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Abstract. We study the structure of sets S ⊆ {0, 1}n with small sen-
sitivity. The well-known Simon’s lemma says that any S ⊆ {0, 1}n of
sensitivity s must be of size at least 2n−s. This result has been useful for
proving lower bounds on sensitivity of Boolean functions, with applica-
tions to the theory of parallel computing and the “sensitivity vs. block
sensitivity” conjecture.
In this paper, we take a deeper look at the size of such sets and their
structure. We show an unexpected “gap theorem”: if S ⊆ {0, 1}n has
sensitivity s, then we either have |S| = 2n−s or |S| ≥ 3

2
2n−s. This is

shown via classifying such sets into sets that can be constructed from
low-sensitivity subsets of {0, 1}n

′
for n′ < n and irreducible sets which

cannot be constructed in such a way and then proving a lower bound on
the size of irreducible sets.
This provides new insights into the structure of low sensitivity subsets
of the Boolean hypercube {0, 1}n.

1 Introduction

The complexity of computing Boolean functions (for example, in the decision
tree model of computation) is related to a number of combinatorial quantities,
such as sensitivity and block sensitivity of the function, its certificate complexity
and the degree of polynomials that represent the function (exactly or approxi-
mately) [4]. Study of these quantities has resulted in both interesting results and
longstanding open problems.

For example, it has been shown that decision tree complexity (in either de-
terministic or probabilistic or quantum model of computation) is polynomially
related to a number of these quantities: certificate complexity, block sensitivity
and the minimum degree of polynomials that represent or approximate f [8,
3]. This result, in turn, implies that deterministic, probabilistic and quantum
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decision tree complexities are polynomially related — which is very interesting
because similar result is not known in Turing machine world (and, for deter-
ministic vs. quantum complexity, is most likely false because of Shor’s factoring
algorithm).

The question about the relation between the sensitivity of a function and
the other quantities is, however, a longstanding open problem, known as the
“sensitivity vs. block sensitivity” question. (Since the other quantities are all
polynomially related, showing a polynomial relation between the sensitivity and
one of them would imply a polynomial relation between the sensitivity and all of
them). This question has attracted quite much attention (since being first posed
by Nisan in 1991 [7]) but there has been quite little progress and the gap between
the best upper and lower bounds remains huge. The biggest separation between
the two quantities is bs(f) = Ω(s2(f)) [9, 11, 2] (here, bs(f) and s(f) denote
the block sensitivity and the sensitivity of f , respectively) while the best upper
bound on bs(f) in terms of s(f) is exponential: bs(f) ≤ s(f)2s(f)−1 − s(f) + 1
[6, 1].

In this paper, we study the following question: assume that a subset S of
Boolean hypercube {0, 1}n has a low sensitivity (that is, for every x ∈ S, there
are at most s indices i ∈ {1, . . . , n} such that changing xi to the opposite value
results in y ∈ S). What can we say about this set?

Simon’s lemma [10] says that a set S ⊂ {0, 1}n with sensitivity smust contain
at least 2n−s input vectors x ∈ S. Simon [10] then used this result to show that
s(f) ≥ 1

2 log2 n − 1
2 log2 log2 n + 1

2 for any Boolean function that depends on n

variables. Since bs(f) ≤ n (trivially), this implies bs(f) ≤ s(f)4s(f). This was
the first upper bound on bs(f) in terms of s(f).

Since then, this upper bound was improved, first by Kenyon and Kutin [6]
to bs(f) ≤ C

√
s(f)es(f) (where C is constant) and then by Ambainis et al. [1],

to bs(f) ≤ s(f)2s(f)−1−s(f)+1. But the best currently known upper bound by
[1] is based on isoperimetric inequality for Boolean hypercube which is closely
related to Simon’s lemma (and a bound of bs(f) ≤ s(f)2s(f)−1 which is only
weaker by only a tiny amount can be derived by using Simon’s lemma instead
of isoperimetric inequality).

Because of that, we think that Simon’s lemma is quite important for a bet-
ter understanding of the “sensitivity vs. block sensitivity” problem and related
questions. In this paper, we study the question: can one improve the bound of
Simon’s lemma?

