average noise sensitivity of compressive maps is small

Relaxed OR-compressions are in particular compressive maps. The following lemma says that the average noise sensitivity of any compressive map is low. Here, "average noise sensitivity" refers to the difference in the behavior of a function when the input is subject to random noise; in our case, we change the input in a single random location and notice that the behavior of a compressive map does not change much.

Lemma 8. Let $t \in \mathbb{N}$, let X be the uniform distribution on $\{0,1\}^{t}$, and let $\epsilon>0$. Then, for all randomized mappings $f:\{0,1\}^{t} \rightarrow\{0,1\}^{\epsilon t}$, we have

$$
\begin{equation*}
\underset{j \sim \mathcal{U}_{[t]}}{\mathbf{E}} \quad d\left(f\left(\left.X\right|_{j \leftarrow 0}\right), f\left(\left.X\right|_{j \leftarrow 1}\right)\right) \quad \leq \delta \doteq \sqrt{2 \ln 2 \cdot \epsilon} \tag{4}
\end{equation*}
$$

We defer the purely information-theoretic and mechanical proof of this lemma to §3.5. In the special case where $f:\{0,1\}^{t} \rightarrow\{0,1\}$ is a Boolean function, the left-hand side of (4) coincides with the usual definition of the average noise sensitivity.

We translate Lemma 8 to our relaxed OR-compression A as follows.
Lemma 9. Let $A:\binom{\{0,1\}^{n}}{\leq t} \rightarrow\{0,1\}^{\epsilon t}$. For all $e \in\binom{\{0,1\}^{n}}{t}$, there exists $v \in e$ so that

$$
\begin{equation*}
d\left(A\left(\mathcal{U}_{2^{e}} \backslash\{v\}\right), A\left(\mathcal{U}_{2^{e}} \cup\{v\}\right)\right) \leq \delta \tag{5}
\end{equation*}
$$

Here \mathcal{U}_{2} samples a subset of e uniformly at random. Note that we replaced the expectation over j from (4) with the mere existence of an element v in (5) since this is all we need; the stronger property also holds.

Proof. To prove the claim, let v_{1}, \ldots, v_{t} be the elements of e in lexicographic order. For $b \in\{0,1\}^{t}$, let $g(b) \subseteq e$ be such that $v_{i} \in g$ holds if and only if $b_{i}=1$. We define the randomized mapping $f:\{0,1\}^{t} \rightarrow\{0,1\}^{\epsilon t}$ as follows:

$$
f\left(b_{1}, \ldots, b_{t}\right) \doteq A(g(b))
$$

Then $f\left(\left.X\right|_{j \leftarrow 0}\right)=A\left(\mathcal{U}_{2^{e}} \backslash\left\{v_{j}\right\}\right)$ and $f\left(\left.X\right|_{j \leftarrow 1}\right)=A\left(\mathcal{U}_{2^{e}} \cup\left\{v_{j}\right\}\right)$. The claim follows from Lemma 8 with $v \doteq v_{j}$ for some j that minimizes the statistical distance in (4).

This lemma suggest the following tournament idea. We let $V=\bar{L}_{n}$ be the set of noinstances, and we let them compete in matches consisting of t players each. That is, a match corresponds to a hyperedge $e \in\binom{V}{t}$ of size t and every such hyperedge is present, so we are looking at a complete t-uniform hypergraph. We say that a player $v \in e$ is "selected" in the hyperedge e if the behavior of A on $\mathcal{U}_{2} \backslash\{v\}$ is not very different from the behavior of A on $\mathcal{U}_{2} \cup \cup\{v\}$, that is, if (5) holds. The point of this construction is that v being selected proves that v must be a no-instance because (3) does not hold. We obtain a "selector" function $S:\binom{V}{t} \rightarrow V$ that, given e, selects an element $v=S(e) \in e$. We call S a hypergraph tournament on V.

3.3 Hypergraph tournaments have small dominating sets

Tournaments are complete directed graphs, and it is well-known that they have dominating sets of logarithmic size. A straightforward generalization applies to hypergraph tournaments $S:\binom{V}{t} \rightarrow V$. We say that a set $g \in\binom{V}{t-1}$ dominates a vertex v if $v \in g$ or $S(g \cup\{v\})=v$ holds. A set $\mathcal{D} \subseteq\binom{V}{t-1}$ is a dominating set of S if all vertices $v \in V$ are dominated by at least one element in \mathcal{D}.
Lemma 10. Let V be a finite set, and let $S:\binom{V}{t} \rightarrow V$ be a hypergraph tournament. Then S has a dominating set $\mathcal{D} \subseteq\binom{V}{t-1}$ of size at most $t \log |V|$.

