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Abstract. We give a nO(logn)-time (n is the input size) blackbox polynomial identity test-
ing algorithm for unknown-order read-once oblivious algebraic branching programs (ROABP). The

best time-complexity known for this class was nO(log2 n) due to Forbes-Saptharishi-Shpilka (STOC
2014), and that too only for multilinear ROABP. We get rid of their exponential dependence on
the individual degree. With this, we match the time-complexity for the unknown order ROABP
with the known order ROABP (due to Forbes-Shpilka (FOCS 2013)) and also with the depth-3 set-
multilinear circuits (due to Agrawal-Saha-Saxena (STOC 2013)). Our proof is simpler and involves
a new technique called basis isolation.

The depth-3 model has recently gained much importance, as it has become a stepping-stone
to understanding general arithmetic circuits. Its restriction to multilinearity has known exponential
lower bounds but no nontrivial blackbox identity tests. In this paper, we take a step towards designing
such hitting-sets. We give the first subexponential whitebox PIT for the sum of constantly many set-
multilinear depth-3 circuits. To achieve this, we define notions of distance and base sets. Distance,
for a multilinear depth-3 circuit (say, in n variables and k product gates), measures how far are the
partitions from a mere refinement. The 1-distance strictly subsumes the set-multilinear model, while
n-distance captures general multilinear depth-3. We design a hitting-set in time (nk)O(∆ log n) for
∆-distance. Further, we give an extension of our result to models where the distance is large (close
to n) but it is small when restricted to certain base sets (of variables).

We also explore a new model of read-once algebraic branching programs (ROABP) where the
factor-matrices are invertible (called invertible-factor ROABP). We design a hitting-set in time

poly(nw
2
) for width-w invertible-factor ROABP. Further, we could do without the invertibility re-

striction when w = 2. Previously, the best result for width-2 ROABP was quasi-polynomial time
(Forbes-Saptharishi-Shpilka, STOC 2014).

1. Introduction. The problem of Polynomial Identity Testing is that of decid-
ing if a given polynomial is nonzero. The complexity of the question depends crucially
on the way the polynomial is input to the PIT test. For example, if the polynomial is
given as a set of coefficients of the monomials, then we can easily check whether the
polynomial is nonzero in polynomial time. The problem has been studied for differ-
ent input models. Most prominent among them is the model of arithmetic circuits.
Arithmetic circuits are the arithmetic analog of boolean circuits and are defined over
a field F. They are directed acyclic graphs, where every node is a ‘+’ or ‘×’ gate and
each input gate is a constant from the field F or a variable from x = {x1, x2, . . . , xn}.
Every edge has a weight from the underlying field F. The computation is done in the
natural way. Clearly, the output gate computes a polynomial in F[x]. We can restate
the PIT problem as: Given an arithmetic circuit C, decide if the polynomial computed
by C is nonzero in time polynomial in the circuit size. Note that, given a circuit, com-
puting the polynomial explicitly is not possible, as it can have exponentially many
monomials. However, given the circuit, it is easy to compute an evaluation of the
polynomial by substituting the variables with constants.

Though there is no known deterministic algorithm for PIT, there are easy ran-
domized algorithms, e.g. [Sch80]. These randomized algorithms are based on the
theorem: A nonzero polynomial, evaluated at a random point, gives a nonzero value
with a good probability. Observe that such an algorithm does not need to access the
structure of the circuit, it just uses the evaluations; it is a blackbox algorithm. The
other kind of algorithms, where the structure of the input is used, are called whitebox
algorithms. Whitebox algorithms for PIT have many known applications. E.g. graph
matching reduces to PIT. On the other hand, blackbox algorithms (or hitting-sets)
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have connections to circuit lower bound proofs. Arguably, this is currently the only
concrete approach towards lower bounds, see [Mul12b, Mul12a]. See the surveys by
Saxena [Sax09, Sax14] and Shpilka & Yehudayoff [SY10] for more applications.

An Arithmetic Branching Program (ABP) is another interesting model of com-
puting polynomials. It consists of a directed acyclic graph with a source and a sink.
The edges of the graph have polynomials as their weights. The weight of a path is the
product of the weights of the edges present in the path. The polynomial computed
by the ABP is the sum of the weights of all the paths from the source to the sink.
It is well known that for an ABP, the underlying graph can seen as a layered graph
such that all paths from the source to the sink have exactly one edge in each layer.
And the polynomial computed by the ABP can be written as a matrix product, where
each matrix corresponds to a layer. The entries in the matrices are weights of the
corresponding edges. The maximum number of vertices in a layer, or equivalently,
the dimension of the corresponding matrices is called the width of the ABP. It is
known that symbolic determinant and ABP are equivalent models of computation
[Tod91, MV97]. Ben-Or & Cleve [BOC92] have shown that a polynomial computed
by a formula of logarithmic depth and constant fan-in, can also be computed by a
width-3 ABP. Thus, ABP is a strong model for computing polynomials. The following
chain of reductions shows the power of ABP and its constant-width version relative
to other arithmetic computation models (see [BOC92] and [Nis91, Lemma 1]).

Constant-depth Arithmetic Circuits ≤p Constant-width ABP

≤p Formulas ≤p ABP ≤p Arithmetic Circuits

Our first result is for a special class of ABP called Read Once Oblivious Arithmetic
Branching Programs (ROABP). An ABP is a read once ABP (ROABP) if the weights
in its n layers are univariate polynomials in n distinct variables, i.e. the i-th layer
has weights coming from F[xπ(i)], where π is a permutation on the set {1, 2, . . . , n}.
When we know this permutation π, we call it an ROABP with known variable order
(it is significant only in the blackbox setting).

Raz and Shpilka [RS05] gave a poly(n,w, δ)-time whitebox algorithm for n-variate
polynomials computed by a width-w ROABP with individual degree bound δ. Re-
cently, Forbes and Shpilka [FS12, FS13] gave a poly(n,w, δ)log n-time blackbox algo-
rithm for the same, when the variable order is known. Subsequently, Forbes et al.
[FSS14] gave a blackbox test for the case of unknown variable order, but with time
complexity being poly(n)δ logw logn. Note the exponential dependence on the degree.
Their time complexity becomes quasi-polynomial in case of multilinear polynomials,
i.e. δ = 1.

In another work Jansen et al. [JQS10b] gave quasi-polynomial time blackbox test
for a sum of constantly many multilinear “ROABP”. Their definition of “ROABP” is
more stringent. They assume that every variable appears in at most once in the ABP.
Later, this result was generalized to “read-r OABP” [JQS10a], where a variable can
occur in at most one layer, and on at most r edges. Our definition of ROABP seems
much more powerful than both of these.

We improve the result of [FSS14] and match the time complexity for the unknown
order case with the known order case (given by [FS12, FS13]). Unlike [FSS14], we do
not have exponential dependence on the individual degree. Formally,

Theorem 1. Let C(x) be an n-variate polynomial computed by a width-w ROABP
(unknown order) with the degree of each variable bounded by δ. Then there is a
poly(n,w, δ)log n-time hitting set for C.
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Remark. Our algorithm also works when the layers have their weights as general
sparse polynomials (still over disjoint sets of variables) instead of univariate polyno-
mials (see the detailed version in Section 3).

A polynomial computed by a width-w ABP can be written as S⊤D(x)T , where
S, T ∈ Fw and D(x) ∈ Fw×w[x] is a polynomial over the matrix algebra. Like [ASS13,
FSS14], we try to construct a basis (or extract the rank) for the coefficient vectors
in D(x). We actually construct a weight assignment on the variables, which isolates
a basis in the coefficients in D(x). This idea is inspired from the rank extractor
techniques in [ASS13, FSS14]. Our approach is to directly work with D(x), while
[ASS13, FSS14] have applied a rank extractor to small subcircuits of D(x), by shifting
it carefully. In fact, the idea of basis isolating weight assignment evolved when we
tried to find a direct proof, for the rank extractor in [ASS13], which does not involve
subcircuits. But, our techniques go much further than both [ASS13, FSS14], as is
evident from our strictly better time-complexity results.

The boolean analog of ROABP, read once ordered branching programs (ROBP)
have been studied extensively, with regard to the RL vs. L question. For ROBP, a
pseudorandom generator (PRG) with seed length O(log2 n) (nO(logn) size sample set)
is known in the case of known variable order [Nis90]. This is analogous to the [FS13]
result for known order ROABP. On the other hand, in the unknown order case, the

best known seed length is of size n1/2+o(1)) (2n
1/2+o(1)

size sample set) [IMZ12]. One
can ask: Can the result for the unknown order case be matched with the known order
case in the boolean setting as well. Recently, there has been a partial progress in this
direction by [SVW14].

The PIT problem has also been studied for various restricted classes of circuits.
One such class is depth-3 circuits. Our second result is about a special case of this
class. A depth-3 circuit is usually defined as a ΣΠΣ circuit: The circuit gates are in
three layers, the top layer has an output gate which is +, second layer has all × gates
and the last layer has all + gates. In other words, the polynomial computed by a ΣΠΣ
circuit is of the form C(x) =

∑k
i=1 ai

∏ni

j=1 ℓij , where ni is the number of input lines

to the i-th product gate and ℓij is a linear polynomial of the form b0+
∑n

r=1 brxr. An
efficient solution for depth-3 PIT is still not known. Recently, it was shown by Gupta
et al. [GKKS13], that depth-3 circuits are almost as powerful as general circuits. A
polynomial time hitting-set for a depth-3 circuit implies a quasi-poly-time hitting-set
for general circuits. Till now, for depth-3 circuits, efficient PIT is known when the
top fan-in is assumed to be constant [DS07, KS07, KS09, KS11, SS11, SS12, SS13]
and for certain other restrictions [Sax08, SSS13, ASSS12].

On the other hand, there are exponential lower bounds for depth-3 multilinear
circuits [RY09]. Since there is a connection between lower bounds and PIT [Agr05],
we can hope that solving PIT for depth-3 multilinear circuits should also be feasible.
This should also lead to new tools for general depth-3.

A polynomial is said to be multilinear if the degree of every variable in every term
is at most 1. The circuit C(x) is a multilinear circuit if the polynomial computed at
every gate is multilinear. A polynomial time algorithm is known only for a sub-class of
multilinear depth-3 circuits, called depth-3 set-multilinear circuits. This algorithm is
due to Raz and Shpilka [RS05] and is whitebox. In a depth-3 multilinear circuit, since
every product gate computes a multilinear polynomial, a variable occurs in at most
one of the ni linear polynomials input to it. Thus, each product gate naturally induces
a partition of the variables, where each color (i.e. part) of the partition contains the
variables present in a linear polynomial ℓij . Further, if the partitions induced by all
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the k product gates are the same then the circuit is called a depth-3 set-multilinear
circuit.

Agrawal et al. [ASS13] gave a quasi-polynomial time blackbox algorithm for the
class of depth-3 set-multilinear circuits. But till now, no subexponential time test
(not even whitebox) was known even for sum of two set-multilinear circuits. We
give a subexponential time whitebox PIT for sum of constantly many set-multilinear
circuits.

Theorem 2. Let C(x) be a n-variate polynomial, which is a sum of c set-

multinear depth-3 circuits, each having top fan-in k. Then there is a nO(2c−1n1−ǫ log k)-
time whitebox test for C, where ǫ := 1/2c−1.

To achieve this, we define a new class of circuits, as a tool, called multilinear
depth-3 circuits with ∆-distance. A multilinear depth-3 circuit has ∆-distance if there
is an ordering on the partitions induced by the product gates, say (P1,P2, . . . ,Pk),
such that for any color in the partition Pi, there exists a set of ≤ (∆ − 1) other
colors in Pi such that the set of variables in the union of these ≤ ∆ colors are exactly
partitioned in the upper partitions, i.e. {P1,P2, . . . ,Pi−1}. As we will see, such sets
of ∆ colors form equivalence classes of the colors at partition Pi. We call them
friendly neighborhoods and they help us in identifying subcircuits. Intuitively, the
distance measures how far away are the partitions from a mere refinement sequence
of partitions, P1 ≤ P2 ≤ · · · ≤ Pk. A refinement sequence of partitions will have
distance 1. On the other hand, general multilinear depth-3 circuits can have at most
n-distance.

