List decoding Reed-Muller codes over small fields

Abhishek Bhowmick*
Department of Computer Science
The University of Texas at Austin
bhowmick@cs.utexas.edu
Shachar Lovett ${ }^{\dagger}$
Department of Computer Science and Engineering
University of California, San Diego
slovett@ucsd.edu

July 17, 2014

Abstract

The list decoding problem for a code asks for the maximal radius up to which any ball of that radius contains only a constant number of codewords. The list decoding radius is not well understood even for well studied codes, like Reed-Solomon or Reed-Muller codes.

Fix a finite field \mathbb{F}. The Reed-Muller code $\mathrm{RM}_{\mathbb{F}}(n, d)$ is defined by n-variate degree- d polynomials over \mathbb{F}. In this work, we study the list decoding radius of Reed-Muller codes over a constant prime field $\mathbb{F}=\mathbb{F}_{p}$, constant degree d and large n. We show that the list decoding radius is equal to the minimal distance of the code.

That is, if we denote by $\delta(d)$ the normalized minimal distance of $\mathrm{RM}_{\mathbb{F}}(n, d)$, then the number of codewords in any ball of radius $\delta(d)-\varepsilon$ is bounded by $c=c(p, d, \varepsilon)$ independent of n. This resolves a conjecture of Gopalan-Klivans-Zuckerman [STOC 2008], who among other results proved it in the special case of $\mathbb{F}=\mathbb{F}_{2}$; and extends the work of Gopalan [FOCS 2010] who proved the conjecture in the case of $d=2$.

We also analyse the number of codewords in balls of radius exceeding the minimal distance of the code. For $e \leq d$, we show that the number of codewords of $\mathrm{RM}_{\mathbb{F}}(n, d)$ in a ball of radius $\delta(e)-\varepsilon$ is bounded by $\exp \left(c \cdot n^{d-e}\right)$, where $c=c(p, d, \varepsilon)$ is independent of n. The dependence on n is tight. This extends the work of Kaufman-Lovett-Porat [IEEE Inf. Theory 2012] who proved similar bounds over \mathbb{F}_{2}.

The proof relies on several new ingredients: an extension of the Frieze-Kannan weak regularity to general function spaces, higher-order Fourier analysis, and an extension of the SchwartzZippel lemma to compositions of polynomials.

[^0]
1 Introduction

The concept of list decoding was introduced by Elias [Eli57] and Wozencraft [Woz58] to decode error correcting codes beyond half the minimum distance. The objective of list decoding is to output all the codewords within a specified radius around the received word. After the seminal results of Goldreich and Levin [GL89] and Sudan [Sud97] which gave list decoding algorithms for the Hadamard code and the Reed-Solomon code respectively, there has been tremendous progress in designing list decodable codes. See the excellent surveys of Guruswami [Gur06, Gur04] and Sudan [Sud00].

List decoding has applications in many areas of computer science including hardness amplification in complexity theory [STV01, Tre03], derandomization [Vad12], construction of hard core predicates from one way functions [GL89, AGS03], construction of extractors and pseudorandom generators [TSZS01, SU05] and computational learning [KM93, Jac97]. Despite so much progress, the largest radius up to which list decoding is tractable is still a fundamental open problem even for well studied codes like Reed-Solomon (univariate polynomials) and Reed-Muller codes (multivariate polynomials). The goal of this work is to analyse Reed-Muller codes over small fields and small degree.

Reed-Muller codes (RM codes) were discovered by Muller in 1954. Fix a finite field $\mathbb{F}=\mathbb{F}_{q}$. Let $d \in \mathbb{N}$. The RM code $\mathrm{RM}_{\mathbb{F}}(n, d)$ is defined as follows. The message space consists of degree $\leq d$ polynomials in n variables over \mathbb{F} and the codewords are evaluation of these polynomials on \mathbb{F}^{n}. Let $\delta_{p}(d)$ denote the normalized distance of $\mathrm{RM}_{\mathbb{F}}(n, d)$. Let $d=a(q-1)+b$ where $0 \leq b<q-1$. We have

$$
\delta_{\mathbb{F}}(d)=\frac{1}{q^{a}}\left(1-\frac{b}{q}\right) .
$$

RM codes are one of the most well studied error correcting codes. Many of the applications in computer science involves low degree polynomials over small fields, namely RM codes. Given a received word $g: \mathbb{F}^{n} \rightarrow \mathbb{F}$ the objective is to output the list of codewords (e.g. low-degree polynomials) that lie within some distance of g. Typically we will be interested in regimes where list size is either independent of n or polynomial in the block length \mathbb{F}^{n}.

1.1 Previous Work

Let $\mathcal{P}_{d}\left(\mathbb{F}^{n}\right)$ denote the class of degree $\leq d$ polynomials $f: \mathbb{F}^{n} \rightarrow \mathbb{F}$. Let dist denote the normalized Hamming distance. For $\mathrm{RM}_{\mathbb{F}}(n, d), \eta>0$, let

$$
\ell_{\mathbb{F}}(n, d, \eta):=\max _{g: \mathbb{F}^{n} \rightarrow \mathbb{F}}\left|\left\{f \in \mathcal{P}_{d}\left(\mathbb{F}^{n}\right): \operatorname{dist}(f, g) \leq \eta\right\}\right|
$$

Let $\mathrm{LDR}_{\mathbb{F}}(n, d)$ (short for list decoding radius) be the maximum η for which $\ell_{\mathbb{F}}(n, d, \eta-\varepsilon)$ is upper bounded by a constant depending only on $\varepsilon,|\mathbb{F}|, d$ for all $\varepsilon>0$.

It is easy to see that $\operatorname{LDR}_{\mathbb{F}}(n, d) \leq \delta_{\mathbb{F}}(d)$. The difficulty lies in proving a matching lower bound. The first breakthrough result was in the setting of $d=1$ over \mathbb{F}_{2} (Hadamard Codes) where Goldreich and Levin showed that $\mathrm{LDR}_{\mathbb{F}_{2}}(n, 1)=\delta_{\mathbb{F}_{2}}(1)=1 / 2$ [GL89]. Later, Goldreich, Rubinfield and Sudan [GRS00] generalized the field to obtain $\operatorname{LDR}_{\mathbb{F}}(n, 1)=\delta_{\mathbb{F}}(1)=1-1 /|\mathbb{F}|$. In the setting of $d<|\mathbb{F}|$, Sudan, Trevisan and Vadhan [STV01] showed that $\operatorname{LDR}_{\mathbb{F}}(n, d) \geq 1-\sqrt{2 d /|\mathbb{F}|}$ improving
previous work by Arora and Sudan [AS03], Goldreich et al [GRS00] and Pellikaan and Wu [PW04]. A crucial result that was a bulding block in the multivariate setting was the problem of list decoding Reed-Solomon codes which was analysed by Sudan [Sud97] and Guruswami and Sudan [GS99]. The list decoding radius obtained above essentially attains the Johnson radius, which is a radius such that for any code over \mathbb{F} with normalized minimum distance δ, the list decoding radius (LDR) is at least

$$
\mathrm{J}_{\mathbb{F}}(\delta):=\left(1-\frac{1}{|\mathbb{F}|}\right)\left(1-\sqrt{1-\frac{|\mathbb{F}| \delta}{|\mathbb{F}|-1}}\right) .
$$

There have been few results that show list decodability beyond the Johnson radius [DGKS08, GKZ08].

In 2008, Gopalan, Klivans and Zuckerman [GKZ08] showed that $\operatorname{LDR}_{\mathbb{F}_{2}}(n, d)=\delta_{\mathbb{F}_{2}}(d)$. This beats the Johnson radius already for $d \geq 2$. The list decoding algorithm in [GKZ08] is a generalization of the Goldreich-Levin algorithm [GL89]. However their algorithm crucially depends on the fact that the ratio of minimum distance to unique decoding radius is equal to 2 which is the size of the field. Therefore, it does not generalize to higher fields (except for some special cases). They pose the following conjecture.

Conjecture 1 ([GKZ08]). For all constants d and all fields $\mathbb{F}, \operatorname{LDR}_{\mathbb{F}}(n, d)=\delta_{\mathbb{F}}(d)$.
An important contribution of [GKZ08] is an algorithm for list decoding that outputs the list of codewords up to radius η efficiently assuming $\ell_{\mathbb{F}}(n, d, \eta)$ is bounded.

It was also shown [GKZ08] that $\operatorname{LDR}_{\mathbb{F}}(n, d) \geq \frac{1}{2} \delta_{\mathbb{F}}(d-1)$ and this beats the Johnson radius already when d is large. It is believed [GKZ08, Gop10] that the hardest case is the setting of small d. An important step in this direction was taken in [Gop10] that considered quadratic polynomials and showed that $\operatorname{LDR}_{\mathbb{F}}(n, 2)=\delta_{\mathbb{F}}(2)$ for all fields \mathbb{F} and thus proved the conjecture for $d=2$. In the setting of \mathbb{F}_{2}, Kaufman, Lovett and Porat [KLP10] showed tight list sizes for radii beyond the minimum distance.

1.2 Our Results

As mentioned before, the algorithmic problem of list decoding was reduced to the combinatorial problem in [GKZ08]. Our main theorem is a resolution of Conjecture 1 for prime fields. We note that prior to this, the conjecture was open even in the $d<|\mathbb{F}|$ case.

Theorem 1. Let $\mathbb{F}=\mathbb{F}_{p}$ be a prime field. Let $\varepsilon>0$ and $d, n \in \mathbb{N}$. Then,

$$
\ell_{\mathbb{F}}\left(d, n, \delta_{\mathbb{F}}(d)-\varepsilon\right) \leq c_{p, d, \varepsilon} .
$$

Remark 1.1 (Algorithmic Implications). As mentioned above, using the reduction of algorithmic list decoding to combinatorial list decoding in [GKZ08] along with Theorem 1, for fixed prime fields, d and $\varepsilon>0$, we now have list decoding algorithms in both the global setting (running time polynomial in $|\mathbb{F}|^{n}$) and the local setting (running time polynomial in n^{d}).

Next, we study list sizes for radii which are larger than the minimal radius of the code. We give bounds which capture the correct exponent of n for all radii. This extends the results of Kaufman, Lovett and Porat [KLP10] who studied Reed-Muller codes over \mathbb{F}_{2}, to all prime fields.

Theorem 2. Let $\mathbb{F}=\mathbb{F}_{p}$ be a prime field. Let $\varepsilon>0$ and $e \leq d, n \in \mathbb{N}$. Then,

$$
\ell_{\mathbb{F}}\left(d, n, \delta_{\mathbb{F}}(e)-\varepsilon\right) \leq \exp \left(c_{p, d, \varepsilon} n^{d-e}\right)
$$

Remark 1.2. The exponent of n in Theorem 2 is tight, as the following example shows. Let $e=a(p-1)+b$ with $0 \leq b<p-1$. Consider polynomials of the form

$$
P(x)=\left(\prod_{i=i}^{a}\left(x_{i}^{p-1}-1\right)\right)\left(\prod_{j=1}^{b}\left(x_{a+1}-j\right)\right)\left(x_{a+2}+Q\left(x_{a+3}, \ldots, x_{n}\right)\right)
$$

for all polynomials Q of degree $d-e$. Observe that $\operatorname{Pr}[P(x) \neq 0]=\frac{1}{p^{a}}\left(1-\frac{b}{p}\right)\left(1-\frac{1}{p}\right)=\delta(e)(1-$ $1 / p)$. The number of such polynomials is $\exp \left(c^{\prime} n^{d-e}\right)$ for some $c^{\prime}=c_{p, d, e}^{\prime}$.

1.3 Proof overview

Previous results have mostly relied on the idea of local correction of the RM code. The work of [Gop10] uses (linear) Fourier analysis which does not seem to go beyond quadratic polynomials. We use tools from higher order Fourier analysis to resolve the conjecture. We think of $\mathbb{F}=\mathbb{F}_{p}, d, \varepsilon$ as constants. For a received word $g: \mathbb{F}^{n} \rightarrow \mathbb{F}$ our goal is to upper bound $\left|\left\{f \in \mathcal{P}_{d}\left(\mathbb{F}^{n}\right): \operatorname{dist}(f, g) \leq \eta\right\}\right|$. For simplicity of exposition, we assume in the proof overview that $d<|\mathbb{F}|$. The general case is somewhat more technical, as it requires the introduction of nonclassical polynomials.

