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Abstract

The list decoding problem for a code asks for the maximal radius up to which any ball of
that radius contains only a constant number of codewords. The list decoding radius is not well
understood even for well studied codes, like Reed-Solomon or Reed-Muller codes.

Fix a finite field F. The Reed-Muller code RMF(n, d) is defined by n-variate degree-d poly-
nomials over F. In this work, we study the list decoding radius of Reed-Muller codes over a
constant prime field F = Fp, constant degree d and large n. We show that the list decoding
radius is equal to the minimal distance of the code.

That is, if we denote by δ(d) the normalized minimal distance of RMF(n, d), then the number
of codewords in any ball of radius δ(d)− ε is bounded by c = c(p, d, ε) independent of n. This
resolves a conjecture of Gopalan-Klivans-Zuckerman [STOC 2008], who among other results
proved it in the special case of F = F2; and extends the work of Gopalan [FOCS 2010] who
proved the conjecture in the case of d = 2.

We also analyse the number of codewords in balls of radius exceeding the minimal distance
of the code. For e ≤ d, we show that the number of codewords of RMF(n, d) in a ball of radius
δ(e)− ε is bounded by exp(c · nd−e), where c = c(p, d, ε) is independent of n. The dependence
on n is tight. This extends the work of Kaufman-Lovett-Porat [IEEE Inf. Theory 2012] who
proved similar bounds over F2.

The proof relies on several new ingredients: an extension of the Frieze-Kannan weak regular-
ity to general function spaces, higher-order Fourier analysis, and an extension of the Schwartz-
Zippel lemma to compositions of polynomials.
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1 Introduction

The concept of list decoding was introduced by Elias [Eli57] and Wozencraft [Woz58] to decode
error correcting codes beyond half the minimum distance. The objective of list decoding is to
output all the codewords within a specified radius around the received word. After the seminal
results of Goldreich and Levin [GL89] and Sudan [Sud97] which gave list decoding algorithms for
the Hadamard code and the Reed-Solomon code respectively, there has been tremendous progress
in designing list decodable codes. See the excellent surveys of Guruswami [Gur06, Gur04] and
Sudan [Sud00].

List decoding has applications in many areas of computer science including hardness amplifi-
cation in complexity theory [STV01, Tre03], derandomization [Vad12], construction of hard core
predicates from one way functions [GL89, AGS03], construction of extractors and pseudorandom
generators [TSZS01, SU05] and computational learning [KM93, Jac97]. Despite so much progress,
the largest radius up to which list decoding is tractable is still a fundamental open problem even
for well studied codes like Reed-Solomon (univariate polynomials) and Reed-Muller codes (multi-
variate polynomials). The goal of this work is to analyse Reed-Muller codes over small fields and
small degree.

Reed-Muller codes (RM codes) were discovered by Muller in 1954. Fix a finite field F = Fq. Let
d ∈ N. The RM code RMF(n, d) is defined as follows. The message space consists of degree ≤ d
polynomials in n variables over F and the codewords are evaluation of these polynomials on Fn.
Let δp(d) denote the normalized distance of RMF(n, d). Let d = a(q − 1) + b where 0 ≤ b < q − 1.
We have

δF(d) =
1

qa

(
1− b

q

)
.

RM codes are one of the most well studied error correcting codes. Many of the applications
in computer science involves low degree polynomials over small fields, namely RM codes. Given
a received word g : Fn → F the objective is to output the list of codewords (e.g. low-degree
polynomials) that lie within some distance of g. Typically we will be interested in regimes where
list size is either independent of n or polynomial in the block length Fn.

1.1 Previous Work

Let Pd(Fn) denote the class of degree ≤ d polynomials f : Fn → F. Let dist denote the normalized
Hamming distance. For RMF(n, d), η > 0, let

`F(n, d, η) := max
g:Fn→F

|{f ∈ Pd(Fn) : dist(f, g) ≤ η}| .

Let LDRF(n, d) (short for list decoding radius) be the maximum η for which `F(n, d, η− ε) is upper
bounded by a constant depending only on ε, |F|, d for all ε > 0.

It is easy to see that LDRF(n, d) ≤ δF(d). The difficulty lies in proving a matching lower
bound. The first breakthrough result was in the setting of d = 1 over F2 (Hadamard Codes) where
Goldreich and Levin showed that LDRF2(n, 1) = δF2(1) = 1/2 [GL89]. Later, Goldreich, Rubinfield
and Sudan [GRS00] generalized the field to obtain LDRF(n, 1) = δF(1) = 1− 1/|F|. In the setting
of d < |F|, Sudan, Trevisan and Vadhan [STV01] showed that LDRF(n, d) ≥ 1−

√
2d/|F| improving
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previous work by Arora and Sudan [AS03], Goldreich et al [GRS00] and Pellikaan and Wu [PW04].
A crucial result that was a bulding block in the multivariate setting was the problem of list decoding
Reed-Solomon codes which was analysed by Sudan [Sud97] and Guruswami and Sudan [GS99]. The
list decoding radius obtained above essentially attains the Johnson radius, which is a radius such
that for any code over F with normalized minimum distance δ, the list decoding radius (LDR) is
at least

JF(δ) :=

(
1− 1

|F|

)(
1−

√
1− |F|δ
|F| − 1

)
.

There have been few results that show list decodability beyond the Johnson radius [DGKS08,
GKZ08].

In 2008, Gopalan, Klivans and Zuckerman [GKZ08] showed that LDRF2(n, d) = δF2(d). This
beats the Johnson radius already for d ≥ 2. The list decoding algorithm in [GKZ08] is a general-
ization of the Goldreich-Levin algorithm [GL89]. However their algorithm crucially depends on the
fact that the ratio of minimum distance to unique decoding radius is equal to 2 which is the size
of the field. Therefore, it does not generalize to higher fields (except for some special cases). They
pose the following conjecture.

Conjecture 1 ([GKZ08]). For all constants d and all fields F, LDRF(n, d) = δF(d).

An important contribution of [GKZ08] is an algorithm for list decoding that outputs the list of
codewords up to radius η efficiently assuming `F(n, d, η) is bounded.

It was also shown [GKZ08] that LDRF(n, d) ≥ 1
2δF(d − 1) and this beats the Johnson radius

already when d is large. It is believed [GKZ08, Gop10] that the hardest case is the setting of small
d. An important step in this direction was taken in [Gop10] that considered quadratic polynomials
and showed that LDRF(n, 2) = δF(2) for all fields F and thus proved the conjecture for d = 2. In
the setting of F2, Kaufman, Lovett and Porat [KLP10] showed tight list sizes for radii beyond the
minimum distance.

1.2 Our Results

As mentioned before, the algorithmic problem of list decoding was reduced to the combinatorial
problem in [GKZ08]. Our main theorem is a resolution of Conjecture 1 for prime fields. We note
that prior to this, the conjecture was open even in the d < |F| case.

Theorem 1. Let F = Fp be a prime field. Let ε > 0 and d, n ∈ N. Then,

`F(d, n, δF(d)− ε) ≤ cp,d,ε.

