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Abstract

Tropical circuits are circuits with Min and Plus, or Max and Plus operations as gates. Their
importance stems from their intimate relation to dynamic programming algorithms. The power of
tropical circuits lies somewhere between that of monotone boolean circuits and monotone arithmetic
circuits. In this paper we survey known and present some new lower bounds arguments for tropical
circuits, and hence, for dynamic programs.
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1. Introduction

Understanding the power and limitations of fundamental algorithmic paradigms—such as greedy
or dynamic programming—is one of the basic questions in the algorithm design and in the whole
theory of computational complexity. In this paper we focus on the dynamic programming paradigm.

Our starting point is a simple observation that many dynamic programming algorithms for
optimization problems are just recursively constructed circuits over the corresponding semirings.
Each such circuit computes, in a natural way, some polynomial over the underlying semiring. Most
of known dynamic programming algorithms correspond to circuits over the (min,+) or (max,+)
semirings, that is, to tropical circuits.2 Thus, lower bounds for tropical circuits show the limita-
tions of dynamic programming algorithms over the corresponding semirings.

The power of tropical circuits (and hence, of dynamic programming) lies somewhere between
that of monotone boolean circuits and monotone arithmetic circuits:

monotone boolean 6 tropical 6 monotone arithmetic

and the gaps may be even exponential (we will show this in Section 9).
Monotone boolean circuits are most powerful among these three models and, for a long time, only

linear lower bounds were known for such circuits. First super-polynomial lower bounds for the k-
clique function CLIQUE and the perfect matching function PER were proved by Razborov [35, 34]
by inventing his method of approximations. At almost about the same time, explicit exponential
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lower bounds were also proved by Andreev [3, 4]. Alon and Boppana [1] improved Razborov’s lower
bound for CLIQUE from super-polynomial until exponential. Finally, Jukna [15] gave a general
and easy to apply lower bounds criterium for monotone boolean and real-valued circuits, yielding
strong lower bounds for a row of explicit boolean functions. These lower bounds hold for tropical
circuits as well.

On the other hand, monotone arithmetic circuits are much easier to analyze: such a circuit
cannot produce anything else but the monomials of the computed polynomial, no “simplifications”
(as x2 = x or x+xy = x) are allowed here. Exponential lower bounds on the monotone arithmetic
circuit complexity were proved already by Schnorr [36] (for CLIQUE), and Jerrum and Snir [13]
(for PER and some other polynomials). A comprehensive survey on arithmetic (not necessarily
monotone) circuits can be found in the book by Shpilka and Yehudayoff [38].

In this paper we summarize our knowledge about the power of tropical circuits. As far as we
know, no similar attempt was undertaken in this direction after the classical paper by Jerrum and
Snir [13]. The main message of the paper is that not only methods developed for monotone boolean
circuits, but (sometimes) even those for a much weaker model of monotone arithmetic circuits can
be used to establish limitations of dynamic programming. Although organized as a survey, the
paper contains some new results, including:

1. A short and direct proof that tropical circuits for optimization problems with homogeneous
target polynomials are not more powerful than monotone arithmetic circuits (Theorem 9).
This explains why we do not have efficient dynamic programming algorithms for optimization
problems whose target sums all have the same length. In the case of Min-semirings, this was
proved by Jerrum and Snir [13] using the Farkas lemma.

2. A new and simple proof of Schnorr’s [36] lower bound on the size of monotone arithmetic cir-
cuits computing so-called “separated” polynomials (Theorem 12). A polynomial f is separated
if the product of any two of its monomials contains no third monomial of f distinct from these
two ones.

3. A new and simpler proof of Gashkov and Sergeev’s [9, 10] lower bound on the size of monotone
arithmetic circuits computing so-called “k-free” polynomials (Theorem 18). A polynomial is
k-free if it does not contain a product of two polynomials, both with more than k monomials.
This extend’s Schnorr’s bound, since every separated polynomial is also 1-free.

4. An easy to apply “rectangle” lower bound (Lemma 22).
5. A truly exponential lower bound for monotone arithmetic circuits using expander graphs

(Theorem 27).

2. Semirings

A (commutative) semiring is a system S = (S,+,×, 0, 1), where S is a set, + (“sum”) and ×
(“product”) are binary operations on S, and 0 and 1 are elements of S having the following three
properties:

(i) in both (S,+, 0) and (S,×, 1), operation are associative and commutative with identities 0 and
1: a+ 0 = a and a× 1 = a hold for all a ∈ S;

(ii) product distributes over sum: a× (b+ c) = (a× b) + (a× c);

(iii) a× 0 = 0 for all a ∈ S (“annihilation” axiom).
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A semiring is additively-idempotent if a+a = a holds for all a ∈ S, and ismultiplicatively-idempotent
if a× a = a holds for all a ∈ S.

We will use the common conventions to save parenthesis by writing a × b + c × d instead of
(a × b) + (a × c), and replacing a × b by ab. Also, an will stand for a × a × · · · × a n-times. If
desired, we will also assume that the sets N, Z or R also contain +∞ and/or −∞.

In this paper, we will be interested in the following semirings:

• Arithmetic semiring A = (N,+, ·, 0, 1).

• Boolean semiring B = ({0, 1},∨,∧, 0, 1).

• Min-semirings Min = (N,min,+,+∞, 0) and Min− = (Z,min,+,+∞, 0).

• Max-semirings Max = (N,max,+,−∞, 0) and Max− = (Z,max,+,−∞, 0).

• Min- and Max-semirings are called tropical semirings.

Note that all these semirings, but A, are additively-idempotent, and none of them, but B, is
multiplicatively-idempotent. Note also that in arithmetic and in tropical semirings one usually
allows rational or even real numbers, not just integers. This corresponds to considering optimization
problems with real, not necessarily integral “weights”. The point, however, is that lower-bound
techniques, we will consider below, work already on smaller domains. In fact, they work when,
besides ∞ or −∞, the domain contains 0 and 1 or 0 and −1. Roughly speaking, the larger is the
domain, the easier is to prove lower bounds over them. In particular, the bounds remain true in
larger domains as well.

Due to their intimate relation to discrete optimization, we will be mainly interested in tropical
semirings, and circuits over these semirings. Lower bounds for such circuits give lower bounds for
the number of subproblems used by dynamic programming algorithm. The semirings Min− and
Max− are isomorphic via the transformation x 7→ −x, so we will not consider Max− separately:
all results holding for Min− hold also for Max−.

3. Polynomials

Let S = (S,+,×, 0, 1) be a semiring, and let x1, . . . , xn be variables ranging over S. A monomial
is any product of these variables, where repetitions are allowed. By commutativity and associa-
tivity, we can sort the products and write monomials in the usual notation, with the variables
raised to exponents. Thus, every monomial xa1

1 x
a2
2 · · ·xann is uniquely determined by the vector of

exponents (a1, . . . , an) ∈ Nn, where x0
i = 1. (Note that in tropical semirings, monomials are linear

combinations a1x1 +a2x2 + · · ·+anxn, that is, sums, not products.) The degree, |p|, of a monomial
is the sum |p| = a1 + · · ·+ an of its exponents. A monomial p is multilinear if every exponent ai is
either 0 or 1. A monomial p = xa1

1 · · ·xann contains a monomial q = xb1
1 · · ·xbnn (or q is a factor of

p) if ai > bi for all i = 1, . . . , n, that is, if p = qq′ for some monomial q′.
By a polynomial3 we will mean a finite sum of monomials, where repetitions of monomials are

allowed. That is, we only consider polynomials with nonnegative integer coefficients. A polynomial
is homogeneous if all its monomials have the same degree, and is multilinear if all its monomials

3Usually, polynomials of more than one variable are called multivariate, but we will omit this for shortness.
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are multilinear (no variables of degree > 1). For example, f = x2y + xyz is homogeneous but not
multilinear, whereas g = x+ yz is multilinear but not homogeneous. The sum and product of two
polynomials is defined in the standard way. For polynomials f, h and a monomial p, we will write:

• f = h if f and h have the same monomials appearing not necessarily with the same coeffi-
cients;

• f 
 h if f and h have the same monomials appearing with the same coefficients;

• f ⊆ h if every monomial of f is also a monomial of h;

• p ∈ f if p is a monomial of f ;

• |f | to denote the number of distinct monomials in f ;

• Xp to denote the set of variables appearing in p with non-zero degree.

Every polynomial f(x1, . . . , xn) defines a function f̂ : Sn → S, whose value f̂(s1, . . . , sn) is
obtained by substituting elements si ∈ S for xi in f . Polynomials f and g are equivalent (or
represent the same function) over a given semiring, if f̂(s) = ĥ(s) holds for all s ∈ Sn. It is
important to note that the same polynomial f(x)


∑
I∈I cI

∏
i∈I x

ai
i represents different functions

over different semirings:

f̂(x) =
∑
I∈I

cI
∏
i∈I

xaii over A (counting)

f̂(x) =
∨
I∈I

∧
i∈I

xi over B (existence)

f̂(x) = min
I∈I

∑
i∈I

aixi over Min and Min− (minimization)

f̂(x) = max
I∈I

∑
i∈I

aixi over Max and Max− (maximization)

Note that in the boolean semiring as well as in all four tropical semirings, the coefficients cI do not
influence the computed value f̂(x), and we can assume that cI = 1 for all I ∈ I; this is because,
say, min{x, x, y} = min{x, y}. The degrees, however, are important: say, min{2x, y} 6= min{x, y}.

4. Structure of Equivalent Polynomials

Let f and h be any two polynomials on the same set of variables. In general, if f and h are
equivalent (i.e. if f̂ = ĥ holds) over some semiring, then neither f 
 h nor even f = h need to
hold. The arithmetic semiring is here an exception.

Lemma 1. If f̂ = ĥ holds over the arithmetic semiring A, then f 
 h.

Proof. There are several ways to prove this fact. We follow the argument suggested by Sergey
Gashkov (personal communication). Suppose that f̂ = ĥ but f 6
 h. Since f 6
 h, the polynomial
g = f − h contains at least one monomial. Let p be a monomial of g of maximum degree. Take
all partial derivatives of g with respect to the variables of p until all they disappear. Since p has
maximum degree, we obtain some constant 6= 0. But since ĝ = f̂ − ĥ is a zero function, the
derivative should be zero, a contradiction.
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In tropical semirings, we only have weaker structural properties. For a polynomial f , let
fmin ⊆ f denote the set of all monomials of f not containing any other monomial of f , and
fmax ⊆ f denote the set of all monomials of f not contained in any other monomial of f . For
example, if f = {x, x2y, yz}, then fmin = {x, yz} and fmax = {x2y, yz}. Note that every monomial
of f contains (properly or not) at least one monomial of fmin, and is contained in at least one
monomial of fmax. Note also that f̂min = f̂ holds in Min semirings, and f̂max = f̂ holds in Max
semirings.

