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Abstract

Tropical circuits are circuits with Min and Plus, or Max and Plus operations as gates.
Their importance stems from their intimate relation to dynamic programming algorithms.
The power of tropical circuits lies somewhere between that of monotone boolean circuits
and monotone arithmetic circuits. In this paper we present some lower bounds arguments
for tropical circuits, and hence, for dynamic programs.

Keywords: Tropical circuits; dynamic programming; monotone arithmetic circuits; lower
bounds

1 Introduction
Understanding the power and limitations of fundamental algorithmic paradigms—such as
greedy or dynamic programming—is one of the basic questions in the algorithm design and
in the whole theory of computational complexity. In this paper we focus on the dynamic
programming paradigm.

Our starting point is a simple observation that many dynamic programming algorithms
for optimization problems are just recursively constructed circuits over the corresponding
semirings. Each such circuit computes, in a natural way, some polynomial over the un-
derlying semiring. Most of known dynamic programming algorithms correspond to circuits
over the (min,+) or (max,+) semirings, i.e. to tropical circuits.1 For example, the Bell-
man [5], Ford [7], and Moore [25] dynamic programming algorithm gives a (min,+) circuit
for the st-connectivity problem STCON with only O(n3) gates, and the Floyd [6] and War-
shall [35] dynamic programming algorithm gives a circuit of this size even for the connectivity
problem CONN (see Theorem 3 below). Thus, lower bounds for tropical circuits show the
limitations of dynamic programming algorithms over the corresponding semirings.

The power of tropical circuits (and hence, of dynamic programming) lies somewhere be-
tween that of monotone boolean circuits and monotone arithmetic circuits:

monotone boolean 6 tropical 6 monotone arithmetic
∗Research supported by the DFG grant SCHN 503/6-1.
†University of Frankfurt, Institute of Computer Science, Germany
‡Institute of Mathematics and Informatics, Vilnius, Lithuania
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1There is nothing special about the term “tropical”. Simply, this term is used in honor of Imre Simon who

lived in Sao Paulo (south tropic). Tropical algebra and tropical geometry are now intensively studied topics
in mathematics.
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and the gaps may be even exponential (we will show this in Section 8).
Monotone boolean circuits are most powerful among these three models and, for a long

time, only linear lower bounds were known for such circuits. First super-polynomial lower
bounds for the k-clique function CLIQUE and the perfect matching function PER were
proved by Razborov [31, 30] by inventing his method of approximations. At almost about
the same time, explicit exponential lower bounds were also proved by Andreev [3, 4]. Alon
and Boppana [1] improved Razborov’s lower bound for CLIQUE from super-polynomial until
exponential. Finally, Jukna [13] gave a general and easy to apply lower bounds criterium
for monotone boolean and real-valued circuits, yielding strong lower bounds for a row of
explicit boolean functions. These lower bounds hold for tropical circuits as well. Still, all
these methods seem to fail for some important polynomials, like STCON or CONN.

On the other hand, monotone arithmetic circuits are much easier to analyze: such a
circuit cannot produce anything else but the monomials of the computed polynomial, no
“simplifications” (like x2 = x) are allowed here. Exponential lower bounds on the monotone
arithmetic circuit complexity were proved already by Schnorr [32] (for CLIQUE), and Jerrum
and Snir [11] (for PER and some other polynomials). A comprehensive survey on arithmetic
(not necessarily monotone) circuits can be found in the book by Shpilka and Yehudayoff [33].

In this paper we summarize our knowledge about the power of tropical circuits. To our best
knowledge, no similar attempt was made after the classical paper by Jerrum and Snir [11].
The main message is that not only methods developed for monotone boolean circuits, but
(sometimes) even those for monotone arithmetic circuits can be used to establish limitations
of dynamic programming. Although organized as a survey, the paper contains some new
results, including:

1. The proof that tropical circuits for optimization problems with homogeneous target
polynomials are no more powerful than monotone arithmetic circuits (Theorem 6). This
explains why we do not have efficient dynamic programming algorithms for optimization
problems whose target polynomials are homogeneous.

2. A new and simpler proof of Schnorr’s [32] lower bound on the size of monotone arithmetic
circuits computing union-free polynomials (Theorem 12). A polynomial f is union-free
if the product of any two of its monomials contains no third monomial of f distinct
from these two ones.

3. A handy “rectangle” lower bound yielding super-polynomial lower bounds on the size
of tropical circuits computing homogeneous polynomials (Theorem 17 and its applica-
tions).

4. A truly exponential lower bound for monotone arithmetic circuits using expander graphs
(Theorem 25).

5. A new and simpler proof of Gashkov and Sergeev’s [8, 9] lower bound on the size of
monotone arithmetic circuits computing k-free polynomials (Theorem 28). A poly-
nomial is k-free if it does not contain a product of two polynomials, both with > k
monomials. This extend’s Schnorr’s bound, since every union-free polynomial is also
k-free for k = 1.

Finally, let us mention that we are only interested in the size of tropical circuits, i.e. in
the total number of gates in them. This number corresponds to the minimum number of
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sub-problems required by dynamic algorithms for the corresponding optimization problem.
Another important measure (not dealt with in this paper) is the depth of circuits. In the
model of tropical circuits, this corresponds to the parallel time of the corresponding dynamic
programs. A well-known result of Karchmer and Wigderson [16] for monotone boolean circuit
depth of STCON implies that (min,+) circuits for this problem must have depth Ω(ln2 n);
using binary search, this depth is also achievable. By improving a previous lower bound of
Yao [36], Goldmann and Hastad [10] proved a lower bound Ω(ln2 n/ ln ln) also for CONN;
moreover, circuits for CONN of polynomial size must have depth Ω(ln2 n). But it remains
open whether any of these two functions require monotone boolean circuits of size Ω(n3).

2 Semirings
A (commutative) semiring is a system S = (S,+++,×××,000,111), where S is a set, +++ (“sum”) and ×××
(“product”) are binary operations on S, and 0 and 1 are elements of S having the following
three properties:

(i) in both (S,+++,000) and (S,×××,111), operation are associative and commutative with identities
000 and 111: a+++ 000 = a and a××× 111 = a hold for all a ∈ S;

(ii) product distributes over sum: a××× (b+++ c) = (a××× b) +++ (a××× c);

(iii) a××× 000 = 000 for all a ∈ S (“annihilation” axiom).

A semiring is additively-idempotent if a+++ a = a holds for all a ∈ S, and is multiplicatively-
cancellative, if ac = bc implies a = b for every c 6= 000. We will use the common conventions to
save parenthesis by writing a××× b+++ c××× d instead of (a××× b) +++ (a××× c), and replacing a××× b by
ab. Also, an will stand for a××× a××× · · · ××× a n-times. If desired, we will also assume that the
sets N, Z or R also contain infinity elements +∞ and/or −∞.

Among important semirings are:

• Arithmetic semiring A = (N,+, ·) with 000 = 0 and 111 = 1.

• Boolean semiring B = ({0, 1},∨,∧) with 000 = 0, 111 = 1.

• Tropical semirings Min = (N,min,+) and Min− = (Z,min,+, ) with 000 = +∞ and
111 = 0, and Max = (N,max,+) and Max− = (Z,max,+) with 000 = −∞ and 111 = 0.

Note that all these semirings, but A, are additively-idempotent, and that all of them, but B,
are multiplicatively-cancellative. Note also that in arithmetic and in tropical semirings one
usually allows real numbers, not just integers. This corresponds to considering optimization
problems with real, not necessarily integral “weights”. The point, however, is that lower-
bound techniques, we will consider, work already on smaller domains. In fact, they work
when, besides ∞ or −∞, the domain contains 0 and 1 or 0 and −1. Roughly speaking, the
larger is the domain, the easier is to prove lower bounds over them.

Due to their intimate relation to discrete optimization, we will be mainly interested in
tropical semirings, and circuits over these semirings. Lower bounds for such circuits give
lower bounds for the number of subproblems used by any dynamic programming algorithm.
The semirings Min− and Max− are isomorphic via the transformation x 7→ −x, so we will
not consider Max− separately: all results holding for Min− hold also for Max−. These
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semirings (as well as the boolean semiring B) have many properties not shared by the (most
restrictive) arithmetic semiring A. Say, (a+++ b)n = an +++ bn does not hold in A, but holds in
every semiring which is additively-idempotent and multiplicatively-cancellative.

3 Polynomials
Let S = (S,+++,×××,000,111) be a semiring, and let x1, . . . , xn be variables ranging over S. A
monomial is any product of these variables, where repetitions are allowed. By commutativity
and associativity, we can sort the products and write monomials in the usual notation, with
the variables raised to exponents. Thus, every monomial xα1

1 xα2
2 · · ·xαnn is uniquely determined

by the vector of exponents α = (α1, α2, . . . , αn) ∈ Nn, where x0
i = 111. Note that in tropical

semirings, monomials are linear combinations α1x1 +α2x2 + · · ·+αnxn (sums, not products).
The degree, |p|, of a monomial p = xα1

1 xα2
2 · · ·xαnn is the sum α1 + · · · + αn of its exponents.

