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Abstract

In the setting of streaming interactive proofs (SIPs), a client (verifier) needs to compute a given
function on a massive stream of data, arriving online, but is unable to store even a small fraction of
the data. It outsources the processing to a third party service (prover), but is unwilling to blindly trust
answers returned by this service. Thus, the service cannot simply supply the desired answer; it must
convince the verifier of its correctness via a short interaction after the stream has been seen.

In this work we study “barely interactive” SIPs. Specifically, we show that two or three rounds of
interaction suffice to solve several query problems—including Index, Median, Nearest Neighbor Search,
Pattern Matching, and Range Counting—with polylogarithmic space and communication costs. Such
efficiency with O(1) rounds of interaction was thought to be impossible based on previous work.

On the other hand, we initiate a formal study of the limitations of constant-round SIPs by introducing
a new hierarchy of communication models called Online Interactive Proofs (OIPs). The online nature
of these models is analogous to the streaming restriction placed upon the verifier in an SIP. We give
upper and lower bounds that (1) characterize, up to quadratic blowups, every finite level of the OIP
hierarchy in terms of other well-known communication complexity classes, (2) separate the first four
levels of the hierarchy, and (3) reveal that the hierarchy collapses to the fourth level. Our study of OIPs
reveals marked contrasts and some parallels with the classic Turing Machine theory of interactive proofs,
establishes limits on the power of existing techniques for developing constant-round SIPs, and provides
a new characterization of (non-online) Arthur–Merlin communication in terms of an online model.
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1 Introduction

The surging popularity of commercial cloud computing services, and more generally outsourced compu-
tations, has revealed compelling new applications for the study of interactive proofs with highly restricted
verifiers. Consider, e.g., a retailer (verifier) who lacks the resources to locally process a massive input (say,
the set of all its transactions), but can access a powerful but untrusted cloud service provider (prover), who
processes the input on the retailer’s behalf. The verifier must work within the confines of the restrictive data
streaming paradigm, using only a small amount of working memory. The prover must both answer queries
about the input (say, “how many pairs of blue jeans have I ever sold?”), and prove that the answer is correct.
We refer to this general scenario as verifiable data stream computation.

It is useful to look at this computational scenario as “data stream algorithms with access to a powerful
(space-unlimited) prover.” As is well known, most interesting data streaming problems have no nontrivial
(i.e., sublinear space) algorithms unless one allows approximation. For instance, given a stream σ of tokens
from the universe [n] := {1,2, . . . ,n}, which implicitly defines frequencies f j for each j ∈ [n], some basic
questions we can ask about σ are the number of distinct tokens F0(σ), the kth frequency moment Fk(σ) =

∑
n
j=1 f k

j , the median of the collection of numbers in σ , and the very basic point queries where, given a
specific j ∈ [n] after σ has been presented, we wish to know f j. In each case, we would like an exact
answer, not an estimate. With the trivial exception of F1(σ)—which is just the length of σ—not one of
these questions can be answered by a (possibly randomized) streaming algorithm restricted to o(n) space.
However, with access to a powerful prover, things improve greatly: as shown in Chakrabarti et al. [11], point
queries, median, and Fk (for integral k > 0) can be computed exactly by a verifier using Õ(

√
n) space, while

receiving Õ(
√

n) bits of “help” from the prover.
Notably, the protocol achieving this Õ(

√
n) cost (space plus amount of help) is non-interactive: the

prover sends a single message to the verifier. Chakrabarti et al. [11] also showed that under this restriction
their protocol is optimal: a cost of Ω(

√
n) is required. In subsequent work, Cormode et al. [18] considered

streaming interactive proofs (SIPs), where the verifier may engage in several rounds of interaction with the
prover, seeking to minimize both the space used by the verifier and the total amount of communication.
They gave SIPs with 2k−1 rounds of interaction following the verifier’s single pass over the input stream,
achieving a cost of Õ(n1/(k+1)) for the above problems. This generalizes the earlier set of results [11], which
gave 1-round SIPs. Moreover, it achieves O(polylogn) cost with O(logn/ log logn) rounds of interaction. In
recent work, Klauck and Prakash [31] further studied this kind of computation and generalized the 1-round
lower bound, claiming that a (2k−1)-round SIP must cost Ω(n1/(k+1)), even for very basic point queries.

However, we identify an implicit assumption in the Klauck–Prakash lower bound argument: it applies
only to protocols in which the verifier’s messages to the prover are independent of the input. This happened
to hold in all previous SIPs, which are ultimately descended from the sum-check protocol of Lund et al. [21].
Furthermore, this assumption is harmless in the classical theory of interactive proofs where public-coin pro-
tocols can simulate private-coin ones with just a polynomial blowup in cost [25]. However, these simulation
results fail subtly in the streaming setting, and we show that this failure is intrinsic by giving a number of
new upper bounds.

1.1 New Results: Exponentially Improved Constant-Round SIPs

We start by showing that even two-round SIPs are exponentially more powerful than previously believed, on
certain problems. For now we state our results informally, using the Õ-notation to suppress “lower order”
factors. We give formal theorem statements later in the paper, after all definitions are in place.

Result 1.1 (Formalized in Theorem 3.1). There is a two-round SIP with cost Õ(logn) for answering point
queries on a stream over the universe [n].
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The SIP that achieves this upper bound is based on an abstract protocol that we call the polynomial eval-
uation protocol. Crucially, unlike the sum-check protocols used in previous SIPs, it involves an interaction
where the verifier’s message to the prover depends on part of the input; specifically, it depends on the query.
Note that two rounds of interaction is likely unavoidable in practice even if verifiability is not a concern: one
round may be required for the verifier to communicate the query to the prover, with a second round required
for the prover to reply.

Adding a third round of interaction allows us to answer selection queries, of which an important special
case is median-finding.

Result 1.2 (Formalized in Theorem 3.7). There is a three-round SIP with cost Õ(logn) for determining the
exact median of a stream of numbers from [n].

We can in fact answer fairly complex queries with three rounds and polylogarithmic cost. For instance,
given a data set presented as a stream of points from a metric space, we can answer exact nearest neighbor
queries to the data set very efficiently, even in high dimensions. This is somewhat surprising, given that even
the offline version of the problem seems to exhibit a curse of dimensionality.

Result 1.3 (Formalized in Theorem 3.4). For data sets consisting of points from [n]d under a reasonable
metric, such as the Manhattan distance `d

1 or the Euclidean distance `d
2 , there is a three-round SIP with cost

poly(d, logn) allowing exact nearest neighbor queries to the data set.

We also give similarly efficient two-round SIPs for other well-studied query problems, such as range
counting queries (Theorem 3.6), where a stream of data points is followed by a query range and the goal
is to determine the number of points in the range that appeared in the stream, and pattern matching queries
(Theorem 3.8), where a streamed text is followed by a (short) query pattern.

Next, we work towards a detailed understanding of the subtleties of SIPs that caused the aforementioned
Klauck–Prakash lower bound [31] not to apply. Our study naturally leads into communication complexity,
in particular to Arthur–Merlin communication, which we discuss next.

1.2 The Connection to Arthur–Merlin Communication

Like almost all previous lower bounds for data stream computations, prior SIP lower bounds [11, 31] use
reductions from problems in communication complexity. To model the prover in an SIP, the appropriate
setting is Arthur–Merlin communication, which we now introduce.

Suppose Alice holds an input x∈X , Bob holds y∈Y , and they wish to compute f (x,y) for some Boolean
function f : X ×Y → {0,1}, using random coins and settling for some constant probability of error. Say
this costs R( f ) bits of communication. Can an omniscient but untrusted Merlin, who knows (x,y), convince
“Arthur” (defined as Alice and Bob together) that f (x,y) = 1, keeping the overall communication within
o(R( f ))? For several interesting functions f the answer is “Yes” and this is the general subject of Arthur–
Merlin communication complexity, first considered in seminal work by Babai, Frankl, and Simon [7].

The one-pass streaming restriction on the verifier in an SIP is modeled by requiring that Alice not
receive any communication from either Bob or Merlin. Thus the Alice–Bob communication is one-way,
though Bob and Merlin may interact arbitrarily. We refer to this restricted communication setting as online
Arthur–Merlin communication. It should be clear that a k-round SIP with cost C can be simulated by an
online Arthur–Merlin communication of cost C where Bob and Merlin interact for k rounds. Thus, lower
bounds on SIPs would follow from corresponding communication lower bounds in the online Arthur–Merlin
setting.

At this point let us recall that the classical Turing-Machine-based theory of interactive proofs considers
two different models of interaction between prover and verifier, corresponding to the complexity classes
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IPTM,1 where the verifier is allowed private randomness, and AMTM, where he may only use public ran-
domness. Recall the following classic results about such interactive proofs.

• Equivalence of private and public coins. Goldwasser and Sipser [25] proved that a k-round private
coin interactive proof (à la IPTM) can be simulated (with a polynomial blowup in complexity) by a
(k+2)-round public coin one (à la AMTM). Thus, in the resulting protocol, the verifier can perform
his interaction with the prover before even looking at the input!

• Round reduction. Babai and Moran [8] proved that a (k+1)-round interactive proof can be simulated
by a k-round interactive proof with a polynomial blowup in the verifier’s complexity. Thus, a two-
round (verifier→prover→verifier) interactive proof is just as powerful as any constant-round one.

Interestingly, as we shall show in this work, neither of these phenomena holds for the online communication
complexity analogs of IPTM and AMTM. (Recall that “online” means that the Alice→Bob communication
is one-way.) This point appears to have been missed in the Klauck–Prakash proof [31], which works in a
“public coin” setting and thus applies only to a restricted class of SIPs. The new SIPs we design in this work
correspond to a “private coin” setting, which allows the aforementioned exponential improvements.

Clearly there are nuances in online Arthur–Merlin communication complexity that do not arise in clas-
sical interactive proofs. In particular, we seek a better understanding of the precise role of rounds and of
private randomness in the communication setting. This is the goal of our next batch of results.

1.3 New Results: Complexity Classes for Arthur–Merlin Communication

As noted above, we can think of AMTM as a restricted interactive proof model where the verifier must inter-
act with the prover before looking at his input. We can then define a hierarchy of analogous communication
complexity models called OMA[k] (Online Merlin–Arthur), where Bob interacts with Merlin in k rounds
without looking at his input, and then Alice communicates with Bob one-way. We defer precise definitions
to Section 4. The aforementioned Klauck–Prakash lower bound essentially says the following:

Proposition 1.4 (Klauck and Prakash [31]). The INDEX problem—where Alice gets x ∈ {0,1}n, Bob gets
j ∈ [n] and Bob must output x j with high probability—requires Ω(n1/(k+1)) cost in the OMA[2k] model.

We can also define a parallel hierarchy OIP[k] (Online Interactive Proof) of communication analogs of
IPTM. We now hit another subtlety. We could require the Bob–Merlin interaction to happen before the
Alice→Bob communication; this is how we shall define OIP[k]. Alternatively, we could swap the order,
so that Bob’s messages to Merlin could depend on Alice’s input as well; we shall call the resulting (more
powerful) model OIP[k]

+++ .
These communication models correspond to SIPs as follows. Every SIP designed prior to this work falls

into a restricted setting where the verifier’s messages are independent of the input, so it can be simulated
by an OMA[k] protocol with k being the number of rounds of interaction in the SIP. The SIPs we design in
this work apply to “query problems” with the data set appearing before the query, and our verifier messages
depend only on the query. Thus our SIPs are naturally simulable by OIP[k] protocols. Finally, a general SIP,
where verifier messages can depend on the entire input stream, is simulable by an OIP[k]

+++ protocol.
Following Babai et al. [7], given a communication model C, we define a corresponding complexity class,

also denoted C, consisting of all problems that have polylogarithmic cost protocols in the model C. We now
have three parallel hierarchies of communication complexity classes: OMA[k], OIP[k], and OIP[k]

+++ . For our
next batch of results, we prove several inclusion and separation results relating these newly defined classes
to each other and to well-studied classes from earlier work in communication complexity.