Initially, it looks like Simon’s lemma is exactly optimal. If we let S be a
subcube of the hypercube {0, 1}n obtained by fixing s of variables xi (that is,
S is the set of all x = (x1, . . . , xn) that satisfy xi1 = a1, . . ., xis = as for some
choice of i1, . . . , ik ∈ {1, . . . , n} (which are all distinct) and a1, . . . , as ∈ {0, 1}),
then every x ∈ S is sensitive to changing s bits xi1 , . . . , xik and |S| = 2n−s.

In this paper, we show that any S with sensitivity s that is not a subcube
must be substantially larger. To do that, we study the structure of sets S with
sensitivity s by classifying them into two types:



1. sets S that are contained in a subcube S′ ⊂ {0, 1}n obtained by fixing one
or more of values xi;

2. sets S that are not contained in any such subcube.

There is one-to-one correspondence between the sets of the first type and
low-sensitivity subsets of {0, 1}n−k for k ∈ {1, . . . , s}.1 In contrast, the sets of
the second type do not reduce to low-sensitivity subsets of {0, 1}n−k for k > 0.
Therefore, we call them irreducible.

Our main result is that any irreducible S ⊆ {0, 1}n must be of size |S| ≥
2n−s+1−2n−2s (almost twice as large as a subcube obtained by fixing s variables)
and this bound is tight.

As a consequence, we obtain a surprising result: if S ⊆ {0, 1}n has sensitivity
s, then either |S| = 2n−s or |S| ≥ 3

22
n−s. That is, such a set S cannot have size

between 2n−s and 3
22

n−s!

2 Preliminaries

In this section we give the basic definitions used in the paper. Let f : {0, 1}n →
{0, 1} be a Boolean function of n variables, where the i-th variable is denoted
by xi. We use x = (x1, . . . , xn) to denote a tuple consisting of all input variables
xi.

Definition 1. The sensitivity complexity s(f, x) of f on an input x is defined
as |{i | f(x) ̸= f(x(i))}|, where x(i) is an input obtained from x by flipping the
value of the i-th variable. The sensitivity s(f) of f is defined as

s(f) = max{s(f, x) |x ∈ {0, 1}n}. (1)

The c-sensitivity sc(f) of f is defined as

sc(f) = max{s(f, x) |x ∈ {0, 1}n, f(x) = c}. (2)

In this paper, we will look at {0, 1}n as a set of vertices for a graph Qn

(called n-dimensional Boolean cube or hypercube) in which we have an edge (x, y)
whenever x = (x1, . . . , xn) and y = (y1, . . . , yn) differ in exactly one position.
We look at subsets S ⊆ {0, 1} as subgraphs (induced by the subset of vertices
S) in this graph.

Definition 2. We define an m-dimensional subcube or m-subcube of Qn to be
a cube induced by the set of all vertices that have the same bit values on n−m
positions xi1 , . . . , xin−m where ij are all different.

If a subcube can be obtained by fixing some continuous sequence b of starting
bits, we denote such subcube by Gb. For example, G0 and G1 can be obtained
by fixing a single first bit, and G01 can be obtained by fixing first two bits to 01.
By G∗10 we denote a cube obtained by fixing the second and the third bit to 10.

1 If a set S of sensitivity s is contained in a subcube S′ obtained by fixing xi1 , . . . , xik ,
removing the variables that have been fixed gives us a set S′′ ⊆ {0, 1}n−k of sensi-
tivity s− k.



Definition 3. Two m-dimensional subcubes of Qn are adjacent, if the fixed
n − m positions of both subcubes are the same and their bit values differ in
exactly one position.

Each Boolean function f can be represented as a set of vertices V (f) =
{x | f(x) = 1}, thus each function of n variables represents a single subgraph
G(f) of Qn induced by V (f). Note that for an input x ∈ V (f), the sensitivity
s(f, x) is equal to the number of vertices not in V (f) and connected to x with
an edge in Qn. Thus the sensitivity of V (f) is equal to s1(f).

For a Boolean function f , the minimum degree δ(G(f)) corresponds to n −
s1(f), and the minimum degree of a graph induced by {0, 1}n \ V corresponds
to n− s0(f).