A monomial pα is multilinear if α ∈ {0, 1}n, that is, if no variable has degree > 1.
A monomial pα contains a monomial pβ if α > β, that is, if αi > βi for all i = 1, . . . , n.
By a polynomial2 over S we will mean a finite sum over S of monomials, where repetitions

of monomials are allowed. Thus, a polynomial is a formal expression of the form
∑
α∈A cαpα

for a finite subset A ⊂ Nn, and each cα is a positive integer, representing the multiplicity of
the corresponding monomial pα in f . The sum and product of two polynomials is defined in
the standard way. Every polynomial f defines a function f̂ : Sn → S, whose value f̂(a) at
a = (a1, . . . , an) ∈ Sn is obtained by substituting ai for xi in f . For polynomials f, h, we will
write:

• f = h if f and h have the same monomials (appearing not necessarily with the same
coefficients);

• f 
 h if f and h coincide as polynomials, that is, if they have the same monomials
appearing with the same coefficients;

• |f | to denote the number of distinct monomials in f ;

• f ⊆ h if f is a sub-polynomial of h, i.e., if every monomial of f is also a monomial of h;

• p ∈ f if p is a monomial of f .

In general, f̂ = ĥ does not imply f 
 h, and even f = h. The arithmetic semiring is here
an exception.

Lemma 1. In the arithmetic semiring A, f̂ = ĥ implies f 
 h.

Proof. There are several ways to prove this well-known fact. We follow the argument sug-
gested by Sergey Gashkov (personal communication). Suppose that f̂ = ĥ but f 6
 h. Since
f 6
 h, the polynomial g = f −h contains at least one monomial. Let p be a monomial of g of
maximum degree. Take all partial derivatives with respect to the variables of p until all they
disappear. Since p has maximum degree, we obtain some constant 6= 0. But since ĝ = f̂ − ĥ
is a zero function, the derivative should be zero, a contradiction.

2Usually, polynomials of more than one variable are called multivariate, but we will omit this for shortness.
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A polynomial is homogeneous if all its monomials have the same degree, and is multilinear
if all its monomials are multilinear (no variables of degree > 1). For example, f = x2y + xyz
is homogeneous but not multilinear, whereas g = x+ yz is multilinear but not homogeneous.
In general, multilinear polynomials have the form

f(x)

∑
I∈I

cI
∏
i∈I

xi , (1)

where I ⊆ 2[n] is some family of subsets of [n] = {1, . . . , n}, and the cI are positive integers.
Such a polynomial is homogeneous of degree m, if all sets I ∈ I have the same cardinality
|I| = m.

It is important to note that the same polynomial (1) (with all cI = 1) has different
interpretations over different semirings:

f(x)

∨
I∈I

∧
i∈I

xi over B (existence)

f(x)
 min
I∈I

∑
i∈I

xi over Min and Min− (minimization)

f(x)
 max
I∈I

∑
i∈S

xi over Max and Max− (maximization)

f(x)

∑
I∈I

∏
i∈S

xi over A (counting).

4 Circuits and their Polynomials
A circuit F over a semiring S = (S,+++,×××,000,111) is a usual fanin-2 circuit whose inputs are
variables x1, . . . , xn and constants 000 and 111. Gates are fanin-2 +++ and ×××. That is, we have
a directed acyclic graph with n + 2 fanin-0 nodes labeled by x1, . . . , xn,000,111. At every other
node, the sum (+++) or the product (×××) of its entering nodes is computed; nodes with assigned
operations are called gates. The size of F, denoted by |F|, is the number of gates in F.

Like polynomials, circuits are also “syntactic” objects. So, we can associate with every
circuit F the unique polynomial F produced by F inductively as follows:3

1. If F = xi, then F 
 xi.

2. If F = G +++ H, then F 

∑
p∈G p+++

∑
q∈H q.

3. If F = G××× H, then F 

∑
p∈G

∑
q∈H pq.

When producing the polynomial F from a circuit F we only use the generic semiring
axioms (i)–(iii) to write the result as a polynomial (sum of monomials). For example, if
F = x××× (111 +++ y) then F = x+++ xy, even though F̂ = x in B and Min, and F̂ = xy in Max.
It is thus important to note that the produced by a given circuit F polynomial F is the same
over any semiring!

Definition 1. A circuit F computes a polynomial f if F̂ = f̂ (F and f coincide as functions).
A circuit F produces f if F = f (F and f have the same set of monomials).

3We will always denote circuits as upright letters F, G, H, . . ., and their produced polynomials by italic
versions F, G, H, . . ..
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A circuit F simultaneously computes (or produces) a given set F of polynomials if, for
every polynomial f ∈ F , there is a gate in F at which f is computed (or produced).

When analyzing circuits, the following concept of “parse graphs” is often useful. A parse-
graph G in F is defined inductively as follows: G includes the root (output gate) of F . If u
is a +++-gate, then exactly one of its inputs is included in G. If u is a ×××-gate, then both its
input gates are included in G. Note that each parse-graph produces exactly one monomial in
a natural way, and that each monomial p ∈ F is produced by at least one parse-graph. If p
is multilinear then each parse-graph for p is a tree.

• A circuit is multilinear, if for every its product gate u = v××× w, the sets of variables of
the polynomials produced at gates v and w are disjoint. Note that multilinear circuits
can only compute multilinear polynomials, and every multilinear polynomial can be
computed by such a circuit. Sometimes, multilinear (in our sense) circuits are called
also syntactically multilinear.

• A circuit is homogeneous, if polynomials produced at its gates are homogeneous.

Lemma 2. If a circuit over Max, Min−, Max− or A computes a multilinear polynomial,
then the circuit itself must be multilinear.

Proof. For the arithmetic semiring A, this follows from Lemma 1. To show this for the
remaining semirings, let f be a multilinear polynomial, and F be a circuit computing f over
a semiring S. Suppose that the circuit is not multilinear. Then the polynomial F produced
by F contains a monomial p in which some variable xi appears more than once. If S = Max,
then we can set xi = 1 and xj = 0 for all j 6= i. Then f̂(x) 6 1 but F̂ (x) > 2, a contradiction.
If A = Min−, then we can set xi = −1, and xj = 0 for all j 6= i. Then f̂(x) > −1, because all
monomials of f get value > −1, but F̂ (x) 6 −2 since already the monomial p of F gets value
6 −2, a contradiction. Since the semiring Max− is isomorphic to Min−, we are done.

Note, however, that no similar fact holds for semirings B and Min: here we have x+++x2 =
x, so that terms of higher degree can be eliminated.

We will be interested in the following two complexity measures of polynomials f :

• S(f) = minimum size of a circuit over semiring S computing f .

• S[f ] = minimum size of a circuit over semiring S producing f .

What we are really interested in is to lower-bound the first measure S(f). The second measure
S[f ] is less interesting: it is the same for all semirings S, because the formal polynomial of a
given (fixed) circuit is the same over all semirings. In particular, we have that

S[f ] = A[f ]

holds for every semiring S and every polynomial f . Still, it will be convenient not to focus on
the arithmetic semiring A because the inequality S(f) > S[f ] is more informative: it means
that computing a given polynomial over S is not easier than to produce this polynomial. This,
for example, happens in the arithmetic semiring A: Lemma 1 implies that A(f) > A[f ].
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5 Some Prominent Polynomials
For the ease of reference, here we recall some polynomials which we will use later to illustrate
the lower bound arguments. Variables xe of considered polynomials correspond to edges of
Kn or Kn,n. Thus, monomials

∏
e∈E xe correspond to some subgraphs E of Kn or Kn,n. Here

are the polynomials we will use later:

• Permanent polynomial PERn = all perfect matchings in Kn,n.

• Hamiltonian cycle polynomial HCn = all Hamiltonian cycles in Kn.

• k-clique polynomial CLIQUEn,k = all k-cliques in Kn.

• Spanning tree polynomial STn = all spanning trees in Kn rooted in node 1.

• s-t connectivity polynomial STCONn = all paths from s = 1 to t = n in Kn.

• All-pairs connectivity polynomial APSPn = set of
(n

2
)
polynomials STCONn correspond-

ing to different pairs of start and target nodes s and t.

• Matrix product polynomial MPn = special case of APSPn when only paths of length-2
are considered.

• The connectivity polynomial CONNn = product of all polynomials of APSPn.

In Section 11.1 we will show that the first four polynomials require Min-circuits of expo-
nential size, whereas the next result shows that the last four polynomials all have Min-circuits
of polynomial size. The following result holds for every semiring with the absorption axiom
a+ ab = a, including the boolean and Min semirings.

Theorem 3 (Floyd [6] and Warshall [35]). Over semirings Min and B, the polynomials of
APSPn can all be simultaneously computed by a circuit of size O(n3).