Lemma 2. If f̂ = ĥ holds over Min, and if h is multilinear, then fmin = hmin.

Proof. Let us first show that every monomial of f must contain at least one monomial of h, and
hence, of hmin. To see this, assume that there is a monomial p ∈ f which contains no monomial
of h. Since h is multilinear, this means that every monomial of h must contain a variable not in
Xp. So, on the assignment ap which sets to 1 all variables in Xp, and sets to ∞ all the remaining
variables, we have that ĥ(ap) =∞. But f̂(ap) 6 p̂(ap) = |Xp| <∞, a contradiction with f̂ = ĥ.

Since no monomial in fmin can contain another monomial of f , it remains therefore to show
that hmin ⊆ f . For this, assume that there is a monomial q ∈ hmin such that q 6∈ f . If we take
the assignment aq, then ĥ(aq) = q̂(aq) = |Xq|. On the other hand, the assignment aq sets all
monomials p ∈ f such that Xp 6⊆ Xq to ∞. Each of the remaining monomials p ∈ f (if there is
any) must satisfy Xp ⊆ Xq. But we already know that p must contain some monomial q′ ∈ hmin,
that is, Xq′ ⊆ Xp ⊆ Xq. Since both monomials q and q′ are multilinear and belong to hmin, this
implies q = q′, and hence, also Xp = Xq. Since q is multilinear and p 6= q, this means that p must
have strictly larger degree |p| than |Xq|, and hence, p̂(aq) = |p| > |Xq| = ĥ(aq), a contradiction
with f̂ = ĥ.

Remark 1. Note that Lemma 2 needs not to hold, if both polynomials are not multilinear. Say, if
f = min{2x, x+ y, 2y} and h = min{2x, 2y}, then f̂ = ĥ holds (because x+ y > min{2x, 2y}), but
fmin = f 6= h = hmin. In this example, monomial x + y = 1

2(2x) + 1
2(2y) is a convex combination

of the monomials 2x and 2y. And in fact, using the Farkas lemma about solvability of systems of
linear inequalities, Jerrum and Snir [13] have proved that, if f and h are arbitrary (not necessarily
multilinear) polynomials such that f̂ = ĥ holds over Min, then there is a set h′ ⊆ h of monomials
such that h′ ⊆ f , and every monomial of f∪h is at least some convex combination of the monomials
in h′.

Lemma 3. If f̂ = ĥ holds over Max, and if h is multilinear, then f is also multilinear, and
fmax = hmax.

Proof. Assume that f is not multilinear. Then f contains a monomial p (sum) in which some
variable xi appears more than once. If we set this variable to 1 and the rest to 0, then ĥ takes
some value 6 1, but f̂ takes value |p| > 2, a contradiction with f̂ = ĥ. Thus, both polynomials f
and h must be multilinear.

We claim that every monomial of f must be contained in at least one monomial of h. Indeed,
if some monomial p ∈ f is contained in none of the monomials q ∈ h, then every monomial q ∈ h is
missing at least one variable from Xp. So, on the assignment bp which sets to 1 all variables in Xp,
and sets to 0 all the remaining variables, we have that ĥ(bp) 6 |Xp| − 1. But f̂(bp) > p̂(bp) = |Xp|,
a contradiction with f̂ = ĥ.

It remains therefore to show that hmax ⊆ f . For this, assume that there is a monomial q ∈ hmax
such that q 6∈ f . If we take the assignment bq, then ĥ(aq) = q̂(aq) = |Xq|. On the other hand,
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Xp 6⊇ Xq must holds for every monomial p ∈ f , implying that f̂(bq) 6 |Xq|−1. Indeed, we already
know that every monomial p ∈ f must be contained in some monomial q′ ∈ hmax. So, Xp ⊇ Xq

implies Xq′ ⊇ Xp ⊇ Xq. Since both monomials q and q′ belong to hmax, this implies Xp = Xq, and
hence also p = q because both monomials p and q are multilinear. This contradicts our assumption
q 6∈ f .

In tropical semirings Min− and Max−, we have an even stronger property.

Lemma 4. If f̂ = ĥ holds over a tropical semiring Min− or Max−, and if h is multilinear, and
then f = h.

Proof. We claim that the polynomial f must be also multilinear. To see this, assume that f
contains a monomial p (sum) in which some variable xi appears more than once. Then, in the
semiring Min−, we can set xi = −1 and xj = 0 for all j 6= i. Under this assignment, we have
ĥ(x) > −1, because all monomials of h get value > −1, but f̂(x) 6 −2 since already the monomial
p of f gets value 6 −2, a contradiction. The the Max− semiring (and even in Max), it is enough
to set xi = 1 and xj = 0 for all j 6= i to get the desired contradiction.

Let us now show that f = h must hold over the semiring Min−; the argument for Max− is
similar. We know that both polynomials f and h are multilinear. Hence, Lemma 2 implies that
fmin = hmin (this holds even in Min). In particular, every monomial of f must contain at least one
monomial of h, and every monomial of h must contain at least one monomial of f . Thus, h 6⊆ f
can only happen, if there is a monomial p ∈ h such that, for every monomial q ∈ f , we have that
either Xp 6⊇ Xq or Xp ⊃ Xq (proper inclusion). In any case, every monomial q ∈ f misses some
variable of p. So, if we assign −1 to all variables of p, and 0 to the remaining variables, then h
takes some value 6 −|Xp|. But since each monomial q ∈ f misses at least one variable of p, the
value of each of these monomials, and hence the value of f , must be > |Xp| + 1, a contradiction
with f̂ = ĥ. This shows h ⊆ f . The proof of the converse inclusion f ⊆ h is the same.

Note that for non-multilinear polynomials f , Lemma 4 needs not to hold. For example, If
f = min{x, 2x, 3x} and h = min{x, 3x}, then f̂ = ĥ holds over Min−, but f 6= h.

5. Circuits and their Polynomials

A circuit F over a semiring S = (S,+,×, 0, 1) is a usual fanin-2 circuit whose inputs are variables
x1, . . . , xn and constants 0 and 1. Gates are fanin-2 + and ×. That is, we have a directed acyclic
graph with n + 2 fanin-0 nodes labeled by x1, . . . , xn, 0, 1. At every other node, the sum (+) or
the product (×) of its entering nodes is computed; nodes with assigned operations are called gates.
The size of F, denoted by Size(F), is the number of gates in F. The depth is the largest number of
edges in a path from an input gate to an output gate.

Like polynomials, circuits are also “syntactic” objects. So, we can associate with every circuit
F the unique polynomial F produced by F inductively as follows:4

• If F = xi, then F 
 xi.

• If F = G + H, then F 

∑
p∈G p+

∑
q∈H q.

4We will always denote circuits as upright letters F, G, H, . . ., and their produced polynomials by italic versions
F, G, H, . . ..
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• If F = G× H, then F 

∑
p∈G

∑
q∈H pq.

When producing the polynomial F from a circuit F we only use the generic semiring axioms
(i)–(iii) to write the result as a polynomial (sum of monomials). For example, if F = x × (1 + y)
then F = x+ xy, even though F̂ = x in B and Min, and F̂ = xy in Max. It is thus important to
note that the produced by a given circuit F polynomial F is the same over any semiring!
Definition 1. A circuit F computes a polynomial f if F̂ = f̂ (F and f coincide as functions). A
circuit F produces f if F = f (F and f have the same set of monomials).

A circuit F simultaneously computes (or produces) a given set F of polynomials if, for every
polynomial f ∈ F , there is a gate in F at which f is computed (or produced).

When analyzing circuits, the following concept of “parse graphs” is often useful. A parse-graph
G in F is defined inductively as follows: G includes the root (output gate) of F. If u is a sum-gate,
then exactly one of its inputs is included in G. If u is a product gate, then both its input gates are
included in G. Note that each parse-graph produces exactly one monomial in a natural way, and
that each monomial p ∈ F is produced by at least one parse-graph. If p is multilinear, then each
parse-graph for p is a tree.

• A circuit is homogeneous, if polynomials produced at its gates are homogeneous. It is easy to
see that a circuit is homogeneous if and only if the polynomial produced by it is homogeneous.

• A circuit is multilinear, if for every its product gate u = v × w, the sets of variables of the
polynomials produced at gates v and w are disjoint. Sometimes, multilinear (in our sense)
circuits are called also syntactically multilinear.

Note that multilinear circuits can only compute multilinear polynomials but, in general, circuits
computing multilinear polynomials need not be multilinear: this happens, for example, in semirings
B and Min. Still, Lemmas 3 and 4 imply that this cannot happen in the remaining three tropical
semirings:

Lemma 5. Every circuit computing a multilinear polynomial f over A, Max, Min− or Max− must
be multilinear. Moreover, over A, Min− and Max−, the circuit must even produce f .

We will be interested in the following two complexity measures of polynomials f , where the
third measure is only for multilinear polynomials:

• S(f) = minimum size of a circuit over semiring S computing f .

• S[f ] = minimum size of a circuit over semiring S producing f .

• Slin(f) = minimum size of a multilinear circuit over semiring S computing f .

What we are really interested in is the first measure S(f). The second measure S[f ] is less inter-
esting: it is the same for all semirings S, because the formal polynomial of a given (fixed) circuit
is the same over all semirings. In particular, we have that

S[f ] = A[f ]

holds for every semiring S and every polynomial f . Still, it will be sometimes convenient not to
focus on the arithmetic semiring A because the inequality S(f) > S[f ] is more informative: it
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means that computing a given polynomial over S is not easier than to produce this polynomial.
This, for example, happens in the arithmetic semiring A: Lemma 1 implies that A(f) > A[f ].

Also, Lemma 5 implies that the third measure Slin(f) may be only interesting in semirings B
and Min: if S ∈ {Max,Min−,Max−,A}, then for every multilinear polynomial f , we have that
Slin(f) = S(f).

6. Some Polynomials

For the ease of reference, here we recall some polynomials which we will use later to illustrate
the lower bound arguments. Variables xe of considered polynomials correspond to edges of Kn or
Kn,n. Thus, monomials

∏
e∈E xe correspond to some subgraphs E of Kn or Kn,n. Here are some

of the polynomials we will use later:

• Permanent polynomial PERn = all perfect matchings in Kn,n.