Proof. We construct the set \mathcal{D} inductively. Initially, it has $k=0$ elements. After the k-th step of the construction, we will preserve the invariant that \mathcal{D} is of size exactly k and that $|R| \leq(1-1 / t)^{k} \cdot|V|$ holds, where R is the set of vertices that are not yet dominated, that is,

$$
R=\{v \in V \mid v \notin g \text { and } S(g \cup\{v\}) \neq v \text { holds for all } g \in \mathcal{D}\} .
$$

If $0<|R|<t$, we can add an arbitrary edge $g^{*} \in\binom{V}{t-1}$ with $R \subseteq g^{*}$ to \mathcal{D} to finish the construction. Otherwise, the following averaging argument, shows that there is an element $g^{*} \in\binom{R}{t-1}$ that dominates at least a $1 / t$-fraction of elements $v \in R$:

$$
\frac{1}{t}=\underset{e \in\binom{R}{t}}{\mathbf{E}} \operatorname{Pr}_{v \in e}(S(e)=v)=\underset{g \in\binom{R}{t-1}}{\mathbf{E}} \operatorname{Pr}_{v \in R-g}(S(g \cup\{v\})=v)
$$

Thus, the number of elements of R left undominated by g^{*} is at most $(1-1 / t) \cdot|R|$, so the inductive invariant holds. Since $(1-1 / t)^{k} \cdot|V| \leq \exp (-k / t) \cdot|V|<1$ for $k=t \log |V|$, we have $R=\emptyset$ after $k \leq t \log |V|$ steps of the construction, and in particular, \mathcal{D} has at most $t \log |V|$ elements.

3.4 Proof of the main theorem: Reduction to statistical distance

Proof (of Theorem 6). We describe a deterministic $\mathrm{P} /$ poly reduction from L to the statistical distance problem $\mathrm{SD}_{\leq \delta}^{\geq \Delta}$ with $\Delta=1-\left(e_{s}+e_{c}\right)$ and $\delta=\sqrt{(2 \ln 2) \epsilon}$. The reduction outputs the conjunction of polynomially many instances of $\mathrm{SD}_{\leq \delta}^{\geq \Delta}$. Since $\mathrm{SD}_{\leq \delta}^{\geq \Delta}$ is contained
in the intersection of NP/poly and coNP/poly by Theorem 5 , and since this intersection is closed under taking polynomial conjunctions, we obtain $L \in N P /$ poly \cap coNP/poly. Thus it remains to find such a reduction. To simplify the discussion, we describe the reduction in terms of an algorithm that solves L and uses $\mathrm{SD}_{\leq \delta}^{\geq \Delta}$ as an oracle. However, the algorithm only makes non-adaptive queries at the end of the computation and accepts if and only if all oracle queries accept; this corresponds to a reduction that maps an instance of L to a conjunction of instances of $\mathrm{SD}_{\leq \delta}^{\geq \Delta}$ as required.

To construct the advice at input length n, we use Lemma 9 with $t=t(n)$ to obtain a hypergraph tournament S on $V=\bar{L}_{n}$, which in turn gives rise to a small dominating set $\mathcal{D} \subseteq\binom{V}{t-1}$ by Lemma 10 . We remark the triviality that if $|V| \leq t=\operatorname{poly}(n)$, then we can use V, the set of all no-instances of L at this input length, as the advice. Otherwise, we define the hypergraph tournament S for all $e \in\binom{V}{t}$ as follows:

$$
S(e) \doteq \min \left\{v \in e \mid d\left(A\left(\mathcal{U}_{2^{e}} \backslash\{v\}\right), A\left(\mathcal{U}_{2^{e}} \cup\{v\}\right)\right) \leq \delta\right\}
$$

By Lemma 9, the set over which the minimum is taken is non-empty, and thus S is well-defined. Furthermore, the hypergraph tournament has a dominating set \mathcal{D} of size at most $t n$ by Lemma 10. As advice for input length n, we choose this set \mathcal{D}. Now we have $v \in \bar{L}$ if and only if v is dominated by \mathcal{D}. The idea of the reduction is to efficiently check the latter property.

The algorithm works as follows: Let $v \in\{0,1\}^{n}$ be an instance of L given as input. If $v \in g$ holds for some $g \in \mathcal{D}$, the algorithm rejects v and halts. Otherwise, it queries the SD-oracle on the instance $\left(A\left(\mathcal{U}_{2^{g}}\right), A\left(\mathcal{U}_{2^{g}} \cup\{v\}\right)\right)$ for each $g \in \mathcal{D}$. If the oracle claims that all queries are yes-instances, our algorithm accepts, and otherwise, it rejects.

First note that distributions of the form $A\left(\mathcal{U}_{2^{g}}\right)$ and $A\left(\mathcal{U}_{2^{g}} \cup\{v\}\right)$ can be be sampled by using polynomial-size circuits, and so they form syntactically correct instances of the SD-problem: The information about A, g, and v is hard-wired into these circuits, the input bits of the circuits are used to produce a sample from $\mathcal{U}_{2^{g}}$, and they serve as internal randomness of A in case A is a randomized algorithm.

It remains to prove the correctness of the reduction. If $v \in L$, we have for all $g \in \mathcal{D} \subseteq \bar{L}$ that $v \notin g$ and that the statistical distance of the query corresponding to g is at least $\Delta=1-\left(e_{s}+e_{c}\right)$ by Lemma 7. Thus all queries that the reduction makes satisfy the promise of the SD-problem and the oracle answers the queries correctly, leading our reduction to accept. On the other hand, if $v \notin L$, then, since \mathcal{D} is a dominating set of \bar{L} with respect to the hypergraph tournament S, there is at least one $g \in \mathcal{D}$ so that $v \in g$ or $S(g \cup\{v\})=v$ holds. If $v \in g$, the reduction rejects. The other case implies that the statistical distance between $A\left(\mathcal{U}_{2^{g}}\right)$ and $A\left(\mathcal{U}_{2} g \cup\{v\}\right)$ is at most δ. The query corresponding to this particular g therefore satisfies the promise of the SD-problem, which means that the oracle answers correctly on this query and our reduction rejects.