Remark 1.1 (Algorithmic Implications). As mentioned above, using the reduction of algorithmic
list decoding to combinatorial list decoding in [GKZ08] along with Theorem 1, for fixed prime fields,
d and ε > 0, we now have list decoding algorithms in both the global setting (running time polynomial
in |F|n) and the local setting (running time polynomial in nd).

Next, we study list sizes for radii which are larger than the minimal radius of the code. We give
bounds which capture the correct exponent of n for all radii. This extends the results of Kaufman,
Lovett and Porat [KLP10] who studied Reed-Muller codes over F2, to all prime fields.
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Theorem 2. Let F = Fp be a prime field. Let ε > 0 and e ≤ d, n ∈ N. Then,

`F(d, n, δF(e)− ε) ≤ exp
(
cp,d,εn

d−e
)

Remark 1.2. The exponent of n in Theorem 2 is tight, as the following example shows. Let
e = a(p− 1) + b with 0 ≤ b < p− 1. Consider polynomials of the form

P (x) =

(
a∏
i=i

(xp−1i − 1)

) b∏
j=1

(xa+1 − j)

 (xa+2 +Q(xa+3, . . . , xn))

for all polynomials Q of degree d− e. Observe that Pr[P (x) 6= 0] = 1
pa

(
1− b

p

)(
1− 1

p

)
= δ(e)(1−

1/p). The number of such polynomials is exp(c′nd−e) for some c′ = c′p,d,e.

1.3 Proof overview

Previous results have mostly relied on the idea of local correction of the RM code. The work of
[Gop10] uses (linear) Fourier analysis which does not seem to go beyond quadratic polynomials. We
use tools from higher order Fourier analysis to resolve the conjecture. We think of F = Fp, d, ε as
constants. For a received word g : Fn → F our goal is to upper bound |{f ∈ Pd(Fn) : dist(f, g) ≤ η}|.
For simplicity of exposition, we assume in the proof overview that d < |F|. The general case is
somewhat more technical, as it requires the introduction of nonclassical polynomials.

A weak regularity (A low complexity proxy for the received word). The first step is
an extension of the Frieze-Kannan weak regularity [FK99] which would allow us to move from an
arbitrary received word g to a ”low complexity” received word. We note that a somewhat similar
idea appeared also in [TTV09].

Let X,Y be finite sets and let P (Y ) := {f : Y → R≥0 :
∑

y∈Y f(y) = 1} be the probability
simplex over Y . We view functions f : X → P (Y ) as randomized functions from X to Y . For
f, g : X → P (Y ) we define

Prx[f(x) = g(x)] := Ex〈f(x), g(x)〉.

Given ε > 0, any function g : X → P (Y ) and a collection F of functions f : X → P (Y ), one can
find a collection of c := 1/ε2 functions h1, . . . , hc ∈ F and a proxy g1 : X → P (Y ) for g, such that
g1 is determined by h1(x), . . . , hc(x) and such that g1 is indistinguishable from g with respect to F .

Lemma 3.1. Let g : X → P (Y ), ε > 0, and F be a collection of functions f : X → P (Y ). Then
there exist c ≤ 1/ε2 functions h1, h2, . . . , hc ∈ F and a function Γ : P (Y )c → P (Y ) such that for
all f ∈ F ,

|Pr[g(x) = f(x)]−Pr[Γ(h1(x), h2(x), . . . , hc(x)) = f(x)]| ≤ ε.

In our case, X = Fn, Y = F and F = Pd(Fn). When F is a family of ”deterministic” functions
f : X → Y , as it is in our case, we can obtain one-sided approximation using only deterministic
functions h1, . . . , hc.
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Corollary 3.3. Let g : X → Y , ε > 0, and F be a collection of functions f : X → Y . Then
there exist c ≤ 1/ε2 functions h1, h2, . . . , hc ∈ F such that for every f ∈ F , there is a function
Γf : Y c → Y such that

Prx[Γf (h1(x), . . . , hc(x)) = f(x)] ≥ Prx[g(x) = f(x)]− ε.

Strong regularity applied to H. The collection of polynomials H = {h1, . . . , hc} ⊂ Pd(Fn)
defines a partition of the input space Fn into atoms {x ∈ Fn : h1(x) = a1, . . . , hc(x) = ac}. We
next regularize H. The objective of regularization is to further refine the partition into smaller
atoms with the goal that the polynomials h1, . . . , hc are ”pseudo-random”. Formally, we require
the polynomials to be inapproximable by lower degree polynomials, which is equivalent to having
negligible Gowers uniformity norm. This ensures, for example, that for uniformly random X
in Fn, the distribution (h1(X), . . . , hc(X)) is close to uniform over the atoms. This process of
regularization was introduced by [GT09] and is now standard in higher-order Fourier analysis.
Let H′ = {h′1, . . . , h′c′} ⊂ Pd(Fn) be the regularized H that satisfies the above properties, where
c′ = c′(p, d, c).

Structure of polynomials close to low complexity received words. Fix now an f ∈ Pd(Fn)
such that dist(f, g) ≤ δp(d)− ε. We will show that f must be determined by H′. That is,

f(x) = F (h′1(x), . . . , h′c′(x))

for some F : Fc′ → F. This will bound the number of such functions by pp
c′

, which is independent
of n.

In order to achieve that, we regularize the family of polynomialsH′∪{f}. By choosing regularity
parameters appropriately, we can assure that only f decomposes further,

f = F (h′1(x), . . . , h′c′(x), h′′1(x), . . . , h′′c′′(x))

where H′′ = {h1, . . . , h′c′ , h′′1, . . . , h′′c′′} is regular. Moreover, for Gf (h′1(x), . . . , h′c′(x)) =
Γf (h1(x), . . . , hc(x)), we know that

Pr[f(x) = Gf (h′1(x), . . . , h′c′(x))] ≥ 1− δp(d) + ε/2.

The regularity of H′′ allows us to reduce the question to that of the structure of F vs Gf . We then
show, by a variant of the Schwartz-Zippel lemma, that such an approximation can only exist when
F does not depend on h′′1, . . . , h

′′
c′′ . The bound for larger radii δF(e) − ε with e < d follows along

similar lines. We show that in the decomposition above, since Pr[F = Gf ] > 1− δF(e) + ε/2, this
can only occur when h′′1, . . . , h

′′
c′′ have degree at most d− e. As the number of such polynomials is

exponential in nd−e, we derive similar bounds for the number of functions f .
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2 Preliminaries

2.1 Notation

Let N denote the set of positive integers. For n ∈ N, let [n] := {1, 2, . . . , n}. We use y = x ± ε to
denote y ∈ [x− ε, x+ ε]. Let T denote the torus R/Z. This is an abelian group under addition. For
n ∈ N, and x, y ∈ Cn, let 〈x, y〉 :=

∑n
i=1 xiyi where a is the conjugate of a. Let ||x||2 :=

√
〈x, x〉.