1Throughout this paper, we use the subscript “TM” to denote a Turing-machine-based complexity class, to resolve the notation
clash with the analogous communication complexity classes.

3



Result 1.5 (Formalized over several theorems in Section 5). The following complexity class inclusions and
separations, given in Figure 1, hold.

R[1,A] R[2,B] MA[2,B] AM OMA[k]

OIP[1] OIP[2] OIP[3] OIP[4] OIP[k]

OIP[1]
+++ R[3,A] OIP[2]

+++

Figure 1: The layout of our communication complexity zoo. An arrow from C1 to C2 indicates that C1 ⊆ C2. If the
arrow is double-headed, then the inclusion is strict. Here k > 4 is an arbitrary constant. The models R[t,A] (resp. R[t,B])
are standard t-round randomized communication with Alice (resp. Bob) starting. The model MA[2,B] consists of a
message from Merlin followed by Bob→Alice→Bob communication, while AM is standard (see Section 5).

Notice that there are several two-way inclusions (i.e., equalities) amongst these communication com-
plexity classes. It is worth noting that with one exception (namely OIP[1] = OIP[1]

+++ ) none of these equalities
is trivial. For instance, consider the switch from the model R[2,B] to the model OIP[2]: Bob loses the ability
to send Alice a message before hearing from her, but gains access to Merlin. It is not a priori clear that this
switch in models will result in a complexity class that is even comparable to R[2,B], and nontrivial simulation
arguments (Theorems 5.3 and 5.6) are required to prove that R[2,B] = OIP[2].

Many of our simulations incur some blowup in cost. All such blowups are at most quadratic, so poly-
logarithmic costs remain polylogarithmic.

The OMA and OIP hierarchies behave quite differently from the classical AMTM and IPTM:

• In contrast to the Goldwasser–Siper private-by-public-coin theorem, the class OIP[4] is strictly more
powerful than OMA[k] (in fact, even OIP[2] 6⊆OMA[k]), for every constant k.

• In contrast to the Babai–Moran round reduction theorem, there are exactly four distinct levels (not
two) in the OIP[k] hierarchy, for constant k.

In the course of proving the separation results in Figure 1, we obtain concrete lower bounds for explicit
functions that are of interest in their own right. Let us highlight one of these.

Result 1.6 (Formalized in Corollary 5.9). The set disjointness problem DISJ—where Alice and Bob each get
a subset of [n] and must decide whether they are disjoint—requires Ω(n1/3) cost in the OIP[3] model and
thus does not belong to the class OIP[3]. This lower bound is tight up to a logarithmic factor.

This has implications for SIPs. We noted that all SIPs designed thus far (including the new ones in this
work) are simulable in the weaker OIP models. By a standard reduction [4] from DISJ to the frequency
moments problem Fk, it follows that unlike what we achieved for point queries and median queries, based
on currently known techniques, we cannot get a polylogarithmic cost three-round SIP for Fk (k 6= 1).

Removing the qualifier “based on currently known techniques” above would require a similar lower
bound for OIP[3]

+++ . Unfortunately, at present we are unable to prove any nontrivial lower bounds on OIP[2]
+++ ,

and doing so appears to be a rather difficult problem. Indeed, this inability is what led us to study the weaker
OIP model. Yet, because the OIP models are online, the separation results in Figure 1 still morally capture
the primary way in which SIPs, due to their streaming/online nature, differ from classical interactive proofs.
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Finally, our result AM=OIP[4] gives a novel characterization of AM in terms of online communication.
This is surprising because online models, where no one talks to Alice, might be expected to be too weak to
capture AM. Proving lower bounds on AM is a longstanding and notoriously hard problem in communica-
tion complexity [29,30,34]. We believe our new characterization of AM is of independent interest, and may
prove useful in establishing non-trivial AM lower bounds.

1.4 Related Work

Stream Computation. Early theoretical work on verifiable stream computation focused on non-interactive
protocols, as in the annotated data streams model of Chakrabarti et al. [11]. In our language, that model
corresponds to 1-round SIPs. Work in this model has established optimal protocols for several problems in-
cluding frequency moments and frequent items [11]; linear algebraic problems such as matrix rank [31]; and
graph problems like shortest s–t path [16]. Many of these protocols have subsequently been optimized for
streams whose length is much smaller than the universe size [12]. More recent protocols, such as the Arthur–
Merlin streaming protocols of Gur and Raz [12, 26] are “barely interactive” in the sense that the prover and
the verifier may exchange a constant number of messages. Meanwhile, the fully general streaming interac-
tive proof (SIP) model of Cormode et al. [17, 18] permits “many” rounds of interaction. Cormode, Thaler,
and Yi [18] showed that several general IPTM protocols can be simulated in this model. These include the
powerful, general-purpose protocol of Goldwasser, Kalai, and Rothblum [23]. Given any problem in NCTM,
the resulting protocol requires only polylogarithmic space and communication while using polylogarithmic
rounds of verifier–prover interaction. Refinements and implementations of these protocols [17, 47, 48] have
demonstrated scalability and the practicality of this line of work.

Algebraic techniques lie at the core of almost all nontrivial protocols in the above models. Specifi-
cally, a number of 1-round SIPs are inspired by the Aaronson–Wigderson MA communication protocol for
DISJ [2], which is in turn inspired by the classic sum-check protocol of Lund et al. [21]. The sum-check
protocol is also the inspiration for the way that all previous multi-round SIPs make use of interaction. The
aforementioned protocol of Goldwasser et al. [23] also builds upon the sum-check protocol.

The algorithmic results outlined in Section 1.1 have a rather different algebraic idea at their core. They
are based on the aforementioned polynomial evaluation protocol, which is obtained by adapting a result of
Raz [42] about IP/rpolyTM to a streaming setting; see the discussion at the start of Section 2.1.

Early work on interactive proofs studied space-bounded verifiers (see the survey by Condon [15]), but
many protocols developed in this line of work require the verifier to store the input, and therefore do not
address verifiable stream computation, as we do here. Goldwasser et al. [22] studied interactive proofs with
verifiers in the complexity class NC0

TM. Interestingly, they showed that private randomness is necessary to
obtain interactive proofs with verifiers in NC0

TM, unless the language in question is already in NC0
TM. This

is analogous to our finding that constant-round “public coin” SIPs (where the verifier’s messages do not
depend on the input) are exponentially weaker than general constant-round SIPs.

Computationally Sound Protocols. Protocols for verifiable stream computation have also been studied
in the cryptography community [13, 41, 44]. These works only require soundness to hold against cheating
provers that run in polynomial time. In exchange for this weaker security guarantee, these protocols can
achieve properties that are impossible in the information-theoretic setting we consider. For example, they
typically achieve reusability, allowing the verifier to use the same randomness to answer many queries. In
contrast, our protocols only support “one-shot” queries, because they require the verifier to reveal secret
randomness to the prover.

Chung et al. [13] combine the GKR protocol with fully homomorphic encryption (FHE) to give reusable,
non-interactive protocols of polylogarithmic cost for any problem in NC. Papamanthou et al. [41] give
improved protocols for a class of low-complexity queries including point queries and range search: their
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protocols avoid the use of FHE, and allow the prover to answer such queries in polylogarithmic time (a
similar property was achieved by Schröder and Schröder [44], but for a simpler class of queries, and with
unidrectional communication from the verifier to the prover on each stream update). In contrast, prior work
as well as our own requires the prover to spend time quasilinear in the size of the data stream after receiving
a query, even if the answer itself can be computed in sublinear time (e.g., point queries, which can be solved
with a single access to memory). We note however that our most interesting protocols, such as those for
nearest neighbor search and pattern matching, are for problems that cannot be solved in sublinear time;
hence, the quasilinear time required by our protocols does not affect the prover’s runtime by more than
logarithmic factors.

Communication Complexity. Seminal work by Babai et al. [7] introduced and studied the communi-
cation analogs of the major Turing Machine complexity classes, including P, NP, ΣΣΣ2, ΠΠΠ2. They hinted at
similar analogs of MA and the AM hierarchy. Lokam [34] related the task of placing problems outside
of the communication class AM to notions of matrix rigidity. He also observed that the communication
complexity classes IP and AM behave similarly to their Turing Machine counterparts. In particular, noted
theorems such as IP = PSPACE, Toda’s Theorem, and Babai and Moran’s round reduction results [8] all
hold in the communication world (though not under online communication, as shown by this work).

Online (also known as one-round) randomized communication complexity was introduced in the mid-
1990s and considered by Ablayev [3], Kremer, Nisan, and Ron [32], and Newman and Szegedy [37].
Aaronson [1] introduced online variants of Merlin–Arthur communication, in classical and quantum fla-
vors. Aaronson and Wigderson [2] gave an online MA communication protocol for DISJ (more generally,
for INNER-PRODUCT) with cost Õ(

√
n); this is nearly optimal, as shown by a lower bound of Klauck [29]

that applies to general MA protocols. More recently, Klauck [30] performed a careful study of AM, MA,
and its quantum analogue QMA. In particular, he gave a promise problem PAPPMP separating QMA from
AM; we shall eventually show that PAPPMP separates OIP[3] from OIP[4].

1.5 Suggestions for Reading the Rest of the Paper

As should be clear by now, this paper contains two groups of results. The first group provides upper bounds
by designing SIPs. The reader primarily interested in this group can simply continue with Sections 2 and 3.
The second group concerns Arthur–Merlin communication, lower bounds, and a number of structural com-
plexity results. The reader primarily interested in these results should first study the polynomial evaluation
protocol, discussed in Section 2, and may then skip to Sections 4 and 5. This order is important: several of
the complexity results make use of the polynomial evaluation protocol.

Section 5 contains a large number of individual theorems. To the reader wishing to get a small but
representative sampling of the salient techniques, we suggest Theorems 5.3, 5.6 and 5.13.

2 The SIP Model and the Polynomial Evaluation Protocol

In a data stream problem, the input σ is a stream, or sequence, of tokens from some data universe U . The
goal is to compute or approximate some function g(σ), keeping space usage sublinear in the two key size
parameters: (1) the length of σ , and (2) the size of the universe |U|. Practically speaking, we would also like
to process each stream update (token arrival) quickly. All our data stream algorithms will be randomized,
and we shall allow them to err with some small constant probability on each input stream. In the streaming
interactive proofs (SIP) model, after processing σ , the algorithm (called the “verifier”) may engage in k
rounds of interaction with an oracle (the “prover”) who knows σ and whose goal is to lead the verifier to
output the correct answer g(σ). The verifier, being distrustful, will output “⊥” (indicating “abort”) if he
suspects the prover to be cheating.

6



All of the SIPs in this paper will work in the turnstile streaming model, where σ can contain deletions
of tokens from U , in addition to insertions. In this model it is best to think of the input as being a stream
of integer updates to a vector x = (x1, . . . ,xn) ∈ Zn. Initially x = 0, and an update is a tuple (i,c) ∈ [n]×Z,
which has the effect of adding c to the entry xi. We will sometimes describe our algorithms as they apply to
the vanilla streaming model, but it will be straightforward to extend them to the turnstile model.