• Hamiltonian cycle polynomial HCn = all Hamiltonian cycles in Kn.

• k-clique polynomial CLIQUEn,k = all k-cliques in Kn.

• Spanning tree polynomial STn = all spanning trees in Kn rooted in node 1.

• st-connectivity polynomial STCONn = all paths from s = 1 to t = n in Kn.

• All-pairs connectivity “polynomial” APSPn = set of
(n

2
)
polynomials STCONn corresponding

to different pairs of start and target nodes s and t.

• Matrix product polynomial MPn = special case of APSPn when only paths of length-2 are
considered.

• The connectivity polynomial CONNn = product of all polynomials of APSPn.

In Section 13 we will show that the first four polynomials require Min-circuits of exponential
size, whereas the next result shows that the last four polynomials all have Min-circuits of polynomial
size. The following result—proved independently by Moore [28], Floyd [7], and Warshall [41]—
holds for every semiring with the absorption axiom a + ab = a, including the boolean and Min
semirings.

Theorem 6 ([28, 7, 41]). Over semirings Min and B, the polynomials of APSPn can all be simul-
taneously computed by a circuit of size O(n3).

Proof. Inputs for APSPn over the Min semiring are non-negative weights xij of the edges of Kn.
For every pair i < j of distinct nodes of Kn, the goal is to compute the weight of the lightest path
between i and j; the weight of a path is the sum of weights of its edges. The idea is to recursively
compute the polynomials f [k]

i,j for k = 0, 1, . . . , n, whose value is the weight of the lightest walk
between i and j whose all inner nodes lie in [k] = {1, . . . , k}. Then f [0]

i,j = xij , and the recursion is:
f

[k]
i,j = min

{
f

[k−1]
i,j , f

[k−1]
i,k + f

[k−1]
k,j

}
. The output gates are f [n]

i,j for all i < j. The total number of
gates is O(n3). Even though the circuit actually searches for weights of lightest walks, it correctly
computes APSP because every walk between two nodes i and j also contains a simple path (with
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Polynomial f Bound Reference
STn B(f) = O(n3), S(f) = 2Ω(n) Rem. 3, Thm. 23
CONNn, STCONn Min(f) = O(n3), A[f ] > Max(f) = 2Ω(n) Rem. 3
APSPn, MPn Min(f) = Θ(n3) Cor. 15
PERn, HCn S(f) = 2Ω(n) Thm. 23
CLIQUEn,k S(f) >

(n
k

)
− 1 Cor. 14

Table 1: Summary of specific bounds; S(f) stands for any of Min(f), Max(f) and Blin(f).

no repeated nodes) between these nodes. Since the weights are non-negative, the minimum must
be achieved on a simple path. If we replace min-gates by OR-gates, and sum-gates by AND-gates,
then the resulting circuit will compute APSPn over the boolean semiring B.

Remark 2. Earlier dynamic programming algorithm of Bellman [6] and Ford [8] gives a (struc-
turally) simpler Min-circuit for STCONn. It tries to compute the polynomials f [k]

j whose value is
the weight of the lightest walk between 1 and j with at most k edges. Then f [1]

j = x1j , and the
recursion is: f [k]

j = the minimum of f [k−1]
j and of f [k−1]

i + xi,j over all nodes i 6= j. The output
gate is f [n−1]

n . The circuit also has O(n3) fanin-2 gates.
Remark 3. Theorem 6 immediately implies that the polynomials MPn, CONNn, and STCONn can
also be computed by Min-circuits of size O(n3). Moreover, over the boolean semiring, the spanning
tree polynomial ST represents the same boolean function as CONN. Thus, Theorem 6 also gives
B(STn) = O(n3).

In the rest of the paper, we will present various lower bound argument for tropical circuits.
Table 1 summarizes the resulting specific bounds obtained by these arguments for the polynomials
listed above.

7. Reduction to the Boolean Semiring

A semiring S = (S,+,×, 0, 1) is of zero-characteristic, if 1 + 1 + · · ·+ 1 6= 0 holds for any finite
sum of the unity 1. Note that all semirings we consider are of zero-characteristic. The following
seems to be a “folklore” observation.

Lemma 7. If a semiring S is of zero-characteristic, then S(f) > B(f) holds for every polynomial f .

Proof. Let F be a circuit over S computing a given polynomial f . The circuit must correctly
compute f on any subset of the domain S. We choose the subset S+ = {0, 1, 2, . . .}, where
n = 1 + · · · + 1 is the n-fold sum of the multiplicative unit element 1. Note that n 6= 0 holds for
all n > 1, because S has zero-characteristic.

Since n+m = n+m and n×m = n ·m, S+ = (S+,+,×, 0, 1) is a semiring. Since S+ ⊆ S, the
circuit must correctly compute f over this semiring as well. But the mapping h : S+ → {0, 1} given
by h(0) = 0 and h(n) = 1 for all n > 1, is a homomorphism from S+ into the boolean semiring B
with h(x+ y) = h(x)∨ h(y) and h(x× y) = h(x)∧ h(y). So, if we replace each +-gate by a logical
OR, and each ×-gate by a logical AND, then the resulting monotone boolean circuit computes the
polynomial f over B.
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Remark 4. One can easily show that, if the input variables can only take boolean values 0 and 1,
then Min(f) 6 2 · B(f) holds for every multilinear polynomial. Indeed, having a (boolean) circuit
F for f , just replace each AND gate u ∧ v by a Min gate min(u, v), and each OR gate u ∨ v by
min(1, u + v). The point however is that tropical circuits must work correctly on much larger
domain than {0, 1}. This is why lower bounds for tropical circuits do not translate to lower bounds
for monotone boolean circuits. And indeed, there are explicit polynomials f , as the spanning tree
polynomial f = STn, such that B(f) = O(n3) but Min(f) = 2Ω(n); the upper bound is shown in
Remark 3, and the lower bound will be shown in Theorem 23.

To prove lower bounds in the boolean semiring—and hence, by Lemma 7, also in tropical
semirings—one can try to use the following general lower bounds criterion proved in [15] (see also
[17, Sect. 9.4] for a simplified proof).

For a ∈ {0, 1}, an a-term of a monotone boolean function is a subset of its variables such that,
when all these variables are fixed to the constant a, the function outputs value a, independent of
the values of other variables. It is easy to see that every 0-term must intersect every 1-term, and
vice versa. Say that a family of sets A covers a family of sets B if every set in B contains at least
one set of A.
Definition 2. A monotone boolean function f(X) of |X| = n variables is t-simple if for all integers
integers 2 6 r, s 6 n, such that

(i) either the set of all 0-terms of f can be covered by t(r − 1)s s-element subsets of X,

(ii) or the set of all 1-terms of f can be covered by at most t(s− 1)r r-element subsets of X plus
s− 1 single variables.

Note that this “asymmetry” between (i) and (ii) (allowing additional s− 1 single variables in a
cover) is important: say, condition (i) is trivially violated, if f contains a 0-term T = {x1, . . . , xk}
with k < s. But then (ii) is fatisfied, because T must intersect all 1-terms, implying that the single
variables x1, . . . , xk cover all of them.

Theorem 8 ([15]). If f is not t-simple, then B(f) > t.

8. Reduction to the Arithmetic Semiring

As we already mentioned in the introduction, circuits over the arithmetic semiring A are no
more powerful than circuits over boolean or tropical semirings. The weakness of circuits computing
a given polynomial f over A lies in the fact (following from Lemma 1) that they cannot produce
any “redundant” monomials, those not in f . That is, here we have A(f) > A[f ]. On the other
hand, if the semiring S is additively-idempotent, then

S(f) 6 S[f ] = A[f ] . (1)

This holds because in an additively-idempotent semiring S (where x+x = x holds), the multiplici-
ties of monomials have no effect on the represented function. But, in general, we have no converse
inequality S(f) > A[f ]: for some polynomials f , A[f ] may be even exponentially larger than S(f).
Such is, for example, the st-connectivity polynomial f = STCONn. For this polynomial, we have
Min(f) = O(n3) (see Remark 3), but it is relatively easy to show that Min[f ] = A[f ] = 2Ω(n) (see
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Theorem 24 below). We will now show that the reason for such a large gap is the non-homogeneity
of STCON.

Following Jerrum and Snir [13], define the lower envelope of a polynomial f to be the polynomial
fle consisting of all monomials of f of smallest degree. Similarly, the higher envelope, fhe, of f
consists of all monomials of f of largest degree. Note that both polynomials fle and fhe are
homogeneous, and fle = fhe = f , if f itself is homogeneous.
Observation 1. If a polynomial f can be produced by a circuit of size s, then both fle and fhe can
be produced by homogeneous circuits of size s.

Proof. Take a circuit producing f . The desired homogeneous sub-circuits producing the lower or
the higher envelope can be obtain by starting with input gates, and removing (if necessary) one of
the wires of every sum-gate, at inputs of which polynomials of different degrees are produced.

Theorem 9. For every multilinear polynomial f , we have

A[f ] > Blin(f) > Min(f) > A[fle] and A[f ] > Max(f) > A[fhe] . (2)

If f is also homogeneous, then

Blin(f) = Min(f) = Max(f) = A[f ] .

Proof. By (1), we only have to prove the lower bounds (2). To prove that Blin(f) > Min(f), let F be
a multilinear monotone boolean circuit computing f . Since the circuit is multilinear, its produced
polynomial F is also multilinear. Since every monotone boolean function has a unique shortest
monotone DNF, this implies that Fmin = fmin. Since f and fmin represent the same function over
Min, the circuit F with OR gates replaced by Min gates, and AND gates by Sum gates will compute
f over Min.

To prove the inequality Min(f) > A[fle], take a minimal circuit F over Min computing f .
Observation 1 implies that the lower envelope Fle of the polynomial F produced by F can be also
produced by a (homogeneous) circuit of size at most Size(F). Hence, A[Fle] 6 Size(F) = Min(f).
On the other hand, Lemma 2 implies that fle = Fle, and we are done.

The proof of Max(f) > A[fhe] is the same by using Lemma 3.

The second claim of Theorem 9 has an important implication concerning the power of dynamic
programs, which can be roughly stated as follows:

For optimization problems whose target polynomials are homogeneous, dynamic programming
is no more powerful than monotone arithmetic circuits!