As it turns out, a polynomial computed by a depth-3 ∆-distance circuit (top fan-
in k) can also be computed by a width-O(kn∆) ROABP (see Lemma 14). Thus, we
get a poly(nk)∆ logn-time hitting set for this class, from Theorem 1. Next, we use a
general result about finding a hitting set for a class m-base-sets-C, if a hitting set is
known for class C. A polynomial is in m-base-sets-C, if there exists a partition of the
variables into m base sets such that restricted to each base set (treat other variables
as field constants), the polynomial is in class C. We combine these two tools to prove
Theorem 2. We show that a sum of constantly many set-multilinear circuits falls into
the class m-base-sets-∆-distance, for m∆ = o(n).

Agrawal et al. [AGKS13] had achieved rank concentration, which implies a hitting
set, for the class m-base-sets-∆-distance, but through complicated proofs. On the
other hand, this work gives only a hitting set for the same class, but with the advantage
of simplied proofs.

Our third result deals again with arithmetic branching programs. The results of
[BOC92] and [SSS09] show that the constant-width ABP is already a strong model.
Here, we study constant-width ABP with some natural restrictions.

We consider a class of ROABPs where all the matrices in the matrix product,
except the left-most and the right-most matrices, are invertible. We give a blackbox
test for this class of ROABP. In contrast to [FSS14] and our Theorem 1, this test
works in polynomial time if the dimension of the matrices is constant.

Note that the class of ABP, where the factor matrices are invertible, is quite
powerful, as Ben-Or and Cleve [BOC92] actually reduce formulas to width-3 ABP with
invertible factors. Saha, Saptharishi and Saxena [SSS09] reduce depth-3 circuits to
width-2 ABP with invertible factors. But the constraints of invertibility and read-once
together seem to restrict the computing power of ABP. Interestingly, an analogous
class of read-once boolean branching programs called permutation branching programs
has been studied recently [KNP11, De11, Ste12]. These works give PRG for this class
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(for constant width) with seed-length O(log n), in the known variable order case. In
other words, they give polynomial size sample set which can fool these programs. For
the unknown variable order case, Reingold et al. [RSV13] gave a PRG with seed-
length O(log2 n). Our polynomial size hitting sets for the arithmetic setting work for
any unknown variable order. Hence, it is better as compared to the currently known
results for the boolean case.

Theorem 3 (Informal version). Let C(x) = D⊤
0 (

∏d
i=1 Di)Dd+1 be a polynomial

such that D0 ∈ Fw[xj0 ] and Dd+1 ∈ Fw[xjd+1
] and for all i ∈ [d], Di ∈ Fw×w[xji ] is

an invertible matrix (order of the variables is unknown). Let the degree bound on Di

be δ for 0 ≤ i ≤ d+ 1. Then there is a poly((δn)w
2

)-time hitting-set for C(x).
The proof technique here is very different from the first two theorems (here we

show rank concentration over a non-commutative algebra, see the proof idea in Sec-
tion 5). Our algorithm works even when the factor matrices have their entries as
general sparse polynomials (still over disjoint sets of variables) instead of univariate
polynomials (see the detailed version in Section 5). Running time in this case grows
to quasi-polynomial (but is still better than Theorem 1 in several interesting cases).

If the matrices are 2× 2, then we do not need the assumption of invertibility (see
Theorem 34, Section 5.3). So, for width-2 ROABP our results are strictly stronger
than [FSS14] and our Theorem 1. Here again, there is a comparable result in the
boolean setting. PRG with seed-length O(log n) (polynomial size sample set) are
known for width-2 ROBP [BDVY13].

2. Preliminaries.

Hitting Set. A set of points H is called a hitting set for a class C of polynomials
if for any nonzero polynomial P in C, there exists a point in H where P evaluates
to a nonzero value. An f(n)-time hitting set would mean that the hitting set can be
generated in time f(n) for input size n.

2.1. Notation. Z+ denotes the set N ∪ {0}. [n] denotes the set {1, 2, . . . , n}.
[[n]] denotes the set {0, 1, . . . , n}. x will denote a set of variables. For a set of n
variables x = {x1, x2, . . . , xn} and for an exponent e = (e1, e2, . . . , en) ∈ Zn

+, x
e will

denote the monomial
∏n

i=1 x
ei
i . The support of a monomial is the set of variables

that have degree ≥ 1 in that monomial. The support size of the monomial is the
cardinality of its support. A polynomial is called s-sparse if there are s monomials in
it with nonzero coefficients. For a polynomial P , the coefficient of the monomial m
in P (x) is denoted by coefP (m).

Fm×n represents the set of all m × n matrices over the field F. Mm×m(F) will
denote the algebra of m×m matrices over the field F. Let Ak(F) be any k-dimensional
algebra over the field F. For any two elements A = (a1, a2, . . . ak) ∈ Ak(F) and
B = (b1, b2, . . . bk) ∈ Ak(F) (having a natural basis representation in mind), their dot
product is defined as A ·B =

∑n
i=1 akbk; and the product AB will denote the product

in the algebra Ak(F).
Part(S) denotes the set of all possible partitions of the set S. Elements in a

partition are called colors (or parts).

2.2. Arithmetic Branching Programs. An ABP is a directed graph with
d + 1 layers of vertices {V0, V1, . . . , Vd} and a start node u and an end node t such
that the edges are only going from u to V0, Vi−1 to Vi for any i ∈ [d], Vd to t. A
width-w ABP has |Vi| ≤ w for all i ∈ [[d]]. Let the set of nodes in Vi be {vi,j | j ∈ [w]}.
All the edges in the graph have weights from F[x], for some field F. As a convention,
the edges going from s and coming to t are assumed to have weights from the field F.
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For an edge e, let us denote its weight byW (e). For a path p from u to t, its weight
W (p) is defined to be the product of weights of all the edges in it, i.e.

∏

e∈p W (e).
Consider the polynomial C(x) =

∑

p∈paths(u,t) W (p) which is the sum of the weights

of all the paths from u to t. This polynomial C(x) is said to be computed by the
ABP.

It is easy to see that this polynomial is the same as S⊤(
∏d

i=1 Di)T , where S, T ∈
Fw and Di is a w × w matrix for 1 ≤ i ≤ d such that

S(ℓ) = W (u, v0,ℓ) for 1 ≤ ℓ ≤ w

Di(k, ℓ) = W (vi−1,k, vi,ℓ) for 1 ≤ ℓ, k ≤ w and 1 ≤ i ≤ d

T (k) = W (vd,k, t) for 1 ≤ k ≤ w

ROABP. An ABP is called a read once oblivious ABP (ROABP) if the edge
weights in the different layers are univariate polynomials in distinct variables. For-
mally, the entries in Di come from F[xπ(i)] for all i ∈ [d], where π is a permutation
on the set [d].

sparse-factor ROABP. We call the ABP a sparse-factor ROABP if the edge
weights in different layers are sparse polynomials in disjoint sets of variables. Formally,
if there exists an unknown partition of the variable set x into d sets {x1,x2, . . . ,xd}
such that Di ∈ Fw×w[xi] is a s-sparse polynomial, for all i ∈ [d], then the correspond-
ing ROABP is called a s-sparse-factor ROABP. It is read once in the sense that in
the corresponding ABP, any particular variable contributes to at most one edge on
any path.

2.3. Kronecker Map. We will often use a weight function on the variables
which separates a desired set of monomials. Let w : x → N be a weight function on
the variables. Consider its natural extension to the set of all monomials w : Zn

+ → N
as follows: w(Πn

i=1x
γi

i ) =
∑n

i=1 γiw(xi), where γi ∈ Z+, ∀i ∈ [n].

Lemma 4 (Efficient Kronecker map [Kro82, Agr05]). Let M be the set of all
monomials in n variables x = {x1, x2, . . . , xn} with maximum individual degree δ.
Let A be a set of pairs of monomials from M. Then there exists a (constructible)
set of N -many weight functions w : x → [1, . . . , N logN ], such that at least one of
them separates all the pairs in A, i.e. for any (m,m′) ∈ A, w(m) 6= w(m′), where
N := O(n|A| log(δ + 1)).

Proof. Since we want to separate the n-variate monomials with maximum indi-
vidual degree δ, we use the näıve Kronecker map W : xi 7→ (δ + 1)i−1 for all i ∈ [n].
It can be easily seen that W will give distinct weights to any two monomials (with
maximum individual degree δ). But, the weights given by W are exponentially high.

So, we take the weight function W modulo p, for many small primes p. Each
prime p leads to a different weight function. That is our set of candidate weight
functions. We need to bound the number N of primes that ensures that at least one
of the weight functions separates all the monomial pairs in A. We choose the smallest
N primes, say P is the set. By the effective version of the Prime Number Theorem,
the highest value in the set P is N logN .

To bound the number N of primes: We want a p ∈ P such that ∀(m,m′) ∈
A, W (m)−W (m′) 6≡ 0 (mod p). Which means,

∃p ∈ P , p ∤
∏

(m,m′)∈A

(W (m)−W (m′)) .
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In other words,

∏

p∈P

p ∤
∏

(m,m′)∈A

(W (m)−W (m′)) .

This can be ensured by setting
∏

p∈P p >
∏

(m,m′)∈A (W (m)−W (m′)). There are

|A| such monomial pairs and each W (m) < nδ(δ+1)n−1. Also,
∏

p∈P p > 2N . Hence,
N = O(n|A| log(δ + 1)) suffices.

3. Hitting set for ROABP: Theorem 1. Like [ASS13] and [FSS14], we work
with the vector polynomial. I.e. for a polynomial computed by a width-w ROABP,
C(x) = S⊤(

∏d
i=1 Di)T , we see the product D :=

∏d
i=1 Di as a polynomial over the

matrix algebra Mw×w(F). We can write the polynomial C(x) as the dot product
R · D, where R = ST⊤. The vector space spanned by the coefficients of D(x) is
called the coefficient space of D(x). This space will have dimension at most w2. We
essentially try to construct a small set of vectors, by evaluating D(x), which can span
the coefficient space of D(x). Clearly, if C 6= 0 then the dot product of R with at
least one of these spanning vectors will be nonzero. And thus, we get a hitting set.

Unlike [ASS13] and [FSS14], we directly work with the original polynomial D(x),
instead of shifting it and breaking it into subcircuits. Our approach for finding the
hitting set is to come up with a weight function on the variables which can isolate a
basis for the coefficients of the polynomial D(x). This can be seen as a generalization
of isolating a monomial for a polynomial in F[x], which is a usual technique for PIT
(e.g. sparse PIT [KS01]).

We present our results for polynomials over arbitrary algebra. Let Ak(F) be a
k-dimensional algebra over the field F. Let x = {x1, x2, . . . , xn} be a set of variables
and let D(x) be a polynomial in Ak(F)[x] with highest individual degree δ. Let M
denote the set of all monomials over the variable set x with highest individual degree
δ.

Now, we will define a basis isolating weight assignment for a polynomial D ∈
Ak(F)[x] which would lead to a hitting set for the polynomial C ∈ F[x], where C =
R ·D, for some R ∈ Ak(F).

Definition 5 (Basis Isolating Weight Assignment). A weight function w : x → N
is called a basis isolating weight assignment for a polynomial D(x) ∈ Ak(F)[x] if there
exists a set of monomials S ⊆ M (k′ := |S| ≤ k) whose coefficients form a basis for
the coefficient space of D(x), such that

• for any m,m′ ∈ S, w(m) 6= w(m′) and
• for any monomial m ∈ M \ S,

coefD(m) ∈ span{coefD(m′) | m′ ∈ S, w(m′) < w(m)}.