We say that an SIP computes the function g with completeness error εc and soundness error εs if for all
inputs x there exists a prover strategy that will cause the verifier to output g(x) with probability at least 1−εc,
and no prover strategy can cause the verifier to output a value outside {g(x),⊥} with probability larger than
εs. In designing SIPs, our goal will be to achieve εc,εs ≤ 1/3; clearly the theory remains unchanged if we
replace 1/3 by another constant in (0,1/2). A SIP with εc = 0 is said to have perfect completeness. The
total length of the verifier–prover interaction is the help cost. The space used by the streaming verifier is the
space cost. The cost of an SIP is the sum of its help cost and its space cost. When designing SIP protocols
we will also discuss the time complexities of the prover and the verifier. To keep things simple, we consider
a model in which all arithmetic operations on a finite field of size nO(1) can be executed in unit time.

2.1 The Polynomial Evaluation Protocol

We shall present a two-round SIP for an abstract data stream problem called “polynomial evaluation,” where
the input consists of a multivariate polynomial described implicitly, as a table of values, followed by a point
at which the polynomial must be evaluated. Without space constraints, this problem simply amounts to
interpolation followed by direct evaluation, but our goal is to obtain a protocol where the verifier uses space
roughly logarithmic in the size of the table of values, and is convinced by the prover about the correct answer
after a similar amount of communication. For ease of presentation, we shall first consider a concrete special
setting that is important in its own right: the INDEX problem. In this problem, the input is a stream of n data
bits x1, . . . ,xn, followed by a query index j ∈ [n]. The goal is to output x j with error at most 1/3.

With very different motivations from ours, Raz [42] gave an interactive proof protocol placing every
language in IPTM/rpoly, the class of languages that have interactive proofs with polynomial-time verifiers
that take randomized advice, where the advice is kept secret from the prover. Our SIP for INDEX can be
seen as an adaptation of Raz’s interactive proof to the streaming setting.

Theorem 2.1. The INDEX problem has a two-round SIP with cost O(logn log logn), in which the verifier
processes each stream token in O(logn) time and the prover runs in total time O(n logn).

Proof. Assume WLOG that n = 2b, for some integer b. Identify each integer z ∈ [n] with a Boolean vector
z = (z1, . . . ,zb) ∈ {0,1}b in some canonical way, such as by using the binary representation of z. We can
then view the data bits as a table of values for the Boolean function gx : {0,1}b→{0,1} given by gx(z) = xz,
and thus for the multilinear b-variate polynomial g̃x(Z1, . . . ,Zb) given by

g̃x(Z1, . . . ,Zb) = ∑
z∈{0,1}b

gx(z)χz(Z1, . . . ,Zb) , where (1)

χu(Z1, . . . ,Zb) =
b

∏
i=1

(
(1−ui)(1−Zi)+uiZi

)
(2)

is the indicator function of the vector u = (u1, . . . ,ub). We shall interpret g̃x as a polynomial in F[Z1, . . . ,Zb]
for a fixed “large enough” finite field F. With this interpretation, g̃x is called the multilinear extension of gx

to F. We define a line in Fb to be the range of a nonconstant affine function from F to Fb. Every line contains
exactly |F| points. Given such a line, `, we define its canonical representation to be the degree-1 polynomial
λ`(W ) ∈ Fb[W ] such that λ`(0) and λ`(1) are, respectively, the lexicographically first and second points in
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`. We define the canonical restriction of a polynomial f (Z1, . . . ,Zb) to ` to be the univariate polynomial
f (λ`(W )) ∈ F[W ], whose degree is at most the total degree of f .

Using the above notations and conventions, our two-round SIP for INDEX works as shown in Figure 2.

Input: Stream of data bits (x1, . . . ,xn) where n = 2b, followed by index j ∈ [n].
Goal: Prover to convince Verifier to output the correct value of x j.
Shared Agreement: Finite field F with 3b+1≤ |F| ≤ 6b+2; bijective map u ∈ [n]←→ u ∈ {0,1}b.

Initialization: Verifier picks r ∈R Fb uniformly at random, sets Q← 0.

Stream Processing: Upon reading xz, where z ∈ [n], Verifier updates Q← Q+ xzχz(r).

Query Handling: Upon reading the index j, Verifier interacts with Prover as follows:
1. If j = r, Verifier outputs Q as the answer. Otherwise, he sends Prover `, the unique line in Fb

through j and r.

2. Prover sends Verifier a polynomial h(W ) ∈ F[W ] of degree at most b, claiming that it is the
canonical restriction of the multilinear polynomial g̃x(Z1, . . . ,Zb) to the line `. That is, Prover
claims that h(W )≡ g̃x(λ`(W )).

3. Let w, t ∈ F be such that λ`(w) = j and λ`(t) = r. Verifier checks that h(t) = Q, aborting if not.
If the check passes, Verifier outputs h(w) as the answer.

Figure 2: A Two-Round Streaming Interactive Proof (SIP) Protocol for the INDEX Problem

To analyze this protocol, first note that after reading all the data bits, the verifier would have computed Q =
g̃x(r), by Eq. (1). Now the protocol is easily seen to have perfect completeness. Since g̃x(Z1, . . . ,Zb) is mul-
tilinear, it follows that deg(g̃x(λ`(W ))) ≤ b, so the prover can always honestly choose h(W ) = g̃x(λ`(W )).
If he does so, then we will indeed have h(t) = g̃x(λ`(t)) = g̃x(r) = Q, and the verifier’s check will pass.
Finally, the verifier will output h(w) = g̃x(λ`(w)) = g̃x(j) = x j, the correct answer to the INDEX instance.

Next, we analyze soundness. If the prover supplies a polynomial h(W ) 6≡ g̃x(λ`(W )), then, since both
polynomials have degree at most b, they agree at at most b points in F. From the prover’s perspective after he
receives the verifier’s message, r is uniformly distributed in `\{j}. Thus, Prr[h(t) =Q]≤ b/(|F|−1)≤ 1/3.

Now we consider this protocol’s costs. The verifier maintains the random point r ∈ Fb and the running
sum Q ∈ F, using O(b log |F|) space. He sends the prover `, which is specified by two elements of Fb, and
receives a degree-b polynomial in F[W ]; both communications use at most O(b log |F|) bits. Recalling that
|F| ≤ 6b+2, we see that both space and communication costs are in O(b logb) = O(logn log logn).

Finally, we consider the verifier’s and prover’s runtimes. The honest prover must send the univariate
polynomial g̃x(λ`(W )). Since g̃x has degree at most b, it suffices for the prover to specify the evaluations of
g̃x(λ`(W )) at b+ 1 = O(logn) points. A direct application of Eqs. (1) and (2) shows that each evaluation
can be done in O(n logn) time, resulting in a total runtime of O(n log2 n). However, using now-standard
memoization techniques (see e.g. [48, Section 5.1]), it is possible for the prover to in fact perform each
of these evaluations in just O(n) time, resulting in a total runtime of O(n logn). The verifier can run in
O(b) = O(logn) time per stream update, as each stream update xz only requires the verifier to compute
χz(r), and it follows from Eq. (2) that this can be done with O(b) field operations. When interacting with
the prover, the verifier first needs to determine the line ` through j and r, which he can do in O(b) = O(logn)
time. To process the prover’s reply, he must evaluate the polynomial h at the points t and w; these evaluations
can be done in polylogn time.

The above SIP protocol uses very little of the special structure of the INDEX problem. Let us abstract out
its salient features, so as to handle the general problem described at the start of this section. First, note the
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protocol treats the data set given by (x1, . . . ,xn) as an implicit description of the polynomial g̃x. Second, note
that our soundness analysis did not require multilinearity per se, only an upper bound on the total degree of
g̃x. Finally, note that the specific form of Eqs. (1) and (2) is not crucial either; all we used was that it allows
the verifier an easy streaming computation. Thus, we obtain the following generic result.

Theorem 2.2 (Polynomial Evaluation Protocol). Suppose an input data stream implicitly describes a v-
variate polynomial g of total degree d over a field F, followed by a point j ∈ Fv. Suppose this implicit
description allows a streaming verifier to evaluate g at a random point r ∈R Fv using space S. Then the
technique of the protocol in Figure 2 gives a two-round SIP for computing g(j), with the following properties:
(1) perfect completeness; (2) soundness error bounded by d/(|F|−1); (3) space usage in O(v log |F|+S);
(4) help cost in O((d + v) log |F|).

We shall refer to the abstract protocol given by Theorem 2.2 as the polynomial evaluation protocol.

3 Constant-Round SIPs for Query Problems

We shall now apply the polynomial evaluation protocol to design SIPs proving the various upper bounds
outlined in Section 1.1. The first application is immediate; later applications bring in additional ideas.

3.1 Point Queries.

In the POINTQUERY problem, the input is a stream in the turnstile model, updating an initially-zero vector
x ∈ Zn, followed by a query j ∈ [n]. The goal is to output x j.

Theorem 3.1. Suppose the input to POINTQUERY is guaranteed to satisfy |xi| ≤ q at end of the data stream,
for all entries of x, where the bound q is known a priori. Then there is a two-round SIP for POINTQUERY

with space and help costs in O(logn log(q+ logn)).

Proof. Assume WLOG that n = 2b for an integer b, and use a bijection u ∈ [n] ←→ u ∈ {0,1}b as in
Theorem 2.1. The vector x resulting from the updates defines a multilinear polynomial g̃x(Z1, . . . ,Zb) by
Eq. (1), where gx(z) := xz. We can treat g̃x as a polynomial over any field we like, but to solve our problem,
we need to tell apart the 2q+1 possible values taken on by the entries of x (recall that q is an upper bound
on ‖x‖∞ at the end of the stream). For this it suffices to have char(F)≥ 2q+1.

Applying the polynomial evaluation protocol is now straightforward. The verifier starts with r ∈R Fb

and Q = 0. Upon receiving an update indicating “xi← xi+c,” he updates Q←Q+cχi(r). The other details
are as in Figure 2. The space and communication costs are both in O(b log |F|) as before.

To ensure a soundness error of at most 1/3, we let |F|> 3b as before. This and the earlier condition on
char(F) can both be satisfied by, e.g., taking F= Fp, for a prime p > 3b+2q. This translates to cost bounds
in O(logn log(q+ logn)), as claimed.

3.2 Nearest Neighbor Queries

Consider a “premetric” space2 (X ,D) given by a finite ground set X and distance function D :X ×X →R+

satisfying D(x,x) = 0 for all x ∈ X . Let BD(z,r) = {x ∈ X : D(x,z) ≤ r} denote the corresponding ball
of radius r ∈ R+ centered at z ∈ X . In the NEARESTNEIGHBOR problem, the input consists of a stream
〈x(1), . . . ,x(m)〉 of m points from X , constituting the data set, followed by a query point z ∈X . The goal is to
output x??? = argminx(i) D(x(i),z), the nearest neighbor of z in the data set. We shall give highly efficient SIPs

2 This very general setting, which includes metric spaces as special cases, captures several important distance functions such as
the Bregman divergences from information theory and machine learning that satisfy neither symmetry nor the triangle inequality.
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for this problem that handle rather general distance functions D. To keep our statements of bounds simple,
we shall impose the following structure on (X ,D).

• We assume that X = [n]d . We think of d as the dimensionality of the data, and [n]d as a very fine
“grid” over the ambient space of possible points.

• For all x,y ∈ [n]d , D(x,y)≤ 1 is an integer multiple of a small parameter ε ≥ 1/nd .