Proof. Inputs for APSPn are non-negative weights xij of the edges of Kn. For every pair
i < j of distinct nodes of Kn, the goal is to compute the weight of the lightest path between
i and j; the weight of a path is the sum of weights of its edges. The idea is to recursively
compute the polynomials f (k)

i,j for k = 0, 1, . . . , n, whose value is the weight of the lightest
walk between i and j whose all inner nodes lie in [k] = {1, . . . , k}. Then f (0)

i,j = xij , and the
recursion is: f (k)

i,j = min{f (k−1)
i,j , f

(k−1)
i,k + f

(k−1)
k,j }. The output gates are f (n)

i,j for all i < j.
The total number of gates is O(n3). Even though the circuit actually searches for weights
of lightest walks, it correctly computes APSP because every walk between two nodes i and j
also contains a simple path (with no repeated nodes) between these nodes. Since the weights
are non-negative, the minimum must be achieved on a simple path.

Remark 1. Earlier dynamic programming algorithm of Bellman [5] and Ford [7] gives a (struc-
turally) simpler Min-circuit for STCONn. It tries to compute the polynomials f (k)

j whose
value is the weight of the lightest walk between 1 and j with at most k edges. Then f (1)

j = xij ,
and the recursion is: f (k)

j = the minimum of f (k−1)
j and of f (k−1)

j + xi,j over all nodes i 6= j.
The output gate is f (n−1)

n . The circuit also has O(n3) fanin-2 gates.
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Polynomial f Bound Reference

STn B(f) = O(n3), S(f) = 2Ω(n) Rem. 2, Thm. 21
CONNn, STCONn Min(f) = O(n3) Rem. 2
APSPn, MPn Min(f) = Θ(n3) Thm. 13
PERn, HCn S(f) = 2Ω(n) Thm. 21
CLIQUEn,k S(f) >

(
n
k

)
− 1 Thm. 14

Table 1: Summary of specific bounds; S is an arbitrary tropical semiring.

Remark 2. Theorem 3 immediately implies that the polynomials MPn, CONNn, and STCONn

can also be computed by Min-circuits of size O(n3). Moreover, over the boolean semiring,
the spanning tree polynomial ST represents the same boolean function as CONN. Thus,
Theorem 3 also gives B(STn) = O(n3).

In the rest of the paper, we will present various lower bound argument for tropical cir-
cuits. Table 1 summarizes the resulting specific bounds obtained by these arguments for the
polynomials listed above.

6 Reduction to the Boolean Semiring
A semiring S = (S,+++,×××,000,111) is of zero-characteristic, if 111 +++ 111 +++ · · ·+++ 111 6= 000 holds for any
finite sum of the unity 111. Note that all semirings we consider are of zero-characteristic. The
following seems to be a “folklore” result.

Lemma 4. If a semiring S is of zero-characteristic, then S(f) > B(f) holds for every
polynomial f .

Proof. Let F be a circuit over S computing a given polynomial f . The circuit must correctly
compute f on any subset of the domain S. We choose the subset S+ = {000, 1, 2, . . .}, where
n = 111 +++ · · ·+++ 111 is the n-fold sum of the multiplicative unit element 111. Note that n 6= 000 holds
for all n > 1, because S has zero-characteristic.

Since n +++ m = n+m and n ××× m = n ·m, S+ = (S+,+++,×××,000,111) is a semiring. Since
S+ ⊆ S, the circuit must correctly compute f over this semiring as well. But the mapping
h : S+ → {0, 1} given by h(000) = 0 and h(n) = 1 for all n > 1, is a homomorphism from S+
into the boolean semiring B with h(x+++y) = h(x)∨h(y) and h(x×××y) = h(x)∧h(y). So, if we
replace each +++-gate by a logical OR, and each ×××-gate by a logical AND, then the resulting
monotone boolean circuit computes the polynomial f over B.

Remark 3. One can easily show that, if the input variables can only take boolean values 0 and
1, then Min(f) 6 2 ·B(f) holds for every multilinear polynomial. Indeed, having a (boolean)
circuit F for f , just replace each AND gate u ∧ v by a Min gate min(u, v), and each OR gate
u∨v by min(1, u+v). The point however is that tropical circuits must work correctly on much
larger domain than {0, 1}. This is why lower bounds for tropical circuits do not translate to
lower bounds for monotone boolean circuits. And indeed, there are explicit polynomials f ,
like the spanning tree polynomial f = STn such that B(f) = O(n3) but Min(f) = 2Ω(n); the
upper bound is shown in Remark 2, and the lower bound will be shown in Theorem 21.
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To prove lower bounds in the boolean semiring—and hence, by Lemma 4, also in any
any semiring of zero characteristic—one can try to use the following general lower bounds
criterion proved in [13] (see also [15, Sect. 9.4] for a simplified proof).

For a ∈ {0, 1}, an a-term of a monotone boolean function is a subset of its variables
such that, when all these variables are fixed to the constant a, the function outputs value a,
independent of the values of other variables. A family of sets A covers a family of sets B if
every set in B contains at least one set of A.

By a k-DNF (k-CNF) we will mean a monotone DNF (CNF) with all its monomials
(clauses) containing exactly k variables. The size of a DNF (or CNF) is the number of its
monomials (clauses).

Definition 2. A monotone boolean function f(x1, . . . , xn) is t-simple if for every pair of
integers 2 6 r, s 6 n there exists an s-CNF C of size at most t · (r − 1)s, an r-DNF D of
size at most t · (s − 1)r, and a subset I ⊆ [n] of size |I| 6 s − 1 such that either C 6 f or
f 6 D ∨

∨
i∈I xi (or both) hold.

The latter condition here means that either the family of all 0-terms of f has a covering
consisting of at most t(r − 1)s (out of all

(n
s

)
possible) s-element subsets, or the family of all

1-terms of f has a covering consisting of at most s− 1 single variables and at most t(s− 1)r
(out of all

(n
r

)
possible) r-element subsets.

Theorem 5 ([13]). If a monotone boolean function can be computed by a monotone circuit
of size t, then f is t-simple.

Thus, in order to show that f does not have a monotone circuit with t gates, it is enough
to show that, for some choice of the parameters 2 6 r, s 6 n and some choice of “hard to
cover” subsets P and Q of 0-terms and 1-terms of f ,

(i) either P cannot be covered by t(r − 1)s s-element subsets,

(ii) or Q cannot be covered by s−1 single variables and at most t(s−1)r r-element subsets.

Still, even this “freedom of choice” does not seem to work for f = STCON or f = CONN.
For both these boolean functions, we have no problems with 0-terms: one can take P to be
the set of all |P | = 2n−1 − 1 terms corresponding to partitions [n] = S ∪ T such that 1 ∈ S
and n ∈ T . The corresponding to such a partition 0-term of f consists of all variables xij
with i ∈ S and j ∈ T . It is clear that setting to 0 all these variables will force f take value
0. Since no s-subset of edges can cover more than 2n−

√
s of the 0-terms in P , we obtain that

t must be at least 2
√
s/(r − 1)s in the first case (i). For this bound to be non-trivial, we are

forced to take r = 2. But then all 1-terms (1-to-n paths) can be covered by only n2 2-element
subsets of edges: just take length-2 paths starting in the source node.

7 Reduction to the Arithmetic Semiring
As we already mentioned in the introduction, circuits over the arithmetic semiring A are
no more powerful than circuits over boolean or tropical semirings. The weakness of circuits
computing a given polynomial f over A lies in the fact (following from Lemma 1) that they
cannot produce any “redundant” monomials, those not in f . That is, here we have

A(f) > A[f ] .
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On the other hand, if the semiring S is additively-idempotent, then

S(f) 6 S[f ] .

This holds because in an additively-idempotent semiring S (where x +++ x = x holds), the
multiplicities of monomials have no effect on the represented function. But, in general, we have
no converse inequality S(f) > S[f ]: for some polynomials f , S[f ] may be even exponentially
larger than S(f). Such is, for example, the s-t connectivity polynomial f = STCONn. For
this polynomial, we have Min(f) = O(n3) (see Remark 2), but it is relatively easy to show
that Min[f ] = 2Ω(n) (see Theorem 22 below).

The polynomial STCON is highly non-homogeneous. The goal of this section is to show
that S(f) just coincides with S[f ], as long as the polynomial f is homogeneous.

Let f be a polynomial. Following Jerrum and Snir [11], define the lower envelope of f
to be the polynomial fle consisting of all monomials of f of smallest degree. Similarly, the
higher envelope, fhe, of f consists of all monomials of f of largest degree. Note that both
polynomials fle and fhe are homogeneous, and fle = fhe = f , if f itself is homogeneous.

Theorem 6. Let f be a polynomial over a semiring S. Then

(i) Min(f) > A[fle] and Max(f) > A[fhe].

(ii) Min(f) = Max(f) = A[f ] and minimal circuits are homogeneous, if f is homogeneous.