Fix a prime field F = Fp. Let |.| denote the natural map from F to {0, 1, . . . , p − 1} ∈ Z. Let

e : T → C be the map e(x) := e2πix. Let ep : F → C be the map ep(x) = e( |x|p ). For an integer

k ≥ 0, let Uk := 1
pk
Z/Z. Note that Uk is a subgroup of T. Let ι : F→ U1 be the bijection ι(a) = |a|

p

(mod 1).

For a finite set X and n ∈ N, with f : X → Cn, we write Exf(x) to denote 1
|X|
∑

x∈X f(x). We

define ||f ||2 :=
√
Ex||f(x)||22. If g : X → Cn, we have 〈f, g〉 := Ex〈f(x), g(x)〉. Let Y be a finite

set. Let P (Y ) := {f : Y → R≥0 :
∑

y∈Y f(y) = 1} denote the probability simplex on Y . We shall
write randomized functions by mapping them to the simplex. Thus, for f, g : X → P (Y ) we define

Prx[f(x) = g(x)] := Ex〈f(x), g(x)〉.

If f : X → Y is a deterministic function, then we embed Y into P (Y ) in the obvious way, and
consider f : X → P (Y ) with f(x)y = 1 if f(x) = y when viewed as a function to Y , and f(x)y′ = 0
for all y′ ∈ Y \ {y}.

2.2 Polynomials

Definition 2.1 (Derivative). Given a function f : Fn → T and a ∈ Fn, define the derivative of f
in direction a as Daf : Fn → T as Daf(x) = f(x+ a)− f(x) for x ∈ Fn.

Definition 2.2 (Nonclassical Polynomial or Polynomial). Let d ∈ N. Then f : Fn → T is a
polynomial of degree ≤ d if for all a1, . . . , ad+1, x ∈ Fn,(

Da1 . . . Dad+1
f
)

(x) = 0. (1)

The degree of f denoted by deg(f) is the smallest such d ∈ N for which the above holds. If the
image of f lies in U1 then f is called a classical polynomial of degree d. When d < |F|, it is known
that all the polynomials of degree d satisfying (1) are classical polynomials. However, when d ≥ |F|,
there exist nonclassical polynomials. We write Poly≤d(Fn → T) to denote the class of degree ≤ d
polynomials. Unless explicitly specified, a polynomial is a (potentially) nonclassical polynomial.
The following lemma from [TZ11] characterizes polynomials.

Lemma 2.3 ([TZ11], Lemma 1.7). Let d ∈ N.

• A function f : Fn → T is a polynomial of degree ≤ d if and only if Daf is a polynomial of
degree ≤ d− 1 for all a ∈ Fn.

• A function f : Fn → T is a classical polynomial with deg(f) ≤ d if f = ι◦P where P : Fn → F
is of the form

P (x1, . . . , xn) =
∑

0≤d1,...,dn≤p−1:
∑

i di≤d

cd1,...,dn

n∏
i=1

xdii ,
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where cd1,...,dn ∈ F are unique.

• A function f : Fn → T is a polynomial with deg(f) ≤ d if f is of the form

f(x1, . . . , xn) = α+
∑

0≤d1,...,dn≤p−1,k≥0:
∑

i di≤d−k(p−1)

cd1,...,dn,k
∏n
i=1 |xi|di

pk+1
(mod 1),

where cd1,...,dn,k ∈ {0, . . . , p − 1} and α ∈ T are unique. α is called the shift of f and the
largest k such that some cd1,...,dn,k 6= 0 is the depth of f , denoted by depth(f). Note that
classical polynomials have 0 shift and 0 depth.

• If f : Fn → T is a polynomial with depth(f) = k, then its image lies in a coset of Uk+1.

• If f : Fn → T is a polynomial such that deg(f) = d and depth(f) = k, then deg(pf) =
max(d− p+ 1, 0) and depth(pf) = k− 1. Also, if c ∈ {1, . . . , p− 1} then the degree and depth
of cf remain unchanged.

Throughout the article, we assume without loss of generality that nonclassical polynomials have
zero shift.

2.3 Rank and Polynomial Factors

Definition 2.4 (Rank). Let d ∈ N and f : Fn → T. Then rankd(f) is defined as the smallest
integer r such that there exist polynomials h1, . . . , hr : Fn → T of degree ≤ d − 1 and a function
Γ : Tr → T such that f(x) = Γ(h1(x), . . . , hr(x)). If d = 1, then the rank is 0 if f is a constant
function and is ∞ otherwise. If f is a polynomial, then rank(f) = rankd(f) where d = deg(f).

Definition 2.5 (Factor). Let X be a finite set. Then a factor B is a partition of the set X. The
subsets in the partition are called atoms.

For sets X and Y , and a factor B of X, a function f : X → P (Y ) is said to be measurable with
respect to B if it is constant on the atoms of B. The average of f over B is E[f |B] : X → P (Y )
defined as

E[f |B](x) = Ey∈B(x)[f(y)]

where B(x) is the atom containing x. Clearly, E[f |B] is measurable with respect to B.

A collection of functions h1, . . . , hc : X → Y defines a factor B whose atoms are {x ∈ X :
h1(x) = y1, . . . , hc(x) = yc} for every (y1, . . . , yc) ∈ Y c. We use B to also denote the map x 7→
(h1(x), . . . , hc(x)). A function f is measurable with respect to a collection of functions if it is
measurable with respect to the factor the collection defines.

Definition 2.6 (Polynomial Factor). A polynomial factor B is a factor defined by a collection of
polynomials H = {h1, . . . , hc : Fn → T} and the factor is written as BH. The degree of the factor
is the maximum degree of h ∈ H.

Let |B| be the number of polynomials defining the factor. If depth(hi) = ki above, then we
define ||B|| :=

∏c
i=1 p

ki+1 to be the number of (possibly empty) atoms.
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Definition 2.7 (Rank and Regularity of Polynomial Factor). Let B be a polynomial factor defined
by h1, . . . , hc : Fn → T such that depth(hi) = ki for i ∈ [c]. Then, the rank of B is the least integer r
such that there exists (a1, . . . , ac) ∈ Zc,

(
a1 mod pk1+1, . . . , ac mod pkc+1

)
6= (0, . . . , 0) for which

the linear combination h(x) :=
∑c

i=1 aihi(x) has rankd(h) ≤ r where d = maxi deg(aihi). For a
non decreasing function r : N→ N, a factor B is r-regular if its rank is at least r(|B|).

Definition 2.8 (Semantic and Syntactic refinement). Let B and B′ be polynomial factors on Fn.
A factor B′ is a syntactic refinement of B, denoted by B′ �syn B if the set of polynomials defining B
is a subset of the set of polynomials defining B′. It is a semantic refinement, denoted by B′ �sem B
if for every x, y ∈ Fn, B′(x) = B′(y) implies B(x) = B(y).

We will use the following regularity lemma proved in [BFH+13].

Lemma 2.9 (Polynomial Regularity Lemma [BFH+13]). Let r : N → N be a non-decreasing

function and d ∈ N. Then there is a function C
(2.9)
r,d : N → N such that the following is true.

Let B be a factor defined by polynomials P1, . . . , Pc : Fn → T of degree at most d. Then, there is
an r-regular factor B′ defined by polynomials Q1, . . . , Qc′ : Fn → T of degree at most d such that

B′ �sem B and c′ ≤ C(2.9)
r,d (c).