3.5 Information-theoretic arguments

We now prove Lemma 8. The proof uses the Kullback-Leibler divergence as an intermediate step. Just like the statistical distance, this notion measures how similar two distributions
are, but it does so in an information-theoretic way rather than in a purely statistical way. In fact, it is well-known in the area that the Kullback-Leibler divergence and the mutual information are almost interchangeable in a certain sense. We prove a version of this paradigm formally in Lemma 11 below; then we prove Lemma 8 by bounding the statistical distance in terms of the Kullback-Leibler divergence using standard inequalities.

We introduce some basic information-theoretic notions. The Shannon entropy $H(X)$ of a random variable X is

$$
H(X)=\underset{x \sim X}{\mathbf{E}} \log \left(\frac{1}{\operatorname{Pr}(X=x)}\right)
$$

The conditional Shannon entropy $H(X \mid Y)$ is

$$
\begin{aligned}
H(X \mid Y) & =\underset{y \sim Y}{\mathbf{E}} H(X \mid Y=y) \\
& =\underset{y \sim Y}{\mathbf{E}} \sum_{x} \operatorname{Pr}(X=x \mid Y=y) \cdot \log \left(\frac{1}{\operatorname{Pr}(X=x \mid Y=y)}\right)
\end{aligned}
$$

The mutual information between X and Y is $I(X: Y)=H(X)-H(X \mid Y)=H(Y)-$ $H(Y \mid X)$. Note that $I(X: Y) \leq \log |\operatorname{supp} X|$, where $|\operatorname{supp} X|$ is the size of the support of X. The conditional mutual information can be defined by the chain rule of mutual information $I(X: Y \mid Z)=I(X: Y Z)-I(X: Z)$. If Y and Z are independent, then a simple calculation reveals that $I(X: Y) \leq I(X: Y \mid Z)$ holds.

We now establish a bound on the Kullback-Leibler divergence. The application of Lemma 8 only uses $\Sigma=\{0,1\}$. The proof does not become more complicated for general Σ, and we will need the more general version later in this paper.

Lemma 11. Let $t \in \mathbb{N}$ and let X_{1}, \ldots, X_{t} be independent distributions on some finite set Σ, and let $X=X_{1}, \ldots, X_{t}$. Then, for all randomized mappings $f: \Sigma^{t} \rightarrow\{0,1\}^{*}$, we have the following upper bound on the expected value of the Kullback-Leibler divergence:

$$
\underset{j \sim \mathcal{U}_{[t]}}{\mathbf{E}} \underset{\sim \sim X_{j}}{\mathbf{E}} D_{\mathrm{KL}}\left(f(X) \| f\left(\left.X\right|_{j \leftarrow x}\right)\right) \leq \frac{1}{t} \cdot I(f(X): X)
$$

Proof. The result follows by a basic calculation with entropy notions. The first equality is the definition of the Kullback-Leibler divergence, which we rewrite using the logarithm rule $\log (a / b)=\log (1 / b)-\log (1 / a)$ and the linearity of expectation:

$$
\begin{aligned}
& \underset{j}{\mathbf{E}} \underset{x}{\mathbf{E}} D_{\mathrm{KL}}\left(f(X) \| f\left(\left.X\right|_{j \leftarrow x}\right)\right) \\
& =\underset{j}{\mathbf{E}} \underset{x}{\mathbf{E}} \sum_{z} \log \left(\frac{\operatorname{Pr}\left(f\left(\left.X\right|_{j \leftarrow x}\right)=z\right)}{\operatorname{Pr}(f(X)=z)}\right) \cdot \operatorname{Pr}\left(f\left(\left.X\right|_{j \leftarrow x}\right)=z\right) \\
& =\underset{j}{\mathbf{E}} \sum_{z} \log \left(\frac{1}{\operatorname{Pr}(f(X)=z)}\right) \cdot \underset{x}{\mathbf{E}} \operatorname{Pr}\left(f\left(\left.X\right|_{j \leftarrow x}\right)=z\right) \\
& \quad-\underset{j}{\mathbf{E}} \underset{x}{\mathbf{E}} \sum_{z} \log \left(\frac{1}{\operatorname{Pr}\left(f\left(\left.X\right|_{j \leftarrow x}\right)=z\right)}\right) \cdot \operatorname{Pr}\left(f\left(\left.X\right|_{j \leftarrow x}\right)=z\right) .
\end{aligned}
$$