Overall, this amounts to assuming that our data set has polynomial spread: the ratio between the maximum
and minimum distance. We proceed to give two SIPs for NEARESTNEIGHBOR. Our basic SIP has cost
roughly logarithmic in the stream length and the spread (and therefore linear in d but only logarithmic in n).
After we present it, we shall critique it and then give a more sophisticated SIP to handle its faults.

Theorem 3.2. Under the above assumptions on the premetric space (X ,D), the NEARESTNEIGHBOR prob-
lem has a three-round SIP with cost O(d logn log(m+ log(d logn))).

Proof. Let B = {BD(x, jε) : x ∈ X , j ∈ Z,0 ≤ j ≤ 1/ε} be the set of all balls of all radii between 0 and
1 (quantized at granularity ε). By our assumptions on the structure of (X ,D), we have |B| ≤ nd/ε ≤ n2d .
The input stream 〈x(1), . . . ,x(m)〉 defines a derived stream, consisting of updates to a vector v indexed by the
elements of B. We shall denote by v[βββ ] the entry of v indexed by βββ ∈ B. The derived stream is defined as
follows: the token x(i) increments v[βββ ] for every ball βββ that contains x(i). The verifier runs the POINTQUERY

protocol of Theorem 3.1 on this derived stream.
The verifier learns the query point z at the end of the stream. The prover then supplies a point y claimed

to be a valid nearest neighbor (note that there may be more than one valid answer). To check this claim, it is
sufficient for the verifier to check two properties: (1) that y did appear in the stream, and (2) that the stream
contained no point closer to z than y. The first property holds iff v[BD(y,0)] 6= 0. The second property holds
iff v[BD(z,D(y,z)− ε)] = 0. Clearly, these two properties can be checked by two point queries over the
derived stream.

Following the protocol of Theorem 3.1, the two point queries (executed in parallel) involve two more
rounds between the verifier and the prover, for an overall three-round SIP. Since the entries of v never exceed
m, each POINTQUERY protocol requires space and help costs O(d logn log(m+ log(d logn))).

While the protocol of Theorem 3.2 achieves very small space and help costs, the prover’s and verifier’s
runtimes could be as high as Ω(nd), because processing a single stream token x(i) may require both parties
to enumerate all balls containing x(i). Ultimately, this inefficiency is because the protocol assumes hardly
anything about the nature of the distance function D and, as a result, does not get to exploit any structural
information about the balls in B.

To rectify this, we shall make the entirely reasonable assumption that the distance function D is “effi-
ciently computable” in the rather mild sense that membership in a ball generated by D can be decided by a
short (say, polynomial-length) formula. Accordingly, we shall express our bounds in terms of a parameter
that captures this notion of efficient computation.

Definition 3.3. Suppose the distance function D on X satisfies the assumptions for Theorem 3.2. Let
ΦD : B×X → {0,1} be the ball membership function for D, i.e., ΦD(BD(z,r),x) = 1 ⇐⇒ x ∈ BD(z,r).
Think of ΦD as a Boolean function of (3d logn)-bit inputs. We define the formula size complexity of D,
denoted fsize(D), to be the length of the shortest de Morgan formula for ΦD.

Since addition and multiplication of b-bit integers can both be computed by Boolean circuits in depth
logb (see, e.g., [39, 49]), they can be computed by Boolean formulae of size poly(b). It follows that for
many natural distance functions D, including the Euclidean, Hamming, `1, and `∞ metrics (and in fact `p for
all suitably “small” positive p), we have fsize(D) = poly(d, logn).
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Theorem 3.4. Suppose the premetric space (X ,D) satisfies the assumptions made for Theorem 3.2. Then
NEARESTNEIGHBOR on (X ,D) has a three-round SIP, whose space and help costs are both at most
O(fsize(D) log(m + fsize(D))), in which the verifier processes each stream update in time O(fsize(D)),
and the prover runs in total time m · poly(fsize(D)). In particular, if fsize(D) = poly(d, logn), as is the
case for many natural distance functions D, then the space and help costs are both poly(d, logm, logn), the
verifier runs in time poly(d, logn) per stream update, and the prover runs in total time m ·poly(d, logn).

Before describing the protocol in detail, let us explain the high level idea that allows us to avoid the
high runtimes of the previous protocol. Essentially, the SIP of Theorem 3.2 ran our polynomial evaluation
protocol on a multilinear extension of the vector v defined by the derived stream. That SIP took v to
be a completely arbitrary table of values. As a result, the verifier’s computation—evaluating the multilinear
extension at a random point—became costly. The honest prover incurred similar costs. A closer examination
of the nature of v reveals that if D is a “reasonable” distance function, then v itself has plenty of structure.
In particular, an appropriate higher degree extension of v can in fact be evaluated much more efficiently (by
both the verifier and the prover) than the above multilinear extension. Details follow.

Proof. Put b = d logn and S = fsize(D). According to Definition 3.3, the function ΦD is computed by a
length-S formula that takes a 2b-bit input βββ = (β1, . . . ,β2b) describing a ball in B and a b-bit input x =
(x1, . . . ,xb) describing a point in X . With each gate G of this formula we associate a polynomial G̃ in the
variables W1, . . . ,W2b,X1, . . . ,Xb, as follows:

G = βi =⇒ G̃ =Wi ,

G = xi =⇒ G̃ = Xi ,

G = ¬G1 =⇒ G̃ =−G̃1 ,

G = G1∧G2 =⇒ G̃ = G̃1G̃2 ,

G = G1∨G2 =⇒ G̃ = 1− (1− G̃1)(1− G̃2) .

Let Φ̃D(W1, . . . ,W2b,X1, . . . ,Xb) denote the polynomial thereby associated with the output gate; this poly-
nomial is the standard arithmetization [46] of the formula. We will interpret Φ̃D as a polynomial in
F[W1, . . . ,X1, . . .] for a “large enough” finite field F. By construction, Φ̃D has total degree at most S and
agrees with ΦD on every Boolean input. Define the polynomial Ψ(W1, . . . ,W2b)=∑

m
i=1 Φ̃D(W1, . . . ,W2b,x(i)).

Observe that the vector v defined by the derived stream in the proof of Theorem 3.2 behaves as follows:

v[βββ ] =
m

∑
i=1

ΦD(βββ ,x(i)) =
m

∑
i=1

Φ̃D(βββ ,x(i)) = Ψ(βββ ) . (3)

Thus, Ψ is a degree-S extension of v to F. The input stream defines Ψ implicitly, and the verifier can easily
evaluate Ψ(r) for random r∈R F2b. So we can invoke the polynomial evaluation protocol (twice, in parallel)
and answer the NEARESTNEIGHBOR query just as in Theorem 3.2. For full clarity, we spell out the resulting
SIP below. The term “canonical representation” and notation λ` are as in Section 2.1 and Figure 2.

This protocol’s correctness can be analyzed using the same ideas as in the proofs of Theorems 2.1
and 3.2. It has perfect completeness. If a dishonest prover supplies an incorrect polynomial for either h1(V )
or h2(V ), the verifier will fail to notice with probability at most S/(|F|− 1) ≤ 1/6, leading to a soundness
error of at most 1/6+1/6 = 1/3. Entries of v always lie between 0 and m and char(F) = |F|> m, since F
is of prime order, therefore there are no “wrap around” problems in Eq. (3).

Turning to the protocol’s costs, the verifier needs O(S) space to evaluate Φ̃D and O(b log |F|) space to
maintain r(1),r(2),Q1, and Q2. The prover needs to communicate two degree-S polynomials, which costs
O(S log |F|). Under the reasonable assumption that the optimal formula for ΦD depends on all its input
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Input: Stream of points x(1), . . . ,x(m) from X defining a data set, followed by query z ∈ X .
Goal: Prover to convince Verifier to output a nearest neighbor of z w.r.t. distance function D.
Shared Agreement: Finite field F of prime order with 6S+2m≤ |F| ≤ 12S+4m, where S = fsize(D).

Initialization: Verifier picks r(1),r(2) ∈R F2b independently and uniformly, sets Q1← 0 and Q2← 0.

Stream Processing: Upon reading x ∈ X , Verifier updates Qi← Qi + Φ̃D(r(i),x) for i ∈ {1,2}.

Query Handling: Upon reading query z, Verifier interacts with Prover as follows:

1. Prover sends Verifier a point y ∈ X , claiming that it is a nearest neighbor of z in the data set.

2. Verifier identifies balls βββ
(1)=BD(y,0) and βββ

(2)=BD(z,D(y,z)−ε). For i∈{1,2}, if βββ
(i)= r(i),

Verifier sets Ai←Qi and skips Steps 3 and 4 for this i; otherwise he sends Prover `(i), the unique
line in F2b through βββ

(i) and r(i).
3. For i ∈ {1,2}, Prover sends Verifier a polynomial hi(V ) ∈ F[V ] of degree at most S, claiming

that it is the canonical restriction of Ψ(W1, . . . ,W2b) to the line `(i). That is, Prover claims that
hi(V )≡Ψ(λ`(i)(V )), where λ`(V ) denotes the canonical representation of the line ` in F2b.

4. For i ∈ {1,2}, let vi, ti ∈ F be such that λ`(i)(vi) = βββ
(i) and λ`(i)(ti) = r(i). Verifier checks that

hi(ti) = Qi, aborting if not. Otherwise, he sets Ai← hi(vi).

5. If A1 6= 0 and A2 = 0, then Verifier outputs y as the answer. Otherwise he aborts.

Figure 3: A Three-Round SIP for the NEARESTNEIGHBOR Problem

variables, we have S≥ 3b, which yields a bound of O(S log(m+S)) on the space and help costs. The claim
about the runtimes is straightforward from the protocol’s description.

We remark that our above theorem made the tacit uniformity assumption that a formula for ΦD of length
fsize(D) could be constructed in space O(fsize(D)) and time poly(fsize(D)).

3.3 Range Counting Queries

Let U be any data universe and R ⊆ 2U a set of ranges. In the RANGECOUNT problem, the data stream
σ = 〈x(1), . . . ,x(m),R∗〉 specifies a sequence of universe elements x(i) ∈ U , followed by a query or target
range R∗ ∈ R. The goal is to output |{i : x(i) ∈ R∗}|, i.e., the number of elements in the target range that
appeared in the stream.

We easily obtain a two-round streaming interactive proof for the RANGECOUNT problem with cost
bounded by O(log |R| log(|R|m)). The verifier simply runs a POINTQUERY on the derived stream σ ′

defined to have data universe R. σ ′ is obtained from σ as follows: on each stream update x(i) ∈ U , the
verifier inserts into σ ′ one copy of each range R ∈ R such that x(i) ∈ R. The range count problem is
equivalent to a POINTQUERY on σ ′, with the target item being R∗, and we obtain the following theorem.

Theorem 3.5. There is a two-round SIP with O(log |R| log(|R|m)) cost for RANGECOUNT.

In particular, for spaces of bounded shatter dimension ρ , log |R| = ρ logm = O(logm). The above
protocol also implies a three-round SIP for the problem of linear classification, a core problem in machine
learning. Just like the protocol for NEARESTNEIGHBOR invokes a two-round protocol for INDEX, an SIP
for linear classification (find a hyperplane that separates red and blue points) verifies that the proposed
hyperplane is empty of red points on one side and blue points on the other using the above two-round
RANGECOUNT protocol.
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The prover and verifier in the protocol of Theorem 3.5 may require time Ω(|R|) per stream update.
This could be prohibitively large. However, we can obtain savings analogous to Theorem 3.4 if we make a
mild “efficient computability” assumption on our ranges. Specifically, suppose there exists a (poly(S)-time
uniform) de Morgan formula Φ of length S that takes as input a binary string representing a point x(i) ∈ U ,
as well as the label of a range R ∈ R and outputs a bit that is 1 if and only if x(i) ∈ R. We then obtain the
following more practical SIP.