9. Relative Power of Semirings

The reductions to the boolean and to the arithmetic semirings (Lemma 7 and Theorem 9) give
us the following relations for every multilinear polynomial f :

B(f) 6 Min(f) 6 Blin(f) 6 Min−(f) = A[f ]

and
B(f) 6 Max(f) 6 Max−(f) = A[f ] .

11



If, additionally, f is also homogeneous, then

B(f) 6 Blin(f) = Min(f) = Max(f) = Min−(f) = Max−(f) = A[f ] .

Moreover, all inequalities are strict: for some polynomials f , one side can be even exponentially
smaller than the other. Moreover, the Max/Min and Min/Max gaps can be also exponential.

To show that circuits over the tropical semirings can be exponentially weaker than those over the
boolean semiring, consider the the spanning tree polynomial f = STn and the graph connectivity
polynomial g = CONNn. Over the boolean semiring B, these polynomials represent the same
boolean function: a graph is connected if and only if it has a spanning tree. This gives B(f) =
B(g) and Blin(f) = Blin(g). Moreover, we already know (see Remark 3) that B(g) = O(n3) and
Min(g) = O(n3). On the other hand, a relatively simple argument (the “rectangle bound”) yields
A[f ] = 2Ω(n) (see Theorem 23 below). Since the polynomial f is homogeneous, Theorem 9 implies
that Min(f), Max(f) and Blin(f) coincide with A[f ], and hence, are also exponential in n. We
thus have gaps:

Min(f)/B(f), Max(f)/B(f) = 2Ω(n) for f = STn;
Blin(g)/Min(g), Blin(g)/B(g) = 2Ω(n) for g = CONNn.

The latter gap Blin(g)/B(g) = 2Ω(n) also shows that there is no “multilinear version” of the Floyd–
Warshall algorithm, even in the boolean semiring.

To show that the remaining gaps can also be exponential, it is enough to take any multilinear
and homogeneous polynomial f(x1, . . . , xn) such that A[f ] is exponential in n, and to consider its
two “saturated” versions f and f , where f is obtained by adding to f all n monomials x1, x2, . . . , xn
of degree 1, and f is obtained by adding to f the monomial x1x2 · · ·xn of degree n.

Lemma 10. Let f(x1, . . . , xn) be a multilinear and homogeneous polynomial. Then both Min(f)
and Max(f) are at least A[f ], but all Max(f), Min(f) and Blin(f) are at most n.

Proof. Since f is the lower envelope of f , and the higher envelope of f . Theorem 9 implies that
Min(f) > A[f ] and Max(f) > A[f ]. On the other hand, over the Max-semiring, the polynomial f
computes x1 + x2 + · · ·+ xn, whereas over the Min-semiring, f computes min{x1, x2, . . . , xn}, and
computes x1 ∨ x2 ∨ · · · ∨ xn over the boolean semiring. Hence, all Max(f), Min(f) and Blin(f) are
at most n.

Since, there are many linear and homogeneous polynomials requiring monotone arithmetic cir-
cuits of exponential size (see, e.g. Table 1), the saturated versions of f immediately give exponential
gaps.

Still, the “saturation trick” leads to somewhat artificial examples, and it would be interesting to
establish exponential gaps using “natural” polynomials. For example, the Max/Min gap is achieved
already on a very natural st-connectivity polynomial h = STCONn. We know that Min(h) = O(n3)
(Remark 3), but a simple argument (see Theorem 24) shows that Max(h) = 2Ω(n). Hence,

Max(h)/Min(h) = 2Ω(n) for h = STCONn.

From now on we concentrate on the lower bound arguments themselves.
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10. Lower Bounds for Separated Polynomials

Let g(x1, . . . , xn) be a polynomial in n > 3 variables. An enrichment of g is a polynomial h
in n − 1 variables obtained by taking some variable xk and replacing it by a sum xi + xj or by a
product xixj of some other two (not necessarily distinct) variables, where k 6∈ {i, j}. A progress
measure of polynomials is an assignment of non-negative numbers µ(g) to polynomials g such that

(i) µ(xi) = 0 for each variable xi;

(ii) µ(h) 6 µ(g) + 1 for every enrichment h of g.

Lemma 11. For every polynomial f , and every progress measure µ(f), we have A[f ] > µ(f).

Proof. Take a monotone arithmetic circuit F with s = A[f ] gates producing f . We argue by
induction on s. If s = 0, then F = xi in an input variable, and we have A[f ] = 0 = µ(f). For
the induction step, take one gate u = xi ∗ xj where ∗ ∈ {+, ·}. Let F′(x1, . . . , xn, y) be the circuit
with the gate u replaced by a new variable y. Hence, Size(F′) = Size(F) − 1 and F (x1, . . . , xn) is
an enrichment of F ′(x1, . . . , xn, y). By the induction hypothesis, we have that Size(F′) > µ(F ′).
Together with µ(F ) 6 µ(F ′) + 1, this yields Size(F) = Size(F′) + 1 > µ(F ′) + 1 > µ(F ).

Recall that a monomial p contains a monomial q (as a factor), if p = qq′ for some monomial
q′.
Definition 3. A sub-polynomial P ⊆ f is separated if the product pq of any two monomials p and
q of P contains no monomial of f distinct from p and from q. Let

sep(f) := max{|P | − 1: P ⊆ f is separated} .

Note that we consider separateness within the entire set f of monomials: it is not enough that
the product pq contains no third monomial of P—it must not contain any third monomial of the
entire polynomial f .

Note also that a multilinear polynomial f of minimum degree m is separated, if every monomial
of f is uniquely determined by any subset of dm/2e its variables. (Being uniquely determined
means that no other monomial contains the same subset of variables.) Indeed, if p × q contains
some monomial r then r and p (or r and q) must share at least dm/2e variables, implying that
r = p (or r = q) must hold.

Theorem 12 (Schnorr [36]). For every polynomial f , we have A[f ] > sep(f), where

sep(f) := max{|P | − 1: P ⊆ f is separated} .

In particular, A[f ] > |f | − 1 if the polynomial f itself is separated.

Proof. It is enough to show that the measure sep(f) is a progress measure. The first condition (i) is
clearly fulfilled, since sep(xi) = 1−1 = 0. To verify the second condition (ii), let f(x1, . . . , xn, y) be
a polynomial, and h(x1, . . . , xn) be its enrichment. Our goal is to show that sep(f) > sep(h)− 1.
We only consider the “hard” case when y is replaced by a sum of variables: h(x1, . . . , xn) =
f(x1, . . . , xn, u+ v), where u, v ∈ {x1, . . . , xn}.

To present the proof idea, we first consider the case when no monomial of f contains more than
one occurrence of the variable y. Then every monomial yp of f turns into two monomials up and
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vp of h. To visualize the situation, we may consider the bipartite graph G ⊆ f × h, where every
monomial yp ∈ f is connected to two monomials up, vp ∈ h; each monomial q ∈ f without y is
connected to q ∈ h. Take now a separated subset P ⊆ h such that |P | − 1 = sep(h), and let Q ⊆ f
be the set of its neighbors in G. Our goal is to show that:

(a) |Q| > |P | − 1, and

(b) Q is separated.

Then the desired inequality sep(f) > |Q| − 1 > |P | − 2 = sep(h)− 1 follows.
To show item (a), it is enough to show that at most one monomial in Q can have both its

neighbors in P . To show this, assume that this holds for some two monomials yp and yq of Q.
Then all four monomials up, vp, uq, vq belong to P . But this contradicts the separateness of P ,
because the product up× vq contains the third monomial uq (and vp).

To show item (b), assume that the product p× q of some two monomials p 6= q of Q contains
some third monomial r ∈ h. Let p′, q′ ∈ P be some neighbors of p and q lying in P . Then the
product p′ × q′ must contain one (of the two) neighbors of r. Since both of these neighbors of r
belong to h, we obtain a contradiction with the separateness of P .

In general (if y can have any degrees in f), a monomial ykp of f has k + 1 neighbors uivk−ip,
i = 0, 1, . . . , k in h. To show (a), it is again enough to show that at most one monomial in
Q can have two neighbors in P . For this, assume that there are two monomials p 6= q such
that all four monomials uavk−ap, ubvk−bp, ucvl−cq, udvl−dq belong to P . Assume w.l.o.g. that
a = max{a, b, c, d}. Then the product uavk−ap × ucvl−cq contains uavl−cq, and (since c 6 a)
contains the monomial uavl−aq of h, contradicting the separateness of P . The proof of (b) is
similar.

Remark 5. It is not difficult to see that we have a stronger inequality sep(f) > sep(h), if the
variable y is replaced by the product uv (instead of the sum u + v). Thus, in fact, Theorem 12
gives a lower bound on the number of sum gates.

As a simple application of Schnorr’s argument, consider the triangle polynomial

TRn(x, y, z) =
∑

i,j,k∈[n]
xikykjzij .

This polynomial has 3n variables and n3 monomials.

Corollary 13. If f = TRn, then Min(f) = Max(f) = A[f ] = Θ(n3).

Proof. The equalities Min(f) = Max(f) = A[f ] hold by Theorem 9, because f is multilinear and
homogeneous. The upper bound A[f ] = O(n3) is trivial. To prove the lower bound A[f ] = Ω(n3),
observe that every monomial p = xikykjzij of f is uniquely determined by any choice of any two
of its three variables. This implies that p cannot be contained in a union of any two monomials
distinct from p. Thus, the polynomial f is separated, and its Schnorr’s measure is sep(f) = n3−1.
Theorem 12 yields A[f ] > sep(f) = n3 − 1, as desired.

Recall that the k-clique polynomial CLIQUEn,k has
(n
k

)
monomials

∏
i<j∈S xij corresponding

to subsets S ⊆ [n] of size |S| = k. This is a homogeneous multilinear polynomial of degree
(k

2
)
.

Note that TRn is a sub-polynomial of CLIQUE3n,3 obtained by setting some variables to 0.
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By Lemma 7, an exponential lower bound for CLIQUEn,s over the tropical Min follows from
Razborov’s lower bound for this polynomial over the boolean semiring B [35]. However, the proof
over B is rather involved. On the other hand, in tropical semirings such a bound comes quite easily.

Corollary 14. For f = CLIQUEn,k, Min(f), Max(f) and Blin(f) are at least
(n
k

)
− 1.

This lower bound on Blin(f) was proved by Krieger [22] using different arguments.

Proof. Since f is multilinear and homogeneous, it is enough (by Theorems 9) to show the corre-
sponding lower bound on A[f ]. By Theorem 12, it is enough to show that f is separated.