Item (ii) is an important fact because, when lower bounding A[f ], we can assume that
the circuit produces no “redundant” monomials, those not in f . This theorem also has an
important implication concerning the power of dynamic programs, which can be roughly
stated as follows:

For optimization problems whose target polynomials are homogeneous, dynamic pro-
gramming is no more powerful than monotone arithmetic circuits!

Proof of Theorem 6. For a polynomial f , let fmin ⊆ f denote the set of all monomials not
containing any other monomial of f , and fmax ⊆ f denote the set of all monomials not
contained in any other monomial of f . For example, if f = x+++ x2y+++ yz, then fmin = {x, yz}
and fmax = {x2y, yz}. Note that fmin = fmax = f , if f is homogeneous. Note also that every
monomial of f contains (properly or not) at least one monomial of fmin, and is contained in
at least monomial of fmax.

Claim 7. Let f and h be polynomials such that f̂ = ĥ over a semiring S.

(i) If S ∈ {Min,Min−}, then fmin = hmin.

(ii) If S ∈ {Max,Max−}, then fmax = hmax.

(iii) If S ∈ {Min−,Max−} and f is multilinear, then f = h.

Proof. To prove item (ii) for the Min-semirings, it is enough to prove it for Min, because
Min− has larger domain. So, assume that there is a monomial p ∈ fmin \ hmin. Let a be
an assignment which gives value 1 to all variables of p, and gives value ∞ to the remaining
variables. Thus, the value f̂(a) of f on this assignment is the degree |p| of p. On the other
hand, for every monomial q of h, we have that q̂(a) = ∞ if q is not contained in p, and
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q̂(a) = |q| if q is contained in p. Hence, either ĥ(a) =∞ (and hence, f̂ 6= ĥ), or ĥ(a) = |q| for
some q ∈ hmin contained in the monomial p. But since q 6= p, we have that ĥ(a) = q̂(a) = |q|
is strongly smaller than |p| = f̂ . The obtained contradiction shows that fmin ⊆ hmin. The
converse inclusion hmin ⊆ fmin follows by the same argument. The proof of item (ii) is dual
to that of (i).

Item (iii) was proved by Jerrum and Snir [11] using the Farkas lemma about systems of
linear inequalities. Here we give a direct proof. Let us consider the semiring Min−; the
argument for Max− is similar. Since the polynomial f is multilinear, Lemma 2 implies that
the polynomial h must also be multilinear. By (i), every monomial of h must contain at least
one monomial of f . Thus, f 6= h can only happen if h contains a monomial (sum) p such
that every monomial q ∈ f misses some variable of p. If we assign −1 to all variables of p,
and 0 to the remaining variables, then h takes some value 6 −|p|. But since each monomial
q ∈ f misses at least one variable of p, the value of each of them, and hence the value of f ,
is > |p|+ 1, a contradiction.

Claim 7(iii) may fail, if the polynomials are not multilinear: if f = min{x, 2x, 3x} and
h = min{x, 3x}, then f̂ = ĥ over Min−, but f 6= h.

Claim 8 ([11]). Let F be a circuit over some semiring, and F the polynomial produced by
F. Then some homogeneous subcircuit of F produces Fle, and some homogeneous subcircuit
of F produces Fhe.

Proof. The desired homogeneous subcircuit can be obtain by starting with input gates, and
removing (if necessary) one of the wires of every sum gate, at inputs of which polynomials of
different degrees are produced.

We now turn to the actual proof of Theorem 6.
Let us first prove the first claim (i) that Min(f) > A[fle] holds for every polynomial f

(the proof of Max(f) > A[fhe] is similar). Take a minimal circuit F over Min computing
f . Claim 7(i) implies that F must contain all monomials of fmin and, apparently, some
extensions of these monomials. Thus, the set of monomials of minimum degree must be the
same in F and in f , that is Fle = fle must hold. On the other hand, Claim 8 implies that
some (homogeneous) sub-circuit F′ of F must produce the lower envelope Fle = fle. Thus,
A[fle] 6 |F′| 6 |F| = Min(f), as desired.

To prove item (ii) of Theorem 6, assume that our polynomial is homogeneous. Since then
fle = fhe = f , item (i) implies that both Min(f) and Max(f) must be at least A[f ]. That
they also cannot exceed A[f ] follows because tropical semirings are additively-idempotent,
and hence, the multiplicities of monomials play no role here.

Let us note that in the arithmetic semiring A, we have a stronger version of Theorem 6(i)
allowing one to concentrate on any envelope, not just on the lower or higher ones. Namely,
let the r-th envelope, fr, of f be the sum of all monomials of f of degree r. Hence, if d and D
are the minimum and the maximum degrees of f , then fd = fle, fD = fhe, and f =

∑D
i=d fi.

Lemma 9. There is a constant ε > 0 such that, for every polynomial f of maximum degree
D, and every integer 0 < r 6 D,

A(f) > ε ·A(fr)
r2

11



Proof. We will prove a somewhat stronger result: if s = A(f), then for every 0 < r 6 D,
there is a homogeneous circuit of size at most O(r2s) simultaneously producing f0, f1, . . . , fr.
The argument is essentially due to Strassen [34].

Let F be a circuit producing f . We construct the desired circuit F′ as follows. For every
gate u in F, we define r + 1 gates in F′, which we denote (u, 0), . . . , (u, r), in such a way
that (u, i) produces the i-th envelope of the polynomial produced at u. We construct F′
inductively as follows. If u is an input gate, we can clearly define (u, i) as an input gate with
the appropriate properties. If u = v+++ w, define (u, i) = (v, i) +++ (w, i) for all i. If u = v××× w,
define (u, i) =

∑i
j=0(v, j)××× (w, i − j). Induction implies that F′ has the claimed property.

Every gate in F corresponds to at most O(r2) gates in F′ (each product gate introduces at
most O(r2) additional sum gates), and so |F′| = O(r2s).

8 Relative Power of Semirings
The relative power of circuits over different semirings is summarized in the following

Theorem 10. For every multilinear polynomial f , we have

B(f)
(1)
6 Min(f),Max(f)

(2)
6 Min−(f) (3)= Max−(f) (4)= A[f ] .

Proof. Inequality (1) follows from Lemma 4, since semirings Min and Max have zero charac-
teristic, (3) holds since semirings Min− and Max− are isomorphic, (2) follows from (3) since
every circuit computing f on a larger domain must also compute f on any its sub-domain.
The last equality (4) follows from Claim 7(iii).

If f is multilinear and homogeneous, then Theorem 6 implies that

B(f) 6Min(f) = Max(f) = Min−(f) = Max−(f) = A[f ] .

But even if f is multilinear and homogeneous, B(f) may be exponentially smaller than
Min(f). To see this, take the spanning tree polynomial f = STn. This polynomial is
multilinear and homogeneous of degree n − 1, and its boolean version is just the boolean
graph-connectivity function. Hence, the Floyd–Warshall dynamic programming algorithm
gives B(f) = O(n3) (see Remark 2). But a relatively simple argument (see Theorem 21
below) shows that Min(f) = 2Ω(n). Thus, we have an exponential gap between B(f) and
Min(f):

Min(f)/B(f) = 2Ω(n) for f = STn.

Exponential separations between Min(f) and Max(f), as well as between Min(f) and
Min−(f), are given by the s-t connectivity polynomial f = STCONn. We know that
Min(f) = O(n3) (Remark 2), but a simple argument (see Theorem 22) shows that Max(f) =
2Ω(n). Hence,

Max(f)/Min(f) = 2Ω(n) for f = STCONn.

Note that, by Theorem 6, no such gap is possible for homogeneous polynomials, so the poly-
nomial f = STCONn being non-homogeneous is crucial here.

From now on we concentrate on the lower bound arguments themselves.
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9 Lower Bounds for Union-Free Polynomials
Let f(x1, . . . , xn) be a polynomial in n > 3 variables. An enrichment of f is a polynomial
h in n − 1 variables obtained by taking some variable xk and replacing it by a sum xi +
xj or by a product xixj of some other two (not necessarily distinct) variables, where k 6∈
{i, j}. A progress measure of polynomials is an assignment of non-negative numbers µ(f) to
polynomials f such that

(i) µ(xi) = 0 for each variable xi;

(ii) µ(h) 6 µ(f) + 1 for every enrichment h of f .

Lemma 11. For every polynomial f , and every progress measure µ(f), we have A[f ] > µ(f).

Proof. Take a monotone arithmetic circuit F with s = A[f ] gates producing f . We argue by
induction on s. If s = 0, then F = xi in an input variable, and we have A[f ] = 0 = µ(f). For
the induction step, take one gate u = xi ∗ xj where ∗ ∈ {+, ·}. Let F′(x1, . . . , xn, y) be the
circuit with the gate u replaced by a new variable y. Hence, |F′| = |F| − 1 and F (x1, . . . , xn)
is an enrichment of F ′(x1, . . . , xn, y). By the induction hypothesis, we have that |F′| > µ(F ′).
Together with µ(F ) 6 µ(F ′) + 1, this yields |F | = |F ′|+ 1 > µ(F ′) + 1 > µ(F ).