A weak regularity (A low complexity proxy for the received word). The first step is an extension of the Frieze-Kannan weak regularity [FK99] which would allow us to move from an arbitrary received word g to a "low complexity" received word. We note that a somewhat similar idea appeared also in [TTV09].

Let X, Y be finite sets and let $P(Y):=\left\{f: Y \rightarrow \mathbb{R}_{\geq 0}: \sum_{y \in Y} f(y)=1\right\}$ be the probability simplex over Y. We view functions $f: X \rightarrow P(Y)$ as randomized functions from X to Y. For $f, g: X \rightarrow P(Y)$ we define

$$
\operatorname{Pr}_{x}[f(x)=g(x)]:=\mathbb{E}_{x}\langle f(x), g(x)\rangle .
$$

Given $\varepsilon>0$, any function $g: X \rightarrow P(Y)$ and a collection F of functions $f: X \rightarrow P(Y)$, one can find a collection of $c:=1 / \varepsilon^{2}$ functions $h_{1}, \ldots, h_{c} \in F$ and a proxy $g_{1}: X \rightarrow P(Y)$ for g, such that g_{1} is determined by $h_{1}(x), \ldots, h_{c}(x)$ and such that g_{1} is indistinguishable from g with respect to F.

Lemma 3.1. Let $g: X \rightarrow P(Y), \varepsilon>0$, and F be a collection of functions $f: X \rightarrow P(Y)$. Then there exist $c \leq 1 / \varepsilon^{2}$ functions $h_{1}, h_{2}, \ldots, h_{c} \in F$ and a function $\Gamma: P(Y)^{c} \rightarrow P(Y)$ such that for all $f \in F$,

$$
\left|\operatorname{Pr}[g(x)=f(x)]-\mathbf{P r}\left[\Gamma\left(h_{1}(x), h_{2}(x), \ldots, h_{c}(x)\right)=f(x)\right]\right| \leq \varepsilon .
$$

In our case, $X=\mathbb{F}^{n}, Y=\mathbb{F}$ and $F=\mathcal{P}_{d}\left(\mathbb{F}^{n}\right)$. When F is a family of "deterministic" functions $f: X \rightarrow Y$, as it is in our case, we can obtain one-sided approximation using only deterministic functions h_{1}, \ldots, h_{c}.

Corollary 3.3. Let $g: X \rightarrow Y, \varepsilon>0$, and F be a collection of functions $f: X \rightarrow Y$. Then there exist $c \leq 1 / \varepsilon^{2}$ functions $h_{1}, h_{2}, \ldots, h_{c} \in F$ such that for every $f \in F$, there is a function $\Gamma_{f}: Y^{c} \rightarrow Y$ such that

$$
\operatorname{Pr}_{x}\left[\Gamma_{f}\left(h_{1}(x), \ldots, h_{c}(x)\right)=f(x)\right] \geq \operatorname{Pr}_{x}[g(x)=f(x)]-\varepsilon
$$

Strong regularity applied to \mathcal{H}. The collection of polynomials $\mathcal{H}=\left\{h_{1}, \ldots, h_{c}\right\} \subset \mathcal{P}_{d}\left(\mathbb{F}^{n}\right)$ defines a partition of the input space \mathbb{F}^{n} into atoms $\left\{x \in \mathbb{F}^{n}: h_{1}(x)=a_{1}, \ldots, h_{c}(x)=a_{c}\right\}$. We next regularize \mathcal{H}. The objective of regularization is to further refine the partition into smaller atoms with the goal that the polynomials h_{1}, \ldots, h_{c} are "pseudo-random". Formally, we require the polynomials to be inapproximable by lower degree polynomials, which is equivalent to having negligible Gowers uniformity norm. This ensures, for example, that for uniformly random X in \mathbb{F}^{n}, the distribution $\left(h_{1}(X), \ldots, h_{c}(X)\right)$ is close to uniform over the atoms. This process of regularization was introduced by [GT09] and is now standard in higher-order Fourier analysis. Let $\mathcal{H}^{\prime}=\left\{h_{1}^{\prime}, \ldots, h_{c^{\prime}}^{\prime}\right\} \subset \mathcal{P}_{d}\left(\mathbb{F}^{n}\right)$ be the regularized \mathcal{H} that satisfies the above properties, where $c^{\prime}=c^{\prime}(p, d, c)$.

Structure of polynomials close to low complexity received words. Fix now an $f \in \mathcal{P}_{d}\left(\mathbb{F}^{n}\right)$ such that $\operatorname{dist}(f, g) \leq \delta_{p}(d)-\varepsilon$. We will show that f must be determined by \mathcal{H}^{\prime}. That is,

$$
f(x)=F\left(h_{1}^{\prime}(x), \ldots, h_{c^{\prime}}^{\prime}(x)\right)
$$

for some $F: \mathbb{F}^{c^{\prime}} \rightarrow \mathbb{F}$. This will bound the number of such functions by $p^{p^{c^{\prime}}}$, which is independent of n.

In order to achieve that, we regularize the family of polynomials $\mathcal{H}^{\prime} \cup\{f\}$. By choosing regularity parameters appropriately, we can assure that only f decomposes further,

$$
f=F\left(h_{1}^{\prime}(x), \ldots, h_{c^{\prime}}^{\prime}(x), h_{1}^{\prime \prime}(x), \ldots, h_{c^{\prime \prime}}^{\prime \prime}(x)\right)
$$

where $\mathcal{H}^{\prime \prime}=\left\{h_{1}, \ldots, h_{c^{\prime}}^{\prime}, h_{1}^{\prime \prime}, \ldots, h_{c^{\prime \prime}}^{\prime \prime}\right\}$ is regular. Moreover, for $G_{f}\left(h_{1}^{\prime}(x), \ldots, h_{c^{\prime}}^{\prime}(x)\right)=$ $\Gamma_{f}\left(h_{1}(x), \ldots, h_{c}(x)\right)$, we know that

$$
\operatorname{Pr}\left[f(x)=G_{f}\left(h_{1}^{\prime}(x), \ldots, h_{c^{\prime}}^{\prime}(x)\right)\right] \geq 1-\delta_{p}(d)+\varepsilon / 2
$$

The regularity of $\mathcal{H}^{\prime \prime}$ allows us to reduce the question to that of the structure of F vs G_{f}. We then show, by a variant of the Schwartz-Zippel lemma, that such an approximation can only exist when F does not depend on $h_{1}^{\prime \prime}, \ldots, h_{c^{\prime \prime}}^{\prime \prime}$. The bound for larger radii $\delta_{\mathbb{F}}(e)-\varepsilon$ with $e<d$ follows along similar lines. We show that in the decomposition above, since $\operatorname{Pr}\left[F=G_{f}\right]>1-\delta_{\mathbb{F}}(e)+\varepsilon / 2$, this can only occur when $h_{1}^{\prime \prime}, \ldots, h_{c^{\prime \prime}}^{\prime \prime}$ have degree at most $d-e$. As the number of such polynomials is exponential in n^{d-e}, we derive similar bounds for the number of functions f.

2 Preliminaries

2.1 Notation

Let \mathbb{N} denote the set of positive integers. For $n \in \mathbb{N}$, let $[n]:=\{1,2, \ldots, n\}$. We use $y=x \pm \varepsilon$ to denote $y \in[x-\varepsilon, x+\varepsilon]$. Let \mathbb{T} denote the torus \mathbb{R} / \mathbb{Z}. This is an abelian group under addition. For $n \in \mathbb{N}$, and $x, y \in \mathbb{C}^{n}$, let $\langle x, y\rangle:=\sum_{i=1}^{n} x_{i} \overline{y_{i}}$ where \bar{a} is the conjugate of a. Let $\|x\|_{2}:=\sqrt{\langle x, x\rangle}$.

Fix a prime field $\mathbb{F}=\mathbb{F}_{p}$. Let $|$.$| denote the natural map from \mathbb{F}$ to $\{0,1, \ldots, p-1\} \in \mathbb{Z}$. Let $e: \mathbb{T} \rightarrow \mathbb{C}$ be the map $e(x):=e^{2 \pi i x}$. Let $e_{p}: \mathbb{F} \rightarrow \mathbb{C}$ be the map $e_{p}(x)=e\left(\frac{|x|}{p}\right)$. For an integer $k \geq 0$, let $\mathbb{U}_{k}:=\frac{1}{p^{k}} \mathbb{Z} / \mathbb{Z}$. Note that \mathbb{U}_{k} is a subgroup of \mathbb{T}. Let $\iota: \mathbb{F} \rightarrow \mathbb{U}_{1}$ be the bijection $\iota(a)=\frac{|a|}{p}$ $(\bmod 1)$.

For a finite set X and $n \in \mathbb{N}$, with $f: X \rightarrow \mathbb{C}^{n}$, we write $\mathbb{E}_{x} f(x)$ to denote $\frac{1}{|X|} \sum_{x \in X} f(x)$. We define $\|f\|_{2}:=\sqrt{\mathbb{E}_{x}\|f(x)\|_{2}^{2}}$. If $g: X \rightarrow \mathbb{C}^{n}$, we have $\langle f, g\rangle:=\mathbb{E}_{x}\langle f(x), g(x)\rangle$. Let Y be a finite set. Let $P(Y):=\left\{f: Y \rightarrow \mathbb{R}_{\geq 0}: \sum_{y \in Y} f(y)=1\right\}$ denote the probability simplex on Y. We shall write randomized functions by mapping them to the simplex. Thus, for $f, g: X \rightarrow P(Y)$ we define

$$
\operatorname{Pr}_{x}[f(x)=g(x)]:=\mathbb{E}_{x}\langle f(x), g(x)\rangle
$$

If $f: X \rightarrow Y$ is a deterministic function, then we embed Y into $P(Y)$ in the obvious way, and consider $f: X \rightarrow P(Y)$ with $f(x)_{y}=1$ if $f(x)=y$ when viewed as a function to Y, and $f(x)_{y^{\prime}}=0$ for all $y^{\prime} \in Y \backslash\{y\}$.

2.2 Polynomials

Definition 2.1 (Derivative). Given a function $f: \mathbb{F}^{n} \rightarrow \mathbb{T}$ and $a \in \mathbb{F}^{n}$, define the derivative of f in direction a as $D_{a} f: \mathbb{F}^{n} \rightarrow \mathbb{T}$ as $D_{a} f(x)=f(x+a)-f(x)$ for $x \in \mathbb{F}^{n}$.

Definition 2.2 (Nonclassical Polynomial or Polynomial). Let $d \in \mathbb{N}$. Then $f: \mathbb{F}^{n} \rightarrow \mathbb{T}$ is a polynomial of degree $\leq d$ if for all $a_{1}, \ldots, a_{d+1}, x \in \mathbb{F}^{n}$,

$$
\begin{equation*}
\left(D_{a_{1}} \ldots D_{a_{d+1}} f\right)(x)=0 \tag{1}
\end{equation*}
$$

The degree of f denoted by $\operatorname{deg}(f)$ is the smallest such $d \in \mathbb{N}$ for which the above holds. If the image of f lies in \mathbb{U}_{1} then f is called a classical polynomial of degree d. When $d<|\mathbb{F}|$, it is known that all the polynomials of degree d satisfying (1) are classical polynomials. However, when $d \geq|\mathbb{F}|$, there exist nonclassical polynomials. We write $\operatorname{Poly}_{\leq d}\left(\mathbb{F}^{n} \rightarrow \mathbb{T}\right)$ to denote the class of degree $\leq d$ polynomials. Unless explicitly specified, a polynomial is a (potentially) nonclassical polynomial. The following lemma from [TZ11] characterizes polynomials.
Lemma 2.3 ([TZ11], Lemma 1.7). Let $d \in \mathbb{N}$.