As $\mathbf{E}_{x} \operatorname{Pr}\left(f\left(\left.X\right|_{j \leftarrow x}\right)=z\right)=\operatorname{Pr}(f(X)=z)$, both terms of the sum above are entropies, and we can continue the calculation as follows:

$$
\begin{array}{rlr}
\ldots & =H(f(X))-\underset{j}{\mathbf{E}} \mathbf{E} H\left(f(X) \mid X_{j}=x\right) & \text { (definition of entropy) } \\
& =H(f(X))-\underset{j}{\mathbf{E}} H\left(f(X) \mid X_{j}\right) & \text { (definition of conditional entropy) } \\
& =\underset{j}{\mathbf{E}} I\left(f(X): X_{j}\right) & \text { (definition of mutual information) } \\
& \leq \frac{1}{t} \cdot \sum_{j \in[t]} I\left(f(X): X_{j} \mid X_{1} \ldots X_{j-1}\right) & \text { (by independence of } X_{j}{ }^{\prime} \text { s) } \\
& =\frac{1}{t} \cdot I(f(X): X) . & \\
\text { (chain rule of mutual information) }
\end{array}
$$

We now turn to the proof of Lemma 8, where we bound the statistical distance in terms of the Kullback-Leibler divergence.

Proof (of Lemma 8). We observe that $I(f(X): X) \leq \log |\operatorname{supp} f(X)| \leq \epsilon t$, and so we are in the situation of Lemma 11 with $\Sigma=\{0,1\}$. We first apply the triangle inequality to the left-hand side of (4). Then we use Pinsker's inequality Cover and Thomas 2012, Lemma 11.6.1 to bound the statistical distance in terms of the Kullback-Leibler divergence, which we can in turn bound by ϵ using Lemma 11 .

$$
\begin{array}{ll}
\underset{j \sim \mathcal{U}_{[t]}}{\mathbf{E}} d\left(f\left(\left.X\right|_{j \leftarrow 0}\right), f\left(\left.X\right|_{j \leftarrow 1}\right)\right) \\
\leq \underset{j \sim \mathcal{U}_{[t]}}{\mathbf{E}} d\left(f(X), f\left(\left.X\right|_{j \leftarrow 0}\right)\right) & \\
+\underset{j \sim \mathcal{U}_{[t]}}{\mathbf{E}} d\left(f(X), f\left(\left.X\right|_{j \leftarrow 1}\right)\right) & \\
=2 \cdot \underset{j \sim \mathcal{U}_{[t]}}{\mathbf{E}} \underset{x \sim X_{j}}{\mathbf{E}} d\left(f(X), f\left(\left.X\right|_{j \leftarrow x}\right)\right) \\
\leq 2 \cdot \underset{j}{\mathbf{E}} \underset{x}{\mathbf{E}} \sqrt{\frac{\ln 2}{2} \cdot D_{\mathrm{KL}}\left(f(X) \| f\left(\left.X\right|_{j \leftarrow x}\right)\right)} & \text { (Pinskers's inequality) } \\
\leq 2 \cdot \sqrt{\frac{\ln 2}{2} \cdot \underset{j}{\mathbf{E}} \underset{x}{\mathbf{E}} D_{\mathrm{KL}}\left(f(X) \| f\left(\left.X\right|_{j \leftarrow x}\right)\right)} & \quad \text { (Jensen's inequality) } \\
\leq 2 \cdot \sqrt{\frac{\ln 2}{2} \cdot \epsilon}=\delta . & \tag{Lemma11}
\end{array}
$$

The equality above uses the fact that X_{j} is the uniform distribution on $\{0,1\}$.

4 Extension: Ruling out OR-compressions of size $O(t \log t)$

In this section we tweak the proof of Theorem 6 so that it works even when the t instances of L are mapped to an instance of L^{\prime} of size at most $O(t \log t)$. The drawback
is that we cannot handle positive constant error probabilities for randomized relaxed OR-compression anymore. For simplicity, we restrict ourselves to deterministic relaxed OR-compressions of size $O(t \log t)$ throughout this section.

Theorem $12(O(t \log t)$-compressive version of Drucker's theorem).
Let $L, L^{\prime} \subseteq\{0,1\}^{*}$ be languages. Let $t=t(n)>0$ be a polynomial. Assume there exists a $\mathrm{P} /$ poly-algorithm

$$
A:\binom{\{0,1\}^{n}}{\leq t} \rightarrow\{0,1\}^{O(t \log t)}
$$

such that, for all $x \in\binom{\{0,1\}^{n}}{\leq t}$,

- if $|x \cap L|=0$, then $A(x) \in \overline{L^{\prime}}$, and
- if $|x \cap L|=1$, then $A(x) \in L^{\prime}$.

Then $L \in$ NP/poly \cap coNP/poly.
This is Theorem 7.1 in Drucker (2013). The main reason why the proof in $\S 3$ breaks down for compressions to size ϵt with $\epsilon=O(\log t)$ is that the bound on the statistical distance in Lemma 8 becomes trivial. This happens already when $\epsilon \geq \frac{1}{2 \ln 2} \approx 0.72$. On the other hand, the bound that Lemma 11 gives for the Kullback-Leibler divergence remains non-trivial even for $\epsilon=O(\log t)$. To see this, note that the largest possible divergence between $f(X)$ and $f\left(\left.X\right|_{j \leftarrow x}\right)$, that is, the divergence without the condition on the mutual information between $f(X)$ and X, is $t \cdot \log |\Sigma|$, and the bound that Lemma 11 yields for $\epsilon=O(\log t)$ is logarithmic in that.