Definition 3. A sub-polynomial g ⊆ f of a polynomial f is union-free if the product of any
two monomials p and q of g contains no third monomial of f distinct from p and from q.

In particular, a multilinear polynomial f of minimum degree m is union-free, if no subset
of dm/2e variables is contained in more than one monomial of f . Indeed, if a product pq of
some two monomials p 6= q of f contains some third monomial r of f , then |p ∩ r| or |q ∩ r|
must be least dm/2e.

Theorem 12 (Schnorr [32]). For every polynomial f , we have A[f ] > ν(f)− 1, where

ν(f) := max{|g| : g ⊆ f is a union-free sub-polynomial} .

In particular, A[f ] > |f | − 1 is the polynomial f itself is union-free.

Proof. It is enough to show that the measure µ(f) = ν(f) − 1 is a progress measure. The
first condition (i) is clearly fulfilled, since ν(xi) = 1. To verify the second condition (ii), let
f(x1, . . . , xn, y) be a polynomial, and h(x1, . . . , xn) be its enrichment. Our goal is to show
that ν(f) > ν(h) − 1 (and hence, also µ(f) > µ(h) − 1). We only consider the “hard”
case when y is replaced by a sum of variables: h(x1, . . . , xn) = f(x1, . . . , xn, u + v), where
u, v ∈ {x1, . . . , xn}.

To present the proof idea, we first consider the case when no monomial of f contains
more than one occurrence of the variable y. Then every monomial yp of f turns into two
monomials up and vp of h. To visualize the situation, we may consider the bipartite graph
G ⊆ f × h, where every monomial yp ∈ f is connected to two monomials up, vp ∈ h; each
monomial q ∈ f without y is connected to q ∈ h.

Take now a union-free subset C ⊆ h of size |C| = ν(h). Since both neighbors up and
vp of every monomial yp of f belong to h, the set of neighbors D ⊆ f of C ⊆ h is also a
union-free subset of f . A simple (but crucial) observation is that at most one monomial in D
can have two neighbors in C: were there two monomials p 6= q such that all four monomials
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up, vp, uq, vq belong to C, then C would be not union-free, because up××× vq contains uq (and
vp). Thus,

ν(f) > |D| > |C| − 1 = ν(h)− 1 .

In general (if y can have any degrees in f), a monomial ykp of f has k+ 1 neighbors uivk−ip,
i = 0, 1, . . . , k in h. We only have to show that at most one monomial in D can have
two neighbors in C. For this, assume that there are two monomials p 6= q such that all
four monomials uavk−ap, ubvk−bp, ucvl−cq, udvl−dq belong to C. Assume w.l.o.g. that a =
max{a, b, c, d}. Then the product uavk−ap ××× ucvl−cq contains uavl−cq, and (since c 6 a)
contains the monomial uavl−aq of h, contradicting the union-freeness of C.

Remark 4. It is not difficult to see that we have a stronger inequality ν(f) > ν(h), if the
variable y is replaced by the product uv (instead of the sum u+v). Thus, in fact, Theorem 12
gives a lower bound on the number of sum gates.

9.1 Applications

Recall that the dynamic programming algorithm of Floyd–Warshall implies that the all-pairs
shortest path polynomial APSPn, and hence, also the matrix product polynomial MPn, have
Min-circuits of size O(n3); see Theorem 3. On the other hand, using Theorem 12 one can
show that this algorithm is optimal: a cubic number of gates is also necessary.

Theorem 13. Both Min(APSPn) and Min(MPn) are Θ(n3).

Proof. It is enough to show that Min(MPn) = Ω(n3). Recall that MPn(x, y) is the set of
all n2 polynomials fij =

∑
k∈[n] xikykj . Take a set z of n2 new variables, and consider the

triangle polynomial
TRn(x, y, z) =

∑
i,j,k∈[n]

xikykjzij .

Since TR =
∑
i,j∈[n] zijfij , we have that S(MPn) > S(TRn)− 2n2 holds in any semiring, in-

cluding the Min-semiring. On the other hand, since the polynomial f = TR is homogeneous,
Theorem 6 implies that Min(f) = A[f ]. So, it remains to show that A[f ] = Ω(n3) holds for
f = TRn.

To do this, observe that every monomial p = xikykjzij of f is uniquely determined by any
choice of any two of its three variables. This implies that p cannot be contained in a union of
any two monomials distinct from p. Thus, the polynomial f is union-free, and its Schnorr’s
measure is ν(f) = n3 − 1. Theorem 12 yields A[f ] > ν(f) = n3 − 1, as desired.

Schnorr’s theorem allows one to obtain even exponential lower bounds. Recall that the
k-clique polynomial CLIQUEn,k has m =

(n
k

)
monomials

∏
i 6=j∈S xij corresponding to subsets

S ⊆ [n] of size |S| = k. This is a multilinear homogeneous polynomial of degree
(k

2
)
.

By Lemma 4, an exponential lower bound for CLIQUEn,s over the tropical Min follows
from Razborov’s lower bound for this polynomial over the boolean semiring B [31]. However,
the proof over B is rather involved. On the other hand, in the tropical semiring Min such a
bound comes quite easily.

Theorem 14. For f = CLIQUEn,k, both Min(f) and Max(f) are at least
(n
k

)
− 1.
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Proof. The polynomial f = CLIQUEn,k is homogeneous. So, by Theorems 6 and 12, it
is enough to show that CLIQUEn,k is union-free. To show this, assume for the sake of
contradiction, that the union of two distinct k-cliques A and B contains all edges of some
third clique C. Since all three cliques are distinct and have the same number of nodes, C
must contain a node u which does not belong to A and a node v which does not belong to B.
This already leads to a contradiction because either the node u (if u = v) or the edge {u, v}
(if u 6= v) of C would remain uncovered by the cliques A and B.

Kerr [19] earlier proved Min(MPn) = Ω(n3) using a different argument, which essentially
employs the fact the Min-semiring contains more than two distinct elements. Since this
“domain-dependent” argument may be of independent interest, we sketch it.

Proof. (Due to Kerr [19]) Let F be a Min-circuit computing all n2 polynomials

fij(x) = min{xik + ykj : k = 1, . . . , n} .

By Claim 7(i), for each polynomial fij there must be a gate uij , the polynomial Fij produced
at which is of the form Fij = min{fij , Gij}, where Gij is some set of monomials (sums), each
containing at least one monomial of fij .

Assign to every monomial p = xik + ykj of fij a gate up with the following two properties:
(i) p is produced at up, and (ii) there is a path from up to uij containing no sum-gates. Since
a+ a = a does not hold in Min, at least one such gate must exist for each of the monomials
xik + ykj .

It remains therefore to show that no other term xab + ybc gets the same gate up. To show
this, assume the opposite. Then at the gate up some sum

min{xik, α, . . .}+ min{ykj , . . .}

is computed, where α ∈ {xab, ybc} is a single variable distinct from xik and ykj . Set α := 0,
xik = ykj := 1 and set all remaining variables to 2. Then the first minimum in the sum above
evaluates to 0, and we obtain that F̂ij(x) 6 1. But f̂ij(x) = 2 because the term xik + ykj gets
value 1 + 1 = 2, and the remaining terms of fij get values > 2 + 0 = 2. This gives the desired
contradiction.

Remark 5. Using far more subtle arguments, Paterson [27], and Mehlhorn and Galil [24]
succeeded to prove a cubic lower bound Ω(n3) for MPn even over the boolean semiring B.

10 Cuts
In the proof of Lemma 11, we eliminated one-by-one the “next to the inputs” gates. We can,
however, eliminate also “deeper” gates.

Let F be a circuit over some semiring S = (S,+++,×××,000,111). For a gate u in F, let pol(u)
denote the polynomial produced at u, and let Fu=000 denote the circuit obtained from F by
replacing the gate u by the additive identity 000. Recall that a××× 000 = 000 holds for all a ∈ S.
Hence, the polynomial Fu=000 consists of only those monomials of F that do not “use” the gate
u for their production. To avoid trivialities, we will always assume that Fu=000 6= F, i.e. that
there are no “redundant” gates.
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Lemma 15 (Decomposition by Gates). For every gate u in F, the polynomial F produced by
F can be written as a sum F = Fu + Fu=000, where Fu = pol(u)××× ext(u) for some polynomial
ext(u).

Proof. If we replace the gate u by a new variable y, the resulting circuit produces a polynomial
of the form

F ′(x1, . . . , xn, y) =
∑
i∈I

ykipi +++
∑
j∈J

qj

where all ki > 1, and none of the monomials pi and qj contains y. Hence, F ′ has the form

F ′(x1, . . . , xn, y) = y×××
(∑
i∈I

yki−1pi
)

+++ F ′(x1, . . . , xn,000) ,

where F ′(x1, . . . , xn,000) = Fu=000(x1, . . . , xn). It remains to replace the variable y by the poly-
nomial pol(u) produced at the gate u.