Assume for the sake of contradiction, that the union of two distinct k-cliques A and B contains
all edges of some third clique C. Since all three cliques are distinct and have the same number of
nodes, C must contain a node u which does not belong to A and a node v which does not belong
to B. This already leads to a contradiction because either the node u (if u = v) or the edge {u, v}
(if u 6= v) of C would remain uncovered by the cliques A and B.

Recall that the dynamic programming algorithm of Floyd–Warshall implies that the all-pairs
shortest path polynomial APSPn, and hence, also the matrix product polynomial MPn, have Min-
circuits of size O(n3); see Theorem 6. On the other hand, using Theorem 12 one can show that
this algorithm is optimal: a cubic number of gates is also necessary.

Corollary 15. Both Min(APSPn) and Min(MPn) are Θ(n3).

Proof. It is enough to show that Min(MPn) = Ω(n3). Recall that MPn(x, y) is the set of all n2

polynomials fij =
∑
k∈[n] xikykj . Since the triangle polynomial TRn =

∑
i,j∈[n] zijfij is just a

single-output version of MPn, and its complexity is by at most an additive factor of 2n2 larger
than that of MPn, the desired lower bound for MPn follows directly from Corollary 13.

Kerr [21] earlier proved Min(MPn) = Ω(n3) using a different argument, which essentially em-
ploys the fact the Min-semiring contains more than two distinct elements. Since this “domain-
dependent” argument may be of independent interest, we sketch it.

Proof. (Due to Kerr [21]) Let F be a Min-circuit computing all n2 polynomials

fij(x) = min{xik + ykj : k = 1, . . . , n} .

By Lemma 2, for each polynomial fij there must be a gate uij , the polynomial Fij produced
at which is of the form Fij = min{fij , Gij}, where Gij is some set of monomials (sums), each
containing at least one monomial of fij .

Assign to every monomial p = xik + ykj of fij a sum gate up with the following two properties:
(i) p is produced at up, and (ii) there is a path from up to uij containing no sum gates. Since
a + a = a does not hold in Min, at least one such gate must exist for each of the monomials
xik + ykj .

It remains therefore to show that no other term xab + ybc gets the same gate up. To show this,
assume the opposite. Then at the gate up some sum

min{xik, α, . . .}+ min{ykj , . . .}

is computed, where α ∈ {xab, ybc} is a single variable distinct from xik and ykj . Set α := 0,
xik = ykj := 1 and set all remaining variables to 2. Then the first minimum in the sum above
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evaluates to 0, and we obtain F̂ij(x) 6 1. But f̂ij(x) = 2 because the term xik + ykj gets value
1 + 1 = 2, and the remaining terms of fij get values > 2 + 0 = 2. This gives the desired
contradiction.

Remark 6. Using more subtle arguments, Paterson [31], and Mehlhorn and Galil [27] succeeded to
prove a cubic lower bound Ω(n3) for MPn even over the boolean semiring B.
Remark 7. The argument used by Schnorr [36] is inductive, and is currently known as the gate-
elimination method. Having a circuit F of n variables, replace its first gate by a new variable, use
induction hypothesis for the resulting circuit F′ of n + 1 variables but of smaller size to make a
desired conclusion about the original circuit F. Using a similar gate-elimination reasoning, Baur
and Strassen [5] proved the following surprising upper bound: if a polynomial f(x1, . . . , xn) can
be produced by a circuit of size s, then the polynomial f and all its n partial derivatives ∂f/∂xi
(i = 1, . . . , n) can all be simultaneously produced by a circuit of size only 4n. (Note that a trivial
upper bound is about sn.) Their (relatively simple) argument uses gate-elimination together with
the chain rule for partial derivatives. If the polynomial f is multilinear, then ∂f/∂xi is a polynomial
obtained from f by removing all monomials not containing xi, and removing xi from all remaining
monomials. In particular, if a sum f =

∑k
i=1 yifi(x1, . . . , xn) can be produced by a circuit of size

s, then all polynomials f, f1, . . . , fk can be simultaneously produced by a circuit of size 4s.

11. Decompositions and Cuts

Besides the gate-elimination method, most of lower bound arguments for monotone arithmetic
circuits follow the following general frame: if a polynomial f can be produced by a circuit of size s,
then f can be written as a sum f =

∑t
i=1 gi of t = O(s) “rectangles” gi. Usually, these “rectangles”

gi are products of two (or more) polynomials of particular degrees. Let us first explain, where these
“rectangles” come from.

Let F be a circuit over some semiring S = (S,+,×, 0, 1). For a gate u in F, let pol(u) denote
the polynomial produced at u, and let Fu=0 denote the circuit obtained from F by replacing the
gate u by the additive identity 0. Recall that a× 0 = 0 holds for all a ∈ S. Hence, the polynomial
Fu=0 produced by Fu=0 consists of only those monomials of F which do not “use” the gate u for
their production. To avoid trivialities, we will always assume that Fu=0 6= F , i.e. that there are
no “redundant” gates.

Lemma 16. For every gate u in F, the polynomial F produced by F can be written as a sum
F = Fu + Fu=0 of two polynomials, the first of which has the form Fu = pol(u)× ext(u) for some
polynomial ext(u).

Proof. If we replace the gate u by a new variable y, the resulting circuit produces a polynomial
of the form y × A+ Fu=0 for some polynomial A. It remains to substitute all occurrences of the
variable y with the polynomial pol(u) produced at the gate u.

Remark 8. Roughly speaking, the number |Fu| of monomials in the polynomial Fu is the “contri-
bution” of the gate u to the production of the entire polynomial F . Intuitively, if this contribution
is small for many gates, then there must be many gates in F. More formally, associate with each
monomial p ∈ F some of its parse-graphs Fp in F. Observe that u ∈ Fp implies p ∈ Fu. Thus,
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double-counting yields

Size(F) =
∑
u∈F

1 >
∑
u∈F

∑
p∈F : u∈Fp

1
|Fu|

=
∑
p∈F

∑
u∈Fp

1
|Fu|

> |F | ·min
p∈F

∑
u∈Fp

1
|Fu|

.

So, in principle, one can obtain strong lower bounds on the total number of gates in F by showing
that this latter minimum cannot be too small.

The polynomial ext(u) in Lemma 16 can be explicitly described by associating polynomials
with paths in the circuit F. Let π be a path from a gate u to the output gate, u1, . . . , um be
all product gates along this path (excluding the first gate u, if it itself is a product gate), and
w1, . . . , wm be input gates to these product gates not lying on the path π. We associate with π the
polynomial pol(π) := pol(w1)× pol(w2)× · · · × pol(wm). Then

ext(u) =
∑
π

pol(π) ,

where the sum is over all paths π from u to the output gate.
Lemma 16 associates sub-polynomials pol(u)× ext(u) of F with nodes (gates) u of F. In some

situations, it is more convenient to associate sub-polynomials with edges. For this, associate with
every edge (u, v), where v = u ∗ w is some gate with ∗ ∈ {+,×} of F, the polynomial

extu(v) := A× ext(v) where A =
{

1 if ∗ = +;
pol(w) if ∗ = ×.

That is, extu(v) = ext(v) if v is a sum gate, and extu(v) = pol(w)× ext(v) if v is a product gate.
A node-cut in a circuit is a set U of its nodes (gates) such that every input-output path contains

a node in U . Similarly, an edge-cut is a set E of edges such that every input-output path contains
an edge in E. Recall that, in our notation, “f = h” for two polynomials f and h only means that
their sets of monomials are the same—their multiplicities (coefficients) may differ.

Lemma 17. If U is a node-cut and E an edge-cut in a circuit F, then

F =
∑
u∈U

pol(u)× ext(u) =
∑

(u,v)∈E
pol(u)× extu(v) .

Proof. The fact that all monomials of the last two polynomials are also monomials of F follows
from their definitions. So, it is enough to show that every monomial p ∈ F belongs to both of
these polynomials. For this, take a parse graph Fp of p. Since U forms a node-cut, the graph Fp
must contain some node u ∈ U . The monomial p has a form p = p′p′′ where p′ is the monomial
produced by the subgraph of Fp rooted in u. Hence, p′ ∈ pol(u) and p′′ ∈ ext(u). Similarly, since
E forms an edge-cut, the graph Fp contains some edge (u, v) ∈ E. The monomial p has the form
p = p′p′′ where p′ is the monomial produced by the subgraph of Fp rooted in u. Hence, p′ ∈ pol(u)
and p′′ ∈ extu(v).

12. Bounds for (k, l)-free Polynomials

A polynomial f is (k, l)-free (1 6 k 6 l) if f does not contain a product of two polynomials, one
with > k monomials and the other with > l monomials. A polynomial f is f -free if it is (k, k)-free,
that is, if

A×B ⊆ f implies min{|A|, |B|} 6 k.
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Note that this alone gives no upper bound on the total number |A×B| of monomials in the product
A×B.

Theorem 18. If a (k, l)-free polynomial f can be produced by a circuit of size s, then f can be
written as a sum of at most 2s products A×B with |A| 6 k and |B| 6 l2. In particular,

A[f ] > |f |2kl2 .

Proof. Our argument is a mix of ideas of Gashkov and Sergeev [10], and of Pippenger [32]. Take
a minimal circuit F producing f ; hence, F = f is (k, l)-free. This implies that every product gate
u = v × w in F must have an input, say w, at which a “small” set A = |pol(w)| of only |A| 6 l
monomials is produced. We thus can remove the edge (w, u) and replace u by a unary (fanin-1)
gate u = v×A of scalar multiplication by this fixed (small) polynomial A. If both inputs produce
small polynomials, then we eliminate only one of them. What we achieve by doing this is that
input gates remain the same as in the original circuit (variables x1, . . . , xn and constants 0, 1), each
product gate has fanin 1, and for every edge (u, v) in the resulting circuit F′, we have an upper
bound

|extu(v)| 6 l · |ext(v)| . (3)

Say that an edge (u, v) in F′ is legal if both |pol(u)| 6 k and |extu(v)| 6 l2 hold. Let E be the
set of all legal edges; hence, Size(F) > |E|/2. By Lemma 17, it remains to show that E forms an
edge-cut of F′.

To show this, take an arbitrary input-output path P in F′, and let e = (u, v) be the last
gate of P with |pol(u)| 6 k. If v is the output gate, then ext(v) is a trivial polynomial 1, and
hence, |extu(v)| 6 l by (3), meaning that (u, v) is a legal edge. Suppose now that v is not the
output gate. Then |pol(u)| 6 k but |pol(v)| > k. Held also |extu(v)| > l2, then (3) would imply
that |ext(v)| > |extu(v)|/l > l. Together with |pol(v)| > k and pol(v) × ext(v) ⊆ F , this would
contradict the (k, l)-freeness of F . Thus, |pol(u)| 6 k and |extu(v)| 6 l2, meaning that (u, v) is a
legal edge.