- A function $f: \mathbb{F}^{n} \rightarrow \mathbb{T}$ is a polynomial of degree $\leq d$ if and only if $D_{a} f$ is a polynomial of degree $\leq d-1$ for all $a \in \mathbb{F}^{n}$.
- A function $f: \mathbb{F}^{n} \rightarrow \mathbb{T}$ is a classical polynomial with $\operatorname{deg}(f) \leq d$ if $f=\iota P$ where $P: \mathbb{F}^{n} \rightarrow \mathbb{F}$ is of the form

$$
P\left(x_{1}, \ldots, x_{n}\right)=\sum_{0 \leq d_{1}, \ldots, d_{n} \leq p-1: \sum_{i} d_{i} \leq d} c_{d_{1}, \ldots, d_{n}} \prod_{i=1}^{n} x_{i}^{d_{i}},
$$

where $c_{d_{1}, \ldots, d_{n}} \in \mathbb{F}$ are unique.

- A function $f: \mathbb{F}^{n} \rightarrow \mathbb{T}$ is a polynomial with $\operatorname{deg}(f) \leq d$ if f is of the form

$$
f\left(x_{1}, \ldots, x_{n}\right)=\alpha+\sum_{0 \leq d_{1}, \ldots, d_{n} \leq p-1, k \geq 0: \sum_{i} d_{i} \leq d-k(p-1)} \frac{c_{d_{1}, \ldots, d_{n}, k} \prod_{i=1}^{n}\left|x_{i}\right|^{d_{i}}}{p^{k+1}}(\bmod 1)
$$

where $c_{d_{1}, \ldots, d_{n}, k} \in\{0, \ldots, p-1\}$ and $\alpha \in \mathbb{T}$ are unique. α is called the shift of f and the largest k such that some $c_{d_{1}, \ldots, d_{n}, k} \neq 0$ is the depth of f, denoted by $\operatorname{depth}(f)$. Note that classical polynomials have 0 shift and 0 depth.

- If $f: \mathbb{F}^{n} \rightarrow \mathbb{T}$ is a polynomial with $\operatorname{depth}(f)=k$, then its image lies in a coset of \mathbb{U}_{k+1}.
- If $f: \mathbb{F}^{n} \rightarrow \mathbb{T}$ is a polynomial such that $\operatorname{deg}(f)=d$ and $\operatorname{depth}(f)=k$, then $\operatorname{deg}(p f)=$ $\max (d-p+1,0)$ and $\operatorname{dep} \operatorname{th}(p f)=k-1$. Also, if $c \in\{1, \ldots, p-1\}$ then the degree and depth of $c f$ remain unchanged.

Throughout the article, we assume without loss of generality that nonclassical polynomials have zero shift.

2.3 Rank and Polynomial Factors

Definition 2.4 (Rank). Let $d \in \mathbb{N}$ and $f: \mathbb{F}^{n} \rightarrow \mathbb{T}$. Then $\operatorname{rank}_{d}(f)$ is defined as the smallest integer r such that there exist polynomials $h_{1}, \ldots, h_{r}: \mathbb{F}^{n} \rightarrow \mathbb{T}$ of degree $\leq d-1$ and a function $\Gamma: \mathbb{T}^{r} \rightarrow \mathbb{T}$ such that $f(x)=\Gamma\left(h_{1}(x), \ldots, h_{r}(x)\right)$. If $d=1$, then the rank is 0 if f is a constant function and is ∞ otherwise. If f is a polynomial, then $\operatorname{rank}(f)=\operatorname{rank}_{d}(f)$ where $d=\operatorname{deg}(f)$.

Definition 2.5 (Factor). Let X be a finite set. Then a factor \mathcal{B} is a partition of the set X. The subsets in the partition are called atoms.

For sets X and Y, and a factor \mathcal{B} of X, a function $f: X \rightarrow P(Y)$ is said to be measurable with respect to \mathcal{B} if it is constant on the atoms of \mathcal{B}. The average of f over \mathcal{B} is $\mathbb{E}[f \mid \mathcal{B}]: X \rightarrow P(Y)$ defined as

$$
\mathbb{E}[f \mid \mathcal{B}](x)=\mathbb{E}_{y \in \mathcal{B}(x)}[f(y)]
$$

where $\mathcal{B}(x)$ is the atom containing x. Clearly, $\mathbb{E}[f \mid \mathcal{B}]$ is measurable with respect to \mathcal{B}.
A collection of functions $h_{1}, \ldots, h_{c}: X \rightarrow Y$ defines a factor \mathcal{B} whose atoms are $\{x \in X:$ $\left.h_{1}(x)=y_{1}, \ldots, h_{c}(x)=y_{c}\right\}$ for every $\left(y_{1}, \ldots, y_{c}\right) \in Y^{c}$. We use \mathcal{B} to also denote the map $x \mapsto$ $\left(h_{1}(x), \ldots, h_{c}(x)\right)$. A function f is measurable with respect to a collection of functions if it is measurable with respect to the factor the collection defines.

Definition 2.6 (Polynomial Factor). A polynomial factor \mathcal{B} is a factor defined by a collection of polynomials $\mathcal{H}=\left\{h_{1}, \ldots, h_{c}: \mathbb{F}^{n} \rightarrow \mathbb{T}\right\}$ and the factor is written as $\mathcal{B}_{\mathcal{H}}$. The degree of the factor is the maximum degree of $h \in \mathcal{H}$.

Let $|\mathcal{B}|$ be the number of polynomials defining the factor. If $\operatorname{depth}\left(h_{i}\right)=k_{i}$ above, then we define $\|\mathcal{B}\|:=\prod_{i=1}^{c} p^{k_{i}+1}$ to be the number of (possibly empty) atoms.

Definition 2.7 (Rank and Regularity of Polynomial Factor). Let \mathcal{B} be a polynomial factor defined by $h_{1}, \ldots, h_{c}: \mathbb{F}^{n} \rightarrow \mathbb{T}$ such that depth $\left(h_{i}\right)=k_{i}$ for $i \in[c]$. Then, the rank of \mathcal{B} is the least integer r such that there exists $\left(a_{1}, \ldots, a_{c}\right) \in \mathbb{Z}^{c},\left(a_{1} \bmod p^{k_{1}+1}, \ldots, a_{c} \bmod p^{k_{c}+1}\right) \neq(0, \ldots, 0)$ for which the linear combination $h(x):=\sum_{i=1}^{c} a_{i} h_{i}(x)$ has $\operatorname{rank}_{d}(h) \leq r$ where $d=\max _{i} \operatorname{deg}\left(a_{i} h_{i}\right)$. For a non decreasing function $r: \mathbb{N} \rightarrow \mathbb{N}$, a factor \mathcal{B} is r-regular if its rank is at least $r(|\mathcal{B}|)$.

Definition 2.8 (Semantic and Syntactic refinement). Let \mathcal{B} and \mathcal{B}^{\prime} be polynomial factors on \mathbb{F}^{n}. A factor \mathcal{B}^{\prime} is a syntactic refinement of \mathcal{B}, denoted by $\mathcal{B}^{\prime} \succeq_{\text {syn }} \mathcal{B}$ if the set of polynomials defining \mathcal{B} is a subset of the set of polynomials defining \mathcal{B}^{\prime}. It is a semantic refinement, denoted by $\mathcal{B}^{\prime} \succeq$ sem \mathcal{B} if for every $x, y \in \mathbb{F}^{n}, \mathcal{B}^{\prime}(x)=\mathcal{B}^{\prime}(y)$ implies $\mathcal{B}(x)=\mathcal{B}(y)$.

We will use the following regularity lemma proved in $\left[\mathrm{BFH}^{+} 13\right]$.
Lemma 2.9 (Polynomial Regularity Lemma $\left[\mathrm{BFH}^{+} 13\right]$). Let $r: \mathbb{N} \rightarrow \mathbb{N}$ be a non-decreasing function and $d \in \mathbb{N}$. Then there is a function $C_{r, d}^{(2.9)}: \mathbb{N} \rightarrow \mathbb{N}$ such that the following is true. Let \mathcal{B} be a factor defined by polynomials $P_{1}, \ldots, P_{c}: \mathbb{F}^{n} \rightarrow \mathbb{T}$ of degree at most d. Then, there is an r-regular factor \mathcal{B}^{\prime} defined by polynomials $Q_{1}, \ldots, Q_{c^{\prime}}: \mathbb{F}^{n} \rightarrow \mathbb{T}$ of degree at most d such that $\mathcal{B}^{\prime} \succeq_{\text {sem }} \mathcal{B}$ and $c^{\prime} \leq C_{r, d}^{(2.9)}(c)$.

Moreover if $\mathcal{B} \succeq_{\text {sem }} \hat{\mathcal{B}}$ for some polynomial factor $\hat{\mathcal{B}}$ that has rank at least $r\left(c^{\prime}\right)+c^{\prime}+1$, then $\mathcal{B}^{\prime} \succeq_{\text {syn }} \hat{B}$.

The next lemma shows that a regular factor has atoms of roughly equal size.
Lemma 2.10 (Size of atoms $\left[\mathrm{BFH}^{+} 13\right]$). Given $\varepsilon>0$, let \mathcal{B} be a polynomial factor of rank at least $r_{d}^{(2.10)}(\varepsilon)$ defined by polynomials $P_{1}, \ldots, P_{c}: \mathbb{F}^{n} \rightarrow \mathbb{T}$ of degree at most d such that $\operatorname{depth}\left(P_{i}\right)=k_{i}$ for $i \in[c]$. For every $b \in \otimes_{i=1}^{c} \mathbb{U}_{k_{i}+1}$,

$$
\operatorname{Pr}_{x}[\mathcal{B}(x)=b]=\frac{1}{\|\mathcal{B}\|} \pm \varepsilon
$$

Finally, we shall need the following lemma which shows that a function of high rank polynomials has the degree one expects.

Lemma 2.11 (Preserving degree $\left.\left[\mathrm{BFH}^{+} 13\right]\right)$. Let $d>0$ be an integer and let $P_{1}, \ldots, P_{c}: \mathbb{F}^{n} \rightarrow \mathbb{T}$ be polynomials of degree at most d that form a factor of $\mathrm{rank} \geq r_{d}^{(2.11)}(c)$. Let $\Gamma: \mathbb{T}^{c} \rightarrow \mathbb{T}$ be an arbitrary function. Let $F: \mathbb{F}^{n} \rightarrow \mathbb{T}$ be defined by $F(x)=\Gamma\left(P_{1}(x), \ldots, P_{c}(x)\right)$, and assume that $\operatorname{deg}(F)=d^{\prime}$. Then, for every collection of polynomials $Q_{1}, \ldots, Q_{c}: \mathbb{F}^{n} \rightarrow \mathbb{T}$ with $\operatorname{deg}\left(Q_{i}\right) \leq$ $\operatorname{deg}\left(P_{i}\right)$ and $\operatorname{depth}\left(Q_{i}\right) \leq \operatorname{depth}\left(P_{i}\right)$, if $G: \mathbb{F}^{n} \rightarrow \mathbb{T}$ is defined by $G(x)=\Gamma\left(Q_{1}(x), \ldots, Q_{c}(x)\right)$, then $\operatorname{deg}(G) \leq d^{\prime}$.