Remark 6. Roughly speaking, the number |Fu| of monomials in the polynomial Fu is the
“contribution” of the gate u to the production of the entire polynomial F . Intuitively, if this
contribution is small for many gates, then there must be many gates in F. More formally,
associate with each monomial p ∈ F some of its parse-graphs Fp in F. Observe that u ∈ Fp
implies p ∈ Fu. Thus, double-counting yields

|F| =
∑
u∈F

1 >
∑
u∈F

∑
p∈F : u∈Fp

1
|Fu|

=
∑
p∈F

∑
u∈Fp

1
|Fu|

> |F | ·min
p∈F

∑
u∈Fp

1
|Fu|

.

So, in principle, one can obtain strong lower bounds on the total number of gates in F by
showing that this latter minimum cannot be too small.

The polynomial ext(u) in Lemma 15 can be defined by associating polynomials with paths
in the circuit F. Let π be a path from a gate u to the output gate, u1, . . . , um be all product
gates along this path (excluding the first gate u, if it itself is a product gate), and w1, . . . , wm
be input gates to these product gates not lying on the path π. We associate with π the
polynomial pol(π) := pol(w1)××× pol(w2)××× · · · ××× pol(wm). Then

ext(u) =
∑
π

pol(π) ,

where the sum is over all paths π from v to the output gate.
Lemma 15 associates sub-polynomials of F with nodes (gates) of F. In some situations,

it is more convenient to associate sub-polynomials with edges. For this, associate with every
edge (u, v), where v = u ∗ w is some gate with ∗ ∈ {+++,×××} of F, the polynomial

extu(v) := A××× ext(v) where A =
{

111 if ∗ = +++;
pol(w) if ∗ =×××.

That is, extu(v) = ext(v) if v is a sum gate, and extu(v) = pol(w)××× ext(v) if v is a product
gate.

A node-cut in a circuit is a set U of its nodes (gates) such that every input-output path
contains a node in U . Similarly, an edge-cut is a set E of edges such that every input-output
path contains an edge in E. Recall that, in our notation, “f = h” for two polynomials f and
h only means that their sets of monomials are the same—their multiplicities (coefficients)
may differ.
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Lemma 16 (Cuts). If U is a node-cut and E an edge-cut in a circuit F, then

F =
∑
u∈U

pol(u)××× ext(u) =
∑

(u,v)∈E
pol(u)××× extu(v) .

Proof. The fact that all monomials of the last two polynomials are also monomials of F follows
from their definitions. So, it is enough to show that every monomial p ∈ F belongs to both
these monomials. For this, take a parse graph Fp of p. Since U forms a node-cut, the graph Fp
must contain some node u ∈ U . The monomial p has a form p = p′p′′ where p′ is the monomial
produced by the subgraph of Fp rooted in u. Hence, p′ ∈ pol(u) and p′′ ∈ ext(u). Similarly,
since E forms an edge-cut, the graph Fp contains some edge (u, v) ∈ E. The monomial p
has the form p = p′p′′ where p′ is the monomial produced by the subgraph of Fp rooted in u.
Hence, p′ ∈ pol(u) and p′′ ∈ extu(v).

11 Rectangle Bound
For a polynomial f and a natural number r, let µr(f) denote the maximum number of
monomials in f containing a fixed monomial of degree r. In particular, µ0(f) = |f | is the
total number of distinct monomials of f , and µr(f) can only decrease as r increases. Moreover,
µd(f) = 1 where d is the maximum degree of f , and g ⊆ f implies µr(g) 6 µr(f).

Theorem 17 (Rectangle Bound). For every homogeneous polynomial f of degree m > 2, and
every tropical semiring S, there is an integer m/3 < r 6 2m/3 such that

S(f) > |f |
µr(f) · µm−r(f) .

Proof. Let F be a minimal circuit over S computing f . Since f is homogeneous, Theorem 6(ii)
implies that F = f and the circuit F is homogeneous. Define the weight lu of a gate u ∈ F
be the degree deg(pol(u)) of the (homogeneous) polynomial pol(u) produced at u. Hence,
leaves (input gates) get weight 1, the output gate gets weight m. Since the minimum degree
measure is clearly subadditive, the weighting is subadditive: lu 6 lv + lw holds for every gate
u = v ∗ w of F.

Claim 18. Let 0 < ε < 1, and let lu be a subadditive weighting of the gates of F. If m is the
weight of the output gate, and if each input gate receives weight 6 εm, then there exists a
gate u of weight εm/2 < lu 6 εm.

Proof. Start at the output gate of F, and traverse the circuit (in the reverse order of edges)
by always choosing the input of maximal weight until a gate v of weight lv > εm is found such
that lu, lw 6 εm holds for both gates u and w feeding into v. Assume w.l.o.g. that lu > lw.
Since lv 6 lu + lw 6 2lu, the gate u has the desired weight εm/2 < lu 6 εm.

By a degree-balanced rectangle in f we will mean a product of two homogeneous polynomi-
als A×××B ⊆ f such thatm/3 < deg(A) 6 2m/3. (Note that in tropical semirings, polynomials
A are minimums of sums, hence, rectangles here have the form A+B.)

Claim 19. The polynomial f can be written as a sum of at most |F| degree-balanced rect-
angles.
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Proof. We proceed by induction on s = |F|. If s = 1, then f is a product of two (not
necessarily distinct, if f is not multilinear) input variables, f = xixj . Since deg(f) = 2, and
deg(xi) = deg(xj) = 1, f itself is a degree-balanced rectangle.

By Claim 18 (with ε = 2/3), there exists a gate u of weight m/3 < lu 6 2m/3. By
Lemma 15, we can write F as F = Fu+++Fu=000 where Fu = A×××B with m/3 < deg(A) 6 2m/3.
The polynomial Fu=000 is obtained from F by removing some monomials. If Fu=000 is empty,
then we are done. Otherwise, Fu=000 is a homogeneous polynomial of degree m which can be
computed by a circuit with at most s− 1 gates (the gate u is eliminated). By the induction
hypothesis, Fu=000 can be written as a sum of s − 1 degree-balanced rectangles. Hence, the
entire polynomial f = F can be written as a sum of s products, as desired.

By Claim 19, the number |F| of gates in F is at least the number |f | of monomials in f
divided by the largest possible number of a degree-balanced rectangle in f . So, it remains to
upper-bound this latter number.

Claim 20. Let A and B be polynomials of maximum degrees a and b over a tropical semiring.
If A×××B ⊆ f , then |A×××B| 6 µa(f) · µb(f).

Proof. Fix a monomial p ∈ g of degree |p| = a, and a monomial q ∈ h of degree |q| = b. Since
{p} ××× h ⊆ f , we have that |h| = |{p} ××× h| 6 µ|p|(f) = µa(f), where the first equality holds
because tropical semirings are not multiplicatively idempotent (a××× a 6= a for all a 6= 111, that
is, a + a 6= a for all a 6= ±∞). Similarly, since g ××× {q} ⊆ f , we have that |g| = |g ××× {q}| 6
µ|q|(f) = µb(f).

Now we can finish the proof of the theorem as follows. By Claim 19, the polynomial f
can be written as a sum of s = |F| products Ai ××× Bi of homogeneous polynomials Ai and
Bi, where the degree ai = deg(Ai) of Ai satisfies m/3 < ai 6 2m/3; hence, deg(Bi) >
m − ai. For every i = 1, . . . , s, Claim 20 gives |Ai ××× Bi| 6 µai(f) · µm−ai(f), and hence,
|f | 6

∑s
i=1 µai(f) · µm−ai(f) 6 s · µr(f) · µm−r(f) for some m/3 < r 6 2m/3.

11.1 Applications

The Rectangle Bound allows one to easily obtain exponential lower bounds for some explicit
polynomials.

Theorem 21. Let S be some tropical semiring, and f ∈ {PERn,HCn,STn}. Then S(f) =
2Ω(n).

Using a tighter analysis (in the spirit of Remark 6) and more involved computations,
Jerrum and Snir [11] obtained even tight lower bounds for PERn and HCn.

Proof. Since all these three polynomials are homogeneous, we can apply Theorem 17 to them.
First, consider the permanent function f = PERn. This is a homogeneous polynomial of
degree n with |f | = n! monomials. Since µr(f) = (n− r)!, Theorem 17 (with r = n/3) gives
S(f) > n!/(n− r)!r! =

(n
r

)
> 3n/3.

The argument for HCn is almost the same: the only difference is that now the monomials
correspond to symmetric, not to all permutations.

So, let us consider the spanning tree polynomial f = STn. This a homogeneous poly-
nomial of degree n − 1 with |f | = nn−2 monomials. Each monomial x2,π(2)x3,π(3) · · ·xn,π(n)
corresponds to one of the functions π : {2, 3, . . . , n} → [n] such that ∀i ∃k: π(k)(i) = 1. Each
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such function π gives a spanning tree, where π−1(i) is the set of children of the node i in
the tree. Now, if we fix some r edges, then r values of functions π whose spanning trees
contain these edges are fixed. Thus, µr(f) 6 (n− r)n−r−2. Theorem 17 (with r = n/3) gives
S(f) = 2Ω(n).