Theorem 3.6. Suppose membership in ranges from R can be decided by de Morgan formulas of length S
as above. Then there is a two-round SIP for RANGECOUNT on R, with costs at most O(S log(m+ S)), in
which the verifier runs in time O(S) per stream update, and the prover runs in total time m ·poly(S).

3.4 Median and Selection Queries

We give a three-round SIP for SELECTION, of which MEDIAN is a special case. In the SELECTION problem,
defined over data universe U = [n], the data stream σ = 〈x(1), . . . ,x(m),ρ〉 is a sequence of elements from [n],
followed by a desired rank ρ ∈ [m]. For i ∈ [n], let fi := { j : x( j) = i} denote the number of times element i
appears in the stream. Given a desired rank ρ ∈ [m], the goal is to output an element j ∈ [n] such that

∑
k< j

fk < ρ and ∑
k> j

fk ≤ m−ρ. (4)

MEDIAN is the special case of SELECTION when ρ = bm/2c.
Our three-round SIPs for SELECTION essentially work by reducing to the RANGECOUNT problem, but

an extra round is required for the prover to send the desired element j to the verifier.

Theorem 3.7. There is a three-round SIP for SELECTION with cost at most O(logn log(m+ logn)) in which
the verifier runs in time poly(logn, logm) per update, and the prover runs in total time m ·poly(logn, logm).

Proof. While processing the data stream, the verifier runs two parallel independent instances of a RANGE-
COUNT protocol with the class of ranges beingR= {{i, i+1, . . . ,n} : 1≤ i≤ n}. At the end of the stream,
the prover supplies a j ∈ [n] claimed to satisfy both conditions in Equation (4). To check this claim, the ver-
ifier need only check that the number of stream elements from the range { j, . . . ,n} is at least m−ρ +1, and
the number of stream elements from the range { j+1, . . . ,n} is at most m−ρ . Each check can be performed
using one of the invocations of the RANGECOUNT protocol.

Noting that |R| = n, Theorem 3.5 immediately yields a bound of O(logn log(nm)) on the space and
help costs. To obtain the smaller bound in the theorem statement, we use the RANGECOUNT protocol of
Theorem 3.6 instead: The claimed costs follow because membership in an interval of the form {i, . . . ,n} can
be computed by a de Morgan formula of length O(logn). The SIP uses three rounds: one for the prover to
send j, and two for the parallel instances of the RANGECOUNT protocol.

3.5 Pattern Matching Queries

In the pattern matching with wildcards problem, denoted PMW, we are given a stream σ representing text
T = (t1, . . . , tm) ∈ {0,1,∗}m followed by a pattern P = (p1, . . . , pq) ∈ {0,1,∗}q. The wildcard symbol ∗ is
interpreted as “don’t care”, and the pattern P is said to occur at location i in t if, for every position j in P,
either p j = ti+ j or at least one of p j and ti+ j is the wildcard symbol. The PMW problem is to determine the
number of locations at which P occured in T . PATTERNMATCHING refers to the special case where “don’t
care” symbols are not permitted. We focus on a binary alphabet; a larger alphabet U can be handled by
replacing each character in U with its binary representation, growing the parameter q by a factor of log |U|.

Pattern matching, both with and without wildcards, has been extensively studied within the algorithmic
literature, with applications ranging from internet search to computational genetics (see e.g. [14,27] and the
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references therein). Verifiable protocols for pattern matching enable searching in the cloud, and comple-
ments work on searching in encrypted data within the cloud (e.g. [10]). Cormode et al. [17] described and
implemented an SIP for PMW that required roughly Θ(log2 m) rounds and had space help costs bounded by
Θ̃(log2 m); Concretely, their implementation required well over 1,000 rounds, even for quite small streams
(of length 217). In stark contrast, our new protocol requires the optimal number of rounds: two.

Theorem 3.8. There is a 2-round SIP for PMW with space and help costs at most O(q log(q+m)), in which
the verifier runs in time O(q) per stream update, and the prover runs in total time m ·poly(q).

Proof. For concreteness, we begin with a simple protocol for PATTERNMATCHING. The verifier runs the
POINTQUERY protocol of Theorem 3.1 on a derived stream σ ′ defined over a universe of size 2q, defined as
follows. The verifier explicitly stores the most recent q items read in the stream at all times (this requires q
bits of space). Since in PATTERNMATCHING there are no wildcards, at each time i, the verifier knows the
unique pattern P(i) that the most recent t items are an instance of, and inserts P(i) into σ ′. The help and space
costs of this protocol are both O(q log(q+m)), and both the prover and verifier run in time O(q log(q+m))
per stream update.

To generalize this to allow wildcards in the pattern and text, the protocol for PMW utilizes a similar
approach to the one taken in our NEARESTNEIGHBOR and RANGECOUNT protocols. Essentially, we let Φ̃

denote the arithmetization of a circuit that takes as input the binary representation of a pattern P∈ {0,1,∗}q,
and the binary representation of q additional symbols from {0,1,∗}, and outputs 1 if and only if the pattern
P “matches” the q additional symbols. We then apply the polynomial evaluation protocol to the polynomial
g = ∑i≤m Φ̃(i), where Φ̃(i) is the polynomial that indicates whether or not its input “matches” the most recent
t stream updates at time i.

In more detail, Φ̃ is defined as follows: let φ(x1,x2,y1,y2) : {0,1}4→ {0,1} be the function that eval-
uates to 1 if and only if x1 = y1 or at least one of x2 and y2 equals 1. Let F be a finite field of size at least
8(m+q), and let φ̃ be the multilinear extension of φ over F. Finally, define Φ : {0,1}4q→{0,1} via:

Φ(x11,x12,y11,y12, . . . ,xq1,xq2,yq1,yq2) =
q

∏
i=1

φ (xi1,xi2,yi1,yi2) .

In words, Φ takes q “blocks” as input, with each block consisting of 4 variables, and outputs 1 if and
only φ evaluates to 1 on all blocks. We define Φ̃ to be the multilinear extension of Φ over F; note Φ̃ =

∏
q
i=1 φ̃ (xi1,xi2,yi1,yi2), and Φ̃ can be evaluated at any point using O(q) field operations.

While processing the stream, the verifier represents each symbol ti ∈ {0,1,∗} read from the stream as
two bits (ti1, ti2): if ti = 0, then ti1 = ti2 = 0; if ti = 1, then ti1 = 1 and ti2 = 0; if ti = ∗, then ti1 = 0 and ti2 = 1.
At time i, let P(i) denote the 2q bits corresponding to the most recent q stream updates. Let Φ̃(i) : F2q→ F
denote the polynomial Φ̃, with the inputs y11,y12, . . . ,yq1,yq2 fixed to the bits in P(i). Let g : F2q→ F denote
the polynomial

g(x11,x12, . . . ,xq1,xq2) := ∑
1≤i≤m

Φ̃
(i)(x11,x12, . . . ,xq1,xq2).

The verifier will ultimately apply the polynomial evaluation protocol to g. To do so, the verifier must
evaluate g(r) = ∑i≤m Φ̃(i) while processing the data stream, for a random point r ∈ F2q. To accomplish this,
the verifier explicitly stores P(i) at all times i, which requires 2q bits of space. This enables the verifier to
determine Φ̃(i) at all times i, and hence V can keep a running sum of the Φ̃(i)(r) values.

At the end of the stream, the verifier learns the pattern P ∈ {0,1,∗}q, and must output the number of
occurrences of P in the text. Let j ∈ {0,1}2q denote the binary representation of P; then the number of
occurrences of P is equal to g(j). Hence, it is sufficient for the verifier to apply the polynomial evaluation
protocol to g, thereby evaluating g(j).
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The space and help costs are now immediate from the guarantees of Section 2.1 and the fact that g is
multilinear (hence its total degree is bounded above by 2q). The claimed time bounds follows from the fact
that each polynomial Φ(i) can be evaluated at any point in time O(q).

We remark that the PMW protocol of Theorem 3.8 can be run even if the verifier only knows an upper
bound on the length q of the pattern. This is because, for any q′ ≤ q, a pattern P′ ∈ {0,1,∗}q′ is equivalent
to the pattern P ∈ {0,1,∗}q obtained from P′ by concatenating q−q′ wildecard symbols to P′.

4 Communication Protocols and Complexity Classes

We now turn to the study of communication complexity classes motivated by a desire to understand stream-
ing interactive proofs (SIPs) from a complexity-theoretic viewpoint. In this section, we lay out the necessary
definitions and terminology to rigorously discuss the notions outlined in Section 1.3. In the next section we
prove the many parts of Result 1.5.

Communication problems arise naturally out of data stream problems if we suppose Alice holds a prefix
of the input stream, and Bob the remaining suffix. The primary goal of such reductions is to obtain space
lower bounds on data stream algorithms, so we are free to split the stream at any place we like. For example,
most data stream problems in Section 3 are query problems, where the input consists of a streamed data set,
S, followed by a query, q, to apply to S. In this case, it would be natural to split the input by giving S to
Alice and q to Bob. Communication problems that will play an important role in this paper include the index
problem INDEX : {0,1}n× [n]→ {0,1} where [n] := {1, . . . ,n} and INDEX(x, j) = x j, the set-intersection
and set-disjointness problems INTER, DISJ : {0,1}n×{0,1}n→ {0,1} where INTER(x,y) = ¬DISJ(x,y) =∨n

i=1(xi∧yi), and the median relation MED : [n]m× [n]m→ [n], where inputs x,y ∈ [n]m× [n]m are interpreted
as two halves of a list of numbers, and the valid output(s) corresponds to the median(s) of the combined list.

Communication Complexity Classes. All our communication models provide random coins and allow
two-sided error probability up to a constant; when unspecified, this constant defaults to 1/3. Given a com-
munication model C, we denote the corresponding complexity measure of a problem f by C( f ). Following
Babai et al. [7], we also denote by C the corresponding complexity class, defined as the set of all functions
f : {0,1}n×{0,1}n→{0,1} such that C( f ) = (logn)O(1), i.e., functions that are “easy” in the model C.

We let R[k,A] denote the model of randomized communication complexity where Alice and Bob ex-
change k ≥ 1 messages in total with Alice sending the first; R[k,B] is similar, except that Bob starts. In the
MA model, the super-player Merlin, who sees all of the input, broadcasts a message at the start, following
which Alice and Bob run a (two-way, arbitrary-round) randomized “verification” protocol. The MA[k,A]

and MA[k,B] models are restrictions of MA where Merlin speaks only to Bob 3 and the verification protocol
following Merlin’s single message is restricted to lie in R[k,A] and R[k,B] respectively.

The MA model (indeed, its restriction MA[1,A]) allows us to simulate 1-round SIPs in an obvious way:
Merlin sends Bob the prover’s message, and Alice sends Bob the verifier’s memory contents after it has
processed her prefix of the stream. Notice that the order of the two messages is not important, modulo one
crucial consideration: Alice must have a private channel to Bob and the random coins used to generate the
message from Alice to Bob must be hidden coins, invisible to Merlin but shared between Alice and Bob
(which is why we called them “hidden coins” rather than “private coins”).

The models OMA[k], OIP[k], and OIP[k]
+++ , for k ≥ 1, are obtained by extending MA[1,A] to simulate k-

round SIP protocols. These communication models work as follows. In each case, Alice and Bob first
toss some hidden coins. Then, upon receiving the input, two things happen: (1) Merlin and Bob interact
for k rounds, with Merlin sending the last message in the interaction, and (2) Alice sends Bob a message,

3Our definition breaks symmetry between Alice and Bob because our eventual goal is to study online protocols.
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randomized using the hidden coins. After these actions are completed, Bob produces an output in {0,1}.
The differences between the three series of models are as follows.