In the rest of this paper, we phrase our results in terms of subgraphs of Qn.

Definition 4. Let X and Y be subgraphs of Qn. By X ∩ Y we denote the in-
tersection graph of X and Y , which is the graph (V (X)∩ V (Y ), E(X)∩E(Y )).
By X \ Y denote the complement of Y in X, which is the graph induced by the
vertex set V (X) \ V (Y ) in X.

We also denote the degree of a vertex v in a graph G by deg(v,G).

The main focus of the paper is on the irreducible class of subgraphs:

Definition 5. We call a subgraph G ⊂ Qn reducible, if it is a subgraph of some
graph S ⊂ Qn, where V (S) can be obtained by fixing one or more of values xi.
Conversely, other subgraphs we call irreducible.

Another way to define the irreducible graphs is to say that each such graph
contains at least one vertex in each of the (n− 1)-subcubes of Qn (so there are
no redundant dimensions for this graph).

3 Simon’s Lemma

In this section, we present a theorem proved by Simon [10] along with the proof.
In the next section, we will build on the ideas from this proof to prove our results.

Theorem 1. Let G = (V,E) be a non-empty subgraph of Qn (n ≥ 0) of min-
imum cardinality among the subgraphs with δ(G) = d (d ≥ 0). Then G is a
d-dimensional subcube of Qn and

|V | = 2d. (3)

Proof. We use an induction on n.

1. Base case, n = 0. Then G = Qn, and |V | = 1.



2. In the induction step we assume the claim holds for n− 1, and prove it for
n. If Gj ∩G is empty for some j ∈ {0, 1}, then G is a subgraph of G1−j thus
by the claim G is a d-subcube of G1−j , and |V | = 2d. Otherwise the graphs
G0 ∩ G and G1 ∩ G are not empty, and their minimum degree is at least
d− 1, since each vertex in G0 has exactly one neighbour in G1. Then by the
claim |V | = |V (G0 ∩G)|+ |V (G1 ∩G)| ≥ 2 · 2d−1 = 2d, and the minimum is
achieved only if G0 ∩G and G1 ∩G both are (d− 1)-subcubes of Qn. Since
δ(G) = d, G0 ∩G is a subcube adjacent to G1 ∩G, together forming a single
d-subcube, and |V | = 2d.

⊓⊔

This theorem implies:

Corollary 1. Let f(x) be a Boolean function of n variables. If f(x) is not always
0, then

|{x | f(x) = 1}| ≥ 2n−s1(f), (4)

and the minimum is obtained iff some s1(f) positions hold the same bit values
for all x : f(x) = 1.

Proof. Let G be a subgraph of Qn induced by the set of vertices V = {x | f(x) =
1}. The minimum degree of G is δ(G) = n − s1(f). Then by Theorem 1 |V | ≥
2n−s1(f). The minimum is obtained iff G is an (n− s1(f))-subcube of Qn. That
means that then it is defined by some bits fixed in s1(f) positions. ⊓⊔

4 Smallest Irreducible Subgraphs

In this section we prove the following theorem.

Theorem 2. Let G = (V,E) be a non-empty subgraph of Qn (n ≥ 1) with the
properties:

1. G is irreducible.
2. The minimum degree is δ(G) = d (d ≥ 0).

Then, the smallest possible cardinality of V is

|V | =
⌈
2d+1 − 22d−n

⌉
(5)

In the language of Boolean functions, this theorem corresponds to:

Corollary 2. Let f(x) be a Boolean function of n variables. If ∀i ∈ [n]∀j ∈
{0, 1}∃x(xi = j, f(x) = 1), then

|{x | f(x) = 1}| ≥ 2n−s1(f)+1 − 2n−2s1(f), (6)

Theorem 2 also implies the following generalization of Simon’s lemma:



Theorem 3. Let G = (V,E) be a non-empty subgraph of Qn (n ≥ 0) with
δ(G) = d. Then either |V | = 2d or |V | ≥ 3

2 · 2d, with V = |2d| achieved if an
only if V is a d-subcube.