The three polynomials above are homogeneous. To show that the Rectangle Bound
works also for non-homogeneous polynomials, consider the s-t connectivity polynomial f =
STCONn. We know that Min(f) = O(n3) (Remark 2). But over the Max-semiring, f
requires circuits of exponential size.

Theorem 22. If f = STCONn, then Min(f) = O(n3) but Max(f) and Min[f ] are both
2Ω(n).

Proof. Consider the higher envelope fhe of f . This is a homogeneous polynomial of degree
m = n−1. By Theorem 6(i), we have that Max(f) >Max[fhe]. Monomials of fhe correspond
to 1-to-n paths with exactly n − 2 inner nodes. Hence, |fhe| = (n − 2)!. If we fix some set
of r edges, then at most (n − 2 − r)! monomials of fhe can contain all these edges; hence,
µr(f) 6 (n− 2− r)!. Thus, again, Theorem 17 (with r = n/3) gives a lower bound:

Max(f) >Max[f ′] > (n− 2)!
(n− 2− r)!(r − 1)! = 2Ω(n) .

Since Max(f) 6Max[f ] = Min[f ], the same lower bound on Min[f ] also follows.

12 Truly Exponential Lower Bounds
Note that the lower bounds above have the forms 2Ω(

√
n), where n is the number of variables.

Truly exponential lower bounds 2n/2 on the monotone circuit size of multilinear polynomials
of n variables were announced by Kasim-Zade [17, 18] and Kuznetsov [20]. Using some
ideas of [17, 18, 20], Gashkov [8] proposed a general lower bounds argument for monotone
arithmetic circuits and used it to prove a 22n/3 lower bound. These bounds are obtained
via an appropriate modification of Schnorr’s approach (Section 9); the method was further
developed and new lower bounds were proved by Gashkov and Sergeev [9].

The construction of the corresponding multilinear polynomials in these works is algebraic.
Say, the monomials of the polynomial f(x, y) of 2n variables constructed in [17, 18] have the
form xa1

1 · · ·xann y
b1
1 · · · ybnn where a ∈ {0, 1}n and b = a3 (we view vector a as an element of

GF (2n) when rising it to the 3rd power). That is, monomials correspond to points of the
cubic parabola {(a, a3) : a ∈ GF (2n)}. The monomials of the polynomial constructed in [8] are
defined using triples (a, b, c) with a, b, c ∈ GF (2n) satisfying a3+b7+c15 = 1. The constructed
polynomials are (1, 1)-free, and the desired lower bounds follow from a general lower bound
of Gashkov and Sergeev [9] for (k, l)-free polynomials (see Sect. 13 for this bound).

Without knowing these results, Raz and Yehudayoff [29] have recently also proved a truly
exponential lower bound 2Ω(n) using discrepancy arguments and exponential sum estimates.
In this section we use some ideas from [14] to show that truly exponential lower bounds can be
also proved using graphs with good expansion properties. Numerically, our bounds are worse
than those in [17, 18, 20, 8, 9] (have smaller constants), but the construction of polynomials
is quite simple (modulo the construction of expander graphs).

Say that a partition [n] = S ∪ T is balanced if n/3 6 |S| 6 2n/3. Define the matching
number m(G) of a graph G = ([n], E) as the largest number m such that, for every balanced
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partition of nodes of G, at least m crossing edges form an induced matching. An edge is
crossing if it joins a node in one part of the partition with a node in the other part. Being an
induced matching means that no two endpoints of any two edges of the matching are joined
by a crossing edge.

Our construction of hard polynomials is based on the following lemma. Associate with
every graph G = ([n], E) the multilinear polynomial fG(x1, . . . , xn) whose monomials are∏
i∈S xi over all subsets S ⊆ [n] such that the induced subgraph G[S] has an odd number of

edges of G.

Lemma 23. For every non-empty graph G on n nodes, we have

A(fG) > 2m(G)−2 .

We postpone the proof of this lemma and turn to its application.
The following simple claim gives us a general lower bound on the matching number m(G).

Say that a graph is s-mixed if every two disjoint s-element subsets of its nodes are joined by
at least one edge.

Claim 24. If an n-node graph G of maximum degree d is s-mixed, then m(G) > (bn/3c −
s)/(2d+ 1).

Proof. Fix an arbitrary balanced partition of the nodes of G into two parts. To construct the
desired induced matching, formed by crossing edges, we repeatedly take a crossing edge and
remove it together with all its neighbors. At each step we remove at most 2d + 1 nodes. If
the graph is s-mixed, then the procedure will run for m steps as long as bn/3c − (2d + 1)m
is at least s.

Thus, we need graphs of small degree that are still s-mixed for small s. Examples of such
graphs are expander graphs. A Ramanujan graph is a regular graph Gn,q of degree q+ 1 on n
nodes such that λ(G) 6 2√q, where λ(G) is the second largest (in absolute value) eigenvalue of
the adjacency matrix of G. Explicit constructions of Ramanujan graphs on n nodes for every
prime q ≡ 1 mod 4 and infinitely many values of n were given by Margulis [22], Lubotzky,
Phillips and Sarnak [21]; these were later extended to the case where q is an arbitrary prime
power by Morgenstern [26], and Jordan and Livné [12].

Theorem 25. If fG(x1, . . . , xn) is the multilinear polynomial associated with the Ramanujan
graph G = Gn,64, then

A(fG) > 20.001n .

Proof. The Expander Mixing Lemma ([2, Lemma 2.3]) implies that, if G is a d-regular graph
on n nodes, and if s > λ(G)·n/d, thenG is s-mixed. Now, the graphG = Gn,q is d-regular with
d = q+1 and has λ(G) 6 2√q. Hence, the graph G is s-mixed for s = 2n/√q > 2√qn/(q+1).

Our graph G = Gn,64 is a regular graph of degree d = 65, and is s-mixed for s = 2n/
√

64 =
n/4. Lemma 23 gives the desired lower bound.

Proof of Lemma 23. Following Raz and Yehudayoff [29], we call polynomial f(x1, . . . , xn) a
product polynomial, if f is a product of two polynomials on disjoint sets of variables, each
of size at least n/3, that is, if f = g(Y )××× h(Z) for some partition Y ∪ Z = {x1, . . . , xn} of
variables with |Y |, |Z| > n/3, and some two polynomials g and h on these variables. Note
that we do not require that, say, the polynomial g(Y ) must depend on all variables in Y :
some of them may have zero degrees in g.
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Claim 26 ([29]). If F(x1, . . . , xn) is a multilinear circuit of size s with n > 3 input variables,
then the polynomial F can be written as a sum of at most s+ 1 product polynomials.

Proof. Induction on s, similar to that in the proof of Claim 19. For a gate u, let Xu be the
set of variables in the corresponding subcircuit of F. Let v be the output gate of F. If v is
an input gate, then F itself is a product polynomial, since n > 3. So, assume that v is not
an input gate. If |Xv| 6 2n/3, then the polynomial F itself is a product polynomial, because
F = F ××× 111. So, assume that |Xv| > 2n/3. Every gate u in F entered by gates u1 and u2
admits |Xu| 6 |Xu1 |+ |Xu2 |. Thus, there exists a gate u in F such that n/3 6 |Xu| 6 2n/3.
By Lemma 15, we can write F as F = Fu+++Fu=000 where Fu = gu××× h with n/3 6 |Xu| 6 2n/3
and some polynomial h. Moreover, since the circuit is multilinear, the set Xh of variables in
the polynomial h must be disjoint from Xu, implying that |Xh| > n − |Xu| > n/3. Thus,
gu ××× h is a product polynomial. Since the circuit Fu=000 has size at most s − 1, the desired
decomposition of F follows from the induction hypothesis.

By the characteristic function of a multilinear polynomial f(x1, . . . , xn) we will mean the
(unique) boolean function which accepts a binary vector α ∈ {0, 1}n if and only if the polyno-
mial f contains the monomial xa1

1 x
a2
2 · · ·xann =

∏
i : ai=1 xi. (Note that this boolean function

needs not to be monotone.) In particular, the characteristic function of our polynomial fG is
the quadratic boolean function

φ(x) =
∑
{i,j}∈E

xixj mod 2 .

That is, φ(a) = 1 if the subgraph G[S] induced by the set of nodes S = {i : ai = 1} has an
odd number of edges. Since φ(x) is a non-zero polynomial of degree 2 over GF (2), we have
that |fG| = |φ−1(1)| > 2n−2.

Claim 27. For every graph G on n nodes, every product sub-polynomial of fG contains at
most 2n−m(G) monomials.