The above definition is equivalent to saying that there exists a unique minimum
weight basis (according to the weight function w) among the coefficients ofD, and also
the basis monomials have distinct weights. We skip the easy proof for this equivalence,
as we will not need it. Note that a weight assignment, which gives distinct weights to
all the monomials, is indeed a basis isolating weight assignment. But, it will involve
exponentially large weights. To, find an efficient weight assignment one must use some
properties of the given circuit. First, we show how such a weight assignment would
lead to hitting set. We will actually show that it isolates a monomial in C(x).

Lemma 6. Let w : x → N is a basis isolating weight assignment for a polynomial
D(x) ∈ Ak(F)[x]. And let C = R ·D be a nonzero polynomial, for some R ∈ Ak(F).
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Then, after the substitution xi = tw(xi) for all i ∈ [n], the polynomial C remains
nonzero, where t is an indeterminate.

Proof. LetDm ∈ Ak(F) denote the coefficient coefD(m). It is easy to see that after
the mentioned substitution, the new polynomial C′(t) is equal to

∑

m∈M(R·Dm)tw(m).
Let us say that S ⊂ M is the set of monomials whose coefficients form the isolated

basis for D. According to the definition of the basis isolating weight assignment, for
any monomial m ∈ M \ S,

Dm ∈ span{Dm′ | m′ ∈ S, w(m′) < w(m)}. (1)

First, we claim that ∃m′ ∈ S such that R ·Dm′ 6= 0. For the sake of contradiction,
let us assume that ∀m′ ∈ S, R · Dm′ = 0. Taking the dot product with R on both
the sides of Equation (1), we get that for any monomial m ∈ M \ S,

R ·Dm ∈ span{R ·Dm′ | m′ ∈ S, w(m′) < w(m)}.
Hence, R ·Dm = 0, ∀m ∈ M. That means C(x) = 0, which contradicts our assump-
tion.

Now, let m∗ be the minimum weight monomial in S whose coefficient gives a
nonzero dot product with R, i.e. m∗ = argmin

m∈S
{w(m) | R · Dm 6= 0}. There is a

unique such monomial in S because all the monomials in S have distinct weights.
We claim that coefC′(tw(m∗)) 6= 0 and hence C′(t) 6= 0. To see this, consider any

monomial m, other than m∗, with w(m) = w(m∗). The monomial m has to be in the
set M\ S, as the monomials in S have distinct weights. From Equation (1),

Dm ∈ span{Dm′ | m′ ∈ S, w(m′) < w(m∗)}.
Taking dot product with R on both the sides we get,

R ·Dm ∈ span{R ·Dm′ | m′ ∈ S, w(m′) < w(m∗)}.
But, by the choice of m∗, R ·Dm′ = 0, for any m′ ∈ S with w(m′) < w(m∗). Hence,
R ·Dm = 0, for any m 6= m∗ with w(m) = w(m∗).

So, the coefficient coefC′(tw(m∗)) can be written as
∑

m∈M
w(m)=w(m∗)

R ·Dm = R ·Dm∗ ,

which, we know, is nonzero.
To construct a hitting set for C, we can try many possible field values of t. The

number of such values needed will be the degree of C after the substitution, which is
at most (nδmaxi w(xi)). Hence, the cost of the hitting set is dominated by the cost
of the weight function, i.e. the maximum weight given to any variable and the time
taken to construct the weight function.

In the next step, we show that such a basis isolating weight assignment can indeed
be found for a sparse-factor ROABP, but with cost quasi-polynomial in the input size.
First, we make the following observation that it suffices that the coefficients of the
monomials not in S, linearly depend on any coefficients with strictly smaller weight,
not necessarily coming from S.

Observation 7. If, for a polynomial D ∈ Ak(F)[x], there exists a weight function
w : x → N and a set of monomials S ⊆ M (k′ := |S| ≤ k) such that for any monomial
m ∈ M \ S,

coefD(m) ∈ span{coefD(m′) | m′ ∈ M, w(m′) < w(m)}.
8



then we can also conclude that for any monomial m ∈ M \ S,

coefD(m) ∈ span{coefD(m′) | m′ ∈ S, w(m′) < w(m)}.

Proof. We are given that for any monomial m ∈ S := M\ S,

coefD(m) ∈ span{coefD(m′) | m′ ∈ M, w(m′) < w(m)}.

Any coefficient coefD(m′) on the right hand side of this equation, which corresponds to
an index in S, can be replaced with some other coefficients, which have further smaller
weight. If we keep doing this, we will be left with the coefficients only corresponding to
the set S, because in each step we are getting smaller and smaller weight coefficients.

In our construction of the weight function, we will create the set S := M \ S
incrementally, i.e. in each step we will make more coefficients depend on strictly
smaller weight coefficients. Finally, we will be left with only k′ (the rank of the
coefficient space of D) many coefficients in S. We present the result for an arbitrary
k-dimensional algebra Ak(F), instead of just the matrix algebra.

Lemma 8 (Weight Construction). Let x be given by a union of d disjoint sets
of variables x1 ⊔ x2 ⊔ · · · ⊔ xd, with |x| = n. Let D(x) = P1(x1)P2(x2) · · ·Pd(xd),
where Pi ∈ Ak(F)[xi] is a sparsity-s, individual degree-δ polynomial, for all i ∈ [d].
Then, we can construct a basis isolating weight assignment for D(x) with the cost
being (poly(k, s, n, δ))log d.

Proof. In our construction, the final weight function w will be a combination
of (log d + 1)-many different weight functions, say (w0, w1, . . . , wlog d). Let us say,
their precedence is decreasing from left to right, i.e. w0 has the highest precedence
and wlog d has the lowest precedence. As mentioned earlier, we will build the set S
(the set of monomials whose coefficients are in the span of strictly smaller weight
coefficients than themselves) incrementally in (log d+ 1) steps, using weight function
wi in the (i+ 1)-th step.

Iteration 0: LetM0,1,M0,2, . . . ,M0,d be the sets of monomials and C0,1, C0,2, . . . , C0,d
be the sets of coefficients in the polynomials P1, P2, . . . , Pd respectively.

Notation. The product of two sets of monomials M1 and M2 is defined as
M1 ×M2 = {m1m2 | m1 ∈ C1, m2 ∈ C2}. The product of any two sets of coefficients
C1 and C2 is defined as C1 × C2 = {c1c2 | c1 ∈ C1, c2 ∈ C2}.

The crucial property of the polynomial D is that the set of coeffcients in D, C0, is
just the product C0,1×C0,2×· · ·×C0,d. Similary, the set of all the monomials in D, say
M0, can be viewed as the product M0,1×M0,2×· · ·×M0,d. Let m := mama+1 · · ·mb

be a monomial, where 1 ≤ a ≤ b ≤ d and mj ∈ M0,j, for a ≤ j ≤ b. Then Dm will
denote the coefficient coefPa(ma) coefPa+1(ma+1) · · · coefPb

(mb).
Let us fix w0 : x → N to be a weight function on the variables which gives distinct

weights to all the s monomials in M0,i, for each i ∈ [d]. As w0 assigns distinct weights
to these monomials, so does the weight function w.

For each Pi we do the following:
• arrange the coefficients in C0,i in increasing order of their weight according to
w (or equivalently, according to w0),

• choose a maximal set of linearly independent coefficients, in a greedy manner,
going from lower weights to higher weights.

The fact that the weight functions w1, w2, . . . , wlog d are not defined yet does not mat-
ter because w0 has the highest precedence. The total order given to the monomials in
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M0,i by w0 is the same as given by w, irrespective of what the functions w1, . . . , wlog d

are chosen to be.
This gives us a basis for the coefficients of Pi, say C′

0,i. Let M′
0,i denote the

monomials in Pi corresponding to these basis coefficients. From the construction of
the basis, it follows that for any monomial m ∈ M0,i \M′

0,i ,

Dm ∈ span{Dm′ | m′ ∈ M′
0,i, w(m

′) < w(m)}. (2)

Now, consider any monomial m ∈ M which is not present in the set M′
0 :=

M′
0,1 ×M′

0,2 × · · · ×M′
0,d. Let m = m1m2 · · ·md, where mi ∈ M0,i for all i ∈ [d].

We know that for at least one j ∈ [d], mj ∈ M0,j \M′
0,j . Then using Equation (2)

we can write the following about Dm = Dm1Dm2 · · ·Dmd
,

Dm ∈ span{Dm1 · · ·Dmj−1Dm′

j
Dmj+1 · · ·Dmd

| m′
j ∈ M′

0,j , w(m
′
j) < w(mj)}.

This holds, because the algebra product is bilinear. Equivalently, for any monomial
m ∈ M0 \M′

0,

Dm ∈ span{Dm′ | m′ ∈ M0, w(m
′) < w(m)}.

This is true because

w(m1) + · · ·+ w(m′
j) + · · ·+ w(md) < w(m1) + · · ·+ w(mj) + · · ·+ w(md) = w(m).

Hence, all the monomials in M0 \M′
0 can be put into S, i.e. their corresponding

coefficients depend on strictly smaller weight coefficients.
Iteration 1: Now, let us consider monomials in the set M′

0 = M′
0,1 × M′

0,2 ×
· · · ×M′

0,d. Let the corresponding set of coefficients be C′
0 := C′

0,1 × C′
0,2 × · · · × C′

0,d.
Since, the underlying algebra Ak(F) has dimension at most k and the coefficients
in C′

0,i form a basis for C0,i, |M′
0,i| ≤ k, for all i ∈ [d]. In the above product, let

us make d/2 disjoint pairs of consecutive terms, and for each pair, multiply the two
terms in it. Putting it formally, let us define C1,j to be the product C′

0,2j−1 × C′
0,2j

and similarly M1,j := M′
0,2j−1 ×M′

0,2j, for all j ∈ [d/2] (if d is odd, we can make it
even by multiplying the identity element of Ak(F) in the end). Now, let C1 := C′

0 =
C1,1×C1,2×· · ·×C1,d1, and M1 := M′

0 = M1,1×M1,2×· · ·×M1,d1, where d1 := d/2.
For any i ∈ [d1], M1,i has at most k2 monomials.

Now, we fix the weight function w1 : x → N such that it gives distinct weights
to all the monomials in M1,i, for each i ∈ [d1]. As w1 separates these monomials,
so does the weight function w. Now, we repeat the same procedure of constructing a
basis in a greedy manner for C1,i according to the weight function w, for each i ∈ [d1].
Let the basis coefficients for C1,i be C′

1,i and corresponding monomials be M′
1,i.

As argued before, any coefficient in C1, which is outside the set C′
1 := C′

1,1 ×
C′
1,2 × · · · × C′

1,d1
, is in the span of strictly smaller weight (than itself) coefficients.

So, we can also put the corresponding monomials M1 \ M′
1 in S where M′

1 :=
M′

1,1 ×M′
1,2 × · · · ×M′

1,d1
.

Iteration r: We keep repeating the same procedure for (log d + 1)-many rounds.
After round r, say the set of monomials we are left with is given by the product
M′

r−1 = M′
r−1,1×M′

r−1,2×· · ·×M′
r−1,dr−1

, where Mr−1,i has at most k monomials,

for each i ∈ [dr−1] and dr−1 = d/2r−1. In the above product, we make dr−1/2 disjoint
pairs of consecutive terms, and multiply the two terms in each pair. Let us say we
get Mr := M′

r−1 = Mr,1 × Mr,2 × · · · × Mr,dr , where dr = dr−1/2. Say, the
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corresponding set of coefficients is given by Cr = Cr,1 × Cr,2 × · · · × Cr,dr . Note that
|Mr,i| ≤ k2, for each i ∈ [dr].