Equivalently, if G has the sensitivity s, then either |V | = 2n−s or |V | ≥
3
22

n−s. Thus, there is a gap between the possible values for |V | — which we find
quite surprising.

In the next two subsections we prove Theorem 2, and in the last two subsec-
tions we show how it implies Corollary 2 and Theorem 3.

4.1 Sufficiency

In this section we prove that the given number of vertices is sufficient. We dis-
tinguish three cases:

1. n = 1. The only valid graph satisfying the properties is G = Qn with d = 1.
Then |V | = 2.

2. n > 1, 2d < n. Since 22d−n < 1, |V | should be 2d+1. We take

Sj = {x | ∀i ∈ [n− d](xi = j)} (7)

for j ∈ {0, 1}, and V = S0 ∪ S1. Let G be the graph induced by V in Qn.
Then G consists of two d-subcubes of Qn with no common vertices. Since
n − d > 1, no edge connects any two vertices between these subcubes, thus
δ(G) = d. For the irreducibility, suppose that some (n − 1)-subcube H is
defined by fixing xi = j. If i ≤ n − d, then H ∩ Sj ̸= ∅. If i > n − d, then
H ∩ Sj ̸= ∅ for any j. Then |V | = 2 · 2d = 2d+1.

3. n > 1, 2d ≥ n. Then |V | should be 2d+1 − 22d−n. We take

Sl = {x | ∀i ∈ [n− d](xi = 1)}, (8)

Sr = {x | ∀i ∈ [n− d+ 1; 2(n− d)](xi = 1)} (9)

and V = Sl ∪ Sr. Let G be the graph induced by V in Qn. Graphs induced
by Sl and Sr are d-dimensional subcubes of Qn. Since they are not adjacent,
δ(G) = d. For the irreducibility, observe that any bit position i is not fixed for
at least one of Sl or Sr. Then (n− 1)-subcube H obtained by fixing xi holds
at least one of vertices of G. Since Sl ∩ Sr = {x | ∀i ∈ [2(n− d)](xi = 1)}, it
follows that

|V | = 2 · 2d − 2n−2(n−d) = 2d+1 − 22d−n. (10)

4.2 Optimality

In this section we prove that there are no such graphs with a number of vertices
less than

⌈
2d+1 − 22d−n

⌉
.

We use an induction on n. As the base case we take n ≤ 2. From the fact that
each (n − 1)-subcube contains at least one vertex of G it follows that |V | ≥ 2.
This proves the cases n = 1, d = 1 and n = 2, d = 0 (and the case n = 1, d = 0



is not possible). Suppose n = 2, d = 1: if there were 2 vertices in G, then either
some of the 1-subcubes would contain none of vertices of G or there would be
a vertex of G with degree 0 (which is in contradiction with d = 1). Thus, in
this case |V | ≥ 3 = 21+1 − 22−2. Suppose n = 2, d = 2. Then G = Qn and
|V | = 4 = 22+1 − 24−2.

In the induction step we assume the result holds for all n′ < n, and prove
it for n. Suppose that each of (n − 2)-subcubes of Qn contains at least one of
vertices of G, then G∩G0 and G∩G1 are irreducible. The minimum degrees of
G∩G0 and G∩G1 are at least d−1, since each vertex of G∩G0 can have at most
one neighbour in G1 (and conversely). By applying the inductive assumption to
cubes G0 and G1, we obtain that

|V | ≥ 2 ·
⌈
2(d−1)+1 − 22(d−1)−(n−1)

⌉
= (11)

= 2 ·
⌈
2d − 22d−n−1

⌉
≥ (12)

≥
⌈
2d+1 − 22d−n

⌉
. (13)

Now suppose that there is some (n−2)-subcube without vertices ofG. WLOG
assume it is G00, i.e. G ∩G00 = ∅. We prove two lemmas.

Lemma 1. Denote by S(n, d) the minimum possible number of vertices for a
graph that conforms to the conditions of Theorem 2. Let G = (V,E) be a non-
empty subgraph of Qn (n ≥ 0) with δ(G) = d (d ≥ 0). Then either |V | = 2d or
|V | ≥ minni=d+1 S(i, d).