Inspecting the proof of Lemma 8, we realize that the loss in meaningfulness stems from Pinsker's inequality, which becomes trivial in the parameter range under consideration. Luckily, there is a different inequality between the statistical distance and the KullbackLeibler divergence, Vajda's inequality, that still gives a non-trivial bound on the statistical distance when the divergence is $\geq \frac{1}{2 \ln 2}$. The inequality works out such that if the divergence is logarithmic, then the statistical distance is an inverse polynomial away from 1. We obtain the following analogue to Lemma 8.

Lemma 13. Let $t \in \mathbb{N}$ let X_{1}, \ldots, X_{t} be independent uniform distributions on some finite set Σ, and write $X=X_{1}, \ldots, X_{t}$. Then, for all randomized mappings $f: \Sigma^{t} \rightarrow\{0,1\}^{*}$ with $I(f(X): X) \leq O(t \cdot \log t)$, we have

$$
\begin{equation*}
\underset{j \sim \mathcal{U}_{[t]}}{\mathbf{E}} \underset{x \sim X_{j}}{\mathbf{E}} d\left(f\left(\left.X\right|_{X_{j} \neq x}\right), f\left(\left.X\right|_{X_{j}=x}\right)\right) \leq 1-\frac{1}{\operatorname{poly}(t)}+\frac{1}{|\Sigma|} \tag{6}
\end{equation*}
$$

The notation $\left.X\right|_{X_{j} \neq x}$ refers to the random variable that samples $x_{i} \sim X_{i}=\mathcal{U}_{\Sigma}$ independently for each $i \neq j$ as usual, and that samples x_{j} from the distribution X_{j} conditioned on the event that $X_{j} \neq x$, that is, the distribution $\mathcal{U}_{\Sigma \backslash\{a\}}$. The notation $\left.X\right|_{X_{j}=x}=\left.X\right|_{j \leftarrow x}$ is as before, that is, $x_{j}=x$ is fixed.

We defer the proof of the lemma to the end of this section and discuss now how to use it to obtain the stronger result for $O(t \log t)$ compressions. First note that we could not have directly used Lemma 13 in place of Lemma 8 in the proof of the main result, Theorem 6. This is because for $\Sigma=\{0,1\}$, the right-hand side of (6) becomes bigger than 1 and thus trivial. In fact, this is the reason why we formulated Lemma 11 for general Σ. We need to choose Σ with $|\Sigma|=\operatorname{poly}(t)$ large enough to get anything meaningful out of (6).

4.1 A different hypergraph tournament

To be able to work with larger Σ, we need to define the hypergraph tournament in a different way; not much is changing on a conceptual level, but the required notation becomes a bit less natural. We do this as follows.

Lemma 14. Let $A:\binom{\{0,1\}^{n}}{\leq t} \rightarrow\{0,1\}^{\epsilon t}$. There exists a large enough constant $C \in \mathbb{N}$ such that with $\Sigma=\left[t^{C}\right]$ we have: For all $e=e_{1} \dot{\cup} e_{2} \dot{\cup} \ldots \dot{\cup} e_{t} \subseteq\{0,1\}^{n}$ with $\left|e_{i}\right|=|\Sigma|$, there exists an element $v \in e$ so that

$$
\begin{equation*}
d\left(A\left(\left.X_{e}\right|_{v \notin X_{e}}\right), A\left(\left.X_{e}\right|_{v \in X_{e}}\right)\right) \leq 1-\frac{1}{\operatorname{poly}(t)}, \tag{7}
\end{equation*}
$$

where X_{e} is the distribution that samples the t-element set $\left\{\mathcal{U}_{e_{1}}, \ldots, \mathcal{U}_{e_{t}}\right\}$, and $\left.X_{e}\right|_{E}$ is the distribution X_{e} conditioned on the event E.

For instance if $v \in e_{1}$, then $\left.X_{e}\right|_{v \notin X}$ samples the t-element set $\left\{\mathcal{U}_{e_{1} \backslash\{v\}}, \mathcal{U}_{e_{2}}, \ldots, \mathcal{U}_{e_{t}}\right\}$ and $\left.X_{e}\right|_{v \in X_{e}}$ samples the t-element set $\left\{v, \mathcal{U}_{e_{2}}, \ldots, \mathcal{U}_{e_{t}}\right\}$. The proof of this lemma is analogous to the proof of Lemma 9.