We fix the weight function wr such that it gives distinct weights to all the mono-
mials in the set Mr,i, for each i ∈ [dr]. We once again mention that fixing of wr does
not affect the greedy basis constructed in earlier rounds and hence the monomials
which were put in the set S, because wr has less precendence than any wr′ , for r

′ < r.
For each Cr,i, we construct a basis in a greedy manner going from lower weight to

higher weight (according to the weight function w). Let this set of basis coefficients
be C′

r,i and corresponding monomials be M′
r,i, for each i ∈ [dr]. Let C′

r := C′
r,1 ×

C′
r,2 × · · · × C′

r,dr
and M′

r := M′
r,1 ×M′

r,2 × · · · ×M′
r,dr

. Arguing similar as before
we can say that each coefficient in Cr,i \ C′

r,i is in the span of strictly smaller weight
coefficients (from C′

r,i) than itself. Hence, the same can be said about any coefficient

in the set Cr \ C′
r. So, all the monomials in the set Mr \M′

r can be put into S. Now,
we are left with monomials M′

r = M′
r,1 ×M′

r,2 × · · · ×M′
r,dr

for the next round.
Iteration log d: As in each round, the number of terms in the product gets halved,

after log d rounds we will be left with just one term, i.e.Mlog d = M′
log d−1,1M′

log d−1,2 =
Mlog d,1. Now, we will fix the function wlog d which separates all the monomials in
Mlog d,1. By arguments similar as above, we will be finally left with at most k′ mono-
mials in S, which will all have distinct weights. It is clear that for every monomial in
S, its coefficient will be in the span of strictly smaller weight coefficients than itself.

Now, let us look at the cost of this weight function. In the first round, w0 needs to
separate at most O(ds2) many pairs of monomials. For each 1 ≤ r ≤ log d, wr needs
to separate at most O(dk4) many pairs of monomials. From Lemma 4, to construct
wr, for any 0 ≤ r ≤ log d, one needs to try poly(k, s, n, δ)-many weight functions
each having highest weight at most poly(k, s, n, δ) (as d is bounded by n). To get
the correct combination of the weight functions (w0, w1, . . . , wlog d) we need to try all
possible combinations of these polynomially many choices for each wr. Thus, we have
to try (poly(k, s, n, δ))log d many combinations.

To combine these weight functions we can choose a large enough number B
(greater than the highest weight a monomial can get in any of the weight functions),
and define w := w0B

log d + w1B
log d−1 + · · · + wlog d. The choice of B ensures that

the different weight functions cannot interfere with each other, and they also get the
desired precedence order.

The highest weight a monomial can get from the weight function w would be
(poly(k, s, n, δ))log d. Thus, the cost of w remains (poly(k, s, n, δ))log d.

Combining Lemma 8 with Observation 7 and Lemma 6, we can get a hitting set
for ROABP.

Theorem 1 (restated). Let C(x) be an n-variate polynomial computed by a
width-w, s-sparse-factor ROABP, with individual degree bound δ. Then there is a
poly(w, s, n, δ)log n-time hitting set for C(x).

Proof. As mentioned earlier, C(x) can be written as R · D(x), for some R ∈
Mw×w(F), where D(x) ∈ Mw×w(F)[x]. The underlying matrix algebra Mw×w(F) has
dimension w2. The hitting set size will be dominated by the cost of the weight function
constructed in Lemma 8. As the parameter d in Lemma 8, i.e. the number of layers
in the ROABP, is bounded by n, the hitting set size will be poly(w, s, n, δ)log n.

4. Sum of constantly many set-multilinear circuits: Theorem 2. To find
a hitting set for a sum of constantly many set-multilinear circuits, we build some
tools. The first is depth-3 multilinear circuits with ‘small distance’. As it turns out,
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a multilinear polynomial computed by a depth-3 ∆-distance circuit (top fan-in k)
can also be computed by a width-O(kn∆) ROABP (Lemma 14). Thus, we get a
poly(nk)∆ logn-time hitting set for this class, from Theorem 1. Next, we use a general
result about finding a hitting set for a class m-base-sets-C, if a hitting set is known
for class C (Lemma 17). A polynomial is in m-base-sets-C, if there exists a partition
of the variables into m base sets such that restricted to each base set (treat other
variables as field constants), the polynomial is in class C. Finally, we show that a sum
of constantly many set-multilinear circuits falls into the class m-base-sets-∆-distance,
for m∆ = o(n). Thus, we get Theorem 2.

4.1. ∆-distance circuits. Recall that each product gate in a depth-3 multilin-
ear circuit induces a partition on the variables. Let these partitions be P1,P2, . . . ,Pk.

Definition 9 (Distance for a partition sequence). Let P1,P2, . . . ,Pk ∈ Part([n])
be the k partitions of the variables {x1, x2, . . . , xn}. Then d(P1,P2, . . . ,Pk) = ∆ if
∀i ∈ {2, 3, . . . , k}, ∀colors Y1 ∈ Pi, ∃Y2, Y3, . . . , Y∆′ ∈ Pi (∆

′ ≤ ∆) such that Y1 ∪ Y2 ∪
· · · ∪ Y∆′ equals a union of some colors in Pj , ∀j ∈ [i− 1].

In other words, in every partition Pi, each color Y1 has a set of colors called
‘friendly neighborhood’, {Y1, Y2, . . . , Y∆′}, consisting of at most ∆ colors, which is
exactly partitioned in the ‘upper partitions’. We call Pi, an upper partition relative to
Pj (and Pj , a lower partition relative to Pi), if i < j. For a color Xa of a partition Pj ,
let nbdj(Xa) denote its friendly neighborhood. The friendly neighborhood nbdj(xi)
of a variable xi in a partition Pj is defined as nbdj(colorj(xi)), where colorj(xi) is the
color in the partition Pj that contains the variable xi.

Definition 10 (∆-distance circuits). A multilinear depth-3 circuit C has ∆-
distance if its product gates can be ordered to correspond to a partition sequence
(P1, . . . ,Pk) with d(P1,P2, . . . ,Pk) ≤ ∆.

Every depth-3 multilinear circuit is thus an n-distance circuit. A circuit with a
partition sequence, where the partition Pi is a refinement of the partition Pi+1, ∀i ∈
[k − 1], exactly characterizes a 1-distance circuit. All depth-3 multilinear circuits
have distance between 1 and n. Also observe that the circuits with 1-distance strictly
subsume set-multilinear circuits. E.g. a circuit, whose product gates induce two dif-
ferent partitions P1 = {{1}, {2}, . . . , {n}} and P2 = {{1, 2}, {3, 4}, . . . , {n − 1, n}},
has 1-distance but is not set-multilinear.
Friendly neighborhoods - To get a better picture, we ask: Given a color Xa of a
partition Pj in a circuit D(x), how do we find its friendly neighborhood nbdj(Xa)?
Consider a graph Gj which has the colors of the partitions {P1,P2, . . . ,Pj}, as its
vertices. For all i ∈ [j − 1], there is an edge between the colors X ∈ Pi and Y ∈ Pj if
they share at least one variable. Observe that if any two colors Xa and Xb of partition
Pj are reachable from each other inGj , then, they should be in the same neighborhood.
As reachability is an equivalence relation, the neighborhoods are equivalence classes of
colors.

Moreover, observe that for any two variables xa and xb, if their respective colors in
partition Pj, colorj(xa) and colorj(xb) are reachable from each other in Gj then their
respective colors in partition Pj+1, colorj+1(xa) and colorj+1(xb) are also reachable
from each other in Gj+1. Hence,

Observation 11. If at some partition, the variables xa and xb are in the same
neighborhood, then, they will be in the same neighborhood in all of the lower partitions.
I.e. nbdj(xa) = nbdj(xb) =⇒ nbdi(xa) = nbdi(xb), ∀i ≥ j. In other words, if we
define a new sequence of partitions, such that the j-th partition has xa and xb in the
same color if nbdj(xa) = nbdj(xb), then the upper partitions are refinements of the
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lower partitions.

4.1.1. Reduction to ROABP. Now, we show that any polynomial computed
by a low-distance multilinear depth-3 circuit can also be computed by a small size
ROABP. First we make the following observation about sparse polynomials.

Observation 12. Any multilinear polynomial C(x) with sparsity s can be com-
puted by a width-s ROABP, in any variable order.

Proof. Let M denote the set of monomials in C, and let Cm denote coefC(m).
Consider an ABP with n+1 layers of vertices V1, V2, . . . , Vn+1 each having s vertices
(one for each monomial in M) together with a start vertex v0 and an end vertex vn+2.
Let vi,m denote the m-th vertex of the layer Vi, for any i ∈ [n+ 1] and any m ∈ M.

The edge labels in the ABP are given as follows: For all m ∈ M,

• The edge (v0, v1,m) is labelled by Cm,
• The edge (vn+1,m, vn+2) is labelled by 1,
• For all i ∈ [n], the edge (vi,m, vi+1,m) is labelled by xi if the monomial m
contains xi, otherwise by 1.

All other edges get labelled by 0. Clearly, the ABP constructed computes the poly-
nomial P (x) and it is an ROABP.

Also, note that this construction can be done with any desired variable order.

Now, consider a depth-3 ∆-distance multilinear polynomial P =
∑k

i=1 aiQi,
where each Qi =

∏ni

j=1 ℓij is a product of linear polynomials. We will construct an
ROABP for each Qi. We can combine these ROABPs to construct a single ROABP if
they all have the same variable order. To achieve this we use the refinement property
described above (from Observation 11).

Lemma 13. Let P =
∑k

i=1 aiQi be a polynomial computed by a ∆-distance circuit.
Then we can make a width-O(n∆) ROABP for each Qi, in the same variable order.

Proof. Each Qi is a product of linear forms in disjoint set of variables, say Qi =
∏ni

j=1 ℓij . Let the partition induced on the variable set, by the product Qi, be Pi, for
all i ∈ [k]. Without loss of generality let the partition sequence (P1,P2, . . . ,Pk) have
distance ∆. For each i ∈ [k], let us define a new partition P′

i, such that the union of
colors in each neighborhood of Pi forms a color of P′

i. This is a valid definition, as
neighborhoods are equivalence classes of colors. From Observation 11, the partition
P′
i is a refinement of partition P′

j for any i < j.

For a partition P of the variable set x, an ordering on its colors (c1 < c2 < · · · < cr)
naturally induces a partial ordering on the variables, i.e. for any xi ∈ cj and xi′ ∈ cj′ ,
cj < cj′ =⇒ xi < xi′ . The variables in the same color do not have any relation.

Let us say, a variable (partial) order (<∗) respects a partition P with colors
{c1, c2, . . . , cr}, if there exists an ordering of the colors (cj1 < cj2 < · · · < cjr ),
such that its induced partial order (<) on the variables can be extended to <∗. We
claim that there exists a variable order (<∗) which respects partition P′

i, for all i ∈ [k].

We build this variable order (<∗) iteratively. We start with P′
k. We give an

arbitrary ordering to the colors in P′
k, say (ck,1 < ck,2 < · · · < ck,rk), which induces a

partial order (<k) on the variables. For any k > i ≥ 1, let us define a partial order
(<i) inductively as follows: Let (<i+1) be a partial order on the variables induced
by an ordering on the colors of P′

i+1. As mentioned earlier, the colors of P′
i are just

further partitions of the colors of P′
i+1. Hence, we can construct an ordering on the

colors of P′
i, such that the induced partial order (<i) is an extension of (<i+1). To

achieve that, we do the following: For each color c in P′
i+1, fix an arbitrary ordering

among those colors of P′
i, whose union forms c.
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Clearly, the partial order (<1) defined in such a way respects P′
i for all i ∈ [k].