Together with Theorem 9, Theorem 18 yields the following lower bound over tropical semirings
for polynomials, whose only lower or higher envelopes are required to be (k, l)-free.

Corollary 19. Let f and g be polynomials such that fle and ghe are (k, l)-free for some 1 6 k 6 l.
Then

Min(f) > |fle|
2kl2 and Max(g) > |ghe|

2kl2 .

Remark 9. Using a deeper analysis of circuit structure, Gashkov and Sergeev [9, 10] were able to
even estimate the numbers of sum and product gates: every monotone arithmetic circuit computing
a (k, l)-free polynomial f of n variables must have at least |f |/K − 1 sum gates, and at least
2
√
|f |/K − n− 2 product gates, where K = max{k3, l2} .

Remark 10. Every boolean n × n matrix A = (aij) defines a a set Ay = (f1, . . . , fn) of n linear
polynomials fi(y) =

∑
j aijyj , as well as a single-output bilinear polynomial fA(x, y) =

∑
i xifi(y) =∑

i,j : aij=1 xiyj on 2n variables. Call a boolean matrix A (k, l)-free, if it does not contain any
(k + 1, l + 1) all-1 submatrix. It is clear that the polynomial fA is (k, l)-free if and only if the
matrix A is (k, l)-free.
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Results of Nechiporuk [30] (re-discovered later by Mehlhorn [26] and Pippenger [32]) imply that,
if A is (k, k)-free, then B(Ax) > |A|/4k3, where |A| is the number of 1-entries in A. This, however,
does not immediately yield a similar lower bound on B(fA) for the single-output version fA and, in
fact, no such bound is known so far in the boolean semiring. (A lower bound B(fA) > |A| for (1, 1)-
free matrices is only known when restricted to circuits with gates of fanout 1; see [17, Theorem
7.2].) On the other hand, Theorem 18 gives such a bound at least for tropical and multilinear
boolean circuits: if A is (k, k)-free, then

Min(fA) = Max(fA) = Blin(fA) = A[fA] > |A|/2k3 ,

where the equalities follow from Theorem 9, because the polynomial fA is homogeneous.

13. Rectangle Bound

An m-balanced product-polynomial is a product of two polynomials, one of which has minimum
degree d satisfying m/3 < d 6 2m/3, and is itself a product of two nonempty polynomials.

Lemma 20 (Sum-of-Products). If a polynomial f of minimum degree at least m > 3 can be
produced by a circuit with s product gates, then f can be written as a sum of at most s m-balanced
product-polynomials.

Proof. Let d be the minimum degree of f , and F be a circuit with s product gates producing f .
Hence, F = f and d > m. By the degree du of a gate gate u ∈ F we will mean the minimum degree
of the polynomial produced at u. In particular, the degree of the output gate is d.

Claim 21. For every ε ∈ (1/d, 1), there exists a product gate u with du ∈ (εd/2, εd].

Proof. Start at the output gate of F, and traverse the circuit (in the reverse order of edges) by
always choosing the input of larger degree until a gate v = u ∗ v of degree dv > εd is found such
that both du and dw are 6 εd. Assume w.l.o.g. that du > dw. Since dv 6 du + dw 6 2du, the
gate u has the desired degree εd/2 < du 6 εd. If the gate u is a sum gate, then at least one of its
inputs must have the same degree du. So, we can traverse the circuit further until a product gate
of degree du is found.

Now, we apply Claim 21 with ε := 2m/3d to find a product gate u of degree m/3 = εd/2 6
du 6 εd = 2m/3. By Lemma 16, we can write F as F = Fu +Fu=0 where Fu = A×B is a product
of two polynomials such that the minimum degree of A lies between m/3 and 2m/3, and A itself
is a product of two nonempty polynomials (since u is a product gate); hence, Fu is an m-balanced
product-polynomial. The polynomial Fu=0 is obtained from F by removing some monomials. If
Fu=0 is empty, then we are done. Otherwise, the polynomial Fu=0 still has minimum degree at
least m, and can be produced by a circuit with one product gate fewer. So, we can repeat the same
argument for it, until the empty polynomial is obtained.

Remark 11. Lemma 20 remains true if, instead of the minimum degree measure d(f) of polynomials,
one takes the minimum length l(f) of a monomial of f , where the length of a monomial p is defined
as the number |Xp| of distinct variables occurring in p. Hence, we always have that d(f) > l(f),
and d(f) = l(f) holds if f is multilinear. The same argument works because l(Fu=0) > l(F ), as
long as the polynomial Fu=0 is not empty.
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To upper-bound the maximal possible number |A× B| of monomials in a product-polynomial
A×B ⊆ f , the following measure of factor-density naturally arises: for an integer r > 0, let #r(f)
be the maximum number of monomials in f containing a fixed monomial of degree r as a common
factor. This measure tells us how much the monomials of f are “stretched”: the faster #r(f)
decreases with increasing r, the more stretched f is. Note that, if d is the maximum degree of f ,
then

1 = #d(f) 6 #d−1(f) 6 . . . 6 #1(f) 6 #0(f) = |f | .

The factor-density measure allows to upper-bound the number of monomials in product-poly-
nomials over any semiring which is not multiplicatively-idempotent (where a2 = a holds only for
a = 1). Such are, in particular, the arithmetic semiring as well as all four tropical semirings. The
only property of such semirings we will use is that, if p is a monomial and A is a polynomial, then
|A| 6 |{p} × A| holds. Note that this needs not to hold in semirings which are multiplicatively-
idempotent: the polynomial A = {x, y} has two monomials, but {xy} × A = {x2y, xy2} = {xy}
has only one monomial.
Observation 2. Let A and B be polynomials over a not multiplicatively-idempotent semiring of
maximum degrees a and b. If A×B ⊆ f , then |A×B| 6 #a(f) ·#b(f).

Proof. Fix a monomial p ∈ A of degree |p| = a, and a monomial q ∈ B of degree |q| = b. Since
{p} × B ⊆ f , we have that |B| 6 |{p} × B| 6 #|p|(f) = #a(f). Similarly, since A × {q} ⊆ f , we
have that |A| 6 |A× {q}| 6 #|q|(f) = #b(f).

Lemma 22 (Rectangle Bound). For every polynomial f of minimum degree at least m > 3, there
is an integer m/3 < r 6 2m/3 such that

A[f ] > |f |
#r(f) ·#m−r(f) .

Moreover, the lower bound is on the number of product gates.

Proof. Let F be a minimal monotone arithmetic circuit representing f , and let s = Size(F). By
Lemma 20, the polynomial F = f can be written as a sum of at most s products A × B of
polynomials, where the minimum degree a = d(A) of A satisfies m/3 6 a 6 2m/3; hence, d(B) >
m− a. Observation 2 implies that |A×B| 6 #d(A)(f) ·#d(B)(f) 6 #a(f) ·#m−a(f).

The Rectangle Bound allows one to easily obtain strong lower bounds for some explicit poly-
nomials.

Theorem 23. If f ∈ {PERn,HCn, STn}, then Min(f), Max(f) and Blin(f) are 2Ω(n).

Proof. Since all these three polynomials f are multilinear and homogeneous, it is enough (by
Theorem 9) to prove the corresponding lower bounds on A[f ]. We will obtain such bounds by
applying Lemma 22.

The permanent polynomial f = PERn has |f | = n! multilinear monomials x1,π(1)x2,π(2) · · ·xn,π(n),
one for each permutation π : [n] → [n]. Since at most (n − r)! of the permutations can take r
pre-described values, we have that #r(f) 6 (n − r)!. (In fact, here we even have the equality
#r(f) = (n − r)!.) Lemma 22 gives A[f ] > n!/(n − r)!r! =

(n
r

)
for some n/3 < r 6 2n/3; so,

A[f ] = 2Ω(n).
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The argument for HCn is almost the same: the only difference is that now the monomials
correspond to symmetric, not to all permutations.

The spanning tree polynomial f = STn is a homogeneous polynomial of degree n − 1 with
|f | = nn−2 monomials x2,π(2)x3,π(3) · · ·xn,π(n) corresponding to the functions π : {2, 3, . . . , n} → [n]
such that ∀i ∃k: π(k)(i) = 1. Each spanning tree gives a function with this property by mapping
sons to their father. Now, if we fix some r edges, then r values of functions π whose spanning trees
contain these edges are fixed. Thus, #r(f) 6 (n− r)n−r−2, and Lemma 22 gives A[f ] = 2Ω(n).

Using a tighter analysis (in the spirit of Remark 8) and more involved computations, Jerrum
and Snir [13] obtained even tight lower bounds for PERn and HCn.

The three polynomials in Theorem 23 are homogeneous. To show that the rectangle bound
works also for non-homogeneous polynomials, consider the st-connectivity polynomial STCONn.
We know that this polynomial has Min-circuits of size O(n3) (Remark 3). But Max-circuits for
this polynomial must be of exponential size.

Theorem 24. If f = STCONn+2, then Max(f) and Min[f ] are at least 2Ω(n).

Proof. Consider the higher envelope fhe of f . This is a homogeneous polynomial of degree n with
|fhe| = n! monomials corresponding to paths in Kn+2 from s = 0 to t = n+ 1 with exactly n inner
nodes. Since #r(f) 6 (n− r)!, Lemma 22 (with r = n/3) gives A[fhe] = 2Ω(n). By Theorem 9, the
same lower bound holds for Max(f) and Min[f ].

14. Truly Exponential Lower Bounds

Note that the lower bounds above have the forms 2Ω(
√
n), where n is the number of variables.

Truly exponential lower bounds A[f ] = Ω(2n/2) on the monotone circuit size of multilinear poly-
nomials of n variables were announced by Kasim-Zade [19, 20]. Somewhat earlier, a lower bound
A[f ] = 2Ω(n) was announced by Kuznetsov [23]. Then, Gashkov [9] proposed a general lower
bounds argument for monotone arithmetic circuits and used it to prove an A[f ] = Ω(22n/3) lower
bound.