Proof. We choose C as a constant that is large enough so that the right-hand side of (6) becomes bounded by $1-1 / \operatorname{poly}(t)$. Let $e_{i a} \in\{0,1\}^{n}$ for $i \in[t]$ and $a \in \Sigma$ be the lexicographically a-th element of e_{i}. We define the function $f: \Sigma^{t} \rightarrow\{0,1\}^{O(t \log t)}$ as follows: $f\left(a_{1}, \ldots, a_{t}\right) \doteq A\left(e_{1 a_{1}}, \ldots, e_{t a_{t}}\right)$. Finally, we let the distributions X_{i} be $X_{i}=\mathcal{U}_{\Sigma}$ for all $i \in[t]$. We apply Lemma 8 to f and obtain indices $j \in[t]$ and $x \in \Sigma$ minimizing the statistical distance on the left-hand side of (6). Since $f\left(\left.X_{e}\right|_{e_{j x} \notin X_{e}}\right)=A\left(\left.X\right|_{X_{j} \neq x}\right)$ and $f\left(\left.X_{e}\right|_{e_{j x} \in X_{e}}\right)=A\left(\left.X\right|_{X_{j}=x}\right)$, we obtain the claim with $v \doteq e_{j x}$.

4.2 Proof of Theorem 12

Proof (of Theorem 12). As in the proof of Theorem 6, we construct a deterministic $\mathrm{P} /$ poly reduction from L to a conjunction of polynomially many instances of the statistical distance problem $\mathrm{SD}_{\leq \delta}^{\geq \Delta}$, but this time we let $D=1$ and $\delta=1-\frac{1}{\text { poly }(t)}$ be equal to the right-hand side of (7). Since there is a polynomial gap between d and D, Theorem5 implies that $\mathrm{SD} \underset{\leq \delta}{\geq \Delta}$ is contained in the intersection of NP/poly and coNP/poly. Since the intersection is closed under polynomial disjunctions, we obtain $L \in \mathrm{NP} /$ poly \cap coNP/poly. Thus it remains to find such a reduction.

To construct the advice at input length n, we use Lemma 14 with $t=t(n)$, which guarantees that the following hypergraph tournament $S:(\underset{|\Sigma| \cdot t}{V}) \rightarrow V$ with $V=\bar{L}_{n}$ is well-defined:

$$
S(e) \doteq \min \left\{v \in e \mid d\left(A\left(\left.X_{e}\right|_{v \notin X_{e}}\right), A\left(\left.X_{e}\right|_{v \in X_{e}}\right)\right) \leq \delta\right\}
$$

We remark that if $|V| \leq|\Sigma| t=\operatorname{poly}(n)$, then we can use V as the advice. Otherwise, the advice at input length n is the dominating set $\mathcal{D} \subseteq\binom{V}{\Sigma \cdot t-1}$ guaranteed by Lemma 10; in particular, its size is bounded by $t \cdot|\Sigma| \cdot n=\operatorname{poly}(n)$.

The algorithm for L that uses $\mathrm{SD}_{<\delta}^{\geq \Delta}$ as an oracle works as follows: Let $v \in\{0,1\}^{n}$ be an instance of L given as input. If $v \in g$ holds for some $g \in \mathcal{D}$, the reduction rejects v and halts. Otherwise, for each $g \in \mathcal{D}$, it queries the SD-oracle on the instance $\left(A\left(\left.X_{e}\right|_{v \notin X_{e}}\right), A\left(\left.X_{e}\right|_{v \in X_{e}}\right)\right)$ with $e=g \cup\{v\}$. If the oracle claims that all queries are yes-instances, our reduction accepts, and otherwise, it rejects.

The correctness of this reduction is analogous to the proof Theorem 6: If $v \in L$, then Lemma 7 guarantees that the statistical distance of all queries is one, and so all queries will detect this. If $v \in \bar{L}$, then since \mathcal{D} is a dominating set of S, we have $v \in g$ or $S(g \cup\{v\})=v$ for some $g \in \mathcal{D}$. The latter will be detected in the query corresponding to g since $\delta<D$. This completes the proof of the theorem.

4.3 Information-theoretic arguments

Proof (of Lemma 13). We use Vajda's inequality Fedotov, Harremoës, and Topsoe 2003; Reid and Williamson 2009 instead of Pinsker's inequality to bound the statistical distance in terms of the Kullback-Leibler divergence, which we in turn bound by the mutual information using Lemma 11 (with $\epsilon=C \cdot \log t$ for a constant C large enough so that $I(f(X): X) \leq \epsilon t$ holds $):$

$$
\begin{array}{lr}
\underset{j}{\mathbf{E}} \underset{x}{\mathbf{E}} d\left(f(X), f\left(\left.X\right|_{j \leftarrow x}\right)\right) & \\
\leq \underset{j}{\mathbf{E}} \mathbf{E}\left(1-\exp \left(-1-D_{\mathrm{KL}}\left(f(X) \| f\left(\left.X\right|_{j \leftarrow x}\right)\right)\right)\right) & \text { (Vajda's inequality) } \\
\leq 1-\exp \left(-1-\underset{j}{\mathbf{E}} \underset{x}{\mathbf{E}} D_{\mathrm{KL}}\left(f(X) \| f\left(\left.X\right|_{j \leftarrow x}\right)\right)\right) & \text { (Jensen's inequality) } \\
\leq 1-e^{-1-C \log t}=1-1 / \operatorname{poly}(t) & \text { (Lemma 11) } \tag{Lemma11}
\end{array}
$$

Now (6) follows from the triangle inequality as follows.