We further fix an arbitrary ordering among variables belonging to the same color in
P′
1. Thus, we get a total order (<∗), which is an extension of <1 and hence respects

P′
i for all i ∈ [k].

Now, we construct an ROABP for each Qi in the variable order <∗. First, we
multiply out the linear forms which belong to the same neighborhood in eachQi. That
is, we write Qi as the product

∏ri
j=1 Qij , where ri is the number of neighborhoods in

Pi (number of colors in P′
i) and each Qij is the product of linear forms (colors) which

belong to the same neighborhood in Pi. As, the partition sequence has distance ∆,
the neighborhoods have at most ∆ colors. So, the degree of each Qij is bounded by
∆ and hence the sparsity is bounded by O(n∆). By Observation 12, we can construct
a width-O(n∆) ROABP for Qij in the variable order given by <∗.

Let cij denote the color of P′
i corresponding to Qij . As the order <∗ respects

P′
i, it gives an order on its colors, say cij1 < cij2 < · · · < cijri . Now, we arrange the

ROABPs for Qij ’s in the order Qij1Qij2 . . .Qijri
, while identifying the end vertex of

Qija with the start vertex of Qija+1 , for all a ∈ [ri − 1]. Clearly the ROABP thus
constructed computes the polynomial Qi and has variable order <∗.

Once we have ROABPs for the polynomials Qi’s in the same variable order, let
us make a new start node and connect it with the start node of the ROABP for Qi

with label ai, for all i ∈ [k]. Also, let us make a new end node and connect it with the
end node of the ROABP for Qi with label 1, for all i ∈ [k]. Clearly, the ROABP thus

constructed computes the polynomial P =
∑k

i=1 aiQi and has width O(kn∆). Thus,
we can write

Lemma 14 (∆-distance to ROABP). An n-variate polynomial computed by a
depth-3, ∆-distance circuit with top fan-in k has a width-O(kn∆) ROABP.

Hence, from Theorem 1 we get,
Theorem 15 (∆-distance Hitting Set). Let C(x) be a depth-3, ∆-distance,

n-variate multilinear circuit with top fan-in k. Then there is a (nk)O(∆ logn)-time
hitting-set for C(x).

4.2. Base sets with ∆-distance. In this section we describe our second tool
towards finding a hitting set for sum of constantly many set-multilinear polynomials.
We further generalize the class of polynomials, for which we can give an efficient test,
beyond low-distance. Basically, it is enough to have low-distance “projections”.

Definition 16. A multilinear depth-3 circuit C(x) is said to have m-base-sets-
∆-distance if there is a partition of the variable set x into base sets {x1,x2, . . . ,xm}
such that for any i ∈ [m], restriction of C on the i-th base set (i.e. other variables are
considered as field constants), has ∆-distance.

We will show that there is an efficient hitting set for this class of polynomials. In
fact, we can show a general easy result for a polynomial whose restriction on one base
set falls into a class C, for which a hitting set is already known.

Lemma 17 (Hybrid Argument). Let H be the hitting set for a class of (n-variate)
polynomials C. Let x be a union of m disjoint sets of variables x1⊔x2⊔· · ·⊔xm, called
base sets, each with size at most n. Let C(x) be a polynomial such that its restriction
to the base set xi (i.e. the other variables are considered as field constants), is in
class C, for all i ∈ [m]. Then there is a hitting set for C(x) of size |H|m (with the
knowledge of the base sets).

Proof. Let us assume that the set xi has cardinality n, for all i ∈ [m]. If not,
then we can introduce dummy variables. Now, we claim that if C(x) 6= 0 then there
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exists m points h1,h2, . . . ,hm ∈ H, such that C(x1 = h1,x2 = h2,xm = hm) 6= 0.

We prove the claim inductively.

Base Case: The polynomial C(x1,x2, . . . ,xm) 6= 0. It follows from the assump-
tion.

Induction Hypothesis: There exists points h1,h2, . . . ,hi ∈ H such that the par-
tially evaluated polynomial C′(xi+1, . . . ,xm) := C(x1 = h1, . . . ,xi = hi,xi+1, . . . ,xm) 6=
0.

Induction Step: We show that there exists hi+1 ∈ H such that the polynomial
C′(xi+1 = hi+1,xi+2, . . . ,xm) 6= 0.

The polynomial C′ is nothing but the polynomial C evaluated at x1, . . . ,xi.
Hence, the polynomial C′ restricted to the set xi+1, is also in the class C. So, there
must exist a point hi+1 ∈ H such that C′(xi+1 = hi+1) 6= 0.

Thus, the claim is true. Now, to construct a hitting set for C, one needs to
substitute the set H for each base set xi, i.e. the cartesian product H×H× · · · × H
(m times). Hence, we get a hitting set of size |H|m.

Note that, in the above proof the knowledge of the base sets is crucial. This
lemma, together with Theorem 15, gives us the following:

Theorem 18 (m-base-sets-∆-distance PIT). If C(x) is a depth-3 multilinear
circuit, with top fan-in k, having m base sets (known) with ∆-distance, then there is
a (nk)O(m∆ log n)-time hitting-set for C.

4.3. Sum of set-multilinear circuits reduces to m-base-sets-∆-distance.

In this section, we will reduce the PIT for sum of constantly many set-multilinear
depth-3 circuits, to the PIT for depth-3 circuits with m-base-sets-∆-distance, where
m∆ = o(n). Thus, we get a subexponential time whitebox algorithm for this class
(from Theorem 18). Note that a sum of constantly many set-multilinear depth-3
circuits is equivalent to a depth-3 multilinear circuit such that the number of distinct
partitions, induced by its product gates, is constant.

We first look at the case of two partitions. For a partition P of [n], let P|B denote
the restriction of P on a base set B ⊆ [n]. E.g., if P = {{1, 2}, {3, 4}, {5, 6, . . . , n}} and
B = {1, 3, 4} then P|B = {{1}, {3, 4}}. Recall that d(P1,P2, . . . ,Pc) denotes the dis-
tance of the partition sequence (P1,P2, . . . ,Pc) (Definition 9). For a partition sequence
(P1,P2, . . .Pc), and a base set B ⊆ [n], let dB(P1,P2, . . . ,Pc) denote the distance of
the partition sequence when restricted to the base set B, i.e. d(P1|B,P2|B, . . . ,Pc|B).

Lemma 19. For any two partitions {P1,P2} of the set [n], there exists a partition
of [n], into at most 2

√
n base sets {B1, B2, . . . , Bm} (m < 2

√
n), such that for any

i ∈ [m], either dBi(P1,P2) = 1 or dBi(P2,P1) = 1.

Proof. Let us divide the set of colors in the partition P1, into two types of colors:
One with at least

√
n elements and the other with less than

√
n elements. In other

words, P1 = {X1, X2, . . . , Xr} ∪ {Y1, Y2, . . . , Yq} such that |Xi| ≥
√
n and |Yj | <

√
n,

for all i ∈ [r], j ∈ [q]. Let us make each Xi a base set, i.e. Bi = Xi, ∀i ∈ [r]. As
|Xi| ≥

√
n, ∀i ∈ [r], we get r ≤ √

n. Now, for any i ∈ [r], P1|Bi has only one color.
Hence, irrespective of what colors P2|Bi has, dBi(P2,P1) = 1, for all i ∈ [r].

Now, for the other kind of colors, we will make base sets which have exactly
one element from each color Yj . More formally, let Yj = {yj,1, yj,2, . . . , yj,rj}, for all
j ∈ [q]. Let r′ = max{r1, r2, . . . , rq} (r′ <

√
n). Now define base sets B′

1, B
′
2, . . . , B

′
r′

such that for any a ∈ [r′], B′
a = {yj,a | j ∈ [q], |Yj | ≥ a}. In other words, all those

Yjs which have at least a elements, contribute their a-th element to B′
a. Now for any
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a ∈ [r′], P1|B′

a
= {{yj,a} | j ∈ [q], |Yj | ≥ a}, i.e. it has exactly one element in each

color. Clearly, irrespective of what colors P2|B′

a
has, dB′

a
(P1,P2) = 1, for all a ∈ [r′].

{B1, B2, . . . , Br} ∪ {B′
1, B

′
2, . . . , B

′
r′} is our final set of base sets. Clearly, they

form a partition of [n]. The total number of base sets, m = r + r′ < 2
√
n.

Now, we generalize Lemma 19 to any constant number of partitions, by induction.
Lemma 20 (Reduction to m-base-sets-1-distance). For any set of c partitions

{P1,P2, . . . ,Pc} ⊆ Part([n]), there exists a partition of the set [n], into m base sets

{B1, B2, . . . , Bm} with m < 2c−1 ·n1−(1/2c−1) such that for any i ∈ [m], there exists a
permutation of the partitions, (Pi1 ,Pi2 , . . . ,Pic) with dBi(Pi1 ,Pi2 , . . . ,Pic) = 1.

Proof. Let f(c, n) := 2c−1 · n1−(1/2c−1). The proof is by induction on the number
of partitions.

Base case: For c = 2, f(c, n) becomes 2
√
n. Hence, the statement follows from

Lemma 19.
Induction hypothesis: The statement is true for any c− 1 partitions.
Induction step: Like in Lemma 19, we divide the set of colors in P1 into two

types of colors. Let P1 = {X1, X2, . . . , Xr} ∪ {Y1, Y2, . . . , Yq} such that |Xi| ≥
√
n

and |Yj | <
√
n, for all i ∈ [r], j ∈ [q]. Let us set Bi = Xi and let ni := |Bi|, ∀i ∈ [r]

. Our base sets will be further subsets of these Bis. For a fixed i ∈ [r], let us define
P′
h = Ph|Bi , as a partition of the set Bi, for all h ∈ [c]. Clearly, P′

1 has only one
color. Now, we focus on the partition sequence (P′

2,P
′
3, . . . ,P

′
c). From the inductive

hypothesis, there exists a partition ofBi intomi base sets {Bi,1, Bi,2, . . . , Bi,mi} (mi ≤
f(c− 1, ni)) such that for any u ∈ [mi], there exists a permutation of (P′

2,P
′
3, . . . ,P

′
c),

given by (P′
i2
,P′

i3
, . . . ,P′

ic
), with dBi,u(P

′
i2
,P′

i3
, . . . ,P′

ic
) = 1. As P′

1 has only one color,
so does P′

1|Bi,u . Hence, dBi,u(P
′
i2 ,P

′
i3 , . . . ,P

′
ic ,P

′
1) is also 1. From this, we easily get

dBi,u(Pi2 ,Pi3 , . . . ,Pic ,P1) = 1. The above argument can be made for all i ∈ [r].
Now for the other colors, we proceed as in Lemma 19. Let Yj = {yj,1, yj,2, . . . , yj,rj},

for all j ∈ [q]. Let r′ = max{r1, r2, . . . , rq} (r′ <
√
n). Now define sets B′

1, B
′
2, . . . , B

′
r′

such that for any a ∈ [r′], B′
a = {yj,a | j ∈ [q], |Yj | ≥ a}. In other words, all those Yjs

which have at least a elements, contribute their a-th element to B′
a. Let n′

a := |B′
a|,

for all a ∈ [r′]. Our base sets will be further subsets of these B′
as. For a fixed a ∈ [r′],

let us define P′
h = Ph|B′

a
, as a partition of the set B′

a, for all h ∈ [c]. Clearly, P′
1

has exactly one element in each of its colors. Now, we focus on the partition se-
quence (P′

2,P
′
3, . . . ,P

′
c). From the inductive hypothesis, there exists a partition of

B′
a into m′

a base sets {B′
a,1, B

′
a,2, . . . , B

′
a,m′

a
} (m′

a ≤ f(c − 1, n′
a)) such that for any

u ∈ [m′
a], there exists a permutation of (P′

2,P
′
3, . . . ,P

′
c), given by (P′

i2
,P′

i3
, . . . ,P′

ic
),

with dB′

a,u
(P′

i2 ,P
′
i3 , . . . ,P

′
ic) = 1. As P′

1 has exactly one element in each of its colors,
so does P′

1|B′

a,u
. Hence, dB′

a,u
(P′

1,P
′
i2
,P′

i3
, . . . ,P′

ic
) is also 1. From this, we easily get

dB′

a,u
(P1,Pi2 ,Pi3 , . . . ,Pic) = 1. The above argument can be made for all a ∈ [r′].
Our final set of base sets will be {Bi,u | i ∈ [r], u ∈ [mi]} ∪ {B′

a,u | a ∈ [r′], u ∈
[m′

a]}. As argued above, when restricted to any of these base sets, the given partitions
have a sequence, which has distance 1. Now, we need to bound the number of these
base sets,

m =
∑

i∈[r]

mi +
∑

a∈[r′]

m′
a.