3 Weak Regularity

Let X and Y be finite sets. Recall that $P(Y):=\left\{f: Y \rightarrow \mathbb{R}_{\geq 0}: \sum_{y \in Y} f(y)=1\right\}$ is the probability simplex on Y. As mentioned before, we shall write randomized functions by mapping them to the simplex. Thus for $f, g: X \rightarrow P(Y)$ we have

$$
\operatorname{Pr}_{x}[f(x)=g(x)]:=\mathbb{E}_{x}\langle f(x), g(x)\rangle
$$

Lemma 3.1. Let $g: X \rightarrow P(Y), \varepsilon>0$, and F be a collection of functions $f: X \rightarrow P(Y)$. Then there exist $c \leq 1 / \varepsilon^{2}$ functions $h_{1}, h_{2}, \ldots, h_{c} \in F$ and a function $\Gamma: P(Y)^{c} \rightarrow P(Y)$ such that for all $f \in F$,

$$
\left|\operatorname{Pr}[g(x)=f(x)]-\operatorname{Pr}\left[\Gamma\left(h_{1}(x), h_{2}(x), \ldots, h_{c}(x)\right)=f(x)\right]\right| \leq \varepsilon .
$$

Proof. We construct $\mathcal{H}=\left\{h_{1}, \ldots, h_{c}\right\} \subseteq F$ such that, if $\mathcal{B}_{\mathcal{H}}$ is the factor of X induced by \mathcal{H}, then for all $f \in F$

$$
\left|\operatorname{Pr}\left[\mathbb{E}\left[g \mid \mathcal{B}_{\mathcal{H}}\right]=f(x)\right]-\operatorname{Pr}[g(x)=f(x)]\right| \leq \varepsilon .
$$

We then set $\Gamma: P(Y)^{c} \rightarrow P(Y)$ so that $\Gamma\left(h_{1}(x), \ldots, h_{c}(x)\right)=\mathbb{E}\left[g \mid \mathcal{B}_{\mathcal{H}}\right]$. In the following we shorthand $g_{\mathcal{H}}=\mathbb{E}\left[g \mid \mathcal{B}_{\mathcal{H}}\right]$. We consider the following variant of the Frieze-Kannan weak regularity algorithm [FK99].

- Initialize $\mathcal{H}=\emptyset$
- While there exists $f \in F$ such that $\left|\operatorname{Pr}\left[g_{\mathcal{H}}(x)=f(x)\right]-\operatorname{Pr}[g(x)=f(x)]\right|>\varepsilon$

$$
\text { - Update } \mathcal{H}=\mathcal{H} \cup\{f\}
$$

The lemma follows from the following claim, which shows that we update \mathcal{H} at most $1 / \varepsilon^{2}$ times. Let $\left\|g_{\mathcal{H}}\right\|_{2}^{2}:=\mathbb{E}_{x}\left\|g_{\mathcal{H}}(x)\right\|_{2}^{2}$.
Claim 3.2. Consider any stage in the algorithm, with \mathcal{H} being the set of functions at that stage, and $f \in F$ being the new function added to \mathcal{H}. Then

- $0 \leq\left\|g_{\mathcal{H}}\right\|^{2} \leq 1$;
- $\left\|g_{\mathcal{H} \cup\{f\}}\right\|^{2} \geq\left\|g_{\mathcal{H}}\right\|^{2}+\varepsilon^{2}$.

Proof. The first part of the claim is trivial as $g_{\mathcal{H}}$ maps to $P(Y)$. For the second part, observe that $\left\langle g_{\mathcal{H} \cup\{f\}}-g_{\mathcal{H}}, g_{\mathcal{H}}\right\rangle=0$ and thus

$$
\left\|g_{\mathcal{H} \cup\{f\}}\right\|_{2}^{2}=\left\|g_{\mathcal{H}}\right\|_{2}^{2}+\left\|g_{\mathcal{H} \cup\{f\}}-g_{\mathcal{H}}\right\|_{2}^{2}
$$

We will show that $\left\|g_{\mathcal{H} \cup\{f\}}-g_{\mathcal{H}}\right\|_{2}^{2} \geq \varepsilon^{2}$. We have

$$
\begin{aligned}
\varepsilon & <\left|\operatorname{Pr}\left[g_{\mathcal{H}}(x)=f(x)\right]-\operatorname{Pr}[g(x)=f(x)]\right| \\
& =\left|\mathbb{E}_{x}\left\langle f(x), g_{\mathcal{H}}(x)\right\rangle-\mathbb{E}_{x}\langle f(x), g(x)\rangle\right| \\
& \left.=\left|\mathbb{E}_{x}\left\langle f(x), g_{\mathcal{H}}(x)\right\rangle-\mathbb{E}_{x}\left\langle f(x), g_{\mathcal{H} \cup\{f\}}(x)\right\rangle\right| \quad \text { (as } f \text { is measurable with respect to } \mathcal{B}_{\mathcal{H} \cup\{f\}}\right) \\
& =\left|\mathbb{E}_{x}\left\langle f(x), g_{\mathcal{H}}(x)-g_{\mathcal{H} \cup\{f\}}(x)\right\rangle\right| \\
& \leq \mathbb{E}_{x}\left|\left\langle f(x), g_{\mathcal{H}}(x)-g_{\mathcal{H} \cup\{f\}}(x)\right\rangle\right| .
\end{aligned}
$$

Now, as $f: X \rightarrow P(Y)$, for every $x \in X,\|f(x)\|_{2} \leq 1$. Thus, by the Cauchy-Schwartz inequality, for every $x \in X$, we have

$$
\left|\left\langle f(x), g_{\mathcal{H}}(x)-g_{\mathcal{H} \cup\{f\}}(x)\right\rangle\right| \leq\|f(x)\|_{2}\left\|g_{\mathcal{H} \cup\{f\}}(x)-g_{\mathcal{H}}(x)\right\|_{2} \leq\left\|g_{\mathcal{H} \cup\{f\}}(x)-g_{\mathcal{H}}(x)\right\|_{2}
$$

Thus, by another application of the Cauchy-Schwartz inequality, we have

$$
\varepsilon^{2} \leq \mathbb{E}_{x}\left|\left\langle f(x), g_{\mathcal{H}}(x)-g_{\mathcal{H} \cup\{f\}}(x)\right\rangle\right|^{2} \leq\left\|g_{\mathcal{H} \cup\{f\}}-g_{\mathcal{H}}\right\|_{2}^{2} .
$$

This finishes the proof of the lemma.
The following corollary for deterministic functions $f: X \rightarrow Y$ allows to obtain one-sided deterministic estimates. This simplifies some of the arguments later on.

Corollary 3.3. Let $g: X \rightarrow Y, \varepsilon>0$, and F be a collection of functions $f: X \rightarrow Y$. Then there exist $c \leq 1 / \varepsilon^{2}$ functions $h_{1}, h_{2}, \ldots, h_{c} \in F$ such that for every $f \in F$, there is a function $\Gamma_{f}: Y^{c} \rightarrow Y$ such that

$$
\operatorname{Pr}_{x}\left[\Gamma_{f}\left(h_{1}(x), \ldots, h_{c}(x)\right)=f(x)\right] \geq \operatorname{Pr}_{x}[g(x)=f(x)]-\varepsilon .
$$

Proof. Applying Lemma 3.1 to F we may assume the existence of $h_{1}, \ldots, h_{c}: X \rightarrow Y$ and Γ : $Y^{C} \rightarrow P(Y)$ such that for any $f \in F$,

$$
\left|\operatorname{Pr}\left[f(x)=\Gamma\left(h_{1}(x), \ldots, h_{c}(x)\right)\right]-\operatorname{Pr}[f(x)=g(x)]\right| \leq \varepsilon .
$$

Let $A_{y_{1}, \ldots, y_{c}}=\left\{x \in X: h_{1}(x)=y_{1}, \ldots, h_{c}(x)=y_{c}\right\}$ be an atom defined by h_{1}, \ldots, h_{c}. Given $f \in F$, define $\Gamma_{f}: Y^{c} \rightarrow Y$ by letting $\Gamma_{f}\left(y_{1}, \ldots, y_{c}\right)$ to be the most common value that f attains on $A_{y_{1}, \ldots, y_{c}}$. Then

$$
\begin{aligned}
& \operatorname{Pr}\left[f(x)=\Gamma_{f}\left(h_{1}(x), \ldots, h_{c}(x)\right)\right] \\
& =\sum_{y_{1}, \ldots, y_{c} \in Y} \operatorname{Pr}\left[x \in A_{y_{1}, \ldots, y_{c}}\right] \cdot \max _{y^{*} \in Y} \operatorname{Pr}\left[f(x)=y^{*} \mid x \in A_{y_{1}, \ldots, y_{c}}\right] \\
& \geq \sum_{y_{1}, \ldots, y_{c} \in Y} \operatorname{Pr}\left[x \in A_{\left.y_{1}, \ldots, y_{c}\right]}\right] \cdot \operatorname{Pr}\left[f(x)=\Gamma\left(y_{1}, \ldots, y_{c}\right) \mid x \in A_{y_{1}, \ldots, y_{c}}\right] \\
& =\operatorname{Pr}\left[f(x)=\Gamma\left(h_{1}(x), \ldots, h_{c}(x)\right)\right] \geq \operatorname{Pr}[f(x)=g(x)]-\varepsilon .
\end{aligned}
$$

4 Proof of Theorem 1

Fix a prime field $\mathbb{F}=\mathbb{F}_{p}$. For $d \in \mathbb{N}$, we shorthand $\delta(d)=\delta_{\mathbb{F}}(d)$. We restate Theorem 1 .
Theorem 1. Let $\varepsilon>0$ and $d, n \in \mathbb{N}$. Then,

$$
\ell_{\mathbb{F}}(d, n, \delta(d)-\varepsilon) \leq c_{p, d, \varepsilon}
$$

We prove Theorem 1 in the remainder of this section. Let $g: \mathbb{F}^{n} \rightarrow \mathbb{U}_{1}$ be a received word where we identify \mathbb{F} with \mathbb{U}_{1}. Apply Corollary 3.3 with $X=\mathbb{F}^{n}, Y=\mathbb{U}_{1}, F=\operatorname{Poly}_{\leq d}\left(\mathbb{F}^{n} \rightarrow \mathbb{U}_{1}\right)$ and approximation parameter $\varepsilon / 2$ to obtain $\mathcal{H}=\left\{h_{1}, \ldots, h_{c}\right\} \subseteq F, c \leq 4 / \varepsilon^{2}$ such that, for every $f \in F$, there is a function $\Gamma_{f}: \mathbb{U}_{1}^{c} \rightarrow \mathbb{U}_{1}$ satisfying

$$
\operatorname{Pr}\left[\Gamma_{f}\left(h_{1}(x), h_{2}(x), \ldots, h_{c}(x)\right)=f(x)\right] \geq \operatorname{Pr}[g(x)=f(x)]-\varepsilon / 2 .
$$

Let $r_{1}, r_{2}: \mathbb{N} \rightarrow \mathbb{N}$ be two non decreasing functions to be specified later, and let $C_{r, d}^{(2.9)}$ be as given in Lemma 2.9. We will require that for all $m \geq 1$,

$$
\begin{equation*}
r_{1}(m) \geq r_{2}\left(C_{r_{2}, d}^{(2.9)}(m+1)\right)+C_{r_{2}, d}^{(2.9)}(m+1)+1 . \tag{2}
\end{equation*}
$$

As a first step, we r_{1}-regularize \mathcal{H} by Lemma 2.9. This gives an r_{1}-regular factor \mathcal{B}^{\prime} of degree at most d, defined by polynomials $h_{1}^{\prime}, \ldots, h_{c^{\prime}}^{\prime}: \mathbb{F}^{n} \rightarrow \mathbb{T}$, such that $\mathcal{B}^{\prime} \succeq_{\text {sem }} \mathcal{B}, c^{\prime} \leq C_{r_{1}, d}^{(2.9)}(c)$ and $\operatorname{rank}\left(\mathcal{B}^{\prime}\right) \geq r_{1}\left(c^{\prime}\right)$. We denote $\mathcal{H}^{\prime}=\left\{h_{1}^{\prime}, \ldots, h_{c^{\prime}}^{\prime}\right\}$. Note that \mathcal{H}^{\prime} can have nonclassical polynomials as a result of the regularization. Let depth $\left(h_{i}^{\prime}\right)=k_{i}$ for $i \in\left[c^{\prime}\right]$. Let $G_{f}: \otimes_{i=1}^{c^{\prime}} \mathbb{U}_{k_{i}+1} \rightarrow \mathbb{U}_{1}$ be defined such that

$$
\Gamma_{f}\left(h_{1}(x), \ldots, h_{c}(x)\right)=G_{f}\left(h_{1}^{\prime}(x), \ldots, h_{c^{\prime}}^{\prime}(x)\right) .
$$

Then

$$
\begin{equation*}
\operatorname{Pr}\left[G_{f}\left(h_{1}^{\prime}(x), h_{2}^{\prime}(x), \ldots, h_{c^{\prime}}^{\prime}(x)\right)=f(x)\right] \geq \operatorname{Pr}[g(x)=f(x)]-\varepsilon / 2 \tag{3}
\end{equation*}
$$

Next, given any classical polynomial $f: \mathbb{F}^{n} \rightarrow \mathbb{T}$ of degree at most d, we will show that if $\operatorname{Pr}[f(x) \neq$ $g(x)] \leq \delta(d)-\varepsilon$, then f is measurable with respect to \mathcal{H}^{\prime} and this would upper bound the number of such polynomials by $p^{\left\|\mathcal{B}^{\prime}\right\|}=p^{\prod_{i \in\left[c^{\prime}\right]} p^{k_{i}+1}}$ and as $c^{\prime}=c^{\prime}(p, d, \varepsilon)$ and $k_{i} \leq\left\lfloor\frac{d-1}{p-1}\right\rfloor$ this is independent on n.