Moreover if B �sem B̂ for some polynomial factor B̂ that has rank at least r(c′) + c′ + 1, then
B′ �syn B̂.

The next lemma shows that a regular factor has atoms of roughly equal size.

Lemma 2.10 (Size of atoms [BFH+13]). Given ε > 0, let B be a polynomial factor of rank at least

r
(2.10)
d (ε) defined by polynomials P1, . . . , Pc : Fn → T of degree at most d such that depth(Pi) = ki

for i ∈ [c]. For every b ∈ ⊗ci=1Uki+1,

Prx[B(x) = b] =
1

||B||
± ε.

Finally, we shall need the following lemma which shows that a function of high rank polynomials
has the degree one expects.

Lemma 2.11 (Preserving degree [BFH+13]). Let d > 0 be an integer and let P1, . . . , Pc : Fn → T
be polynomials of degree at most d that form a factor of rank ≥ r

(2.11)
d (c). Let Γ : Tc → T be

an arbitrary function. Let F : Fn → T be defined by F (x) = Γ(P1(x), . . . , Pc(x)), and assume
that deg(F ) = d′. Then, for every collection of polynomials Q1, . . . , Qc : Fn → T with deg(Qi) ≤
deg(Pi) and depth(Qi) ≤ depth(Pi), if G : Fn → T is defined by G(x) = Γ(Q1(x), . . . , Qc(x)), then
deg(G) ≤ d′.

3 Weak Regularity

Let X and Y be finite sets. Recall that P (Y ) := {f : Y → R≥0 :
∑

y∈Y f(y) = 1} is the probability
simplex on Y . As mentioned before, we shall write randomized functions by mapping them to the
simplex. Thus for f, g : X → P (Y ) we have

Prx[f(x) = g(x)] := Ex〈f(x), g(x)〉.

7



Lemma 3.1. Let g : X → P (Y ), ε > 0, and F be a collection of functions f : X → P (Y ). Then
there exist c ≤ 1/ε2 functions h1, h2, . . . , hc ∈ F and a function Γ : P (Y )c → P (Y ) such that for
all f ∈ F ,

|Pr[g(x) = f(x)]−Pr[Γ(h1(x), h2(x), . . . , hc(x)) = f(x)]| ≤ ε.

Proof. We construct H = {h1, . . . , hc} ⊆ F such that, if BH is the factor of X induced by H, then
for all f ∈ F

|Pr[E[g|BH] = f(x)]−Pr[g(x) = f(x)]| ≤ ε.
We then set Γ : P (Y )c → P (Y ) so that Γ(h1(x), . . . , hc(x)) = E[g|BH]. In the following we
shorthand gH = E[g|BH]. We consider the following variant of the Frieze-Kannan weak regularity
algorithm [FK99].

• Initialize H = ∅

• While there exists f ∈ F such that |Pr[gH(x) = f(x)]−Pr[g(x) = f(x)]| > ε

– Update H = H ∪ {f}

The lemma follows from the following claim, which shows that we update H at most 1/ε2 times.
Let ‖gH‖22 := Ex‖gH(x)‖22.

Claim 3.2. Consider any stage in the algorithm, with H being the set of functions at that stage,
and f ∈ F being the new function added to H. Then

• 0 ≤ ‖gH‖2 ≤ 1;

• ‖gH∪{f}‖2 ≥ ‖gH‖2 + ε2.

Proof. The first part of the claim is trivial as gH maps to P (Y ). For the second part, observe that
〈gH∪{f} − gH, gH〉 = 0 and thus

‖gH∪{f}‖22 = ‖gH‖22 + ‖gH∪{f} − gH‖22
We will show that ‖gH∪{f} − gH‖22 ≥ ε2. We have

ε < |Pr[gH(x) = f(x)]−Pr[g(x) = f(x)]|
= |Ex〈f(x), gH(x)〉 − Ex〈f(x), g(x)〉|
=
∣∣Ex〈f(x), gH(x)〉 − Ex〈f(x), gH∪{f}(x)〉

∣∣ (as f is measurable with respect to BH∪{f})
=
∣∣Ex〈f(x), gH(x)− gH∪{f}(x)〉

∣∣
≤ Ex

∣∣〈f(x), gH(x)− gH∪{f}(x)〉
∣∣ .

Now, as f : X → P (Y ), for every x ∈ X, ‖f(x)‖2 ≤ 1. Thus, by the Cauchy-Schwartz
inequality, for every x ∈ X, we have

|〈f(x), gH(x)− gH∪{f}(x)〉| ≤ ‖f(x)‖2‖gH∪{f}(x)− gH(x)‖2 ≤ ‖gH∪{f}(x)− gH(x)‖2

Thus, by another application of the Cauchy-Schwartz inequality, we have

ε2 ≤ Ex
∣∣〈f(x), gH(x)− gH∪{f}(x)〉

∣∣2 ≤ ‖gH∪{f} − gH‖22.
8



This finishes the proof of the lemma.

The following corollary for deterministic functions f : X → Y allows to obtain one-sided
deterministic estimates. This simplifies some of the arguments later on.

Corollary 3.3. Let g : X → Y , ε > 0, and F be a collection of functions f : X → Y . Then
there exist c ≤ 1/ε2 functions h1, h2, . . . , hc ∈ F such that for every f ∈ F , there is a function
Γf : Y c → Y such that

Prx[Γf (h1(x), . . . , hc(x)) = f(x)] ≥ Prx[g(x) = f(x)]− ε.

Proof. Applying Lemma 3.1 to F we may assume the existence of h1, . . . , hc : X → Y and Γ :
Y C → P (Y ) such that for any f ∈ F ,

|Pr[f(x) = Γ(h1(x), . . . , hc(x))]−Pr[f(x) = g(x)]| ≤ ε.

Let Ay1,...,yc = {x ∈ X : h1(x) = y1, . . . , hc(x) = yc} be an atom defined by h1, . . . , hc. Given
f ∈ F , define Γf : Y c → Y by letting Γf (y1, . . . , yc) to be the most common value that f attains
on Ay1,...,yc . Then

Pr[f(x) = Γf (h1(x), . . . , hc(x))]

=
∑

y1,...,yc∈Y
Pr[x ∈ Ay1,...,yc ] · max

y∗∈Y
Pr[f(x) = y∗|x ∈ Ay1,...,yc ]

≥
∑

y1,...,yc∈Y
Pr[x ∈ Ay1,...,yc ] ·Pr[f(x) = Γ(y1, . . . , yc)|x ∈ Ay1,...,yc ]

= Pr[f(x) = Γ(h1(x), . . . , hc(x))] ≥ Pr[f(x) = g(x)]− ε.

4 Proof of Theorem 1

Fix a prime field F = Fp. For d ∈ N, we shorthand δ(d) = δF(d). We restate Theorem 1.

Theorem 1. Let ε > 0 and d, n ∈ N. Then,

`F(d, n, δ(d)− ε) ≤ cp,d,ε.