Proof. We use an induction on n. Base case: n = 0. Then G = Qn, d = 0 and
|V | = 1 = 20−0. In the induction step we assume the Lemma holds for n − 1,
and prove it for n. If n = d, then G = Qn, and |V | = 2n = 2d. Otherwise
n > d. If each (n− 1)-subcube of Qn contains vertices of G, then |V | ≥ S(n, d)
by the definition of S. Otherwise there is an (n − 1)-subcube of Qn that does
not contain any of vertices of G. Then by induction the other (n − 1)-subcube
contains either 2d or at least minn−1

i=d+1 S(i, d) of vertices of G. Combining the
two cases together gives us the result. ⊓⊔

Lemma 2. Let G = (V,E) be a subgraph of Qn (n ≥ 1). Let G′ = G ∩ G0. If
G′ is not empty and minv∈G′ deg(v,G) ≥ d, then

|V | ≥ 2d. (14)

Note that this lemma is also a stronger version of Simon’s result. Here we
require the lower bound for the minimum degree only for vertices of G in one
(n− 1)-subcube of Qn.

Proof. We use an induction on n.

1. Base case, n = 1. Since G′ is non-empty, G′ = G0. If d = 0, |V | ≥ 1 = 20. If
d = 1, then G = Qn and |V | = 2 = 21.



2. In the induction step we assume the Lemma holds for n − 1, and prove it
for n. If G0j ∩G′ is empty for some j ∈ {0, 1}, then G′ ⊆ G0(1−j). Thus by

the Lemma |V (G∗(1−j))| ≥ 2d. Otherwise both G00 and G01 contain some of
vertices of G. Since each of vertices of G0j ∩G has at most one neighbour in
G0(1−j)∩G, it follows that minv∈G0j∩G deg(v,G∗j) ≥ d−1 for any j ∈ {0, 1}.
By applying the Lemma for G∗j ∩G in cube G∗j for each j, we obtain that
|V | ≥ 2 · 2d−1 = 2d.

⊓⊔

We observe that δ(G ∩ G01) ≥ d − 1 and δ(G ∩ G10) ≥ d − 1, since both
G∩G01 and G∩G10 are adjacent to G00 (which does not contain vertices of G)
and G11 (which may contain vertices of G). Now we distinguish two cases:

1. |V (G ∩G01)| ̸= 2d−1 and |V (G ∩G10)| ̸= 2d−1.
Cube G01 has n− 2 dimensions and δ(G01 ∩G) ≥ d− 1. By Lemma 1,

|V (G01 ∩G)| ≥
n−2
min

i=(d−1)+1
S(i, d− 1) =

n−2
min
i=d

S(i, d− 1). (15)

From the inductive assumption, it follows that

|V (G01 ∩G)| ≥
n−2
min
i=d

⌈
2(d−1)+1 − 22(d−1)−i

⌉
. (16)

The minimum is achieved when i is the smallest, i = d. Thus |V (G01∩G)| ≥⌈
2d − 2d−2

⌉
. Similarly we prove that |V (G10 ∩G)| ≥

⌈
2d − 2d−2

⌉
.

It remains to estimate the number of vertices of G in G11. We deal with two
cases:
(a) Some (n−3)-subcube ofQn in G11 does not contain vertices of G. WLOG

we assume it is G110, i.e., G∩G110 = ∅. We again distinguish two cases:
i. One of the subcubes G010 and G100 does not contain vertices of G.

WLOG assume it is G010, i.e., G ∩G010 = ∅. Then for the subcube
G011 holds minv∈G∩G011 deg(v,G ∩ G∗11) ≥ d, since G ∩ G001 = ∅
(becauseG001 ⊂ G00),G∩G010 = ∅ andG111 may contain vertices of
G. Applying Lemma 2 to G∩G011 in G∗11, we get |V (G∩G∗11)| ≥ 2d.
Similarly we prove that |V (G ∩G10∗)| ≥ 2d. That gives us

|V | ≥ 2 · 2d = 2d+1 ≥
⌈
2d+1 − 22d−n

⌉
(17)