Fix such a classical polynomial f. Appealing again to Lemma 2.9, we r_{2}-regularize $\mathcal{B}_{f}:=\mathcal{B}^{\prime} \cup\{f\}$. We get an r_{2}-regular factor $\mathcal{B}^{\prime \prime} \succeq$ syn \mathcal{B}^{\prime} defined by the collection $\mathcal{H}^{\prime \prime}=$ $\left\{h_{1}^{\prime}, \ldots, h_{c^{\prime}}^{\prime}, h_{1}^{\prime \prime}, \ldots, h_{c^{\prime \prime}}^{\prime \prime}\right\} \subseteq \operatorname{Poly}_{\leq d}\left(\mathbb{F}^{n} \rightarrow \mathbb{T}\right)$. Note that it is a syntactic refinement of \mathcal{B}^{\prime} as by our choice of r_{1},

$$
\operatorname{rank}\left(\mathcal{B}^{\prime}\right) \geq r_{1}\left(c^{\prime}\right) \geq r_{2}\left(C_{r_{2}, d}^{(2.9)}\left(c^{\prime}+1\right)\right)+C_{r_{2}, d}^{(2.9)}\left(c^{\prime}+1\right)+1 \geq r_{2}\left(\left|\mathcal{B}^{\prime \prime}\right|\right)+\left|\mathcal{B}^{\prime \prime}\right|+1 .
$$

We will choose r_{2} such that for all $m \geq 1$,

$$
\begin{equation*}
r_{2}(m)=\max \left(r_{d}^{(2.10)}\left(\frac{\varepsilon / 4}{\left(p^{\left[\frac{d-1}{p-1}\right\rfloor+1}\right)^{m}}\right), r_{d}^{(2.11)}(m)\right) . \tag{4}
\end{equation*}
$$

Let $\operatorname{depth}\left(h_{j}^{\prime \prime}\right)=l_{j}$ for $j \in\left[c^{\prime \prime}\right]$ and denote $S:=\otimes_{i=1}^{c^{\prime}} \mathbb{U}_{k_{i}+1} \times \otimes_{j=1}^{c^{\prime \prime}} \mathbb{U}_{l_{j}+1}$. Since f is measurable with respect to $\mathcal{B}^{\prime \prime}$, there exists $F: S \rightarrow \mathbb{U}_{1}$ such that

$$
f(x)=F\left(h_{1}^{\prime}(x), \ldots, h_{c^{\prime}}^{\prime}(x), h_{1}^{\prime \prime}(x), \ldots, h_{c^{\prime \prime}}^{\prime \prime}(x)\right) .
$$

We next show that we can have each polynomial in the factor have a disjoint set of inputs, and still obtain more or less the same approximation factor.

Claim 4.1. Let $x^{i}, y^{j}, i \in\left[c^{\prime}\right], j \in\left[c^{\prime \prime}\right]$ be pairwise disjoint sets of $n \in \mathbb{N}$ variables each. Let $n^{\prime}=n\left(c^{\prime}+c^{\prime \prime}\right)$. Let $\tilde{f}: \mathbb{F}^{n^{\prime}} \rightarrow \mathbb{U}_{1}$ and $\tilde{g}: \mathbb{F}^{n^{\prime}} \rightarrow \mathbb{U}_{1}$ be defined as

$$
\tilde{f}(x)=F\left(h_{1}^{\prime}\left(x^{1}\right), \ldots, h_{c^{\prime}}^{\prime}\left(x^{c^{\prime}}\right), h_{1}^{\prime \prime}\left(y^{1}\right), \ldots, h_{c^{\prime \prime}}^{\prime \prime}\left(y^{c^{\prime \prime}}\right)\right)
$$

and

$$
\tilde{g}(x)=G_{f}\left(h_{1}^{\prime}\left(x^{1}\right), \ldots, h_{c^{\prime}}\left(x^{c^{\prime}}\right)\right) .
$$

Then $\operatorname{deg}(\tilde{f}) \leq d$ and

$$
\left|\operatorname{Pr}_{x \in \mathbb{F}^{\prime}}[\tilde{f}(x)=\tilde{g}(x)]-\operatorname{Pr}_{x \in \mathbb{F}^{n}}\left[f(x)=G_{f}\left(h_{1}^{\prime}(x), h_{2}^{\prime}(x), \ldots, h_{c}^{\prime}(x)\right)\right]\right| \leq \varepsilon / 4
$$

Proof. The bound $\operatorname{deg}(\tilde{f}) \leq \operatorname{deg}(f) \leq d$ follows from Lemma 2.11 since $r_{2}\left(\left|\mathcal{H}^{\prime \prime}\right|\right) \geq r_{d}^{(2.11)}\left(\left|\mathcal{H}^{\prime \prime}\right|\right)$. To establish the bound on $\operatorname{Pr}[\tilde{f}=\tilde{g}]$, for each $s \in S$ let

$$
p_{1}(s)=\operatorname{Pr}_{x \in \mathbb{F}^{n}}\left[\left(h_{1}^{\prime}(x), \ldots, h_{c^{\prime}}^{\prime}(x), h_{1}^{\prime \prime}(x), \ldots, h_{c^{\prime \prime}}^{\prime \prime}(x)\right)=s\right] .
$$

Applying Lemma 2.10 and since our choice of r_{2} satisfies $\operatorname{rank}\left(\mathcal{H}^{\prime \prime}\right) \geq r_{d}^{(2.10)}(\varepsilon / 4|S|)$, we have that p_{1} is nearly uniform over S,

$$
p_{1}(s)=\frac{1 \pm \varepsilon / 4}{|S|}
$$

Similarly, let

$$
p_{2}(s)=\mathbf{P r}_{x^{1}, \ldots, x^{c^{\prime}}, y^{1}, \ldots, y^{c^{\prime \prime} \in \mathbb{F}^{n}}}\left[\left(h_{1}^{\prime}\left(x^{1}\right), \ldots, h_{c^{\prime}}^{\prime}\left(x^{c^{\prime}}\right), h_{1}^{\prime \prime}\left(y^{1}\right), \ldots, h_{c^{\prime \prime}}^{\prime \prime}\left(y^{c^{\prime \prime}}\right)\right)=s\right] .
$$

Note that the rank of the collection of polynomials $\left\{h_{1}^{\prime}\left(x^{1}\right), \ldots, h_{c^{\prime}}^{\prime}\left(x^{c^{\prime}}\right), h_{1}^{\prime \prime}\left(y^{1}\right), \ldots, h_{c^{\prime \prime}}^{\prime \prime}\left(y^{c^{\prime \prime}}\right)\right\}$ defined over $\mathbb{F}^{n^{\prime}}$ cannot be lower than that of $\mathcal{H}^{\prime \prime}$. Applying Lemma 2.10 again gives

$$
p_{2}(s)=\frac{1 \pm \varepsilon / 4}{|S|}
$$

For $s \in S$, let $s^{\prime} \in \otimes_{i=1}^{c^{\prime}} \mathbb{U}_{k_{i}+1}$ be the restriction of s to first c^{\prime} coordinates, that is, $s^{\prime}=\left(s_{1}, \ldots, s_{c^{\prime}}\right)$. Thus

$$
\begin{aligned}
\operatorname{Pr}_{x \in \mathbb{F}^{n^{\prime}}}[\tilde{f}(x)=\tilde{g}(x)] & =\sum_{s \in S} p_{2}(s) 1_{F(s)=G_{f}\left(s^{\prime}\right)} \\
& =\sum_{s \in S} p_{1}(s) 1_{F(s)=G_{f}\left(s^{\prime}\right)} \pm \varepsilon / 4 \\
& =\operatorname{Pr}_{x \in \mathbb{F}^{n}}\left[f(x)=G_{f}\left(h_{1}^{\prime}(x), h_{2}^{\prime}(x), \ldots, h_{c}^{\prime}(x)\right)\right] \pm \varepsilon / 4
\end{aligned}
$$

So, we obtain that

$$
\operatorname{Pr}_{x \in \mathbb{F}^{n^{\prime}}}[\tilde{f}(x)=\tilde{g}(x)] \geq \operatorname{Pr}_{x \in \mathbb{F}^{n}}\left[f(x)=G_{f}\left(h_{1}^{\prime}(x), \ldots, h_{c^{\prime}}^{\prime}(x)\right)\right]-\varepsilon / 4 \geq 1-\delta(d)+\varepsilon / 4 .
$$

Next, we need the following variant of the Schwartz-Zippel lemma [Sch80, Zip79].
Claim 4.2. Let $d, n_{1}, n_{2} \in \mathbb{N}$. Let $f_{1}: \mathbb{F}^{n_{1}+n_{2}} \rightarrow \mathbb{F}$ and $f_{2}: \mathbb{F}^{n_{1}} \rightarrow \mathbb{F}$ be such that $\operatorname{deg}\left(f_{1}\right) \leq d$ and

$$
\operatorname{Pr}\left[f_{1}\left(x_{1}, \ldots, x_{n_{1}+n_{2}}\right)=f_{2}\left(x_{1}, \ldots, x_{n_{1}}\right)\right]>1-\delta(d)
$$

Then, f_{1} does not depend on $x_{n_{1}+1}, \ldots, x_{n_{1}+n_{2}}$.
Proof. We will show that f_{1} does not depend on $z=x_{n_{1}+n_{2}}$ say. The proof for any other variable is similar. Recall that $\delta(d):=\frac{1}{p^{a}}\left(1-\frac{b}{p}\right)$ where $d=a \cdot(p-1)+b$. Let $f_{1}(x)=\sum_{k=0}^{d^{\prime}} c_{k} z^{k}$ where $c_{k} \in \mathbb{F}\left[x_{1}, \ldots, x_{n_{1}+n_{2}-1}\right]$ and $d^{\prime} \leq \min \{d, p-1\}$. Then $\left(f_{1}-f_{2}\right)(x)=c_{0}-f_{2}(x)+\sum_{k=1}^{d^{\prime}} c_{k} z^{k}$. We will show that $d^{\prime} \geq 1$ will lead to a contradiction. Let $\operatorname{deg}\left(c_{d^{\prime}}\right)=d^{\prime \prime}$. Note that $d^{\prime \prime}+d^{\prime} \leq d$. Then,

$$
\operatorname{Pr}\left[\left(f_{1}-f_{2}\right)(x)=0\right] \leq \operatorname{Pr}\left[c_{d^{\prime}}=0\right]+\left(1-\operatorname{Pr}\left[c_{d^{\prime}}=0\right]\right)\left(1-\delta\left(d^{\prime}\right)\right) \leq 1-\delta\left(d^{\prime \prime}\right) \delta\left(d^{\prime}\right)
$$

We will show that for any $d \geq 1$ and any $1 \leq c \leq p-1$, we have $\delta(c) \delta(d-c) \geq \delta(d)$ and this will show that $\operatorname{Pr}\left[\left(f_{1}-f_{2}\right)(x)=0\right] \leq 1-\delta\left(d^{\prime}+d^{\prime \prime}\right) \leq 1-\delta(d)$ which leads to a contradiction. Thus, f_{1} will not depend on z. We will now show that

$$
\begin{equation*}
\delta(c) \delta(d-c) \geq \delta(d) \tag{5}
\end{equation*}
$$

Let $d=a \cdot(p-1)+b$.