The construction of the corresponding multilinear polynomials in these works is algebraic.
Say, the monomials of the polynomial f(x, y) of 2n variables constructed in [19, 20] have the form
xa1

1 · · ·xann y
b1
1 · · · ybnn where a ∈ GF (2)n and b = a3 (we view vector a as an element of GF (2n) when

rising it to the 3rd power). That is, monomials correspond to the points of the cubic parabola
{(a, a3) : a ∈ GF (2n)}. The monomials of the polynomial constructed in [9] are defined using
triples (a, b, c) with a, b, c ∈ GF (2n) satisfying a3 + b7 + c15 = 1. The constructed polynomials are
(k, l)-free for particular constants k and l, and the desired lower bounds follow from general lower
bounds of Gashkov [9], and Gashkov and Sergeev [10] for (k, l)-free polynomials (see Sect. 12 for
these bounds).

Without knowing these results, Raz and Yehudayoff [33] have recently used discrepancy argu-
ments and exponential sum estimates to derive a truly exponential lower bound A[f ] = 2Ω(n) for
an explicit multilinear polynomial f(x1, . . . , xn). Roughly, their construction of f is as follows.
Assume that n divided by a particular constant k is a prime number. View a monomial p as a 0/1
vector of its exponents. Split this vector into k blocks of length n/k, view each block as a field
element, multiply these elements, and let cp ∈ {0, 1} be the first bit of this product. Then include
the monomial p in f if and only if cp = 1.
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In this section we use some ideas from [16] to show that truly exponential lower bounds can be
also proved using graphs with good expansion properties. Numerically, our bounds (like those in
[33]) are worse than the bounds in [19, 20, 9, 10] (have smaller constants), but the construction of
polynomials is quite simple (modulo the construction of expander graphs).

Say that a partition [n] = S ∪ T is balanced if n/3 6 |S| 6 2n/3. Define the matching number
m(G) of a graph G = ([n], E) as the largest number m such that, for every balanced partition of
nodes of G, at least m crossing edges form an induced matching. An edge is crossing if it joins a
node in one part of the partition with a node in the other part. Being an induced matching means
that no two endpoints of any two edges of the matching are joined by a crossing edge.

Our construction of hard polynomials is based on the following lemma. Associate with every
graph G = ([n], E) the multilinear polynomial fG(x1, . . . , xn) whose monomials are

∏
i∈S xi over

all subsets S ⊆ [n] such that the induced subgraph G[S] has an odd number of edges of G.

Lemma 25. For every non-empty graph G on n nodes, we have

A[fG] > 2m(G)−2 .

We postpone the proof of this lemma and turn to its application.
The following simple claim gives us a general lower bound on the matching number m(G). Say

that a graph is s-mixed if every two disjoint s-element subsets of its nodes are joined by at least
one edge.

Claim 26. If an n-node graph G of maximum degree d is s-mixed, thenm(G) > (bn/3c−s)/(2d+1).

Proof. Fix an arbitrary balanced partition of the nodes of G into two parts. To construct the
desired induced matching, formed by crossing edges, we repeatedly take a crossing edge and remove
it together with all its neighbors. At each step we remove at most 2d + 1 nodes. If the graph is
s-mixed, then the procedure will run for m steps as long as bn/3c − (2d+ 1)m is at least s.

Thus, we need graphs of small degree that are still s-mixed for small s. Examples of such graphs
are expander graphs. A Ramanujan graph is a regular graph Gn,q of degree q + 1 on n nodes such
that λ(G) 6 2√q, where λ(G) is the second largest (in absolute value) eigenvalue of the adjacency
matrix of G. Explicit constructions of Ramanujan graphs on n nodes for every prime q ≡ 1 mod 4
and infinitely many values of n were given by Margulis [25], Lubotzky, Phillips and Sarnak [24];
these were later extended to the case where q is an arbitrary prime power by Morgenstern [29],
and Jordan and Livné [14].

Theorem 27. If fG(x1, . . . , xn) is the multilinear polynomial associated with the Ramanujan graph
G = Gn,64, then

A[fG] > 20.001n .

Proof. The Expander Mixing Lemma ([2, Lemma 2.3]) implies that, if G is a d-regular graph on
n nodes, and if s > λ(G) · n/d, then G is s-mixed. Now, the graph G = Gn,q is d-regular with
d = q + 1 and has λ(G) 6 2√q. Hence, the graph G is s-mixed for s = 2n/√q > 2√qn/(q + 1).

Our graph G = Gn,64 is a regular graph of degree d = 65, and is s-mixed for s = 2n/
√

64 = n/4.
Lemma 25 gives the desired lower bound.
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It remains to prove Lemma 25.
Call polynomial f(x1, . . . , xn) a product polynomial, if f is a product of two polynomials on

disjoint sets of variables, each of size at least n/3, that is, if f = g(Y ) × h(Z) for some partition
Y ∪Z = {x1, . . . , xn} of variables with |Y |, |Z| > n/3, and some two polynomials g and h on these
variables. Note that we do not require that, say, the polynomial g(Y ) must depend on all variables
in Y : some of them may have zero degrees in g.

Claim 28 ([33]). If F(x1, . . . , xn) is a multilinear circuit of size s with n > 3 input variables, then
the polynomial F can be written as a sum of at most s+ 1 product polynomials.

Proof. Induction on s. For a gate u, let Xu be the set of variables in the corresponding subcircuit
of F. Let v be the output gate of F. If v is an input gate, then F itself is a product polynomial,
since n > 3. So, assume that v is not an input gate. If |Xv| 6 2n/3, then the polynomial F itself
is a product polynomial, because F = F × 1. So, assume that |Xv| > 2n/3. Every gate u in F
entered by gates u1 and u2 admits |Xu| 6 |Xu1 |+ |Xu2 |. Thus, there exists a gate u in F such that
n/3 6 |Xu| 6 2n/3. By Lemma 16, we can write F as F = Fu + Fu=0 where Fu = gu × h with
n/3 6 |Xu| 6 2n/3 and some polynomial h. Moreover, since the circuit is multilinear, the set Xh

of variables in the polynomial h must be disjoint from Xu, implying that |Xh| > n − |Xu| > n/3.
Thus, gu × h is a product polynomial. Since the circuit Fu=0 has size at most s − 1, the desired
decomposition of F follows from the induction hypothesis.

By the characteristic function of a multilinear polynomial f(x1, . . . , xn) we will mean the
(unique) boolean function which accepts a binary vector a ∈ {0, 1}n if and only if the polyno-
mial f contains the monomial xa1

1 x
a2
2 · · ·xann =

∏
i : ai=1 xi. (Note that this boolean function needs

not to be monotone.) In particular, the characteristic function of our polynomial fG is the quadratic
boolean function

φ(x) =
∑
{i,j}∈E

xixj mod 2 .

That is, φ(a) = 1 if the subgraph G[S] induced by the set of nodes S = {i : ai = 1} has an
odd number of edges. Since φ(x) is a non-zero polynomial of degree 2 over GF (2), we have that
|fG| = |φ−1(1)| > 2n−2.

Claim 29. For every graph G on n nodes, every product sub-polynomial of fG contains at most
2n−m(G) monomials.

Proof. Let G × H be a product polynomial contained in fG. This polynomial gives a partition
x = (y, z) of the variables into two parts, each containing at least n/3 variables. Let g(y) and h(z)
be the characteristic functions of G and H, and r(x) = g(y) ∧ h(z). Then |G×H| = |r−1(1)|, and
it is enough to show that |r−1(1)| 6 2n−m(G). When doing this, we will essentially use the fact
that r 6 φ, which follows from the fact that all monomials of G×H are also monomials of fG.

By the definition of m(G), some set M = {y1z1, . . . , ymzm} of m = m(G) crossing edges yizi
forms an induced matching of G. Given an assignment α of constants 0 and 1 to the n−2m variables
outside the matching M , define vectors a, b ∈ {0, 1}m and a constant c ∈ {0, 1} as follows:

• ai = 1 iff an odd number of neighbors of yi get value 1 under α,

• bi = 1 iff an odd number of neighbors of zi get value 1 under α,

• c = 1 iff the number of edges whose both endpoints get value 1 under α is odd.
23



Then the subfunction φα of φ obtained after restriction α is

φα(y1, . . . , ym, z1, . . . , zm) =
m∑
i=1

yizi +
m∑
i=1

yiai +
m∑
i=1

bizi + c mod 2

= IPm(y ⊕ b, z ⊕ a)⊕ IPm(a, b)⊕ c ,

where IPn(y1, . . . , ym, z1, . . . , zm) =
∑m
i=1 yizi mod 2 is the inner product function (scalar prod-

uct). Since a, b and c are fixed, the corresponding 2m × 2m ±1 matrix H with entries H[y, z] =
(−1)φα(y,z) is a Hadamard matrix (rows are orthogonal to each other). Lindsey’s Lemma (see, e.g.
[17, p. 479]) implies that no monochromatic submatrix of H can have more than 2m 1-entries.

Now, the obtained subfunction rα = gα(y1, . . . , ym) ∧ hα(z1, . . . , zm) of r = g(y) ∧ h(z) also
satisfies rα(a, b) 6 φα(a, b) for all a, b ∈ {0, 1}m. Since the set of all pairs (a, b) for which rα(a, b) = 1
forms a submatrix of H, this implies that rα can accept at most 2m such pairs. Since this holds for
each of the 2n−2m assignments α, the desired upper bound |r−1(1)| 6 2m · 2n−2m = 2n−m follows.

This completes the proof of Claim 29, and hence, the proof of Lemma 25.

15. Depth Lower Bounds

So far, we were interested in the size of circuits. Another important measure is the circuit
depth, i.e. the number of nodes in a longest input-output path. For a polynomial f , let Depth[f ]
denote the smallest possible depth of a circuit producing f .

If a polynomial f can be produced by a circuit of size s, what is then the smallest depth of a
circuit producing f? Hyafil [12] has shown that then f can be also produced by a circuit of depth
proportional to (log d)(log sd), where d is the maximum degree of f . (This can be easily shown
by induction on the degree using the decomposition given in Lemma 20.) However, the size of the
resulting circuit may be as large as slog d. A better simulation, leaving the size polynomial in s,
was found by Valiant et al. [40].

Theorem 30 (Valiant et al. [40]). If a polynomial f of maximum degree d can be produced by a
circuit of size s, then f can be also produced by a circuit of size O(s3) and depth O(log s log d).

In particular, if a multilinear polynomial f of n variables can be produced by a circuit F of
polynomial in n size, then Depth[f ] = O(log2 n). By Lemma 4, Depth[f ] = O(log2 n) also holds
if f is only computed by a Max, Min− or Max− circuit of polynomial size. This, however, no
more holds for B and Min circuits: even though F̂ = f̂ holds over these semirings, the produced
polynomial F may have maximum degree exponential in n.