and the case is done.
ii. Both of the subcubes G010 and G100 contain vertices of G. Then

for the subcube G010 holds minv∈G∩G010 deg(v,G ∩G01∗) ≥ d, since
G ∩ G000 = ∅, G ∩ G110 = ∅, and G011 may contain vertices of G.
Applying Lemma 2 to G∩G010 in G01∗, we get |V (G∩G01∗)| ≥ 2d.
Similarly we prove that |V (G ∩G10∗)| ≥ 2d. That gives us

|V | ≥ 2 · 2d = 2d+1 ≥
⌈
2d+1 − 22d−n

⌉
(18)

and this case also is done.



(b) Each (n − 3)-subcube of Qn in G11 contains vertices of G. Since G11

is adjacent to G01 and G10, δ(G ∩ G11) ≥ d − 2. From the inductive
assumption it follows that

|V (G ∩G11)| ≥ 2(d−2)+1 − 22(d−2)−(n−2) = 2d−1 − 22d−n−2. (19)

Thus

|V | = |V (G ∩G01)|+ |V (G ∩G10)|+ |V (G ∩G11)| ≥ (20)

≥ 2 ·
⌈
2d − 2d−2

⌉
+
⌈
2d−1 − 22d−n−2

⌉
≥ (21)

≥
⌈
2 · (2d − 2d−2) + 2d−1 − 22d−n−2

⌉
= (22)

=
⌈
2d+1 − 2d−1 + 2d−1 − 22d−n−2

⌉
= (23)

=
⌈
2d+1 − 22d−n−2

⌉
, (24)

which is not less than
⌈
2d+1 − 22d−n

⌉
, and this case is complete.

2. |V (G∩G01)| = 2d−1 or |V (G∩G10)| = 2d−1. WLOG assume that this holds
for G01.
By Theorem 1 it follows that G ∩ G01 is a (d − 1)-dimensional subcube of
Qn. WLOG we can assume that the set of its vertices is

V (G ∩G01) = {x |x1 = 0, ∀i ∈ [2;n− d+ 1](xi = 1)}. (25)

Observe that deg(v,G ∩ G01) = d − 1 for all v ∈ G ∩ G01. Since δ(G) =
d, each x ∈ V (G ∩ G01) has x(1) as a neighbour in G. Then {x(1) |x ∈
V (G ∩ G01)} = V (G ∩ G11), and G ∩ G11 contains a (d − 1)-subcube of
Qn, adjacent to G ∩ G01. Thus G ∩ G∗1 contains a d-subcube of Qn, with
{x | ∀i ∈ [2;n− d+ 1](xi = 1)} ⊆ V (G ∩G∗1).
Now we need to estimate the number of vertices of G in G1 that do not
belong to this subcube. We prove the following lemma.

Lemma 3. Let G = (V,E) be a subgraph of Qn with the property that G ∩
G0 ̸= ∅. Let Gl be an l-subcube of Qn (n ≥ 1) such that Gl ⊆ G1. If Gl ⊂ G
and minv∈G∩G0 deg(v,G) ≥ d, then

|V (G \Gl)| ≥ 2d − 2d−(n−l). (26)

Note that the subcube Gl is defined by fixing n− l bits.

Proof. We use an induction on n − l. Base case: n − l = 1. Then Gl = G1

and δ(G ∩ G0) = d − 1. By Theorem 1 it follows that |V (G ∩ G0)| ≥ 2d−1,
and 2d−1 = 2d − 2d−1.
In the induction step we assume the Theorem holds for n− l− 1, and prove
it for n− l. WLOG we can assume that the value of each fixed bit defining
Gl is 1. We distinguish two cases:
(a) G∩G10 = ∅. Then minv∈G∩G00 deg(v,G) ≥ d. By applying Lemma 2 to

G ∩G0 and G0, we obtain

|V (G \Gl)| ≥ |V (G ∩G0)| ≥ 2d > 2d − 2d−(n−l). (27)