Case 1: $0 \leq c \leq b$

$$
\begin{aligned}
(5) & \Leftrightarrow\left(1-\frac{c}{p}\right) \frac{1}{p^{a}}\left(1-\frac{b-c}{p}\right) \geq \frac{1}{p^{a}}\left(1-\frac{b}{p}\right) \\
& \Leftrightarrow b \geq c
\end{aligned}
$$

Case 2: $b<c \leq p-1$

$$
\begin{aligned}
(5) & \Leftrightarrow\left(1-\frac{c}{p}\right) \frac{1}{p^{a-1}}\left(\frac{1+c-b}{p}\right) \geq \frac{1}{p^{a}}\left(1-\frac{b}{p}\right) \\
& \Leftrightarrow(c-b)\left(1-\frac{c+1}{p}\right) \geq 0
\end{aligned}
$$

which is true by hypothesis.
Now apply Claim 4.2 to $f_{1}=\tilde{f}, f_{2}=\tilde{g}, n_{1}=n c^{\prime}, n_{2}=n c^{\prime \prime}$. We obtain that \tilde{f} does not depend on $y^{1}, \ldots, y^{c^{\prime \prime}}$. Hence,

$$
\tilde{f}\left(x^{1}, \ldots, x^{c^{\prime}}, y^{1}, \ldots, y^{c^{\prime \prime}}\right)=F\left(h_{1}^{\prime}\left(x^{1}\right), \ldots, h_{c^{\prime}}^{\prime}\left(x^{c^{\prime}}\right), C_{1}, \ldots, C_{c^{\prime \prime}}\right)
$$

where $C_{j}=h_{j}^{\prime \prime}(0) \in \mathbb{U}_{l_{j}+1}$ for $j \in\left[c^{\prime \prime}\right]$. If we substitute $x^{1}=\ldots=x^{c^{\prime}}=x$ we get that

$$
f(x)=F\left(h_{1}^{\prime}(x), \ldots, h_{c^{\prime}}^{\prime}(x), h_{1}^{\prime \prime}(x), \ldots, h_{c^{\prime \prime}}^{\prime \prime}(x)\right)=F\left(h_{1}^{\prime}(x), \ldots, h_{c^{\prime}}^{\prime}(x), C_{1}, \ldots, C_{c^{\prime \prime}}\right),
$$

which shows that f is measurable with respect to \mathcal{H}^{\prime}, as claimed.

5 Proof of Theorem 2

Theorem 2. Let $\mathbb{F}=\mathbb{F}_{p}$ be a prime field. Let $\varepsilon>0$ and $e \leq d, n \in \mathbb{N}$. Then,

$$
\ell_{\mathbb{F}}(d, n, \delta(e)-\varepsilon) \leq \exp \left(c_{p, d, \varepsilon} n^{d-e}\right) .
$$

The proof follows along the same lines as that of Theorem 1. It will rely on the following lemma which generalizes Claim 4.2.
Lemma 5.1. Fix $d \geq e \geq 1, \varepsilon>0$. There exists $r_{d, \varepsilon}^{(5.1)} \in \mathbb{N}$ such that the following holds. Let $f_{1}: \mathbb{F}^{n_{1}+n_{2}} \rightarrow \mathbb{U}_{1}$ be a classical polynomial of degree at most d. Assume that

- There exist $f_{2}: \mathbb{F}^{n_{1}} \rightarrow \mathbb{U}_{1}$ be such that $\operatorname{Pr}\left[f_{1}(x, y)=f_{2}(x)\right] \geq 1-\delta(e)+\varepsilon$.
- There exists a polynomial $h: \mathbb{F}^{n_{2}} \rightarrow \mathbb{U}_{k+1}$ of degree at most d such that the factor it defines has rank at least $r_{d, \varepsilon}^{(5.1)}$, and a function $\Gamma: \mathbb{F}^{n_{1}} \times \mathbb{U}_{k+1} \rightarrow \mathbb{U}_{1}$, such that

$$
f_{1}(x, y)=\Gamma(x, h(y)) .
$$

- The dependence on the depth of h is nontrivial: $f_{1}(x, y)$ cannot be written as $\Gamma^{\prime}(x, p \cdot h(y))$ for any $\Gamma^{\prime}: \mathbb{F}^{n_{1}} \times \mathbb{U}_{k} \rightarrow \mathbb{U}_{1}$.

Then $\operatorname{deg}(h) \leq d-e$.
We first prove Theorem 2 assuming Lemma 5.1.
Proof of Theorem 2 assuming Lemma 5.1. The initial part of the proof is as in Theorem 1. Assume that $n>r_{d, \varepsilon / 4}^{(5.1)}$ otherwise the theorem is trivially true. Let $f, g: \mathbb{F}^{n} \rightarrow \mathbb{U}_{1}$ with $\operatorname{deg}(f) \leq d$ and $\operatorname{dist}(f, g) \leq \delta(e)-\varepsilon$. For non decreasing functions $r_{1}, r_{2}: \mathbb{N} \rightarrow \mathbb{N}$, chosen as in the proof of Theorem 1, we have an r_{1}-regular $\mathcal{H}^{\prime}=\left\{h_{1}^{\prime}, \ldots, h_{c^{\prime}}^{\prime}\right\}$ and an r_{2}-regular $\mathcal{H}^{\prime \prime}=\mathcal{H}^{\prime} \cup\left\{h_{1}^{\prime \prime}, \ldots, h_{c^{\prime \prime}}^{\prime \prime}\right\}$ where each $h_{i}^{\prime}, h_{i}^{\prime \prime}$ is a nonclassical polynomial of degree $\leq d$, such that the following holds.

Let depth $\left(h_{i}^{\prime}\right)=k_{i}$ for $i \in\left[c^{\prime}\right]$ and $\operatorname{depth}\left(h_{j}^{\prime \prime}\right)=l_{j}$ for $j \in\left[c^{\prime \prime}\right]$. Since f is measurable with respect to $\mathcal{H}^{\prime \prime}$, there exists $F: \otimes_{i=1}^{c^{\prime}} \mathbb{U}_{k_{i}+1} \times \otimes_{j=1}^{c^{\prime \prime}} \mathbb{U}_{l_{j}+1} \rightarrow \mathbb{U}_{1}$ such that

$$
f(x)=F\left(h_{1}^{\prime}(x), \ldots, h_{c^{\prime}}^{\prime}(x), h_{1}^{\prime \prime}(x), \ldots, h_{c^{\prime \prime}}^{\prime \prime}(x)\right) .
$$

We may assume that for all $i \in\left[c^{\prime \prime}\right]$, the depth of $h_{i}^{\prime \prime}$ is minimal, in the sense that we cannot replace $h_{i}^{\prime \prime}$ with $p \cdot h_{i}^{\prime \prime}$ and change F accordingly to still compute f (if this is not the case, then replace $h_{i}^{\prime \prime}$ with $p \cdot h_{i}^{\prime \prime}$ whenever possible; this only reduces the degree of $h_{i}^{\prime \prime}$ and the new factor has rank at least that of the original factor). Also, there exists a function $G_{f}: \otimes_{i=1}^{c^{\prime}} \mathbb{U}_{k_{i}+1} \rightarrow \mathbb{U}_{1}$ such that

$$
\operatorname{Pr}\left[G_{f}\left(h_{1}^{\prime}(x), \ldots, h_{c^{\prime}}^{\prime}(x)\right)=f(x)\right] \geq 1-\delta(e)+\varepsilon / 2
$$

We will show that this implies that $\operatorname{deg}\left(h_{i}^{\prime \prime}\right) \leq d-e$ for all $i \in\left[c^{\prime \prime}\right]$. Let $\mathcal{B}^{\prime \prime}$ be the factor defined by $\mathcal{H}^{\prime \prime}$. As the number of polynomials of degree $d-e$ is exponential in n^{d-e}, the number of functions f is controlled by the product of the number of composing functions F, which is $\left.p^{\left\|\mathcal{B}^{\prime \prime}\right\|}=p^{\left(\prod_{i \in\left[c^{\prime}\right]} p^{k_{i}+1}\right)\left(\prod_{j \in\left[c^{\prime \prime}\right]} p^{l_{j}+1}\right.}\right)=c_{1}(p, d, \varepsilon)$, and the number of choices for $h_{1}^{\prime \prime}, \ldots, h_{c^{\prime \prime}}^{\prime \prime}$, which is $\exp \left(c_{2} c^{\prime \prime} n^{d-e}\right)$. This amounts to at most $\exp \left(c n^{d-e}\right)$ for some $c=c(p, d, \varepsilon)$, as claimed.

To prove the bound on the degrees of $h_{1}^{\prime \prime}, \ldots, h_{c^{\prime \prime}}^{\prime \prime}$, define, as in the proof of Theorem $1, x^{i}, y^{j}$ for $i \in\left[c^{\prime}\right], j \in\left[c^{\prime \prime}\right]$ to be pairwise disjoint sets of $n \in \mathbb{N}$ variables. Let $n^{\prime}=n\left(c^{\prime}+c^{\prime \prime}\right)$. Define $\tilde{f}: \mathbb{F}^{n^{\prime}} \rightarrow \mathbb{U}_{1}$ and $\tilde{g}: \mathbb{F}^{n^{\prime}} \rightarrow \mathbb{U}_{1}$ as

$$
\tilde{f}\left(x^{1}, \ldots, x^{c^{\prime}}, y^{1}, \ldots, y^{c^{\prime \prime}}\right)=F\left(h_{1}^{\prime}\left(x^{1}\right), \ldots, h_{c^{\prime}}^{\prime}\left(x^{c^{\prime}}\right), h_{1}^{\prime \prime}\left(y^{1}\right), \ldots, h_{c^{\prime \prime}}^{\prime \prime}\left(y^{c^{\prime \prime}}\right)\right)
$$

and

$$
\tilde{g}\left(x^{1}, \ldots, x^{c^{\prime}}\right)=G_{f}\left(h_{1}^{\prime}\left(x^{1}\right), \ldots, h_{c^{\prime}}\left(x^{c^{\prime}}\right)\right) .
$$

Then, by Claim 4.1, $\operatorname{deg}(\tilde{f}) \leq d$ and $\operatorname{Pr}[\tilde{f}=\tilde{g}] \geq 1-\delta(e)+\varepsilon / 4$.

We next apply Lemma 5.1 to show that $\operatorname{deg}\left(h_{j}^{\prime \prime}\right) \leq d-e$ for all $j \in\left[c^{\prime \prime}\right]$. To see that for say, $j=c^{\prime \prime}$, let $k=\operatorname{depth}\left(h_{c^{\prime \prime}}^{\prime \prime}\right), n_{1}=n\left(c^{\prime}+c^{\prime \prime}-1\right), n_{2}=n, h(y)=h_{c^{\prime \prime}}^{\prime \prime}(y)$ and $\Gamma: \mathbb{F}^{n_{1}} \times \mathbb{U}_{k+1} \rightarrow \mathbb{U}_{1}$ given by

$$
\Gamma\left(\left(x^{1}, \ldots, x^{c^{\prime}}, y^{1}, \ldots, y^{c^{\prime \prime}-1}\right), \alpha\right)=F\left(h_{1}^{\prime}\left(x^{1}\right), \ldots, h_{c^{\prime}}^{\prime}\left(x^{c^{\prime}}\right), h_{1}^{\prime \prime}\left(y^{1}\right), \ldots, h_{c^{\prime \prime}-1}^{\prime \prime}\left(y^{c^{\prime \prime}-1}\right), \alpha\right) .
$$

so that

$$
\tilde{f}\left(x^{1}, \ldots, x^{c^{\prime}}, y^{1}, \ldots, y^{c^{c^{\prime}}}\right)=\Gamma\left(\left(x^{1}, \ldots, x^{c^{\prime}}, y^{1}, \ldots, y^{c^{\prime \prime}-1}\right), h_{c^{\prime \prime}}^{\prime \prime}\left(y^{c^{\prime \prime}}\right)\right) .
$$

If we make sure that $r_{2}(m) \geq r_{d, \varepsilon / 4}^{(5.1)}$ for all $m \geq 1$, then we establish all the requirements for Lemma 5.1. Hence we deduce that $\operatorname{deg}\left(h_{c^{\prime \prime}}^{\prime \prime}\right) \leq d-e$ as claimed.