From the bounds on mi and m′
a, we get

m ≤
∑

i∈[r]

f(c− 1, ni) +
∑

a∈[r′]

f(c− 1, n′
a).
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Recall that ni ≥
√
n. We break the second sum, in the above equation, into two parts.

Let R1 = {a ∈ [r′] | n′
a ≥ √

n} and R2 = {a ∈ [r′] | n′
a <

√
n}.

m ≤
∑

i∈[r]

f(c− 1, ni) +
∑

a∈R1

f(c− 1, n′
a) +

∑

a∈R2

f(c− 1, n′
a). (3)

Let us first focus on the third sum. Note that |R2| ≤ r′ <
√
n. For a ∈ R2,

n′
a <

√
n and hence f(c− 1, n′

a) < f(c− 1,
√
n) = 2c−2 · n1/2−(1/2c−1). So,

∑

a∈R2

f(c− 1, n′
a) <

√
n · 2c−2 · n1/2−(1/2c−1) = 2c−2 · n1−(1/2c−1). (4)

Now, we focus on first two sums in Equation (3). As, ni ≥ √
n, ∀i ∈ [r] and

n′
a ≥ √

n, ∀a ∈ R1, we combine these two sums (with an abuse of notation) and write
the sum as follows,

∑

i∈[r′′]

f(c− 1, ni),

where r′′ = r + |R1|, and ni ≥
√
n, ∀i ∈ [r′′]. As each ni ≥

√
n, we know r′′ <

√
n

(as
∑

ni ≤ n).
Observe that f(c − 1, z), as a function of z, is a concave function (its derivative

is monotonically decreasing, when z > 0). From the properties of a concave function,
we know,

1

r′′

∑

i∈[r′′]

f(c− 1, ni) ≤ f



c− 1,
1

r′′

∑

i∈[r′′]

ni



 .

Now,
∑

i∈[r′′] ni ≤ n and f(c− 1, z) is an increasing function (when z > 0). Hence,

1

r′′

∑

i∈[r′′]

f(c− 1, ni) ≤ f

(

c− 1,
1

r′′
n

)

.

Equivalently,

∑

i∈[r′′]

f(c− 1, ni) ≤ r′′ · 2c−2 · (n/r′′)1−(1/2c−2)

= 2c−2 · n1−(1/2c−2) · (r′′)1/2c−2

< 2c−2 · n1−(1/2c−2) · n1/2c−1

= 2c−2 · n1−(1/2c−1).

Using this with Equation (4) and substituting in Equation (3), we get

m < 2c−1 · n1−(1/2c−1).

Now, we combine these results with our hitting-sets for depth-3 circuits having
m base sets with ∆-distance.
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Theorem 2 (restated). Let C(x) be a n-variate polynomial, which can be com-
puted by a sum of c set-multinear depth-3 circuits, each having top fan-in k. Then
there is a (nck)O(2c−1n1−ǫ logn)-time whitebox PIT test for C, where ǫ := 1/2c−1.

Proof. As mentioned earlier, the polynomial C(x) can be viewed as being com-
puted by a depth-3 multilinear circuit, such that its product gates induce at most
c-many distinct partitions. From Lemma 20, we can partition the variable set into
m base sets, such that for each of these base sets, the partitions can be sequenced to
have distance 1, where m := 2c−1n1−ǫ. Hence, the polynomial C has m base sets with
1-distance and top fan-in ck. Moreover, from the proof of Lemma 20, it is clear that
such base sets can be computed in nO(c)-time. From Theorem 18, we know that there
is (nck)O(m logn)-time whitebox PIT test for such a circuit. Substituting the value of
m, we get the result.

Tightness of this method. Lemma 19 can be put in other words as: Any two
partitions have m-base-sets-∆-distance with m∆ = O(

√
n). We can, in fact, show

that this result is tight.

Showing the lower bound: Let d(P1,P2) = ∆. Then each color of P2 has a
friendly neighborhood (of at most ∆ colors) which is exactly partitioned in P1. Now
construct ∆ base sets such that i-th base set takes the variables of i-th color from
every neighborhood of P2. Clearly, when restricted to one of these bases sets, d(P1,P2)
is 1. In other words P1 and P2 have ∆-base-sets-1-distance. Similarly, one can argue
that if P1 and P2 have m-base-sets-∆-distance then they also have m∆-base-sets-1-
distance. Now, we will show that if we want m-base-sets-1-distance for two partitions
then m = Ω(

√
n).

Consider the following example (assuming n is a square):

P1 = {{1, 2, . . .√n}, {√n+ 1,
√
n+ 2, . . . , 2

√
n}, . . . , {√n(

√
n− 1) + 1,

√
n(
√
n−

1) + 2, . . . , n}} and

P2 = {{1,√n+1, . . . , n−√
n+1}, {2,√n+2, . . . , n−√

n+2}, . . . , {√n, 2
√
n, . . . , n}}.

Basically, P2 has the residue classes (mod
√
n).

Observation 21. A base set B, such that dB(P1,P2) = 1, has at most
√
n

variables.

Proof. Suppose it has more than
√
n variables. Then, there is at least one color

in P1 which contributes two variables to B. These two variables have to be in two
different colors of P2 (because of our design of P1 and P2). So, dB(P1,P2) is at least
2. We get a contradiction.

The number of such base sets has to be at least
√
n. Combining this with the

reduction from m-base-sets-∆-distance to m∆-base-sets-1-distance, we get m∆ =
Ω(

√
n).

It is not clear if Lemma 20 is tight. We conjecture that for any set of partitions,
m∆ = O(

√
n) can be achieved.

5. Sparse-Invertible Width-w ROABP: Theorem 3. As mentioned in Sec-
tion 2, a polynomial C(x) computed by s-sparse-factor width-w ROABP can be writ-

ten as D⊤
0 (

∏d
i=1 Di)Dd+1, where Di ∈ Fw×w[xi] is an s-sparse polynomial for all

i ∈ [d], and x1,x2 . . . ,xd are disjoint sets of variables.

We will show a hitting-set for a sparse-factor ROABP D0(
∏d

i=1 Di)Dd+1 with Di

being an invertible matrix, for all i ∈ [d]. Hence, we name this model sparse-invertible-
factor ROABP. To be more general, we take D0 and Dd+1 also to be polynomials in
some sets of variables disjoint from x1,x2, . . . ,xd.
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For a polynomial D, let its sparsity s(D) be the number of monomials in D with
nonzero coefficients and let µ(D) be the maximum support of any monomial in D.

Theorem 3 (restated). Let x = x0 ⊔ · · · ⊔ xd+1, with |x| = n. Let C(x) =

D⊤
0 DDd+1 ∈ F[x] be a polynomial with D(x) =

∏d
i=1 Di(xi), where D0 ∈ Fw[x0] and

Dd+1 ∈ Fw[xd+1] and for all i ∈ [d], Di ∈ Fw×w[xi] is an invertible matrix. For all
i ∈ {0, 1, . . . , d + 1}, Di has degree bounded by δ, s(Di) ≤ s and µ(Di) ≤ µ. Let

ℓ := 1 + 2min{⌈log(w2 · s)⌉, µ}. Then there is a hitting-set of size poly((nδs)ℓw
2

) for
C(x).

Remark. If µ = 1, e.g. each Di is either a univariate or a linear polynomial,
then we get poly-time for constant w. Also if both w and the sparsity-bound s are
constant, we get poly-time.

Like [ASS13] and [FSS14], we find a hitting-set by showing a low-support concen-

tration. Low support concentration in the polynomial D(x) =
∏d

i=1 Di means that
the coefficients of the low support monomials in D(x) span the whole coefficient space
of D(x).

Let x be {x1, x2 . . . , xn}. For any e ∈ Zn
+, support of the monomial xe is defined

as S(e) := {i ∈ [n] | ei 6= 0} and support size is defined as s(e) := |S(e)|. Now, we
define ℓ-concentration for a polynomial D(x) ∈ Fw×w[x].

Definition 22 (ℓ-concentration). Polynomial D(x) ∈ Fw×w[x] is ℓ-concentrated
if rankF{coefD(xe) | e ∈ Zn

+, s(e) < ℓ} = rankF{coefD(xe) | e ∈ Zn
+}.

We will later see that the low support concentration in polynomial D(x) implies
low support concentration in polynomial C(x) (defined similarly). In other words,
C(x) will have a nonzero coefficient for at least one of the low support monomials.
Thus, we get a hitting set by testing these low support coefficients. We use the
following lemma from [ASS13].

Lemma 23. If C(x) ∈ F[x] is an n-variate, ℓ-concentrated polynomial with highest
individual degree δ, then there is a (nδ)O(ℓ)-time hitting-set for C(x).

Proof. ℓ-concentration for C(x) simply means that it has at least one (< ℓ)-
support monomial with nonzero coefficient. We will construct a hitting set which
essentially will test all these (< ℓ)-support coefficients. We go over all subsets S of
x with size ℓ − 1 and do the following: Substitute 0 for all the variables outside the
set S. There will be at least one choice of S, for which the polynomial C(x) remains
nonzero after the substitution. Now, it is an (ℓ− 1)-variate nonzero polynomial. We
take the usual hitting set Hℓ−1 for this, where H ⊆ F is a set of size δ + 1 (see, for
example, [SY10, Fact 4.1]). In other words, each of these ℓ− 1 variables are assigned
values from the set H.

The number of sets S we need to try are
(

n
ℓ−1

)

. Hence, the overall hitting set size

is (nδ)O(ℓ).
Now, we move on to show how to achieve low support concentration in D(x) =

∏d
i=1 Di. To achieve that we will use some efficient shift. By shifting by a point

α := (α1, α2, . . . , αn), we mean replacement of xi with xi+αi. Note that D(x+α) 6= 0
if and only ifD(x) 6= 0. Hence, a hitting set forD(x+α) gives us a hitting set forD(x).
Instead of constants, we will be actually shifting D(x) by univariate polynomials, say,
given by the map φ : t → {ta}a≥0, where t := {t1, t2, . . . , tn}. The φ is said to be an
efficient map if φ(ti) is efficiently computable, for each i ∈ [n].

Proof Idea- As all the matrices in the matrix product D(x) =
∏d

i=1 Di(xi) are
over disjoint sets of variables, any coefficient in the polynomial D(x) can be uniquely
written as a product of d factors, each coming from one Di. We start with the
assumption that the constant term of each polynomial Di, denoted by Di0, is an
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invertible matrix. Using this we define a notion of parent and child between all
the coefficients (also see Figure 1): If a coefficient can be obtained from another
coefficient by replacing one of its constant factors Di0 with another term (with non-
trivial support) from Di, then former is called a parent of the latter. Observe that if
we want to do this replacement by a multiplication of some matrix, then Di0 should
be invertible. Moreover, all the factors on its right side (or its left side) also need to
be constant terms in their respective matrices (this is because of non-commutativity).
For a coefficient, the set of matrices Di which contribute a non-trivial factor to it, is
said to form the block-support of the coefficient.