(b) G∩G10 ̸= ∅. Then minv∈G∩G10 deg(v,G) ≥ d−1, since G00 may contain
vertices of G. Then we apply the induction to G ∩ G1 (G ∩ G1 as the
graph, G1 as the binary cube, Gl remains the same) and obtain

|V (G ∩G1 \Gl)| ≥ 2d−1 − 2d−1−(n−1−l) = 2d−1 − 2d−(n−l). (28)

On the other hand, δ(G ∩G0) ≥ d− 1, since G1 contains vertices of G.
We apply Theorem 1 to G∩G0 in G0 and we obtain |V (G∩G0)| ≥ 2d−1.
Then

|V (G \Gl)| = |V (G ∩G1 \Gl)|+ |V (G ∩G0)| ≥ (29)

≥ 2d−1 − 2d−(n−l) + 2d−1 = 2d − 2d−(n−l) (30)

and we are done.

⊓⊔

Consider the graph G ∩G1. It contains the (d− 1)-subcube induced by the
set {x | ∀i ∈ [1;n− d+ 1](xi = 1)}, denote it by D. Since G ∩G00 = ∅, the
subcube G10 must contain vertices of G, so the (n−1)-subcube G∗0 contains
vertices of G. Since G∩G00 = ∅, it follows that minv∈G∩G10 deg(v,G∩G1) ≥
d. Thus we can apply Lemma 3 and get

|V (G1 \D)| ≥ 2d − 2d−((n−1)−(d−1)) = 2d − 22d−n. (31)

Since G ∩G0 is a (d− 1)-subcube of Qn, |V (G ∩G0)| = 2d−1. Then

|V | = |V (G ∩G0)|+ |V (D)|+ |V (G1 \D)| ≥ (32)

≥ 2d−1 + 2d−1 + (2d − 22d−n) = (33)

= 2d+1 − 22d−n (34)

This completes the proof of Theorem 2. ⊓⊔

4.3 Application for Boolean Functions

The result lets us prove Corollary 2.

Proof. Let G be a subgraph of Qn induced by the set of vertices V = {x | f(x) =
1}. The minimum degree of G is δ(G) = n− s1(f). The given constraint means
that G is irreducible. Then, by Theorem 2,

|V | ≥ 2(n−s1(f))+1 − 22(n−s1(f))−n = 2n−s1(f)+1 − 2n−2s1(f). (35)

⊓⊔



4.4 Improvement of Simon’s Lemma

We can use the obtained result to prove Theorem 3, which is a stronger version
of Simon’s lemma (Theorem 1).

Proof. We substitute
⌈
2d − 22d−n

⌉
instead of S(n, d) in Lemma 1. Then, in

n
min
i=d+1

S(i, d) =
n

min
i=d+1

⌈
2d − 22d−i

⌉
(36)

the minimum is obtained for i = d+1. Thus either |V | = 2d or |V | ≥ 3 ·2d−1. ⊓⊔

5 Conclusion

In this paper, we have shown two results on the structure of low sensitivity
subsets of Boolean hypercube:

– a tight lower bound on the size of irreducible low sensitivity sets S ⊆ {0, 1}n
(that is, sets S that are not contained in any subcube of {0, 1}n obtained by
fixing one or more variables xi);

– a gap theorem that shows that S ⊆ {0, 1}n of sensitivity s must either have
|S| = 2n−s or |S| ≥ 3

22
n−s.

Th gap theorem follows from the first result, by classifying S ⊆ {0, 1}n into
irreducible sets and sets that are constructed from irreducible subsets S′ ⊆
{0, 1}n−k for some k ∈ {1, 2, . . . , s} and then using the first result for each of
those categories.

We find this gap theorem quite surprising. A gap theorem of a similar type
is known for the spectral norm of Boolean functions [5]: the spectral norm of
a Boolean function is either equal to 1 or is at least 3/2. Both results have
the constant 3/2 appearing in them and there is some resemblance between the
constructions of optimal sets/functions but the proof methods are quite different
and it is not clear to us if there is a more direct connection between the results.

Both results contribute to understanding the structure of low-sensitivity sub-
sets of Boolean hypercube and we hope that they will find applications in re-
solving the “sensitivity vs. block sensitivity” conjecture or other open problems
that involve the sensitivity of Boolean functions.
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