We prove Theorem 1 in the remainder of this section. Let g : Fn → U1 be a received word
where we identify F with U1. Apply Corollary 3.3 with X = Fn, Y = U1, F = Poly≤d(Fn → U1)
and approximation parameter ε/2 to obtain H = {h1, . . . , hc} ⊆ F , c ≤ 4/ε2 such that, for every
f ∈ F , there is a function Γf : Uc1 → U1 satisfying

Pr[Γf (h1(x), h2(x), . . . , hc(x)) = f(x)] ≥ Pr[g(x) = f(x)]− ε/2.

9



Let r1, r2 : N → N be two non decreasing functions to be specified later, and let C
(2.9)
r,d be as

given in Lemma 2.9. We will require that for all m ≥ 1,

r1(m) ≥ r2(C(2.9)
r2,d

(m+ 1)) + C
(2.9)
r2,d

(m+ 1) + 1. (2)

As a first step, we r1-regularize H by Lemma 2.9. This gives an r1-regular factor B′ of degree

at most d, defined by polynomials h′1, . . . , h
′
c′ : Fn → T, such that B′ �sem B, c′ ≤ C

(2.9)
r1,d

(c) and
rank(B′) ≥ r1(c

′). We denote H′ = {h′1, . . . , h′c′}. Note that H′ can have nonclassical polynomials
as a result of the regularization. Let depth(h′i) = ki for i ∈ [c′]. Let Gf : ⊗c′i=1Uki+1 → U1 be
defined such that

Γf (h1(x), . . . , hc(x)) = Gf (h′1(x), . . . , h′c′(x)).

Then
Pr[Gf (h′1(x), h′2(x), . . . , h′c′(x)) = f(x)] ≥ Pr[g(x) = f(x)]− ε/2. (3)

Next, given any classical polynomial f : Fn → T of degree at most d, we will show that if Pr[f(x) 6=
g(x)] ≤ δ(d)−ε, then f is measurable with respect to H′ and this would upper bound the number of

such polynomials by p||B
′|| = p

∏
i∈[c′] p

ki+1

and as c′ = c′(p, d, ε) and ki ≤
⌊
d−1
p−1

⌋
this is independent

on n.

Fix such a classical polynomial f . Appealing again to Lemma 2.9, we r2-regularize
Bf := B′ ∪ {f}. We get an r2-regular factor B′′ �syn B′ defined by the collection H′′ =
{h′1, . . . , h′c′ , h′′1, . . . , h′′c′′} ⊆ Poly≤d(Fn → T). Note that it is a syntactic refinement of B′ as by
our choice of r1,

rank(B′) ≥ r1(c′) ≥ r2(C(2.9)
r2,d

(c′ + 1)) + C
(2.9)
r2,d

(c′ + 1) + 1 ≥ r2(|B′′|) + |B′′|+ 1.

We will choose r2 such that for all m ≥ 1,

r2(m) = max

r(2.10)d

 ε/4(
p
b d−1
p−1
c+1
)m
 , r

(2.11)
d (m)

 . (4)

Let depth(h′′j ) = lj for j ∈ [c′′] and denote S := ⊗c′i=1Uki+1 × ⊗c
′′
j=1Ulj+1. Since f is measurable

with respect to B′′, there exists F : S → U1 such that

f(x) = F (h′1(x), . . . , h′c′(x), h′′1(x), . . . , h′′c′′(x)).

We next show that we can have each polynomial in the factor have a disjoint set of inputs, and
still obtain more or less the same approximation factor.

Claim 4.1. Let xi, yj, i ∈ [c′], j ∈ [c′′] be pairwise disjoint sets of n ∈ N variables each. Let
n′ = n(c′ + c′′). Let f̃ : Fn′ → U1 and g̃ : Fn′ → U1 be defined as

f̃(x) = F (h′1(x
1), . . . , h′c′(x

c′), h′′1(y1), . . . , h′′c′′(y
c′′))

and
g̃(x) = Gf (h′1(x

1), . . . , hc′(x
c′)).

Then deg(f̃) ≤ d and∣∣∣Prx∈Fn′ [f̃(x) = g̃(x)]−Prx∈Fn [f(x) = Gf (h′1(x), h′2(x), . . . , h′c(x))]
∣∣∣ ≤ ε/4.
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Proof. The bound deg(f̃) ≤ deg(f) ≤ d follows from Lemma 2.11 since r2(|H′′|) ≥ r(2.11)d (|H′′|). To

establish the bound on Pr[f̃ = g̃], for each s ∈ S let

p1(s) = Prx∈Fn [(h′1(x), . . . , h′c′(x), h′′1(x), . . . , h′′c′′(x)) = s].

Applying Lemma 2.10 and since our choice of r2 satisfies rank(H′′) ≥ r
(2.10)
d (ε/4|S|), we have that

p1 is nearly uniform over S,

p1(s) =
1± ε/4
|S|

.

Similarly, let

p2(s) = Prx1,...,xc′ ,y1,...,yc′′∈Fn [(h′1(x
1), . . . , h′c′(x

c′), h′′1(y1), . . . , h′′c′′(y
c′′)) = s].

Note that the rank of the collection of polynomials {h′1(x1), . . . , h′c′(xc
′
), h′′1(y1), . . . , h′′c′′(y

c′′)} de-
fined over Fn′ cannot be lower than that of H′′. Applying Lemma 2.10 again gives

p2(s) =
1± ε/4
|S|

.

For s ∈ S, let s′ ∈ ⊗c′i=1Uki+1 be the restriction of s to first c′ coordinates, that is, s′ = (s1, . . . , sc′).
Thus

Prx∈Fn′ [f̃(x) = g̃(x)] =
∑
s∈S

p2(s)1F (s)=Gf (s′)

=
∑
s∈S

p1(s)1F (s)=Gf (s′) ± ε/4

= Prx∈Fn [f(x) = Gf (h′1(x), h′2(x), . . . , h′c(x))]± ε/4.

So, we obtain that

Prx∈Fn′ [f̃(x) = g̃(x)] ≥ Prx∈Fn [f(x) = Gf (h′1(x), . . . , h′c′(x))]− ε/4 ≥ 1− δ(d) + ε/4.

Next, we need the following variant of the Schwartz-Zippel lemma [Sch80, Zip79].

Claim 4.2. Let d, n1, n2 ∈ N. Let f1 : Fn1+n2 → F and f2 : Fn1 → F be such that deg(f1) ≤ d and

Pr[f1(x1, . . . , xn1+n2) = f2(x1, . . . , xn1)] > 1− δ(d)

Then, f1 does not depend on xn1+1, . . . , xn1+n2.