Our next step is to show that if a coefficient linearly depends on its descendants
then the dependence can be lifted to its parent (by dividing and multiplying appropri-
ate factors), i.e. its parent also linearly depends on its descendants. As the dimension
of the matrix algebra is constant, if we take an appropriately large (constant) child-
parent chain, there will be a linear dependence among the coefficients in the chain.
As the dependencies lift to the parent, they can be lifted all the way up. By an
inductive argument it follows that every coefficient depends on the coefficients with
low-block-support. Now, this can be translated to low-support concentration in D, if
a low-support concentration is assumed in each Di.

To achieve low-support concentration in each Di, we use an appropriate shift.
The sparsity of Di is used crucially in this step. To make Di0 invertible, again an
appropriate shift is used. Note that Di0 can be made invertible by a shift only when
Di itself is invertible, hence the invertible-factor assumption.

5.1. Building the Proof of Theorem 3. Our first focus will be on the matrix
product D(x) :=

∏d
i=1 Di which belongs to Fw×w[x]. We will show low-support

concentration in D(x) over the matrix algebra Fw×w (which is non-commutative!).

5.1.1. Low Block-Support. Let the matrix product D(x) :=
∏d

i=1 Di corre-
spond to an ROABP such that Di ∈ Fw×w[xi] for all i ∈ [d]. Let ni be the cardinality

of xi and let n =
∑d

i=1 ni. For an exponent e = (e1, e2, . . . , em) ∈ Zm
+ , and for a set

of variables y = {y1, y2, . . . , ym}, ye will denote y1
e1y2

e2 . . . ym
em .

Viewing Di as belonging to Fw×w[xi], one can write Di :=
∑

e∈Z
ni
+

Diex
e
i , where

Die ∈ Fw×w, for all e ∈ Zni
+ . In particular Di0 refers to the constant part of the

polynomial Di.
For any e ∈ Zn

+, support of the monomial xe is defined as S(e) := {i ∈ [n] | ei 6= 0}
and support size is defined as s(e) := |S(e)|. In this section, we will also define block-
support of a monomial. Any monomial xe for e ∈ Zn

+, can be seen as a product
∏d

i=1 xi
ei , where ei ∈ Zni

+ for all i ∈ [d], such that e = (e1, e2, . . . , ed). We define block-
support of e, bS(e) as {i ∈ [d] | ei 6= 0} and block-support size of e, bs(e) = |bS(e)|.

Next, we will show low block-support concentration of D(x) when each Di0 is
invertible.

As each Di is a polynomial over a different set of variables, we can easily see that
the coefficient of any monomial xe =

∏d
i=1 x

ei
i in D(x) is

De :=

d
∏

i=1

Diei . (5)

Now, we will define a relation of parent and children between these coefficients.
Definition 24. For e∗, e ∈ Zn

+, De∗ is called a parent of De if ∃j ∈ [d], j >
maxbS(e) or j < min bS(e), such that bS(e∗) = bS(e)∪{j} and e∗i = ei, ∀i ∈ [d] with
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A1A2A3

A1B2A3 A1A2B3B1A2A3

A1B2B3B1A2B3B1B2A3

B1B2B3

Fig. 1. An edge represents the child-parent relationship among the coefficients. The arrow
points towards the child.

i 6= j.
If De∗ is a parent of De then De is a child of De∗ . Note that a coefficient has

at most two children, on the other hand it can have many parents. In the case when
j > maxbS(e) we call e, the left child of e∗ and in the other case we call it the right
child. Figure 1 shows this relationship between the coefficients for the polynomial
(A1 +B1x1)(A2 +B2x2)(A3 +B3x3), where Ai, Bi ∈ Fw×w, for all i ∈ {1, 2, 3}.

To motivate this definition, observe that if j > maxbS(e) then by Equation (5)

we can write De∗ = DeA
−1B, where A :=

∏d
i=j Di0 and B := Dje∗j

∏d
i=j+1 Di0. We

will denote the product A−1B as De−1e∗ . Similarly, if j < min bS(e) then one can

write De∗ = BA−1De, where A :=
∏j

i=1 Di0 and B :=
(

∏j−1
i=1 Di0

)

Dje∗j
. In this case

we will denote the product BA−1 as De∗e−1 . Note that the invertibility of Di0s is
crucial here.

We also define descendants of a coefficient De as descend(De) := {Df | f ∈
Zn
+, bS(f) ⊂ bS(e)}. Note that, the set of descendants of a coefficient could be bigger

than the set of its children, grand-children, etc. Now, we will view the coefficients
as F-vectors and look at the linear dependence between them. The following lemma
shows how these dependencies lift to the parent.

Lemma 25 (Child to parent). Let De∗ be a parent of De. If De is linearly
dependent on its descendants, then De∗ is linearly dependent on its descendants.

Proof. Let De be the left child of De∗ (the other case is similar). So, we can write

De∗ = DeDe−1e∗ . (6)

Let the dependence of De on its descendants be the following:

De =
∑

f
bS(f)⊂bS(e)

αfDf .

Using Equation (6) we can write,

De∗ =
∑

f
bS(f)⊂bS(e)

αfDfDe−1e∗ .

Now, we just need to show that for any Df with bS(f) ⊂ bS(e), DfDe−1e∗ is a
valid coefficient of some monomial in D(x) and also that it is a descendant of De∗ .

Recall that De−1e∗ = A−1B, where A :=
∏d

i=j Di0 and B := Dje∗j

∏d
i=j+1 Di0 and
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bS(e∗) = bS(e) ∪ {j}. We know that j > max{bS(e)}. Hence, j > max{bS(f)} as
bS(f) ⊂ bS(e). So, it is clear that DfDe−1e∗ is the coefficient of xf∗

:= xfxj
e∗j . It

is easy to see that bS(f∗) = bS(f) ∪ {j} ⊂ bS(e∗). Hence, Df∗ = DfDe−1e∗ is a
descendant of De∗ .

Clearly, if the descendants are more than dimF F
w×w, then there will be a linear

dependence among them. So,
Lemma 26. Any coefficient De, with bs(e) = w2, F-linearly depends on its

descendants.
Proof. First of all, we show that if a coefficient Df∗ is nonzero then so are its

children. Let us consider its left child Df (the other case is similar). Recall that we
can write Df∗ = DfDf−1f∗ . Hence if Df is zero, so is Df∗ .

Let k := w2. Now, consider a chain of coefficients De0 , De1 , . . . , Dek = De, such
that for any i ∈ [k], Dei−1 is a child of Dei . Clearly, bs(ei) = i for 0 ≤ i ≤ k. All
the vectors in this chain are nonzero because of our above argument, as De is nonzero
(The case of De = 0 is trivial). These k + 1 vectors lie in Fk, hence, there exists
an i ∈ [k] such that Dei is linear dependent on {De0 , . . . , Dei−1}. As descendants
include children, grand-children, etc., we can say that Dei is linearly dependent on
its descendants. Now, by applying Lemma 25 repeatedly, we conclude Dek = De is
dependent on its descendants.

Note that, for a coefficient De with bs(e) = i, its descendants have block-support
strictly smaller than i. So, Lemma 26 means that coefficients with block-support
w2 depend on coefficients with block-support ≤ w2 − 1. Now, we show w2-block-
support-concentration in D(x), i.e. any coefficient is dependent on the coefficients
with block-support ≤ w2 − 1.

Lemma 27 (w2-Block-concentration). Let D(x) =
∏d

i=1 Di(xi) ∈ Fw×w[x] be a
polynomial with Di0 being invertible for each i ∈ [d]. Then D(x) has w2-block-support
concentration.

Proof. Let k := w2. We will actually show that for any coefficient De with
bs(e) ≥ k (the case when bs(e) < k is trivial),

De ∈ span{Df | f ∈ Zn
+, bS(f) ⊂ bS(e) and bs(f) ≤ k − 1}.

We will prove the statement by induction on the block-support of De, bs(e).
Base case: When bs(e) = k, it has been already shown in Lemma 26.
Induction Hypothesis: For any coefficient De with bs(e) = i − 1 for i− 1 ≥ k,

De ∈ span{Df | f ∈ Zn
+, bS(f) ⊂ bS(e) and bs(f) ≤ k − 1}.

Induction step: Let us take a coefficient De with bs(e) = i. Consider any child of
De, denoted by De′ . As bs(e′) = i − 1, by our induction hypothesis, De′ is linearly
dependent on its descendants. So, from Lemma 25, De is linearly dependent on its
descendants. In other words,

De ∈ span{Df | bS(f) ⊂ bS(e) and bs(f) ≤ i − 1}. (7)

Again, by our induction hypothesis, for any coefficient Df , with bs(f) ≤ i− 1,

Df ∈ span{Dg | bS(g) ⊂ bS(f) and bs(g) ≤ k − 1}. (8)

Combining Equations (7) and (8), we get

De ∈ span{Dg | bS(g) ⊂ bS(e) and bs(g) ≤ k − 1}.
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Now, we show low block-support concentration in the actual polynomial computed
by an ROABP, i.e. in C(x) = D⊤

0 (
∏d

i=1 Di)Dd+1, where D0, Dd+1 ∈ Fw[x]. Note
that in context of C, the definition of block support is appropriately modified. Block
support of a monomial now is a subset of {0, 1, . . . , d + 1}. As before it will contain
the index i, if the monomial has a non-trivial support from xi, for 0 ≤ i ≤ d+ 1.

Lemma 28. Let x = x0 ⊔x1 ⊔ · · · ⊔xd+1. Let D(x) ∈ Fw×w[x1, . . . ,xd] be a poly-
nomial described in Lemma 27. Let C(x) = D⊤

0 DDd+1 ∈ F[x] be a polynomial with
D0 ∈ Fw[x0], Dd+1 ∈ Fw[xd+1]. Then C(x) has (w2+2)-block-support concentration.

Proof. Let k := w2. Lemma 27 shows that D(x) has k-block-support con-

centration. The coefficient of xe in C is Ce := D0e0

∏d
i=1 DieiD(d+1)ed+1

, where

e = (e0, e1, . . . , ed, ed+1). Let De :=
∏d

i=1 Diei . By k-block-support concentration of
D(x),

De ∈ span{Df | bs(f) ≤ k − 1}.

Which implies,

Ce ∈ span{D0e0DfD(d+1)ed+1
| bs(f) ≤ k − 1}.

Clearly,D0e0DfD(d+1)ed+1
is the coefficient of the monomial xe0

0 xf1
1 · · ·xfd

d x
ed+1

d+1 . Hence,
Ce ∈ span{Cf | bs(f) ≤ k + 1}.

5.2. Low-support concentration. Now, we want to show that if C(x) =

D⊤
0 (

∏d
i=1 Di)Dd+1 has low block-support concentration and moreover if each Di has

low-support concentration then C(x) has an appropriate low-support concentration.
Lemma 29 (Composition). Let C(x) be a polynomial D⊤

0 DDd+1 as described
in Lemma 28. If C(x) has ℓ-block-support concentration and Di(xi) has ℓ′-support
concentration for all i ∈ [d] then C(x) has ℓℓ′-support concentration.

Proof. Recall that as Di’s are polynomials over disjoint sets of variables, any
coefficient Cf in C(x) can be written as D⊤

0f0
(
∏d

i=1 Difi)D(d+1)fd+1
, where f =

(f0, f1, f2, . . . , fd+1) and Difi is the coefficient corresponding to the monomial xfi
i

in Di for all 0 ≤ i ≤ d+1. From the definition of bS(f), we know that fi = 0, for any
i /∈ bS(f). From ℓ′-support concentration of Di(xi), we know that for any coefficient
Difi ,

Difi ∈ span{Digi | gi ∈ Zni
+ , s(gi) ≤ ℓ′ − 1}.