We now turn to proving lower bounds on Depth[f ]. In the previous section, we have shown
that the factor-density measure #r(f) can be used to lower bound the circuit size. By simplifying
previous arguments of Shamir and Snir [37], Tiwari and Tompa [39] have shown that the measure
#r(f) can be also used to lower bound the circuit depth as well. The idea was demonstrated in
[39] on two applications (Theorem 33 and 34 below). Here we put their idea in a general frame.

A subadditive weighting of a circuit F is an assignment µ : F→ R+ of non-negative weights to
the gates of F such that the output gate gets weight > 1, all other gates get weight 6 1, and and
µ(v+w) 6 µ(v)+µ(w) holds for every sum gate v+w. Given such a weighting, define the decrease
Ku at a product gate u = v × w as

Ku = µ(v) · µ(w)
µ(u) .
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Note that, since µ(v) 6 1 holds for every non-output gate v, we have

µ(u) 6 1
Ku
·min{µ(v), µ(w)} .

That is, when entering u from any of its two inputs, the weight must decrease by a factor of at
least Ku. This explains the use of term “decrease”. Let Kr,s = minuKu be the smallest decrease
at a product gate u of degree r, one of whose inputs has degree s; by the degree of a gate we mean
the minimum degree of the polynomial produced at that gate.

Lemma 31. Let F be a circuit, whose produced polynomial has minimum degree d, and let m =
log2 d. Then, for every subadditive weighting, there is sequence d = r0 > r1 > . . . > rm = 1 of
integers such that ri+1 > 1

2ri for all i = 1, . . . ,m, and the circuit F has depth at least

m+ log2

m−1∏
i=0

Kri,ri+1 .

Proof. Construct a path π from the output gate to an input gates as follows: at a sum gate choose
the input of greater weight, and at a product gate choose an input of greater degree. Since the
produced polynomial has minimum degree d, and since at each product gate we chose an input of
greater degree, there must be at least m product gates along π. Let d = r1 > r2 > . . . > rm >
rm+1 = 1 be the degrees of the product gates (and input node) on path π. Let ki = Kri,ri+1 be the
decrease of the i-th product gate. Note by the construction of π that ri+1 > 1

2ri.
Let us now view the path π in the reversed order (from input to output). So, we start with

some gate of weight 6 1 (an input gate). Since the weighting is subadditive, at each edge entering
a sum gate the weight can only increase by a factor of at most 2. So, if s is the number of sum
gates along π, then the total increase in weight is by a factor at most 2s. But when entering the
i-th product gate, the weight decreases by a factor at least ki. Thus, the total loss in the weight is
by a factor at least

∏m−1
i=0 ki. Since the last (output) gate must have weight > 1, this gives

2s ·
m−1∏
i=0

1
ki
> 1 , and hence, s > log2

m−1∏
i=0

ki .

Since Depth[f ] > m+ s, we are done.

We now give a specific weighting, based on the the factor-density measure #r(f). Recall that
#r(f) is the maximum number of monomials in f containing a fixed monomial of degree r as a
common factor. For a polynomial f of minimum degree d, and an integer 1 6 s < r 6 d, define

Kf (r, s) = #d−r(f)
#d−s(f) ·#d−r+s(f) .

Note that we have already used this measure to lower-bound the size of circuits: if f is homogeneous
of degree d, then Lemma 22 yields A[f ] > Kf (d, s) for some d/3 6 s 6 2d/3.

Lemma 32. Let f be a polynomial of minimum degree d, and m = log2 d. Then there is a sequence
d = r0 > r1 > . . . > rm = 1 of integers such that ri+1 > 1

2ri for all i = 1, . . . ,m, and

Depth[f ] > m+ log2

m−1∏
i=0

Kf (ri, ri+1) .
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Proof. Let F be a circuit producing f ; hence, F = f . For a gate u ∈ F, let du be the minimum
degree of the polynomial produced at u. By Theorem 16, we know that F can be written as a
sum F = Au ×B + Fu=0, where Au is the polynomial produced at gate u. Since Au ×B ⊆ f , and
Au has minimum degree du, the polynomial B must contain a monomial p of degree |p| > d− du.
Hence, by Observation 2, we have that |Au| 6 #d−du(f). This suggests the following weighting of
gates:

µ(u) = |Au|
#d−du(f) .

The output gate v then gets weight µ(v) > |f |/#d−d(f) = 1, whereas all other gates get weights
6 1. Moreover, since for every product gate u = v × w, we have that |Au| = |Av| · |Aw| and
du = dv + dw, the decrease Kr,s of this weighting coincides with Kf (r, s). So, it remains to show
that the weighting is subadditive.

To show this, let u = v + w be a sum gate. Then du = min{dv, dw}, and hence, d − du =
max{d− dv, d− dw}. So,

µ(v + w) = |Av|+ |Aw|#d−du(f) = |Av|+ |Aw|
max{#d−dv(f),#d−dw(f)} 6 µ(v) + µ(w) .

Theorem 33 ([37, 39]). If f = PERn, then Depth[f ] > n+ log2 n− 1.

Proof. The permanent polynomial f = PERn is a homogeneous multilinear polynomial of degree
d = n. Moreover, #l(f) = (n− l)! holds for any 1 6 l 6 d. Hence,

Kf (r, s) = r!
s!(r − s)! =

(
r

s

)
.

But ri+1 > 1
2ri implies that

( ri
ri+1

)
> 2ri−ri+1 . Hence,

m−1∏
i=0

Kf (ri, ri+1) =
m−1∏
i=0

(
ri
ri+1

)
> 2r0−rm = 2n−1 .

This lower bound for f = PER is not surprising, since Depth[f ] is always at least logarithmic
in A[f ], and we already know (Theorem 23) that A[f ] is exponential for this polynomial. More
interesting, however, is that the argument above allows to prove super-logarithmic depth lower
bounds even for polynomials that have circuits of polynomial size.

To demonstrate this, consider the following layered st-connectivity polynomial fn,d. The mono-
mials of this polynomial correspond to st-paths in a layered graph. We have d+ 1 disjoint layers,
where the first contains only one node s, the last only one node t, and each of the remaining d− 1
layers contains n nodes. Monomials of fn,d have the form xs,a1xa1,a2 · · ·xad−2,ad−1xad−1,t with ai
belonging to the i-th layer. In other words, this polynomial corresponds to computing the (s, t)-
entry of the product of d− 1 matrices of dimension n× n. Hence, it can be produced by a circuit
of depth O((log d)(logn)).

Theorem 34 ([37, 39]). Depth[fn,d] > (log2 d)(1 + log2 n).
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Bound Property of f Ref.
B(f) > t f is not t-simple (Def. 2) Thm. 8
S(f) = A[f ] f is homogeneous Thm. 9
A[f ] > |f | f is separated (Def. 3) Thm. 12

A[f ] > |f |2kl2 A×B ⊆ f implies |A| 6 l or |B| 6 k Thm. 18

A[f ] > |f |
#r(f) ·#d−r(f) f of minimum degree d Lem. 22

Table 2: A summary of general lower bounds. Here S is an arbitrary tropical semiring, #r(f) is the maximum
possible number of monomials of f containing a fixed monomial of degree r, and r is some integer m/3 6 r 6 2m/3.

Proof. The polynomial f = fn,d is a multilinear homogeneous polynomial of degree d with |f | =
nd−1 monomials. To estimate the factor-density #l(f), let us fix a set E of |E| = l edges. Every
edge e ∈ E constrains either two inner nodes (if s, t 6∈ e) or one inner node. Thus, if we fix l edges,
then at least l inner nodes are constrained, implying that only #l(f) 6 nd−1−l paths can contain
all these edges. In fact, we have an equality #l(f) = nd−1−l: every monomial xs,a1xa1,a2 · · ·xal−1,al

consisting of initial l edges is a factor of exactly nd−1−l monomials of f . Thus, the decrease in this
case is

Kf (r, s) = #d−r(f)
#d−s(f) ·#d−(r−s)(f) = nr−1

ns−1 · nr−s−1 = n

for all 1 6 s < r 6 d. Lemma 32 yields Depth[f ] > log2 d+ log2 n
log2 d, as desired.

16. Conclusion and Open Problems

In this paper we summarized known and presented some new lower-bound arguments for tropical
circuits, and hence, for the dynamic programming paradigm; Table 2 gives a short overview. We
have also shown that these bounds already yield strong (even exponential) lower bounds for a
full row of important polynomials (see Table 1). Still, the known arguments seem to fail for
non-homogeneous polynomials like CONN or STCON.

Almost exact lower bounds on the depth circuits computing these polynomials are known
even in the boolean semiring: Θ(log2 n) for STCONn proved by Karchmer and Wigderson [18],
and Ω(ln2 n/ ln ln) proved by Goldmann and Håstad [11] for CONNn; Yao [42] earlier proved
Ω(ln3/2 n/ ln ln) for this latter polynomial. By Lemma 7, these bounds hold also in tropical semir-
ings.

But the situation with estimating the size of circuit for these polynomial remains unclear. We
know (Theorem 6) that both of them have boolean and Min-circuits of size O(n3), but no lower
bound larger than a trivial quadratic is known.

Open Problem 1. Does B(f) = Ω(n3) or at least Min(f) = Ω(n3) hold for f = STCONn and/or
f = CONNn?

Note that the lower bound Ω(n3) for the all-pairs shortest paths polynomial APSP, given in
Corollary 15 does not automatically imply the same lower bounds for the connectivity polynomial
CONN: a circuit for CONN needs not to compute the polynomials of APSP at separate gates.
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One could show Min(CONN) = Ω(n3) by showing that monotone arithmetic circuits for the
following “multiplicative version” of the triangle polynomial TRn require Ω(n3) gates. Recall that
TRn(x, y, z) =

∑
i,j∈[n] zij

∑
k∈[n] xikykj . We already know (see Corollary 15) that A[TRn] = Θ(n3),

and hence also Min(TRn) = Θ(n3) since the polynomial is homogeneous. Replace now the outer
sum by product, and consider the polynomial TR∗n =

∏
i,j∈[n] zij

∑
k∈[n] xikykj .

Open Problem 2. Does A[TR∗n] = Ω(n3)?

If true, this would yield Min(CONNn) = Ω(n3), because the polynomial TR∗n is homogeneous
(of degree 3n2).
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