Proof. We will show that f1 does not depend on z = xn1+n2 say. The proof for any other variable

is similar. Recall that δ(d) := 1
pa

(
1− b

p

)
where d = a · (p− 1) + b. Let f1(x) =

∑d′

k=0 ckz
k where

ck ∈ F[x1, . . . , xn1+n2−1] and d′ ≤ min{d, p− 1}. Then (f1 − f2)(x) = c0 − f2(x) +
∑d′

k=1 ckz
k. We

will show that d′ ≥ 1 will lead to a contradiction. Let deg(cd′) = d′′. Note that d′′ + d′ ≤ d. Then,

Pr[(f1 − f2)(x) = 0] ≤ Pr[cd′ = 0] + (1−Pr[cd′ = 0])(1− δ(d′)) ≤ 1− δ(d′′)δ(d′).
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We will show that for any d ≥ 1 and any 1 ≤ c ≤ p− 1, we have δ(c)δ(d− c) ≥ δ(d) and this will
show that Pr[(f1 − f2)(x) = 0] ≤ 1 − δ(d′ + d′′) ≤ 1 − δ(d) which leads to a contradiction. Thus,
f1 will not depend on z. We will now show that

δ(c)δ(d− c) ≥ δ(d) (5)

Let d = a · (p− 1) + b.

Case 1: 0 ≤ c ≤ b

(5) ⇔
(

1− c

p

)
1

pa

(
1− b− c

p

)
≥ 1

pa

(
1− b

p

)
⇔ b ≥ c

Case 2: b < c ≤ p− 1

(5) ⇔
(

1− c

p

)
1

pa−1

(
1 + c− b

p

)
≥ 1

pa

(
1− b

p

)
⇔ (c− b)

(
1− c+ 1

p

)
≥ 0

which is true by hypothesis.

Now apply Claim 4.2 to f1 = f̃ , f2 = g̃, n1 = nc′, n2 = nc′′. We obtain that f̃ does not depend
on y1, . . . , yc

′′
. Hence,

f̃(x1, . . . , xc
′
, y1, . . . , yc

′′
) = F (h′1(x

1), . . . , h′c′(x
c′), C1, . . . , Cc′′)

where Cj = h′′j (0) ∈ Ulj+1 for j ∈ [c′′]. If we substitute x1 = . . . = xc
′

= x we get that

f(x) = F (h′1(x), . . . , h′c′(x), h′′1(x), . . . , h′′c′′(x)) = F (h′1(x), . . . , h′c′(x), C1, . . . , Cc′′),

which shows that f is measurable with respect to H′, as claimed.

5 Proof of Theorem 2

Theorem 2. Let F = Fp be a prime field. Let ε > 0 and e ≤ d, n ∈ N. Then,

`F(d, n, δ(e)− ε) ≤ exp
(
cp,d,εn

d−e
)
.

The proof follows along the same lines as that of Theorem 1. It will rely on the following lemma
which generalizes Claim 4.2.

Lemma 5.1. Fix d ≥ e ≥ 1, ε > 0. There exists r
(5.1)
d,ε ∈ N such that the following holds. Let

f1 : Fn1+n2 → U1 be a classical polynomial of degree at most d. Assume that

12



• There exist f2 : Fn1 → U1 be such that Pr[f1(x, y) = f2(x)] ≥ 1− δ(e) + ε.

• There exists a polynomial h : Fn2 → Uk+1 of degree at most d such that the factor it defines

has rank at least r
(5.1)
d,ε , and a function Γ : Fn1 × Uk+1 → U1, such that

f1(x, y) = Γ(x, h(y)).

• The dependence on the depth of h is nontrivial: f1(x, y) cannot be written as Γ′(x, p · h(y))
for any Γ′ : Fn1 × Uk → U1.

Then deg(h) ≤ d− e.

We first prove Theorem 2 assuming Lemma 5.1.

Proof of Theorem 2 assuming Lemma 5.1. The initial part of the proof is as in Theorem 1. Assume

that n > r
(5.1)
d,ε/4 otherwise the theorem is trivially true. Let f, g : Fn → U1 with deg(f) ≤ d and

dist(f, g) ≤ δ(e) − ε. For non decreasing functions r1, r2 : N → N, chosen as in the proof of
Theorem 1, we have an r1-regular H′ = {h′1, . . . , h′c′} and an r2-regular H′′ = H′ ∪ {h′′1, . . . , h′′c′′}
where each h′i, h

′′
i is a nonclassical polynomial of degree ≤ d, such that the following holds.

Let depth(h′i) = ki for i ∈ [c′] and depth(h′′j ) = lj for j ∈ [c′′]. Since f is measurable with

respect to H′′, there exists F : ⊗c′i=1Uki+1 ×⊗c
′′
j=1Ulj+1 → U1 such that

f(x) = F (h′1(x), . . . , h′c′(x), h′′1(x), . . . , h′′c′′(x)).

We may assume that for all i ∈ [c′′], the depth of h′′i is minimal, in the sense that we cannot replace
h′′i with p · h′′i and change F accordingly to still compute f (if this is not the case, then replace h′′i
with p · h′′i whenever possible; this only reduces the degree of h′′i and the new factor has rank at
least that of the original factor). Also, there exists a function Gf : ⊗c′i=1Uki+1 → U1 such that

Pr[Gf (h′1(x), . . . , h′c′(x)) = f(x)] ≥ 1− δ(e) + ε/2.

We will show that this implies that deg(h′′i ) ≤ d − e for all i ∈ [c′′]. Let B′′ be the factor de-
fined by H′′. As the number of polynomials of degree d − e is exponential in nd−e, the number
of functions f is controlled by the product of the number of composing functions F , which is

p||B
′′|| = p

(
∏

i∈[c′] p
ki+1)

(∏
j∈[c′′] p

lj+1
)

= c1(p, d, ε), and the number of choices for h′′1, . . . , h
′′
c′′ , which

is exp(c2c
′′nd−e). This amounts to at most exp(cnd−e) for some c = c(p, d, ε), as claimed.

To prove the bound on the degrees of h′′1, . . . , h
′′
c′′ , define, as in the proof of Theorem 1, xi, yj

for i ∈ [c′], j ∈ [c′′] to be pairwise disjoint sets of n ∈ N variables. Let n′ = n(c′ + c′′). Define
f̃ : Fn′ → U1 and g̃ : Fn′ → U1 as

f̃(x1, . . . , xc
′
, y1, . . . , yc

′′
) = F (h′1(x

1), . . . , h′c′(x
c′), h′′1(y1), . . . , h′′c′′(y

c′′))

and
g̃(x1, . . . , xc

′
) = Gf (h′1(x

1), . . . , hc′(x
c′)).

Then, by Claim 4.1, deg(f̃) ≤ d and Pr[f̃ = g̃] ≥ 1− δ(e) + ε/4.
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We next apply Lemma 5.1 to show that deg(h′′j ) ≤ d − e for all j ∈ [c′′]. To see that for say,
j = c′′, let k = depth(h′′c′′), n1 = n(c′ + c′′ − 1), n2 = n, h(y) = h′′c′′(y) and Γ : Fn1 × Uk+1 → U1

given by

Γ((x1, . . . , xc
′
, y1, . . . , yc

′′−1), α) = F (h′1(x
1), . . . , h′c′(x

c′), h′′1(y1), . . . , h′′c′′−1(y
c′′−1), α).

so that
f̃(x1, . . . , xc

′
, y1, . . . , yc

′′
) = Γ((x1, . . . , xc

′
, y1, . . . , yc

′′−1), h′′c′′(y
c′′)).