5.1 Proof of Lemma 5.1

We prove Lemma 5.1 in this section. Fix $d \geq e \geq 1$ and $\varepsilon>0$. Let $r=r_{d, \varepsilon}^{(5.1)}$ be large enough to be chosen later. We first show that we can replace h with a simple polynomial of the same degree and depth, which would allow us to simplify the analysis.

Let depth $(h)=k$ and let $A=\operatorname{deg}(h)-(p-1) k$. Define $\tilde{h}: \mathbb{F}^{r A} \rightarrow \mathbb{U}_{k+1}$ as follows. Let $z=\left(z_{1,1}, \ldots, z_{r, A}\right) \in \mathbb{F}^{r A}$ and define

$$
\begin{equation*}
\tilde{h}(z):=\frac{\sum_{i=1}^{r} \prod_{j=1}^{A} z_{i, j}}{p^{k+1}} . \tag{6}
\end{equation*}
$$

Note that \tilde{h} and h are both polynomials of the same degree and depth. Define $\tilde{f}_{1}: \mathbb{F}^{n_{1}+r A} \rightarrow \mathbb{U}_{1}$ as

$$
\tilde{f}_{1}(x, z)=\Gamma(x, \tilde{h}(z)) .
$$

We will show that we may analyze \tilde{f}_{1} instead of f_{1} to obtain the upper bound on $\operatorname{deg}(h)$. To simplify the presentation, denote $Z_{i}:=\prod_{j=1}^{A} z_{i, j}$ for $i \in[r]$. First, we argue that if r is chosen large enough then both h, \tilde{h} are nearly uniform over \mathbb{U}_{k+1}.

Claim 5.2. If r is chosen large enough then for all $\alpha \in \mathbb{U}_{k+1}$,

$$
\operatorname{Pr}_{y \in \mathbb{F}^{n_{2}}}[h(y)=\alpha]=p^{-(k+1)}(1 \pm \varepsilon / 2)
$$

and

$$
\operatorname{Pr}_{z \in \mathbb{F}^{r A}}[\tilde{h}(z)=\alpha]=p^{-(k+1)}(1 \pm \varepsilon / 2)
$$

Proof. The proof for h follows from Lemma 2.10 by choosing $r \geq r_{d}^{2.10}\left(\frac{\varepsilon}{2 p^{k+1}}\right)$. The proof for \tilde{h} follows by a simple Fourier calculation. Let $\omega=\exp \left(2 \pi i / p^{k+1}\right)$. We have $\operatorname{Pr}\left[Z_{i}=0\right], \operatorname{Pr}\left[Z_{i}=1\right] \geq$ $p^{-A} \geq p^{-d}$. One can verify that this implies that for any nonzero $c \in \mathbb{Z}_{p^{k+1}}, \mathbb{E}\left[\omega^{c Z_{i}}\right] \leq 1-\eta$ for $\eta=p^{-O(d)}$. As Z_{1}, \ldots, Z_{r} are independent we have $\mathbb{E}\left[\omega^{c\left(Z_{1}+\ldots+Z_{r}\right)}\right] \leq(1-\eta)^{r}$. Hence if we choose r large enough so that $(1-\eta)^{r}<(\varepsilon / 2) p^{-(k+1)}$ then, for any $a \in \mathbb{Z}_{p^{k+1}}$,

$$
\begin{aligned}
\operatorname{Pr}\left[Z_{1}+\ldots+Z_{r}=a \quad\left(\bmod p^{k+1}\right)\right] & =p^{-(k+1)}\left(1+\sum_{c \in \mathbb{Z}_{p^{k+1}} \backslash\{0\}} \omega^{-a c} \cdot \mathbb{E}\left[\omega^{c\left(Z_{1}+\ldots+Z_{r}\right)}\right]\right) \\
& =p^{-(k+1)}(1 \pm \varepsilon / 2) .
\end{aligned}
$$

This implies that $f_{2}(x)$ is also well approximates $\tilde{f}_{1}(x, z)$.
Corollary 5.3. $\operatorname{Pr}\left[\tilde{f}_{1}(x, z)=f_{2}(x)\right] \geq \operatorname{Pr}\left[f_{1}(x, y)=f_{2}(x)\right]-\varepsilon / 2 \geq 1-\delta(e)+\varepsilon / 2$ where $x \in$ $\mathbb{F}^{n_{1}}, y \in \mathbb{F}^{n_{2}}, z \in \mathbb{F}^{r A}$ are chosen uniformly and independently.

Proof. Claim 5.2 implies that the statistical distance between $h(y)$ and $\tilde{h}(z)$ is at most $\varepsilon / 2$. Hence for every fixed $x,\left|\operatorname{Pr}\left[\Gamma(x, h(y))=f_{2}(x)\right]-\operatorname{Pr}\left[\Gamma(x, \tilde{h}(z))=f_{2}(x)\right]\right| \leq \varepsilon / 2$.

We next argue that by choosing r large enough, we can guarantee that \tilde{f}_{1} has degree at most d.
Claim 5.4. If r is chosen large enough then $\operatorname{deg}\left(\tilde{f}_{1}\right) \leq \operatorname{deg}\left(f_{1}\right) \leq d$.
Proof. By Claim 5.2, if r is chosen large enough then $h(y), \tilde{h}(z)$ attain all possible values in \mathbb{U}_{k+1}. For every $\alpha \in \mathbb{U}_{k+1}$, let $f_{\alpha}(x):=\Gamma(x, \alpha)$. Note that as there exists some $y_{\alpha} \in h^{-1}(\alpha)$ then $f_{\alpha}(x)=f_{1}\left(x, y_{\alpha}\right)$ is a (classical) polynomial in x of degree at most d.

We have $f_{1}(x, y)=\Gamma(x, h(y))=\Gamma^{\prime}\left(\left(f_{\alpha}(x): \alpha \in \mathbb{U}_{k+1}\right), h(y)\right)$ for some $\Gamma^{\prime}: \mathbb{F}^{p^{k+1}} \times \mathbb{U}_{k+1} \rightarrow \mathbb{F}$. Let $\mathcal{H}=\left\{f_{\alpha}(x): \alpha \in \mathbb{U}_{k+1}\right\}$ and for $r_{1}: \mathbb{N} \rightarrow \mathbb{N}$ a growth function to be specified later, let $\mathcal{H}^{\prime}=\left\{g_{1}(x), \ldots, g_{c}(x)\right\}$ be the result of r_{1}-regularizing \mathcal{H} by Lemma 2.9. Then

$$
f_{1}(x, y)=\Gamma^{\prime \prime}\left(g_{1}(x), \ldots, g_{c}(x), h(y)\right)
$$

for some $\Gamma^{\prime \prime}: \mathbb{F}^{c} \times \mathbb{U}_{k+1} \rightarrow \mathbb{F}$. Hence also

$$
\tilde{f}_{1}(x, z)=\Gamma(x, \tilde{h}(z))=\Gamma^{\prime \prime}\left(g_{1}(x), \ldots, g_{c}(x), \tilde{h}(z)\right)
$$

We next apply Lemma 2.11 to bound the degree of \tilde{f}_{1}. This requires to assume that $r_{1}(c) \geq$ $r_{d}^{(2.11)}(c+1)$ and $r \geq r_{d}^{(2.11)}\left(C_{r_{1}, d}^{(2.9)}\left(p^{k+1}\right)+1\right)$. We obtain that

$$
\operatorname{deg}\left(\tilde{f}_{1}\right)=\operatorname{deg}\left(\Gamma^{\prime \prime}\left(g_{1}(x), \ldots, g_{c}(x), \tilde{h}(z)\right)\right) \leq \operatorname{deg}\left(\Gamma^{\prime \prime}\left(g_{1}(x), \ldots, g_{c}(x), h(y)\right)\right)=\operatorname{deg}\left(f_{1}\right)=d
$$

We next analyze the specific properties of \tilde{h}. Recall that we set $Z_{i}:=\prod_{j=1}^{A} z_{i, j}$ so that $\tilde{h}(z)=$ $\frac{\sum Z_{i}}{p^{k+1}}$. Since \tilde{h} depends only on $W=\sum Z_{i} \bmod p^{k+1}$, let the digits of $W \bmod p^{k+1}$ in base p, be represented by classical polynomials $W_{0}(z), \ldots, W_{k}(z): \mathbb{F}^{r A} \rightarrow \mathbb{F}$. Then, we can express $\tilde{f}_{1}(x, z)$ as

$$
\begin{equation*}
\tilde{f}_{1}(x, z)=\Gamma(x, \tilde{h}(z))=\Gamma^{\prime}\left(x, W_{0}(z), W_{1}(z), \ldots, W_{k}(z)\right) \tag{7}
\end{equation*}
$$

for some $\Gamma^{\prime}: \mathbb{F}^{n_{1}} \times \mathbb{F}^{k+1} \rightarrow \mathbb{U}_{1}$. Recall that we assumed that Γ depends nontrivially on the depth of its second argument. This implies that Γ^{\prime} depends nontrivially on its last input (i.e. $W_{k}(z)$). As \tilde{f}_{1} is a classical polynomial, and each W_{i} take values in \mathbb{F}, identifying \mathbb{U}_{1} with \mathbb{F}, we can decompose

$$
\begin{equation*}
\tilde{f}_{1}(x, z)=\sum_{0 \leq d_{0}, \ldots, d_{k} \leq p-1} f_{d_{0}, \ldots, d_{k}}(x) \prod_{i=0}^{k} W_{i}(z)^{d_{i}} \tag{8}
\end{equation*}
$$

where $f_{d_{0}, \ldots, d_{k}} \in \mathbb{F}[x]$ is a classical polynomial. We next argue that $\operatorname{deg}\left(f_{d_{0}, \ldots, d_{k}}\right)$ cannot be too large.

Lemma 5.5. $\operatorname{deg}\left(f_{d_{0}, \ldots, d_{k}}\right) \leq d-A \sum_{i=0}^{k} p^{i} d_{i}$ for all $0 \leq d_{0}, \ldots, d_{k} \leq p-1$.
We will require a few simple claims first. The ℓ-th symmetric polynomial in $Z=\left(Z_{1}, \ldots, Z_{r}\right)$, for $1 \leq \ell \leq r$, is a classical polynomial of degree ℓ defined as

$$
S_{\ell}(Z)=\sum_{1 \leq i_{1}<\ldots<i_{\ell} \leq r} \prod_{j=1}^{\ell} Z_{i_{j}}
$$

For $0 \leq i \leq k$, define $W_{i}^{\prime}: \mathbb{F}^{r A} \rightarrow \mathbb{F}$ by $W_{i}^{\prime}(z):=S_{p^{i}}(Z)$. The following claim follows immediately from Lucas theorem [Luc78].

Claim 5.6. Let $z \in\{0,1\}^{r A}$. Then, $W_{i}(z)=W_{i}^{\prime}(z)$ for $i=0, \ldots, k$.
Proof. If $z \in\{0,1\}^{r A}$ then $Z \in\{0,1\}^{r}$. Lucas theorem implies that the i-th least significant digit (starting at 0) of $W=Z_{1}+\ldots+Z_{r}$ in base p is given by $\left(\underset{p^{i}}{Z_{1}+\ldots+Z_{r}}\right) \bmod p=S_{p^{i}}(Z)$.