$$
\begin{aligned}
\underset{j}{\mathbf{E}} \underset{x}{\mathbf{E}} d\left(f\left(\left.X\right|_{X_{j} \neq x}\right), f\left(\left.X\right|_{X_{j}=x}\right)\right) \leq & \underset{j}{\mathbf{E}} \underset{x}{\mathbf{E}} d\left(f\left(\left.X\right|_{X_{j} \neq x}\right), f(X)\right) \\
& +\underset{j}{\mathbf{E}} \underset{x}{\mathbf{E}} d\left(f(X), f\left(\left.X\right|_{X_{j}=x}\right)\right) \\
\leq & \frac{1}{|\Sigma|}+1-\frac{1}{\operatorname{poly}(t)} .
\end{aligned}
$$

For this, note that a simple calculation from (1) shows that

$$
\begin{aligned}
& d\left(f\left(\left.X\right|_{X_{j} \neq x}\right), f(X)\right) \leq d\left(\left.X\right|_{X_{j} \neq x}, X\right) \\
& \quad \leq \operatorname{Pr}\left(X_{j} \neq x\right) \cdot d\left(\left.X\right|_{X_{j} \neq x},\left.X\right|_{X_{j} \neq x}\right)+\operatorname{Pr}\left(X_{j}=x\right) \cdot d\left(\left.X\right|_{X_{j} \neq x},\left.X\right|_{X_{j}=x}\right) \\
& \quad \leq \operatorname{Pr}\left(X_{j} \neq x\right) \cdot 0+\operatorname{Pr}\left(X_{j}=x\right) \cdot 1=\operatorname{Pr}\left(X_{j}=x\right)
\end{aligned}
$$

always holds, and the latter equals $\frac{1}{|\Sigma|}$ since X_{j} is uniformly distributed on Σ.

5 Extension: f-compression

We end this paper with a small observation: Instead of OR-compressions or ANDcompressions, we could just as well consider f-compressions for a Boolean function $f:\{0,1\}^{t} \rightarrow\{0,1\}$. If the function f is symmetric, that is, if $f(x)$ depends only on the Hamming weight of x, then we can represent f as a function $f:\{0, \ldots, t\} \rightarrow\{0,1\}$. We make the observation that Drucker's theorem applies to f-compressions whenever f is a non-constant, symmetric function.

Definition 15. Let $f:\{0, \ldots, t\} \rightarrow\{0,1\}$ be any function. Then an f-compression of L into L^{\prime} is a mapping

$$
A:\binom{\{0,1\}^{n}}{\leq t} \rightarrow\{0,1\}^{\epsilon t},
$$

such that, for all $x \in\binom{\{0,1\}^{n}}{\leq t}$, we have $A(x) \in L^{\prime}$ if and only if $f(|x \cap L|)=1$.
Examples:

- OR-compressions are f-compressions with $f(i)=1$ if and only if $i>0$.
- AND-compressions are f-compressions with $f(i)=1$ if and only if $i=t$.
- Majority-compressions are f-compressions with $f(i)=1$ if and only if $i>t / 2$.
- Parity-compressions are f-compressions with $f(i)=1$ if and only if i is odd.

We can apply Theorem 6 and 12 whenever f is not a constant function.
Lemma 16. Let $f:\{0, \ldots, t\} \rightarrow\{0,1\}$ be non-constant. Then every f-compression for L with size ϵ can be transformed into a compression for L or for \bar{L}, in the sense of Theorem 6 and with size bound at most $2 \epsilon t$.

Proof. Let A be an f-compression from L into L^{\prime}. Then A is also a ($1-f$)-compression from L into $\overline{L^{\prime}}$, an $(f(t-i))$-compression from \bar{L} into L^{\prime}, and a ($1-f(t-i)$)-compression from \bar{L} into $\overline{L^{\prime}}$. Since f is not constant, at least one of these four views corresponds to a function f^{\prime} for which there is an index $i \leq t / 2$ so that $f^{\prime}(i)=0$ and $f^{\prime}(i+1)=1$,
holds. Assume without loss of generality that this holds already for f. Then we define $A^{\prime}:\binom{\{0,1\}^{n}}{\leq t-i} \rightarrow\{0,1\}^{\epsilon t}$ as follows:

$$
A^{\prime}\left(\left\{x_{i}, x_{i+1}, \ldots, x_{t}\right\}\right) \doteq A\left(\left\{\top_{1}, \ldots, \top_{i-1}, x_{i}, x_{i+1}, \ldots, x_{t}\right\}\right),
$$

where $\top_{1}, \ldots, \top_{i-1}$ are arbitrary distinct yes-instances of L. For the purposes of Theorem 6 , these instances can be written in the non-uniform advice of A^{\prime}. If this many yes-instances do not exist, then the language L is trivial to begin with. To ensure that the x_{j} 's are distinct from the \top_{j} 's, we actually store a list of $2 t$ yes-instances \top_{j} and inject only $i-1$ of those that are different from the x_{j} 's.
A^{\prime} is just like A, except that $i-1$ inputs have already been fixed to yes-instances. Then A^{\prime} is a compressive map that satisfies the following: If $|x \cap L|=0$ then $A^{\prime}(x) \notin L^{\prime}$, and if $|x \cap L|=1$ then $A^{\prime}(x) \in L^{\prime}$. Since the number of inputs has decreased to $t^{\prime}=t-i \geq t / 2$, the new size of the compression is $\epsilon t \leq 2 \epsilon t^{\prime}$ in terms of t^{\prime}.