If we make sure that r2(m) ≥ r
(5.1)
d,ε/4 for all m ≥ 1, then we establish all the requirements for

Lemma 5.1. Hence we deduce that deg(h′′c′′) ≤ d− e as claimed.

5.1 Proof of Lemma 5.1

We prove Lemma 5.1 in this section. Fix d ≥ e ≥ 1 and ε > 0. Let r = r
(5.1)
d,ε be large enough to

be chosen later. We first show that we can replace h with a simple polynomial of the same degree
and depth, which would allow us to simplify the analysis.

Let depth(h) = k and let A = deg(h) − (p − 1)k. Define h̃ : FrA → Uk+1 as follows. Let
z = (z1,1, . . . , zr,A) ∈ FrA and define

h̃(z) :=

∑r
i=1

∏A
j=1 zi,j

pk+1
. (6)

Note that h̃ and h are both polynomials of the same degree and depth. Define f̃1 : Fn1+rA → U1 as

f̃1(x, z) = Γ(x, h̃(z)).

We will show that we may analyze f̃1 instead of f1 to obtain the upper bound on deg(h). To
simplify the presentation, denote Zi :=

∏A
j=1 zi,j for i ∈ [r]. First, we argue that if r is chosen large

enough then both h, h̃ are nearly uniform over Uk+1.

Claim 5.2. If r is chosen large enough then for all α ∈ Uk+1,

Pry∈Fn2 [h(y) = α] = p−(k+1)(1± ε/2)

and
Prz∈FrA [h̃(z) = α] = p−(k+1)(1± ε/2).

Proof. The proof for h follows from Lemma 2.10 by choosing r ≥ r2.10d

(
ε

2pk+1

)
. The proof for h̃

follows by a simple Fourier calculation. Let ω = exp(2πi/pk+1). We have Pr[Zi = 0],Pr[Zi = 1] ≥
p−A ≥ p−d. One can verify that this implies that for any nonzero c ∈ Zpk+1 , E[ωcZi ] ≤ 1 − η for

η = p−O(d). As Z1, . . . , Zr are independent we have E
[
ωc(Z1+...+Zr)

]
≤ (1−η)r. Hence if we choose

r large enough so that (1− η)r < (ε/2)p−(k+1) then, for any a ∈ Zpk+1 ,

Pr[Z1 + . . .+ Zr = a (mod pk+1)] = p−(k+1)

1 +
∑

c∈Z
pk+1\{0}

ω−ac · E
[
ωc(Z1+...+Zr)

]
= p−(k+1)(1± ε/2).
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This implies that f2(x) is also well approximates f̃1(x, z).

Corollary 5.3. Pr[f̃1(x, z) = f2(x)] ≥ Pr[f1(x, y) = f2(x)] − ε/2 ≥ 1 − δ(e) + ε/2 where x ∈
Fn1 , y ∈ Fn2 , z ∈ FrA are chosen uniformly and independently.

Proof. Claim 5.2 implies that the statistical distance between h(y) and h̃(z) is at most ε/2. Hence
for every fixed x, |Pr[Γ(x, h(y)) = f2(x)]−Pr[Γ(x, h̃(z)) = f2(x)]| ≤ ε/2.

We next argue that by choosing r large enough, we can guarantee that f̃1 has degree at most d.

Claim 5.4. If r is chosen large enough then deg(f̃1) ≤ deg(f1) ≤ d.

Proof. By Claim 5.2, if r is chosen large enough then h(y), h̃(z) attain all possible values in Uk+1.
For every α ∈ Uk+1, let fα(x) := Γ(x, α). Note that as there exists some yα ∈ h−1(α) then
fα(x) = f1(x, yα) is a (classical) polynomial in x of degree at most d.

We have f1(x, y) = Γ(x, h(y)) = Γ′((fα(x) : α ∈ Uk+1), h(y)) for some Γ′ : Fpk+1 × Uk+1 → F.
Let H = {fα(x) : α ∈ Uk+1} and for r1 : N → N a growth function to be specified later, let
H′ = {g1(x), . . . , gc(x)} be the result of r1-regularizing H by Lemma 2.9. Then

f1(x, y) = Γ′′(g1(x), . . . , gc(x), h(y))

for some Γ′′ : Fc × Uk+1 → F. Hence also

f̃1(x, z) = Γ(x, h̃(z)) = Γ′′(g1(x), . . . , gc(x), h̃(z)).

We next apply Lemma 2.11 to bound the degree of f̃1. This requires to assume that r1(c) ≥
r
(2.11)
d (c+ 1) and r ≥ r(2.11)d (C

(2.9)
r1,d

(pk+1) + 1). We obtain that

deg(f̃1) = deg(Γ′′(g1(x), . . . , gc(x), h̃(z))) ≤ deg(Γ′′(g1(x), . . . , gc(x), h(y))) = deg(f1) = d.

We next analyze the specific properties of h̃. Recall that we set Zi :=
∏A
j=1 zi,j so that h̃(z) =∑

Zi

pk+1 . Since h̃ depends only on W =
∑
Zi mod pk+1, let the digits of W mod pk+1 in base p, be

represented by classical polynomials W0(z), . . . ,Wk(z) : FrA → F. Then, we can express f̃1(x, z) as

f̃1(x, z) = Γ(x, h̃(z)) = Γ′(x,W0(z),W1(z), . . . ,Wk(z)) (7)

for some Γ′ : Fn1 × Fk+1 → U1. Recall that we assumed that Γ depends nontrivially on the depth
of its second argument. This implies that Γ′ depends nontrivially on its last input (i.e. Wk(z)). As
f̃1 is a classical polynomial, and each Wi take values in F, identifying U1 with F, we can decompose

f̃1(x, z) =
∑

0≤d0,...,dk≤p−1
fd0,...,dk(x)

k∏
i=0

Wi(z)
di , (8)

where fd0,...,dk ∈ F[x] is a classical polynomial. We next argue that deg(fd0,...,dk) cannot be too
large.
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Lemma 5.5. deg(fd0,...,dk) ≤ d−A
∑k

i=0 p
idi for all 0 ≤ d0, . . . , dk ≤ p− 1.

We will require a few simple claims first. The `-th symmetric polynomial in Z = (Z1, . . . , Zr),
for 1 ≤ ` ≤ r, is a classical polynomial of degree ` defined as

S`(Z) =
∑

1≤i1<...<i`≤r

∏̀
j=1

Zij .

For 0 ≤ i ≤ k, define W ′i : FrA → F by W ′i (z) := Spi(Z). The following claim follows
immediately from Lucas theorem [Luc78].

Claim 5.6. Let z ∈ {0, 1}rA. Then, Wi(z) = W ′i (z) for i = 0, . . . , k.

Proof. If z ∈ {0, 1}rA then Z ∈ {0, 1}r. Lucas theorem implies that the i-th least significant digit
(starting at 0) of W = Z1 + . . .+ Zr in base p is given by

(Z1+...+Zr

pi

)
mod p = Spi(Z).