• In OMA[k], (1) happens before (2) and Bob must interact with Merlin before looking at his input. This
is directly analogous to AMTM; see the discussion in Section 1.2.

• In OIP[k], (1) happens before (2) and Bob may look at his input before talking to Merlin.

• Finally, OIP[k]
+++ is like OIP[k] except that (2) happens before (1). Thus, Bob’s messages may depend

on Alice’s actual message to Bob, not just on Bob’s input and the hidden coins.

In the AM model, the parties first choose a public random string, then Merlin broadcasts a message to Alice
and Bob, who then run a deterministic communication protocol to arrive at a Boolean output. Since Merlin
can in fact predict the exact transcript that Alice and Bob will generate following his message, we can
assume without loss of generality that after Merlin’s message, Alice and Bob output one bit each indicating
whether or not they accept Merlin’s prediction.

Cost and Value of Protocols. Let P be a protocol in a model C involving Merlin. For each input (x,y), P
defines a game between Merlin and Arthur (recall that Alice and Bob together constitute Arthur), wherein
Merlin’s goal is to make Arthur output 1. We define the value VP(x,y) to be Merlin’s probability of winning
this game with optimal play. Given a Boolean function f , we say that P computes f with soundness error
εs and completeness error εc if, for all x,y we have

f (x,y) = 0 ⇒ VP(x,y)≤ εs , and f (x,y) = 1 ⇒ VP(x,y)≥ 1− εc . (5)

When the above holds with εc = 0, we say that P computes f with perfect completeness.
The verification cost of P , denoted vc(P), is the (worst-case) number of bits sent by Alice plus the

number of hidden coin tosses; its help cost hc(P) is the number of bits communicated between Merlin
and Bob; its communication cost cc(P) = hc(P) + vc(P). For a problem f , we define its complexity
C( f ) = min{cc(Q) : Q is a C protocol that solves f with max{εs,εc} ≤ 1/3}.

4.1 Relations Among Communication Complexity Classes

We prove a number of inclusion and separation results among our “new” communication complexity classes
and relate them to previously studied classes. These are summarized in Figure 1, replicated below.

R[1,A] R[2,B] MA[2,B] AM OMA[k]

OIP[1] OIP[2] OIP[3] OIP[4] OIP[k]

OIP[1]
+++ R[3,A] OIP[2]

+++

Figure 4: The layout of our communication complexity zoo. An arrow from C1 to C2 indicates that C1 ⊆ C2. If the
arrow is double-headed, then the inclusion is strict. Within the figure, k is an arbitrary constant larger than 4.

Our results shed light on the landscape of online communication complexity in general.
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The simplest online communication model is R[1,A], a.k.a. one-way randomized communication. The
result OIP[1] = OIP[1]

+++ = R[1,A] establishes that in the world of online communication, introducing the om-
niscient but untrusted Merlin into the model is not enough to obtain super-polynomial efficiency improve-
ments, if interaction with Merlin is not permitted. The stronger result that OMA[k] = R[1,A] for all constants
k > 0 (this is the full statement of Theorem 5.20) establishes that in the “public coin” setting, the addition
of Merlin is not enough to obtain super-polynomial speedups even if interaction with Merlin is permitted.

The result that OIP[2] = R[2,B] (see Corollary 5.7) establishes that in the “hidden coin” setting, the
addition of Merlin to the communication model can yield super-polynomial efficiency improvements, even if
only the barest amount of interaction with Merlin is permitted. However, note that R[2,B] is the simplest non-
online communication model. Thus the combination of hidden coins and a minimal amount of interaction
is enough to simulate only the simplest of the non-online communication protocols.

The result that OIP[4] = OIP[4]
+++ = AM (see Corollary 5.14) shows that in the “hidden coin” setting, the

addition of Merlin to the communication model permits the simulation even of non-online interactive proofs,
as soon as four rounds of interaction with Merlin are permitted.

This in turn explains the somewhat puzzling result that the OIP and OIP+++ hierarchies collapse to the
fourth level: both Goldwasser–Sipser [25] and Babai–Moran [8] break down in the OIP and OIP+++ worlds
because their transformations do not preserve online-ness: they will turn an OIP[2] protocol into a “public
coin” one, but require Merlin to send a message to Alice. However, as soon as four rounds of interaction
with Merlin are permitted, even online interactive proofs can simulate non-online ones. At this point, the
phenomena of classical interactive proofs kick in, and the hierarchies collapse.

5 A Communication Complexity Zoo

We now study our central communication models OIP[k] and OIP[k]
+++ , and prove the web of relationships

given in Figure 4. Our results are of two types: (1) establishing separations or collapses between levels of
the OIP and OIP+++ hierarchies, as the case may be, and (2) relating these hierarchies to other previously
studied communication complexity classes. We shall first characterize every finite level of the OIP hierarchy
(the vertical bidirectional arrows in Figure 4). Next, in Sections 5.4 and 5.5, we separate the first four levels
of the hiearchy (the horizontal double-headed arrows in the figure). Finally, in Section 5.5, we separate the
OIP and OMA hierarchies.

Throughout Section 5, f will denote an arbitrary communication problem given by a Boolean function
f : X ×Y → {0,1}, and n will parametrize its “instance size” up to a constant factor, i.e., we will have
log |X |+ log |Y| = Θ(n). We shall use big-O and big-Ω notation to hide constants independent of f , |X |
and |Y|. We shall use the term “ordinary protocol” to mean a randomized communication protocol involving
Alice and Bob alone (and no Merlin).

The first level of the hierarchy is easy to characterize.

Theorem 5.1. We have OMA[1] = OIP[1] = OIP[1]
+++ = MA[1,A] = R[1,A].

Proof. The definitions immediately show that the first four classes are identical (syntactically) and include
R[1,A], because one can always choose to ignore Merlin. The reverse inclusion MA[1,A] ⊆ R[1,A] follows
from previous work: Chakrabarti et al. [11] show that for all f we have R[1,A]( f ) = O

(
MA[1,A]( f )2

)
.

5.1 A Characterization of OIP[2]

The main goal of this subsection is to prove that OIP[2] = R[2,B]. We start with the following communication
analog of Theorem 2.2, which was proven in a streaming setting.
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Lemma 5.2 (Polynomial Evaluation Protocol, Communication Version). Suppose Alice holds a v-variate
polynomial g of total degree d over a field F, and Bob holds a point j ∈ Fv. Assume |F| > 4d. Then
there is an OIP[2] protocol with communication cost O((v+ d) · log |F|) for evaluating g(j). In particular,
OIP[2](INDEX) = O(logn log logn), so that INDEX ∈OIP[2].

Proof. Using the notation established in the description of the polynomial agreement protocol of Section 2.1,
we simply note that the hidden coins shared between Alice and Bob determine r. Bob can send Merlin (the
canonical representation of) the line ` that passes through j and r without having to hear from Alice, since `
is determined entirely by r and Bob’s input j. Merlin can send Bob the polynomial h(W ) claimed to equal g
restricted to the line `, and Alice can send Bob g(r) within the stated cost bounds. Bob performs the same
check as the verifier in Theorem 2.2, and the completeness and soundness analysis is unchanged.

The just-proved fact that INDEX ∈ OIP[2] is striking: combined with the well-known lower bound
R[1,A](INDEX) = Ω(n), it shows that introducing Merlin into the picture while keeping the one-way re-
striction on the Alice/Bob communication lowers cost exponentially. It is now natural to ask whether OIP[2]

allows such exponential savings for harder problems, such as DISJ. Our next result—a lower bound on
OIP[2] complexity—implies that it does not.

Theorem 5.3. Let P be an OIP[2] protocol computing f . Then hc(P)vc(P) = Ω(R[2,B]( f )). In particular,
OIP[2]( f ) = Ω

(
R[2,B]( f )1/2

)
, which implies OIP[2] ⊆ R[2,B].

Proof. After appropriate parallel repetition, we may assume that the soundness and completeness errors ofP
at most 1/12 each. In general, P takes the following shape: (1) hidden coins are tossed, generating random
string r according to distribution D; (2) Bob sends Merlin a message mB = mB(y,r); (3) Merlin responds
with a message mM = mM(x,y,mB); (4) Alice sends Bob a message mA = mA(x,r); (5) Bob outputs a bit
given by a function outP(y,mM,mA). Let Dm be D conditioned on the event {mB = m}. With this notational
setup, we now describe (in Figure 5) a two-message ordinary protocol Q that we claim computes f .

1. Bob samples r ∼ D, computes m = mB(y,r), then sends Alice i.i.d. samples
r(1), . . . ,r(h) ∼Dm, where h = 36(hc(P)+4).

2. Alice sends Bob mA
(
x,r(1)

)
, . . . ,mA

(
x,r(h)

)
.

3. Bob outputs 1 iff ∃mM : |{i ∈ [h] : outP(y,mM,mA(x,r(i))) = 1}|> h/2.

Figure 5: The R[2,B] protocol Q, which simulates the OIP[2] protocol P .

To analyze this protocol, let us first define the weight Wx,y(m) of a Bob-message m to be the probability
that Merlin, playing optimally after receiving m, convinces Bob to output 1. That is,

Wx,y(m) = max
mM

Pr
r∼Dm

[
outP(y,mM,mA(x,r)) = 1

]
. (6)

Then, with m ∼ mB(y,D), the expected weight Em[Wx,y(m)] is at least 11/12 when f (x,y) = 1 and at most
1/12 when f (x,y) = 0.

Correctness on 111-inputs: Fix (x,y)∈ f−1(1). We shall proceed assuming that the specific Bob-message
m chosen in Step 1 ofQ satisfies Wx,y(m)> 2/3 = 1−4(1/12); by Markov’s inequality, this fails to happen
with probability at most 1/4. Studying Eq. (6) tell us that there exists a specific Merlin-message m∗M such
that Prr[outP(y,m∗M,mA(x,r)) = 1]> 2/3. Therefore, according to the strategy in Steps 2 and 3, the size of
the set {i ∈ [h] : outP(y,m∗M,mA(x,r(i))) = 1} is a sum of h i.i.d. indicators and exceeds 2h/3 in expectation.
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By standard Chernoff bounds (e.g., [36, Theorem 4.4]), the probability that Bob outputs 0 is 2−Ω(h). Thus,
overall, the probability that Q outputs 0 on input (x,y) is at most 1/4+2−Ω(h) < 1/3.

Correctness on 000-inputs: Fix (x,y)∈ f−1(0). We shall proceed assuming that the specific Bob-message
m chosen in Step 1 ofQ satisfies Wx,y(m)< 1/3; by Markov’s inequality, this fails to happen with probability
at most 1/4. For each specific Merlin-message mM, define

size(mM) =
∣∣∣{i ∈ [h] : outP(y,mM,mA(x,r(i))) = 1}

∣∣∣ .
Then size(mM) is a sum of h i.i.d. indicators and has expectation below h/3. By standard Chernoff bounds,
Pr[size(mM)> h/2]≤ e−h/36. By a union bound over all possible Merlin-messages mM, the probability that
Bob outputs 1 is at most 2hc(P)e−h/36 < 2−4, using our choice of h. Adding in the 1/4 from our Markov
argument earlier, the overall probability that Q outputs 1 on input (x,y) is at most 1/4+2−4 < 1/3.

Communication Cost: By definition of the OIP[2] model, we have |r| ≤ vc(P) and |mA| ≤ vc(P). Thus,
each of the two messages in Q costs at most h ·vc(P) = O(hc(P)vc(P)) bits.