Proof. Let G×××H be a product polynomial contained in fG. This polynomial gives a partition
x = (y, z) of the variables into two parts, each containing at least n/3 variables. Let g(y) and
h(z) be the characteristic functions of G and H, and r(x) = g(y) ∧ h(z). Then |G××× H| =
|r−1(1)|, and it is enough to show that |r−1(1)| 6 2n−m(G). When doing this, we will essentially
use the fact that r 6 φ, which follows from the fact that all monomials of G××× H are also
monomials of fG.

By the definition of m(G), some set M = {y1z1, . . . , ymzm} of m = m(G) crossing edges
yizi forms an induced matching ofG. Given an assignment α of constants 0 and 1 to the n−2m
variables outside the matching M , define vectors a, b ∈ {0, 1}m and a constant c ∈ {0, 1} as
follows:

• ai = 1 iff an odd number of neighbors of yi get value 1 under α,

• bi = 1 iff an odd number of neighbors of zi get value 1 under α,

• c = 1 iff the number of edges whose both endpoints get value 1 under α is odd.

21



Then the subfunction φα of φ obtained after restriction α is

φα(y1, . . . , ym, z1, . . . , zm) =
m∑
i=1

yizi +
m∑
i=1

yiai +
m∑
i=1

bizi + c mod 2

= IPm(y ⊕ b, z ⊕ a)⊕ IPm(a, b)⊕ c ,

where IPn(y1, . . . , ym, z1, . . . , zm) =
∑m
i=1 yizi mod 2 is the inner product function. Since a, b

and c are fixed, the corresponding 2m × 2m ±1 matrix H with entries H[y, z] = (−1)φα(y,z)

is a Hadamard matrix (rows are orthogonal to each other). Lindsey’s Lemma (see, e.g. [15,
p. 479]) implies that no monochromatic submatrix of H can have more than 2m 1-entries.

Now, the obtained subfunction rα = gα(y1, . . . , ym) ∧ hα(z1, . . . , zm) of r = g(y) ∧ h(z)
also satisfies rα(a, b) 6 φα(a, b) for all a, b ∈ {0, 1}m. Since the set of all pairs (a, b) for
which rα(a, b) = 1 forms a submatrix of H, this implies that rα can accept at most 2m
such pairs. Since this holds for each of the 2n−2m assignments α, the desired upper bound
|r−1(1)| 6 2m · 2n−2m = 2n−m follows.

This completes the proof of Claim 27, and hence, the proof of Lemma 23.

13 Bounds for (k, l)-free Polynomials
A polynomial f is (k, l)-free if f does not contain a product of two polynomials, one with > k
monomials and the other with > l monomials; (k, k)-free polynomials are called just k-free. In
particular, every union-free polynomial (see Sect. 9) is 1-free. An (a, b)-rectangle is a product
A××× B of two polynomials such that |A| 6 a and |B| 6 b; hence, |A××× B| 6 ab. Note that if
A××× B ⊆ f , and if f is k-free, then we only know that min{|A|, |B|} 6 k: the total number
|A×××B| of monomials in the rectangle A×××B may be arbitrarily large.

Theorem 28. Let F be a circuit over some semiring. If the produced polynomial F is (k, l)-
free for some 1 6 k 6 l, then F can be written as a sum of at most 2|F| (k, l2)-rectangles. In
particular,

|F| > |F |2kl2 .

Proof. Our argument is a mix of ideas of Gashkov and Sergeev [9], and Pippenger [28]. Since
F is (k, l)-free, every product gate u = v ××× w in F must have an input, say w, at which a
“small” set A = |pol(w)| of |A| 6 l monomials is produced. We thus can remove the edge
(w, u) and replace u by a unary (fanin-1) gate u = v×××A of scalar multiplication by this fixed
(small) polynomial A. If both inputs produce small polynomials, then we eliminate only one
of them. What we achieve by doing this is that input gates remain the same as in the original
circuit (variables x1, . . . , xn and constants 000,111), each product gate has fanin 1, and for every
edge (u, v) in the resulting circuit F′, we have an upper bound

|extu(v)| 6 l · |ext(v)| . (2)

Say that an edge (u, v) in F′ is legal if both |pol(u)| 6 k and |extu(v)| 6 l2 hold. Let E be
the set of all legal edges. By Lemma 16, it remains to show that E forms an edge-cut of F′.

To show this, take an arbitrary input-output path P in F′, and let e = (u, v) be the last
gate of P with |pol(u)| 6 k. If v is the output gate, then ext(v) is a trivial polynomial 111, and
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Bound Conditions Ref.

B(f) > t f is not t-simple (Def. 2) Thm. 5
S(f) = S[f ] f is homogeneous Thm. 6
S[f ] > |f | f is union-free (Def. 3) Thm. 12

S(f) > |f |
µr(f) · µm−r(f) f homogeneous of degree m Thm. 17

S[f ] > |f |
2kl2 A×××B ⊆ f implies |A| 6 l or |B| 6 k Thm. 28

Table 2: A summary of general lower bounds. Here S is an arbitrary tropical semiring, µr(f)
is the maximum possible number of monomials of f containing a fixed monomial of degree r,
and r is some integer m/3 < r 6 2m/3.

hence, |extu(v)| 6 l by (2), meaning that (u, v) is a legal edge. Suppose now that v is not
the output gate. Then |pol(u)| 6 k but |pol(v)| > k. Held also |extu(v)| > l2, then (2) would
imply that |ext(v)| > |extu(v)|/l > l. Together with |pol(v)| > k and pol(v)××× ext(v) ⊆ F ,
this would contradict the (k, l)-freeness of F . Thus, |pol(u)| 6 k and |extu(v)| 6 l2, meaning
that (u, v) is a legal edge.

Together with Theorem 6, Theorem 28 yields the following lower bound over tropical
semirings for polynomials, whose only lower or higher envelopes are (k, l)-free.

Corollary 29. Let f and g be polynomials such that fle and ghe are (k, l)-free for some
1 6 k 6 l. Then

Min(f) > |fle|
2kl2 and Max(g) > |ghe|

2kl2 .

Remark 7. By a deeper analysis of circuit structure, Gashkov and Sergeev [8, 9] were able
to even estimate the numbers of sum and product gates: every monotone arithmetic circuit
computing a (k, l)-free polynomial f of n variables must have at least |f |/K − 1 sum gates,
and at least 2

√
|f |/K − n− 2 product gates, where K = max{k3, l2} .

Remark 8. Every boolean n × n matrix A = (aij) defines a bi-linear polynomial fA(x, y) =∑
i,j aijxiyj on 2n variables, as well as a set Ax = (f1, . . . , fn) of n linear polynomials fi =∑
j aijxj . Call a boolean matrix A (k, l)-free, if it does not contain any (k + 1, l + 1) all-1

submatrix. It is clear that the polynomial fA is (k, l)-free if and only if the matrix A is
(k, l)-free.

The results of Mehlhorn [23] and Pippenger [28] imply that, if A is k-free, then B(Ax) >
|A|/4k3, where |A| is the number of 1-entries in A. This, however, does not immediately
imply a similar lower bound on B(fA) for the single-output version fA and, in fact, no such
bound is known so far. On the other hand, Theorem 28 gives such a bound at least for
tropical circuits: Min(fA) = Max(f) = A(fA) > |A|/2k3, where the equalities follow from
Theorem 6, because the polynomial fA is homogeneous.

14 Conclusion and Open Problems
In this paper we summarized known and presented some new lower-bound arguments for
tropical circuits, and hence, for the dynamic programming paradigm; Table 2 gives a short
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overview. We have also shown these bounds already yield strong (even exponential) lower
bounds for a full row of important polynomials (see Table 1). Still, the known arguments
seem to fail for non-homogeneous polynomials like CONN or STCON.

Open Problem 1. Does B(f) = Ω(n3) or at least Min(f) = Ω(n3) hold for f = STCONn

and/or f = CONNn?

Note that the lower bound Ω(n3) for the all-pairs-shortest-paths polynomial APSPn, given
in Theorem 13 does not automatically imply the same lower bounds for CONN: a circuit for
CONN needs not to compute the polynomials of APSP on separate gates.

One could show Min(CONN) = Ω(n3) by showing that monotone arithmetic circuits for
the following “multiplicative version” of the triangle polynomial TRn require Ω(n3) gates.
Recall that TRn(x, y, z) =

∑
i,j∈[n] zijfij , where fij =

∑
k∈[n] xikykj . We already know (see

the proof of Theorem 13) that A(TRn) = Θ(n3), and hence also Min(TRn) = Θ(n3) since
the polynomial is homogeneous. Replace now the outer sum by product, and consider the
polynomial TR∗n =

∏
i,j∈[n] zijfij .

Open Problem 2. Does A(TR∗n) = Ω(n3)?

If true, this would yield Min(CONNn) = Ω(n3), because the polynomial TR∗n is homoge-
neous (of degree m = 3n2).

In Section 8, we mentioned an exponential gap Max(f)/Min(f) = 2Ω(n) achieved on
f = STCONn.

Open Problem 3. Can the gap Min(f)/Max(f) also be super-polynomial for some f?
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