For every polynomial P ∈ F[z], define ML(P ) to be the multilinearization of P . That is,
it is obtained by replacing each zai,j by zi,j for all a ≥ 1 and all i ∈ [r], j ∈ [A]. Note that

ML(P )(z) = P (z) for all z ∈ {0, 1}rA.

Claim 5.7. Let P,Q : FrA → F be two polynomials such that P (z) = Q(z) for all z ∈ {0, 1}rA.
Then ML(P ) ≡ ML(Q).

Proof. Let n = rA. It is easy to see that a multilinear polynomial f : Fn → F satisfies f(z) = 0
for all z ∈ {0, 1}n if and only if f ≡ 0. Therefore, for every polynomial P : Fn → F, ML(P ) is
the unique multilinear polynomial that agrees with P on {0, 1}n. Let R : Fn → F be defined as
R := P − Q. Then by linearity, ML(R) :≡ ML(P ) −ML(Q). As ML(R) = 0 for all z ∈ {0, 1}n,
ML(R) ≡ 0 which implies ML(P ) ≡ ML(Q).

Proof of Lemma 5.5. For D =
∑k

i=0 p
idi, define

W (D)(z) :=
k∏
i=0

Wi(z)
di , W ′(D)(z) :=

k∏
i=0

W ′i (z)
di .

By Claim 5.6 and Claim 5.7, we can define a common multilinearization of W (D) and W ′(D) by

M (D) := ML
(
W (D)

)
= ML

(
W ′(D)

)
.

Let m′(z) =
∏D
i=1 Zi =

∏D
i=1

∏A
j=1 zi,j be a monomial. The coefficient of m′ in W ′(D) is equal to

the coefficient of
∏D
i=1 Zi in

∏k
i=0 Spi(Z)di , which is equal to the number of partitions of a set of

size D to d0 sets of size 1, d1 sets of size p, d2 sets of size p2, up to dk sets of size pk. This is given
by

k∏
i=0

di∏
j=1

(
jpi + di+1p

i+1 + . . .+ dkp
k

pi

)
,

which by Lucas theorem is equal modulo p to
∏k
i=0(di!) 6= 0 mod p.
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Owing to the above, we have deg(M (D)) ≤ deg(W ′(D)) = AD. Also, since m′(z) is of maximal
degree, it also remains in M (D) after multilinearization. Define

f̄1(x, z) :=
∑

0≤d0,...,dk≤p−1
fd0,...,dk(x)M (D)(z).

Then, we have deg(f̄1) ≤ deg(f̃1) ≤ d.

Now, suppose that the lemma is false. Let D =
∑
pidi be maximal such that deg(fd0,...,dk) >

d − AD. Note that D corresponds to a unique tuple (d0, . . . , dk). Let m(x) be any monomial in
fd0,...,dk(x) with maximal degree, and recall that m′(z) =

∏D
i=1 Zi =

∏D
i=1

∏A
j=1 zi,j . Hence, the

monomial m(x)m′(z), whose degree is larger than d, has a nonzero coefficient in fd0,...,dk(x)M (D)(z)
as noted above. We will show it has a zero coefficient in any other fd′0,...,d′k(x)M (D′)(z) with

(d′0, . . . , d
′
k) 6= (d0, . . . , dk), D

′ =
∑

i p
id′i which will contradict the fact that deg(f̄1) ≤ d.

So, let (d′0, . . . , d
′
k) 6= (d0, . . . , dk) and let D′ =

∑
pid′i. Note that necessarily D′ 6= D. If

D′ > D then by maximality of D, deg
(
fd′0,...,d′k

)
≤ d − AD′ < d − AD and hence m(x) cannot

appear in fd′0,...,d′k(x). If D′ < D then deg
(
M (D′)

)
= AD′ < AD and hence m′(z) cannot appear

in M (D′)(z).

Let w = (w0, . . . , wk) ∈ Fk+1 be new variables, and define f ′1 : Fn1+k+1 → F by

f ′1(x,w) = Γ′(x,w0, . . . , wk) =
∑

0≤d0,...,dk≤p−1
fd0,...,dk(x)

k∏
i=0

wdii . (9)

We next argue that f ′1 is also well approximated by f2.

Claim 5.8. Pr[f ′1(x,w) = f2(x)] ≥ Pr[f̃1(x, z) = f2(x)]− ε/4 ≥ 1− δ(e) + ε/4, where x ∈ Fn1 , z ∈
FrA, w ∈ Fk+1 are uniformly and independently distributed.

Proof. By Claim 5.2, the distribution of h̃ is ε/4-close close in statistical distance to the uniform dis-
tribution over Uk+1, hence the distribution of (W0(z), . . . ,Wk(z)) is ε/4-close in statistical distance
to the uniform distribution over Fk+1.

To conclude the proof of Lemma 5.1, expand f ′1 − f2 as

f ′1(x,w)− f2(x) =
d′∑
i=0

ci(x,w0, . . . , wk−1)w
i
k

where ci ∈ F[x,w0, . . . , wk−1], d
′ ≤ min(d, p− 1) and cd′ 6= 0. We have that d′ ≥ 1 since Γ′ depends

on Wk(z). Also, by Lemma 5.5, for i ≥ 1 we have deg(ci) ≤ d − Apki. To see this, suppose not.
Consider the expansion in (9). Then, for some d0, . . . dk−1, deg(fd0,...dk−1,i) +

∑k−1
j=0 dj > d− Apki,

which implies that

deg(fd0,...dk−1,i) > d−
k−1∑
j=0

dj −Apki ≥ d−A
k−1∑
j=0

djp
j −Apki,
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which is a contradiction to Lemma 5.5. Hence

Pr[f ′1(x,w) = f2(x)] ≤ Pr[cd′ = 0] + (1−Pr[cd′ = 0])(1− δ(d′))
≤ 1− δ(d−Apkd′)δ(d′) ≤ 1− δ(d− d′(Apk − 1)),

where the last inequality was established in Claim 4.2. So, as we established that δ(d−d′(Apk−1)) <
δ(e) and d′ ≥ 1 we must have Apk − 1 < d − e, and hence Apk ≤ d − e. Now, recall that
deg(h) = deg(h̃) = A+ (p− 1)k and it is a simple exercise to verify that A+ (p− 1)k ≤ Apk for all
A ≥ 1, k ≥ 0. We thus showed that deg(h) ≤ d− e, as claimed.

6 Open Problems

Theorem 1 and Theorem 2 establish that over any fixed prime field Fp and any fixed e ≤ d and
ε > 0, the number of degree d polynomials in a any ball of radius δ(e) − ε is at most exp(cnd−e)
for some c = c(p, d, ε), which in particular resolves the conjecture raised in [GKZ08] when e = d.

However, the bounds on c which we obtain are of Ackermann-type, which seem far from optimal.
This leaves open the question of obtaining better bounds. This may require a different approach,
as currently higher-order Fourier analysis does not seem to provide better bounds. We also leave as
an open problem the question of extending our work to non-prime fields, and note that the missing
ingredient is an extension of the higher-order Fourier analytic techniques to non prime fields.
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