The above proof exploits a key property of OIP[2] protocols: Bob can sample from the conditional
distribution Dm. This is possible because mB = mB(y,r) is independent of Alice’s message mA, a property
not satisfied in the stronger OIP[2]

+++ model. This explains why Theorem 5.3 does not apply to OIP[2]
+++ , and

indeed we shall later give an exponential separation between OIP[2] and OIP[2]
+++ in Corollary 5.19.

Theorem 5.3 implies a number of lower bounds for specific problems. We begin with DISJ.

Corollary 5.4. We have Ω(n1/2)≤ OIP[2](DISJ)≤ O(n1/2 logn). In particular, DISJ /∈OIP[2].

Proof. For the lower bound, we combine Theorem 5.3 with the fact that R[2,B](DISJ) ≥ R(DISJ) = Ω(n),
the last step being a celebrated lower bound [28]. The upper bound follows from the Aaronson–Wigderson
protocol [2] for DISJ, which is in fact an MA[1,A] protocol.

We remark that we may replace DISJ in Corollary 5.5 with IP2, the “inner product mod 2” function.
Indeed, the Aaronson–Wigderson protocol also applies to IP2, and R(IP2) = Ω(n).

Recall that MED is a relation on inputs in [n]m× [n]m. We next prove a lower bound of Ω(m1/4) on the
cost of any OIP[2] protocol for MED. This justifies our use of three rounds in the polylogarithmic cost SIP for
MEDIAN we gave in Theorem 3.7, as it implies that any 2-round SIP for median based on known techniques
must have polynomial cost.

Corollary 5.5. We have Ω(m1/4)≤ OIP[2](MED)≤ O(m1/2 log3/2 n).

Proof. Guha and McGregor [35, Theorem 6.3] gave a reduction from pointer jumping to median computa-
tion. Their reduction implies that if n = Ω(m3/2), then R[2,B](MED) = Ω(m1/2). The result that Ω(m1/4)≤
OIP[2](MED) then follows from Theorem 5.3. The upper bound OIP[2](MED) ≤ O(m1/2 log3/2 n) follows
from an annotated data stream protocol for MEDIAN given by Chakrabarti et al. [12, Corollary 3.4].

We have now seen that up to polynomial (specifically, quadratic) blowup, OIP[2] is no more powerful
than ordinary R[2,B]. We now show that up to another quadratic blowup this is in fact a characterization.

Theorem 5.6. For all f , we have OIP[2]( f ) = O
(

R[2,B]( f )2
)
. In particular, OIP[2] ⊇ R[2,B].
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Proof. Let Q be an R[2,B] protocol for f with cost C and error at most 1/6. Assume WLOG that C ≥ 5 and
that each of the two messages in Q is a string in {0,1}C. We shall treat Alice’s messages as elements of the
field F= F2C via an agreed-upon bijection.

We design an OIP[2] protocol P for f , based on Q. Given an input (x,y), P begins by choosing a
(hidden) random string r shared between Alice and Bob exactly as Q would have. From now on, think of
x,y,r as fixed. This then fixes a message mB that Bob would have sent Alice in Q, as well as a function
mA : {0,1}C → F specifying Alice’s response to each Bob-message. Let m̃A(Z1, . . . ,ZC) ∈ F[Z1, . . . ,ZC] be
the multilinear extension of this function mA. In P , Alice needs to send a message to Bob that allows him to
determine mA(mB) = m̃A(mB) with Merlin’s help. This is an instance of polynomial evaluation, so we solve
it by applying the OIP[2] polynomial evaluation protocol (PEP) from Lemma 5.2.

The polynomial m̃A is C-variate and has total degree C. Therefore, PEP has communication cost
O(C log |F|) = O(C2), as does P . Next, PEP has perfect completeness, so an honest Merlin can cause
P to output 1 whenever the choice of r would have caused Q to output 1. Finally, PEP has soundness error
at most C/(|F|−1) =C/(2C−1)< 1/6, so a dishonest Merlin can cause P to differ in output fromQ with
probability at most 1/6. Using the error bound of 1/6 on Q, we conclude that P has completeness error at
most 1/6 and soundness error at most 1/6+1/6 = 1/3.

Corollary 5.7. For all f , we have Ω
(

R[2,B]( f )1/2
)
≤ OIP[2]( f )≤ O

(
R[2,B]( f )2

)
. Thus, OIP[2] = R[2,B].

Proof. Combine Theorems 5.3 and 5.6.

5.2 A Characterization of OIP[3]

The main goal of this subsection is to prove that OIP[3] = MA[2,B]. We give a lower bound that builds on the
argument in Theorem 5.3. Just as before, we can then derive a lower bound for the specific problem DISJ.

Theorem 5.8. Let P be an OIP[3] protocol computing f . Then there is an MA[2,B] protocol Q computing
f with hc(Q)≤ hc(P) and vc(Q) = O(hc(P)vc(P)). In particular, OIP[3]( f ) = Ω

(
MA[2,B]( f )1/2

)
, which

implies OIP[3] ⊆MA[2,B].

Proof. The high-level idea for building Q is as follows. After Merlin sends his first message to Bob in
P , the remainder of P is an OIP[2] protocol. Theorem 5.3 shows how to cut Merlin out of this remaining
protocol, replacing it with R[2,B] protocol. After this replacement, the result is an MA[2,B] protocol.

In more detail, suppose P has completeness and soundness errors at most 1/12. Let Pm denote the
OIP[2] protocol obtained from P by fixing Merlin’s first message to m. Let Qm be the R[2,B] protocol
simulating Pm as in Figure 5. Note that cc(Qm) = O(hc(Pm)vc(Pm)). LetQ be the MA[2,B] protocol where
we use Qm as Arthur’s verification strategy for a message from Merlin. We claim that Q computes f .

Completeness: Fix (x,y) ∈ f−1(1). By the completeness of P , there exists some first message m∗ from
Merlin such thatPm∗ outputs 1 with probability at least 11/12. By the completeness analysis in Theorem 5.3,
Qm∗ outputs 1 with probability at least 2/3. Therefore, if Merlin sends the message m∗ in Q, he will cause
the output to be 1 with probability at least 2/3.

Soundness: Fix (x,y) ∈ f−1(0). By the soundness of P , for every possible first message, m, that Merlin
may send, Pm outputs 1 with probability at most 1/12. By the soundness analysis in Theorem 5.3, for all m,
Qm outputs 1 with probability at most 1/3. Therefore, no matter what Merlin sends as his message inQ, he
can cause the output to be 1 with probability at most 1/3.
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Costs: Merlin in Q sends only part of what Merlin in P sends; therefore hc(Q)≤ hc(P). Furthermore,
vc(Q)≤maxm cc(Qm) = maxm O(hc(Pm)vc(Pm)) = O(hc(P)vc(P)).

Corollary 5.9. We have Ω(n1/3)≤ OIP[3](DISJ)≤ O(n1/3 logn). In particular, DISJ /∈OIP[3].

Proof. Klauck [29] proved that MA(DISJ) = Ω(n1/2). Applying Theorem 5.8 to this result gives the non-
tight bound OIP[3](DISJ) = Ω(n1/4). But we observe that Klauck’s proof shows something stronger: namely,
if an MA protocol Q computes DISJ, then hc(Q)vc(Q) = Ω(n). Combining Theorem 5.8 with this result,
we conclude that if an OIP[3] protocol P computes DISJ, then hc(P)2 vc(P) = Ω(n), and therefore hc(P)+
vc(P) = Ω(n1/3).

For the upper bound, we note that Aaronson and Wigderson [2] also gave an online MAMA protocol
for DISJ of cost O(n1/3 logn). Every online MAMA protocol admits a simulation in OIP[3].

As with Corollary 5.5, we may replace DISJ in the above result with IP2. Indeed, Klauck’s result [29]
implies that MA(IP2) = Ω(n1/2), and Aaronson and Wigderson’s MAMA protocol also applies to IP2.

As we did for the second level in the OIP hierarchy, we give an upper bound that applies to the third
level and gives a characterization that is tight up to a quadratic blowup.

Theorem 5.10. For all f , we have OIP[3]( f ) = O
(

MA[2,B]( f )2
)
. In particular, OIP[3] ⊇MA[2,B].

Proof sketch. We build on the argument in Theorem 5.6 exactly as the proof of Theorem 5.8 builds on
Theorem 5.3. Given an MA[2,B] protocol Q of cost C, the verification strategy used by Alice and Bob in Q
is an R[2,B] protocol of cost C, which we can replace with an OIP[2] protocol of cost O(C2), by Theorem 5.6.
After this replacement we have an OIP[3] protocol. The remaining analysis is routine.

Corollary 5.11. For all f , Ω
(

MA[2,B]( f )1/2
)
≤ OIP[3]( f )≤ O

(
MA[2,B]( f )2

)
. Thus, OIP[3] = MA[2,B].

Proof. Combine Theorems 5.8 and 5.10.

5.3 A Characterization of OIP[4] and Beyond

The fourth level of the OIP hierarchy turns out to have surprising power. It can capture all of AM, a model
that lies at the frontier of our current understanding of communication complexity classes in the sense that
we do not know any nontrivial AM lower bounds. Thanks to this surprising power, we can show that all
constant-height levels of the OIP hierarchy collapse to the fourth level.

Theorem 5.12. For all f , we have OIP[4]( f ) = O(AM( f ) logAM( f )). In particular, OIP[4] ⊇ AM.

Proof. Suppose AM( f ) =C. WLOG, there is a protocolQ for f with the following shape: Bob tosses coins
to generate a random string r and sends it to Merlin, who responds with a message m, where |r|+ |m| ≤C.
Bob then sends (r,m) to Alice, who responds with a single bit, after which Bob announces the output.

The interaction between Bob and Alice is an R[2,B] protocol (in fact, it is deterministic) of cost C. The-
orem 5.6 shows that it can be replaced with an OIP[2] protocol of cost O(C2). Performing this replacement
gives us an OIP[4] protocol for f . The cost bound can be improved to O(C logC) by revisiting the analysis
of the polynomial evaluation protocol used to prove Theorem 5.6 and using the fact that Alice’s message in
Q is just a single bit.

Theorem 5.13. For each k > 0, there exists a constant ck > 0 such that for all f , OIP[k]
+ ( f )≥Ω

(
AM( f )ck

)
.

In particular, for every constant k, we have OIP[k]
+++ ⊆ AM.
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Proof. Let C = OIP[k]
+ ( f ) and let P be an OIP[k]

+++ protocol with cost C that computes f . By definition, P uses
a hidden random string and Merlin learns about this string only indirectly, from Bob’s computed messages.
We apply the Goldwasser–Sipser set lower bound technique [25] to convert P into a protocol where all
random coins are directly revealed. Specifically, we can convert P into an AMAM · · ·AM protocol Q′,
where k+ 3 messages are sent in total: Merlin’s messages are broadcast and after his final message Alice
sends a message to Bob, who announces the output. We have cc(Q′) = O(Cak) for some constant ak ≥ 1.

We apply Babai and Moran’s round elimination techniques [8] to turn Q′ into a standard AM protocol
Q of cost at most O(cc(Q′)bk) for some constant bk ≥ 1. The result follows by taking ck = 1/(akbk).

Corollary 5.14. For all f , Ω
(

AM( f )c4
)
≤ OIP[4]( f ) ≤ O(AM( f ) logAM( f )), where c4 is the constant

from Theorem 5.13. In particular, OIP[4] = AM, and in fact OIP[k] = AM for every constant k ≥ 4.