Acknowledgments. I would like to thank Andrew Drucker, Martin Grohe, and others for encouraging me to pursue the publication of this manuscript, David Xiao for pointing out Theorem 5 to me, Andrew Drucker, Dániel Marx, and anonymous referees for comments on an earlier version of this paper, and Dieter van Melkebeek for some helpful discussions.

References

[1] Leonard M. Adleman, "Two theorems on random polynomial time," in Proceedings of the 19th Annual Symposium on Foundations of Computer Science (FOCS), 1978, pp. 75-83. DOI: 10.1109/SFCS.1978.37.
[2] Sanjeev Arora and Boaz Barak, Computational complexity - A modern approach. Cambridge University Press, 2009, ISBN: 978-0-521-42426-4.
[3] Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin, "On problems without polynomial kernels," Journal of Computer and System Sciences, vol. 75, no. 8, pp. 423-434, 2009. DOI: 10.1016/j.jcss.2009.04.001.
[4] Hans L. Bodlaender, Bart M. P. Jansen, and Stefan Kratsch, "Kernelization lower bounds by cross-composition," SIAM Journal on Discrete Mathematics, vol. 28, no. 1, pp. 277-305, 2014. DOI: 10.1137/120880240.
[5] Thomas M. Cover and Joy A. Thomas, Elements of information theory. John Wiley \& Sons, 2012.
[6] Holger Dell, Valentine Kabanets, Dieter van Melkebeek, and Osamu Watanabe, "Is Valiant-Vazirani's isolation probability improvable?" Computational Complexity, vol. 22, no. 2, pp. 345-383, 2013. DOI: 10.1007/s00037-013-0059-7.
[7] Holger Dell and Dániel Marx, "Kernelization of packing problems," in Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2012, pp. 68-81. DOI: 10.1137/1.9781611973099.6.
[8] Holger Dell and Dieter van Melkebeek, "Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses," Journal of the ACM, vol. 61, no. 4, 2014. DOI: 10.1145/2629620.
[9] Andrew Drucker, "New limits to classical and quantum instance compression," in Proceedings of the 53rd Annual Symposium on Foundations of Computer Science (FOCS), 2012, pp. 609-618. DOI: 10.1109/FOCS.2012.71.
[10] ——, "New limits to classical and quantum instance compression," Electronic Colloquium on Computational Complexity (ECCC), Tech report TR12-112 rev. 2, 2013. [Online]. Available: http://eccc.hpi-web.de/report/2012/112/.
[11] Alexei A. Fedotov, Peter Harremoës, and Flemming Topsoe, "Refinements of Pinsker's inequality," IEEE Transactions on Information Theory, vol. 49, no. 6, pp. 1491-1498, 2003. DOI: 10.1109/TIT.2003.811927.
[12] Lance Fortnow and Rahul Santhanam, "Infeasibility of instance compression and succinct PCPs for NP," Journal of Computer and System Sciences, vol. 77, no. 1, pp. 91-106, 2011. DOI: 10.1016/j.jcss.2010.06.007.
[13] Oded Goldreich and Salil Vadhan, "On the complexity of computational problems regarding distributions (a survey)," Electronic Colloquium on Computational Complexity (ECCC), Tech report TR11-004, 2011. [Online]. Available: http:// eccc.hpi-web.de/report/2011/004/.
[14] Danny Hermelin and Xi Wu, "Weak compositions and their applications to polynomial lower bounds for kernelization," in Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2012, pp. 104-113. DOI: 10.1137/1. 9781611973099.9.
[15] Ker-I Ko, "On self-reducibility and weak P-selectivity," Journal of Computer and System Sciences, vol. 26, pp. 209-211, 1983. DOI: 10.1016/0022-0000 (83) 90013-2.
[16] Stefan Kratsch, "Co-nondeterminism in compositions: A kernelization lower bound for a Ramsey-type problem," in Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2012, pp. 114-122. DOI: 10.1137/1. 9781611973099. 10.
[17] Stefan Kratsch, Geevarghese Philip, and Saurabh Ray, "Point line cover: the easy kernel is essentially tight," in Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2014, pp. 1596-1606. DOI: 10.1137/1. 9781611973402.116.
[18] Mark Reid and Bob Williamson, "Generalised Pinsker inequalities," in Proceedings of the 22nd Annual Conference on Learning Theory (COLT), 2009, pp. 18-21. [Online]. Available: http://www.cs.mcgill.ca/~colt2009/papers/013.pdf.
[19] Amit Sahai and Salil Vadhan, "A complete problem for statistical zero knowledge," Journal of the ACM, vol. 50, no. 2, pp. 196-249, 2003. Doi: 10.1145/636865. 636868.
[20] David Xiao, "New perspectives on the complexity of computational learning, and other problems in theoretical computer science," PhD thesis, Princeton University, 2009. [Online]. Available: ftp://ftp.cs.princeton.edu/techreports/2009/ 866.pdf.

[^0]: *work done as a postdoc at LIAFA, Université Paris Diderot