Using this, we can write

Cf ∈ span

{

D⊤
0g0

d
∏

i=1

DigiD(d+1)gd+1
| gi ∈ Zni

+ , s(gi) ≤ ℓ′ − 1, ∀i ∈ [[d+ 1]]

and gi = 0, ∀i /∈ bS(f)

}

.

(9)

Note that the product D⊤
0g0

∏d
i=1 DigiD(d+1)gd+1

will be the coefficient of a monomial
xg such that bS(g) ⊆ bS(f) because gi = 0, ∀i /∈ bS(f). Clearly, if s(gi) ≤ ℓ′−1, ∀i ∈
bS(f) then s(g) ≤ (ℓ′ − 1) bs(f). So, one can write

Cf ∈ span{Cg | g ∈ Zn
+, s(g) ≤ (ℓ′ − 1) bs(f)}. (10)
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From ℓ-block-support concentration of C(x), we know that for any coefficient Ce of
C(x),

Ce ∈ span{Cf | f ∈ Zn
+, bs(f) ≤ ℓ− 1}. (11)

Using Equations (10) and (11), we can write for any coefficient Ce of C(x),

Ce ∈ span{Cg | g ∈ Zn
+, s(g) ≤ (ℓ′ − 1)(ℓ − 1)}.

Hence, C(x) has ((ℓ − 1)(ℓ′ − 1) + 1)-support concentration and hence ℓℓ′-support
concentration.

Now, we just need to show low-support concentration of each Di. To achieve that
we will use some efficient shift. Shifting will serve a dual purpose. Recall that for
Lemma 27, we need invertibility of the constant term in Di, i.e. Di0, for all i ∈ [d]. In
caseDi0 is not invertible for some i ∈ [d], after a shift it might become invertible, since
Di is assumed invertible in the sparse-invertible model. For the shifted polynomial
D′

i(xi) := Di(xi + φ(ti)), its constant term D′
i0 is just an evaluation of Di(x), i.e.

Di|xi=φ(ti). Now, we want a shift for Di which would ensure that det(D′
i0) 6= 0 and

that D′
i has low-support concentration. For both the goals we use the sparsity of the

polynomial.
For a polynomial D, let its sparsity set S(D) be the set of monomials in D with

nonzero coefficients and s(D) be its sparsity, i.e. s(D) = |S(D)|. Let, for a polynomial
D(x) ∈ Fw×w[x], S = S(D) and s = |S|. Then it is easy to see that for its determinant
polynomial S(det(D)) ⊆ Sw, where Sw := {m1m2 · · ·mw | mi ∈ S, ∀i ∈ [w]}. Hence
s(det(D)) ≤ sw. Now, suppose det(D) 6= 0. We will describe an efficient shift which
will make the constant term, of the shifted polynomial, invertible. Let φ : t → {ti}∞i=0

be a monomial map which separates all the monomials in det(D(t)), i.e. for any two
te1 , te2 ∈ S(det(D(t))), φ(te1 ) 6= φ(te2). It is easy to see that if we shift each xi by
φ(ti) to get D′(x) = D(x+ φ(t)) then det(D′

i0) = det(D|x=φ(t)) 6= 0.
For sparse polynomials, Agrawal et al. [ASS13, Lemma 16] have given an efficient

shift to achieve low-support concentration. Here, we rewrite their lemma. The map
φℓ′ : t → {ti}∞i=0 is said to be separating ℓ′-support monomials of degree δ, if for any
two monomials te1 and te2 which have support bounded by ℓ′ and degree bounded by
δ, φℓ′(t

e1) 6= φℓ′(t
e2 ). For a polynomial D(x), let µ(D) be the maximum support of

a monomial in D, i.e. µ(D) := max
xe∈S(D)

s(e).

Lemma 30 ([ASS13]). Let V be a F-vector space of dimension k. Let D(x) ∈ V [x]
be a polynomial with degree bound δ. Let ℓ := 1+ 2min{⌈log(k · s(D))⌉, µ(D)} and φℓ

be a monomial map separating ℓ-support monomials of degree δ. Then D(x + φℓ(t))
has ℓ-concentration over F(t).

The [ASS13] version of the Lemma 30 gave a concentration result about sparse
polynomials over Hk(F). But observe that the process of shifting and the definition of
concentration only deal with the additive structure of Hk(F), and the multiplication
structure is irrelevant. Hence, the result is true over any F-vector space, in particular,
over the matrix algebra. By combining these observations, we have the following.

Lemma 31. Let D(x) =
∏d

i=1 Di(xi) be a polynomial in Fw×w[x] with det(D) 6= 0
such that for all i ∈ [d], Di has degree bounded by δ, s(Di) ≤ s and µ(Di) ≤ µ. Let
ℓ := 1 + 2min{⌈log(w2 · s)⌉, µ} and M := poly(sw(nδ)ℓ). Then there is a set of M
monomial maps with degree bounded by M logM such that for at least one of the maps
φ, C′ := C(x+ φ(t)) has ℓ(w2 + 2)-concentration.

Proof. Let φ : t → {ti}∞i=0 be a map such that it separates all the monomials
in S(det(Di(ti))), for all i ∈ [d]. There are ds2w such monomial pairs. Also assume
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that φ separates all monomials of support bounded by ℓ. There are (nδ)O(ℓ) such
monomials. Hence, total number of monomial pairs which need to be separated are
sO(w) + (nδ)O(ℓ). From Lemma 4, we know that there is a set of M monomial maps
(ti 7→ tw(ti)) with highest degree M logM such that at least one of the maps φ
separates the desired monomials, where M = poly(sw(nδ)ℓ). As the map φ separates
all the monomials in S(det(Di(ti))), det(Di(φ(ti))) 6= 0 and hence, D′

i0 is invertible
for all i ∈ [d]. So, C′(x) has (w2 + 2)-block-support concentration from Lemma 27.

From Lemma 30, D′
i(xi) has ℓ-concentration for all 0 ≤ i ≤ d + 1. Hence, from

Lemma 29, C′(x) has ℓ(w2 + 2)-concentration.
Now, we come back to the proof of Theorem 3 (restated in this section). Com-

bining Lemma 31 with Lemma 23 we get a hitting set for C′(x) = C(x+φ(t)) of size

(nδ)O(ℓw2). Each of these evaluations of C will be a polynomial in t with degree at

most poly(sw(nδ)ℓ). Hence, total time complexity becomes poly(sw(nδ)ℓw
2

).

5.3. Width-2 Read Once ABP. In the previous section, the crucial part in
finding a hitting-set for an ROABP, is the assumption that the matrix product D(x)
is invertible. Now, we will show that for width-2 ROABP, this assumption is not
required. Via a factorization property of 2 × 2 matrices, we will show that PIT
for width-2 sparse-factor ROABP reduces to PIT for width-2 sparse-invertible-factor
ROABP.

Lemma 32 (2 × 2 invertibility). Let C(x) = D⊤
0

(

∏d
i=1 Di

)

Dd+1 be a polyno-

mial computed by a width-2 sparse-factor ROABP. Then we can write α(x)C(x) =
C1(x)C2(x) · · ·Cm+1(x), for some nonzero α ∈ F[x] and some m ≤ d, where Ci(x) is a
polynomial computed by a width-2 sparse-invertible-factor ROABP, for all i ∈ [m+1].

Proof. Let us say, for some i ∈ [d], Di(xi) is not invertible. Let Di =
[

ai bi
ci di

]

with ai, bi, ci, di ∈ F[xi] and aidi = bici. Without loss of generality, at least one of
{ai, bi, ci, di} is nonzero. Let us say ai 6= 0 (other cases are similar). Then we can
write,

[

ai bi
ci di

]

=
1

ai

[

ai
ci

]

[

ai bi
]

.

In other words, we can write αiDi = AiB
⊤
i , where Ai, Bi ∈ F2[xi] and 0 6= αi ∈

{ai, bi, ci, di}. Note that s(αi), s(Ai), s(Bi) ≤ s(Di). Let us say that the set of non-
invertible Dis is {Di1 , Di2 , . . . , Dim}. Writing all of them in the above form we get,

C(x)

m
∏

j=1

αij =

m+1
∏

j=1

Cj ,

where

Cj :=



















D⊤
0

(

∏i1−1
i=1 Di

)

Ai1 if j = 1,

B⊤
ij−1

(

∏ij−1
i=ij−1+1 Di

)

Aij if 2 ≤ j ≤ m,

B⊤
im

(

∏d
i=im+1 Di

)

Dd+1 if j = m+ 1.

Clearly, for all j ∈ [m+1], Cj can be computed by a sparse-invertible-factor ROABP.

Now, from the above lemma it is easy to construct a hitting-set. First we write a
general result about hitting-sets for a product of polynomials from some class [SY10,
Observation 4.1].
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Lemma 33 (Lagrange interpolation). Suppose H is a hitting-set for a class of
polynomials C. Let C(x) = C1(x)C2(x) · · ·Cm(x), where Ci ∈ C and has degree
bounded by δ, for all i ∈ [m]. There is a hitting-set of size mδ|H|+ 1 for C(x).

Proof. Let h = |H| and H = {α1, α2, . . . , αh}. Let B := {βi}hi=1 be a set of
constants. The Lagrange interpolation α(u) of the points in H is defined as follows

α(u) :=

h
∑

i=1

∏

j 6=i(u − βj)
∏

j 6=i(βi − βj)
αi.

The key property of the interpolation is that when we put u = βi, α(βi) = αi for all
i ∈ [h]. For any a ∈ [m], we know that Ca(αi) 6= 0, for some i ∈ [h]. Hence, Ca(α(u))
as a polynomial in u is nonzero because Ca(α(βi)) = Ca(αi) 6= 0. So, we can say
C(α(u)) 6= 0 as a polynomial in u. Degree of α(u) is h. So, degree of C(α(u)) in u is
bounded by mδh. We can put (mδh+1)-many distinct values of u to get a hitting-set
for C(α(u)).

Note that a hitting-set for α(x)C(x) is also a hitting-set for C(x) if α is a nonzero
polynomial. Recall that we get a hitting-set for invertible ROABP from Theorem 3.
Lemma 32 tells us how to write a width-2 ROABP as a product of width-2 invertible
ROABPs. Combining these results with Lemma 33 we directly get the following.

Theorem 34. Let C(x) = D⊤
0 (x0)(

∏d
i=1 Di(xi))Dd+1(xd+1) be a polynomial in

F[x] computed by a width-2 ROABP such that for all 0 ≤ i ≤ d + 1, Di has degree
bounded by δ, s(Di) ≤ s and µ(Di) ≤ µ. Let ℓ := 1 + 2min{⌈log(4 · s)⌉, µ}. Then
there is a hitting-set of size poly((nδs)ℓ).

We remark again that when all Dis are constant-variate or linear polynomials,
the hitting-set is polynomial-time.

6. Discussion. The first open problem is to do basis isolation for ROABP with
only a polynomially large weight assignment. Also, our technique of finding a basis
isolating weight assignment seems general. It needs to be explored, for what other
general classes can it be applied. In particular, can it be used to solve depth-3
multilinear circuits? An easier question, perhaps, could be to improve Theorem 18 to
get a truly blackbox PIT for the 2-base-sets-1-distance model.

Another question is whether we can find a similar result in the boolean setting,
i.e. get a psuedorandom generator for unknown order ROBP with seed length same
as the known order case.

In the case of constant width ROABP, we could show constant-support concen-
tration, but only after assuming that the factor matrices are invertible. It seems that
the invertibility assumption restricts the computing power of ROABP significantly. It
is desirable to have low-support concentration without the assumption of invertibility.

As in the case of invertible ROABP and width-2 ROABP, analogous results hold
in the boolean setting, it will be interesting to see if there is some connection, at
the level of techniques, between pseudorandom generators for boolean and arithmetic
models.
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