Proof. Combine Theorems 5.12 and 5.13, noting that OIP[k] ⊆OIP[k]
+++ for every k ≥ 4.

Here is an interesting point worth contemplating. On the one hand, our transformations in the proof
of Theorem 5.13 perform round reduction at the expense of destroying online-ness: the final protocol Q
is no longer online, i.e., we cannot require communications to go to Bob alone. On the other hand, the
transformation in the proof of Theorem 5.12 “restores” onlineness at only a “slight” expense of requiring
four rounds, whereas AM uses only two. Overall, we have a collapse of the OIP hierarchy to its fourth level.

We have also noted earlier that we (regretfully) do not yet know how to place a concrete problem outside
OIP[2]

+++ . Nevertheless, Theorems 5.12 and 5.13 together establish a weakness of OIP[2]
+++ : up to polynomial

factors this model is no more powerful than OIP[4].

5.4 Exponential Separations in Our Complexity Zoo

Among the first four levels of the OIP hierarchy, we can now show that every pair of adjacent levels is
exponentially separated. The next three results make this precise. Recall that INTER = ¬DISJ is the set
intersection problem.

Theorem 5.15. We have OIP[1](INDEX) = Ω(n1/2) whereas OIP[2](INDEX) = O(logn log logn).

Proof. Combine Theorem 5.1 and Lemma 5.2, and then the known results that MA[1,A]( f )=Ω
(

R[1,A]( f )1/2
)

for all f [11] (see also Theorem 5.20 in Section 5.5), and that R[1,A](INDEX) = Ω(n) [3].

Theorem 5.16. We have OIP[2](INTER) = Ω(n1/2) whereas OIP[3](INTER) = O(log2 n).

Proof. For the lower bound, use R[2,B](INTER)≥R(INTER) = R(DISJ) = Ω(n) and then apply Theorem 5.3.
For the upper bound, note that INTER has a nondeterministic protocol with cost O(logn), wherein Alice

and Bob guess an element in the intersection of their respective sets and they verify membership. In par-
ticular this gives MA[2,B](INTER) = O(logn); in fact, Bob need not send anything to Alice in the MA[2,B]

protocol. Now apply Theorem 5.10.

While we do not know of a total Boolean function that separates OIP[3] from OIP[4], we do know
of a partial Boolean function whose OIP[3] communication complexity is exponentially larger than its
OIP[4] communication complexity. Specifically, Klauck [30, Corollary 3] gives a promise problem he calls
PAPPMP which has Quantum Merlin-Arthur (QMA) communication complexity Ω(n1/6) and AM com-
munication complexity O(logn). Since Theorem 5.8 shows that any OIP[3] protocol can be transformed
into an equivalent MA[2,B] protocol with a quadratic blowup in cost, and MA[2,B] protocols are simply
restricted versions of QMA protocols, Klauck’s lower bound on the QMA cost of PAPPMP implies that
OIP[3](PAPPMP) = Ω(n1/12).
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Meanwhile, Theorem 5.12 shows that any AM communication protocol can be transformed into an
equivalent OIP[4] protocol with a logarithmic blowup in costs. Thus, Klauck’s upper bound on the AM
communication complexity of PAPPMP implies that OIP[4](PAPPMP) = O(logn log logn).

Theorem 5.17. We have OIP[3](PAPPMP) = Ω(n1/12) whereas OIP[4](PAPPMP) = O(logn log logn).

Next, we show that, up to polynomial factors, OIP[2]
+++ is at least as powerful as R[3,A], the class of

three-message randomized communication protocols in which Alice speaks first. This will enable us to
exhibit an explicit function f on domain {−1,1}n×{−1,1}n such that OIP[2]( f ) = Ω(

√
n/ logn), while

OIP[2]
+ ( f ) = O(log2 n).

Theorem 5.18. For all f , we have OIP[2]
+ ( f ) = O

(
R[3,A]( f )2

)
.

Proof. Let Q be any three-message randomized communication protocol of cost C, with Alice speaking
first. We show how to convert Q into an OIP[2]

+++ protocol P of cost O(C2).
We think ofQ as consisting of one message m(1)

A from Alice to Bob, followed by a two-message commu-
nication protocol Q′ in which Bob speaks first. Theorem 5.6 shows how to transform Q′ into an equivalent
OIP[2] protocol P ′ of cost O(C2) (note this OIP[2] protocol depends on m(1)

A ).
Thus, we obtain an OIP[2]

+++ protocol P as follows. Alice’s message to Bob in P consists of two parts. The
first specifies m(1)

A , and the second is the message she would have sent to Bob in P ′. Bob, who learns m(1)
A

from the first part of Alice’s message, now knows what OIP[2] protocol P ′ to execute, and simply behaves
the same as he would in P ′.

Exponential separations between R[3,A] and R[2,B] are known. In particular, consider the k-step (bipartite)
pointer jumping function PJk, which interprets each of Alice and Bob’s inputs as a list of N = Θ(n/ logn)
pointers, a pointer being a (logN)-bit integer. Each pointer in a player’s list is interpreted as pointing to (i.e.,
indexing) a pointer in the other player’s list. The goal is to follow these pointers, starting at the first pointer
in Alice’s list, and output the kth pointer encountered. For example, if Alice’s input is x = (00,01,10,00)
and Bob’s input is y = (01,10,11,00), then PJ1(x,y) = 01, PJ2(x,y) = 01, PJ3(x,y) = 10, and so on. To turn
PJk into a Boolean function BPJk, we take the parity of the (logN)-bit output of PJk.

Corollary 5.19. We have OIP[2](BPJ2) = Ω(
√

n/ logn), while OIP[2]
+ (BPJ2) = O(log2 n).

Proof. Nisan and Wigderson [38] showed that R[k,B](BPJk) = Ω(N/k2− k logN). In particular, any two-
message randomized communication protocol in which Bob speaks first has cost Ω(N). Hence, Theorem
5.3 implies that OIP[2](BPJ2) = Ω(

√
n/ logn).

To prove the upper bound on OIP[2]
+ (BPJ2), note that there is a trivial three-message protocol for PJ2 (and

hence for BPJ2) of cost O(logn) in which Alice speaks first. Now apply Theorem 5.18.

5.5 An Exponential Separation Between OIP[2] and OMA[k]

In this subsection, we establish that for any function f , OMA[2k]( f ) = Ω
(

R[1,A]( f )1/(k+1)
)
. An essentially

identical lower bound was proven by Klauck and Prakash for a closely related (though not identical) com-
munication model; we provide details for completeness, and in the process identify the crucial details of the
communication model that enable the lower bound to hold.

Theorem 5.20. For any function f and constant k, OMA[2k]( f ) = Ω
(

R[1,A]( f )1/(k+1)
)
.
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Proof. We begin by proving the result for the case k = 1, showing how to transform any OMA[2] protocol
P into an R[1,A] protocol Q of cost O(hc(P)vc(P)). This transformation is almost identical to the one of
Theorem 5.3, with one crucial change.

Analogously to the proof of Theorem 5.3, P takes the following shape: (1) hidden coins are tossed,
generating random string r according to distribution D; (2) Bob sends Merlin a message mB = mB(r); (3)
Merlin responds with a message mM = mM(x,y,mB); (4) Alice sends Bob a message mA = mA(x,r); (5)
Bob outputs a bit given by a function outP(y,mM,mA).

The key difference between our current setting and that of Theorem 5.3 is that here mB is a function only
of r and not of Bob’s input y. The proof of Theorem 5.3 (see Figure 5) described a standard protocol Q in
which Bob sends to Alice i.i.d. samples r(1), . . . ,r(h) ∼ (D |mB = m), where h = 36(hc(P)+4). In our case,
Alice can choose these i.i.d. samples herself, because mB does not depend on Bob’s input y. We therefore
obtain an R[1,A] protocol Q of cost O(hc(P)vc(P)), instead of an R[2,B] protocol as in Theorem 5.3.

The general case proceeds by induction on k. We view an OMA[2k] protocol P as an OMA[2] protocol
P1 followed by an OMA[2k−2] protocol P2. Inductively, we can replace P2 with a R[1,A] protocolQ2 of cost
O
(
hc(P2)

k−1 vc(P2)
)
≤O

(
hc(P)k−1 vc(P)

)
. By concatenating P1 andQ2, we obtain an OMA[2] protocol

P3 for f with vc(P3) = O
(
hc(P)k−1 vc(P)

)
and hc(P3) ≤ hc(P). By our argument in the case k = 1, we

can transform P3 into an R[1,A] protocol Q of cost O
(
hc(P)k vc(P)

)
.

In particular, if C = max{hc(P),vc(P)}, then the cost of Q is O(Ck+1). This immediately implies that
OMA[2k]( f ) = Ω

(
R[1,A]( f )1/(k+1)

)
, completing the proof.

The main property of the OMA[k] communication model exploited in our proof of Theorem 5.20 is the
following: in any OMA[k] protocol P , for all i ≤ k, Alice can determine Bob’s ith message to Merlin in
P on her own. In particular, the same lower bound would apply to any variant of online Arthur-Merlin
communication models in which Bob’s messages to Merlin must be independent of his input y. This is
the intuitive reason why the OIP[2] model is exponentially more powerful than the OMA[k] model for any
constant k: in the OIP[2] model, Bob’s message to Merlin may depend on his input y, while this is not
allowed in the OMA[k] model.

Combining Theorem 5.20 with Lemma 5.2, which says that OIP[2](INDEX) = O(logn log logn), we
obtain an exponential separation between OIP[2] and OMA[k] for any constant k > 0.

Corollary 5.21. For every constant k > 0, we have OIP[2] 6⊆OMA[k].

6 Conclusion

Our primary objects of study in this paper were constant-round interactive protocols for verifying outsourced
streaming computations. Our main algorithmic contributions were to give constant-round streaming interac-
tive proofs for a large class of “query” problems. Our protocols are exponentially more efficient than what
was believed possible based on prior work, and demonstrate that in the streaming setting, “hidden” coins are
exponentially more powerful than public coins.

We also introduced new “online” communication hierarchies, OIP+++ and OIP, which can be seen as
restricted variants of the standard Arthur-Merlin communication model. The flow of information in the
OIP+++ and OIP models is severely restricted (neither Bob nor Merlin can speak to Alice), yet OIP+++ is
still powerful enough to simulate any streaming interactive proof, and OIP powerful enough to simulate
all known streaming interactive proofs. Our study revealed that the online nature of these communication
models leads them to behave very differently from classical interactive proofs, and allowed us to establish
strong limitations on the power of existing techniques for developing constant-round SIPs. It also yielded a
surprising characterization of the communication complexity class AM in terms of online communication
models (namely, AM = OIP[4] = OIP[4]

+++ ). We believe this characterization may prove useful in establishing
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non-trivial AM lower bounds, a problem that has been identified [30] as an important “first step” toward
resolving the ΠΠΠ222 6=ΣΣΣ222 problem in two-party communication complexity, one of the most important problems
left open by Babai et al. [7].

Many questions remain for future work, but here we highlight just one: proving a superlogarithmic
lower bound on the OIP[2]

+++ communication cost of an explicit function. Progress on this question would
yield the first superlogarithmic lower bounds on the cost of two-round SIPs. Moreover, we have shown
that standard techniques easily establish that OIP[2]

+++ is a subset of AM, but have been unable to prove any
superlogarithmic lower bounds against OIP[2]

+++ protocols. Proving OIP[2]
+++ lower bounds therefore represents

an important (and potentially tractable) “zeroth step” toward resolving ΠΠΠ222 6= ΣΣΣ222.
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