For every polynomial $P \in \mathbb{F}[z]$, define $\operatorname{ML}(P)$ to be the multilinearization of P. That is, it is obtained by replacing each $z_{i, j}^{a}$ by $z_{i, j}$ for all $a \geq 1$ and all $i \in[r], j \in[A]$. Note that $\operatorname{ML}(P)(z)=P(z)$ for all $z \in\{0,1\}^{r A}$.
Claim 5.7. Let $P, Q: \mathbb{F}^{r A} \rightarrow \mathbb{F}$ be two polynomials such that $P(z)=Q(z)$ for all $z \in\{0,1\}^{r A}$. Then $\operatorname{ML}(P) \equiv \operatorname{ML}(Q)$.

Proof. Let $n=r A$. It is easy to see that a multilinear polynomial $f: \mathbb{F}^{n} \rightarrow \mathbb{F}$ satisfies $f(z)=0$ for all $z \in\{0,1\}^{n}$ if and only if $f \equiv 0$. Therefore, for every polynomial $P: \mathbb{F}^{n} \rightarrow \mathbb{F}, \operatorname{ML}(P)$ is the unique multilinear polynomial that agrees with P on $\{0,1\}^{n}$. Let $R: \mathbb{F}^{n} \rightarrow \mathbb{F}$ be defined as $R:=P-Q$. Then by linearity, $\operatorname{ML}(R): \equiv \operatorname{ML}(P)-\operatorname{ML}(Q)$. As $\operatorname{ML}(R)=0$ for all $z \in\{0,1\}^{n}$, $\operatorname{ML}(R) \equiv 0$ which implies $\operatorname{ML}(P) \equiv \operatorname{ML}(Q)$.

Proof of Lemma 5.5. For $D=\sum_{i=0}^{k} p^{i} d_{i}$, define

$$
W^{(D)}(z):=\prod_{i=0}^{k} W_{i}(z)^{d_{i}}, \quad W^{\prime(D)}(z):=\prod_{i=0}^{k} W_{i}^{\prime}(z)^{d_{i}} .
$$

By Claim 5.6 and Claim 5.7, we can define a common multilinearization of $W^{(D)}$ and $W^{\prime(D)}$ by

$$
M^{(D)}:=\operatorname{ML}\left(W^{(D)}\right)=\operatorname{ML}\left(W^{\prime(D)}\right)
$$

Let $m^{\prime}(z)=\prod_{i=1}^{D} Z_{i}=\prod_{i=1}^{D} \prod_{j=1}^{A} z_{i, j}$ be a monomial. The coefficient of m^{\prime} in $W^{\prime(D)}$ is equal to the coefficient of $\prod_{i=1}^{D} Z_{i}$ in $\prod_{i=0}^{k} S_{p^{i}}(Z)^{d_{i}}$, which is equal to the number of partitions of a set of size D to d_{0} sets of size $1, d_{1}$ sets of size p, d_{2} sets of size p^{2}, up to d_{k} sets of size p^{k}. This is given by

$$
\prod_{i=0}^{k} \prod_{j=1}^{d_{i}}\binom{j p^{i}+d_{i+1} p^{i+1}+\ldots+d_{k} p^{k}}{p^{i}}
$$

which by Lucas theorem is equal modulo p to $\prod_{i=0}^{k}\left(d_{i}!\right) \neq 0 \bmod p$.

Owing to the above, we have $\operatorname{deg}\left(M^{(D)}\right) \leq \operatorname{deg}\left(W^{\prime(D)}\right)=A D$. Also, since $m^{\prime}(z)$ is of maximal degree, it also remains in $M^{(D)}$ after multilinearization. Define

$$
\bar{f}_{1}(x, z):=\sum_{0 \leq d_{0}, \ldots, d_{k} \leq p-1} f_{d_{0}, \ldots, d_{k}}(x) M^{(D)}(z) .
$$

Then, we have $\operatorname{deg}\left(\bar{f}_{1}\right) \leq \operatorname{deg}\left(\tilde{f}_{1}\right) \leq d$.
Now, suppose that the lemma is false. Let $D=\sum p^{i} d_{i}$ be maximal such that $\operatorname{deg}\left(f_{d_{0}, \ldots, d_{k}}\right)>$ $d-A D$. Note that D corresponds to a unique tuple $\left(d_{0}, \ldots, d_{k}\right)$. Let $m(x)$ be any monomial in $f_{d_{0}, \ldots, d_{k}}(x)$ with maximal degree, and recall that $m^{\prime}(z)=\prod_{i=1}^{D} Z_{i}=\prod_{i=1}^{D} \prod_{j=1}^{A} z_{i, j}$. Hence, the monomial $m(x) m^{\prime}(z)$, whose degree is larger than d, has a nonzero coefficient in $f_{d_{0}, \ldots, d_{k}}(x) M^{(D)}(z)$ as noted above. We will show it has a zero coefficient in any other $f_{d_{0}^{\prime}, \ldots, d_{k}^{\prime}}(x) M^{\left(D^{\prime}\right)}(z)$ with $\left(d_{0}^{\prime}, \ldots, d_{k}^{\prime}\right) \neq\left(d_{0}, \ldots, d_{k}\right), D^{\prime}=\sum_{i} p^{i} d_{i}^{\prime}$ which will contradict the fact that $\operatorname{deg}\left(\bar{f}_{1}\right) \leq d$.

So, let $\left(d_{0}^{\prime}, \ldots, d_{k}^{\prime}\right) \neq\left(d_{0}, \ldots, d_{k}\right)$ and let $D^{\prime}=\sum p^{i} d_{i}^{\prime}$. Note that necessarily $D^{\prime} \neq D$. If $D^{\prime}>D$ then by maximality of $D, \operatorname{deg}\left(f_{d_{0}^{\prime}, \ldots, d_{k}^{\prime}}\right) \leq d-A D^{\prime}<d-A D$ and hence $m(x)$ cannot appear in $f_{d_{0}^{\prime}, \ldots, d_{k}^{\prime}}(x)$. If $D^{\prime}<D$ then $\operatorname{deg}\left(M^{\left(D^{\prime}\right)}\right)=A D^{\prime}<A D$ and hence $m^{\prime}(z)$ cannot appear in $M^{\left(D^{\prime}\right)}(z)$.

Let $w=\left(w_{0}, \ldots, w_{k}\right) \in \mathbb{F}^{k+1}$ be new variables, and define $f_{1}^{\prime}: \mathbb{F}^{n_{1}+k+1} \rightarrow \mathbb{F}$ by

$$
\begin{equation*}
f_{1}^{\prime}(x, w)=\Gamma^{\prime}\left(x, w_{0}, \ldots, w_{k}\right)=\sum_{0 \leq d_{0}, \ldots, d_{k} \leq p-1} f_{d_{0}, \ldots, d_{k}}(x) \prod_{i=0}^{k} w_{i}^{d_{i}} . \tag{9}
\end{equation*}
$$

We next argue that f_{1}^{\prime} is also well approximated by f_{2}.
Claim 5.8. $\operatorname{Pr}\left[f_{1}^{\prime}(x, w)=f_{2}(x)\right] \geq \operatorname{Pr}\left[\tilde{f}_{1}(x, z)=f_{2}(x)\right]-\varepsilon / 4 \geq 1-\delta(e)+\varepsilon / 4$, where $x \in \mathbb{F}^{n_{1}}, z \in$ $\mathbb{F}^{r A}, w \in \mathbb{F}^{k+1}$ are uniformly and independently distributed.

Proof. By Claim 5.2, the distribution of \tilde{h} is $\varepsilon / 4$-close close in statistical distance to the uniform distribution over \mathbb{U}_{k+1}, hence the distribution of $\left(W_{0}(z), \ldots, W_{k}(z)\right)$ is $\varepsilon / 4$-close in statistical distance to the uniform distribution over \mathbb{F}^{k+1}.

To conclude the proof of Lemma 5.1, expand $f_{1}^{\prime}-f_{2}$ as

$$
f_{1}^{\prime}(x, w)-f_{2}(x)=\sum_{i=0}^{d^{\prime}} c_{i}\left(x, w_{0}, \ldots, w_{k-1}\right) w_{k}^{i}
$$

where $c_{i} \in \mathbb{F}\left[x, w_{0}, \ldots, w_{k-1}\right], d^{\prime} \leq \min (d, p-1)$ and $c_{d^{\prime}} \neq 0$. We have that $d^{\prime} \geq 1$ since Γ^{\prime} depends on $W_{k}(z)$. Also, by Lemma 5.5 , for $i \geq 1$ we have $\operatorname{deg}\left(c_{i}\right) \leq d-A p^{k} i$. To see this, suppose not. Consider the expansion in (9). Then, for some $d_{0}, \ldots d_{k-1}$, $\operatorname{deg}\left(f_{d_{0}, \ldots d_{k-1}, i}\right)+\sum_{j=0}^{k-1} d_{j}>d-A p^{k} i$, which implies that

$$
\operatorname{deg}\left(f_{d_{0}, \ldots d_{k-1}, i}\right)>d-\sum_{j=0}^{k-1} d_{j}-A p^{k} i \geq d-A \sum_{j=0}^{k-1} d_{j} p^{j}-A p^{k} i,
$$

which is a contradiction to Lemma 5.5. Hence

$$
\begin{aligned}
\operatorname{Pr}\left[f_{1}^{\prime}(x, w)=f_{2}(x)\right] & \leq \operatorname{Pr}\left[c_{d^{\prime}}=0\right]+\left(1-\operatorname{Pr}\left[c_{d^{\prime}}=0\right]\right)\left(1-\delta\left(d^{\prime}\right)\right) \\
& \leq 1-\delta\left(d-A p^{k} d^{\prime}\right) \delta\left(d^{\prime}\right) \leq 1-\delta\left(d-d^{\prime}\left(A p^{k}-1\right)\right),
\end{aligned}
$$

where the last inequality was established in Claim 4.2. So, as we established that $\delta\left(d-d^{\prime}\left(A p^{k}-1\right)\right)<$ $\delta(e)$ and $d^{\prime} \geq 1$ we must have $A p^{k}-1<d-e$, and hence $A p^{k} \leq d-e$. Now, recall that $\operatorname{deg}(h)=\operatorname{deg}(\tilde{h})=A+(p-1) k$ and it is a simple exercise to verify that $A+(p-1) k \leq A p^{k}$ for all $A \geq 1, k \geq 0$. We thus showed that $\operatorname{deg}(h) \leq d-e$, as claimed.

6 Open Problems

Theorem 1 and Theorem 2 establish that over any fixed prime field \mathbb{F}_{p} and any fixed $e \leq d$ and $\varepsilon>0$, the number of degree d polynomials in a any ball of radius $\delta(e)-\varepsilon$ is at most $\exp \left(c n^{d-e}\right)$ for some $c=c(p, d, \varepsilon)$, which in particular resolves the conjecture raised in [GKZ08] when $e=d$.

However, the bounds on c which we obtain are of Ackermann-type, which seem far from optimal. This leaves open the question of obtaining better bounds. This may require a different approach, as currently higher-order Fourier analysis does not seem to provide better bounds. We also leave as an open problem the question of extending our work to non-prime fields, and note that the missing ingredient is an extension of the higher-order Fourier analytic techniques to non prime fields.

References

[AGS03] A. Akavia, S. Goldwasser, and S. Safra. Proving hard-core predicates using list decoding. In Proc. $44^{\text {th }}$ IEEE Symposium on Foundations of Computer Science (FOCS'03), 2003.
[AS03] S. Arora and M. Sudan. Improved low-degree testing and its applications. Combinatorica, 23(3):365-426, 2003.
$\left[\mathrm{BFH}^{+} 13\right]$ Arnab Bhattacharyya, Eldar Fischer, Hamed Hatami, Pooya Hatami, and Shachar Lovett. Every locally characterized affine-invariant property is testable. In STOC, pages 429-436, 2013.
[DGKS08] Irit Dinur, Elena Grigorescu, Swastik Kopparty, and Madhu Sudan. Decodability of group homomorphisms beyond the johnson bound. In STOC, pages 275-284, 2008.
[Eli57] P. Elias. List decoding for noisy channels. Technical Report 335, Research Laboratory of Electronics, MIT, 1957.
[FK99] Alan M. Frieze and Ravi Kannan. Quick approximation to matrices and applications. Combinatorica, 19(2):175-220, 1999.
[GKZ08] P. Gopalan, A. Klivans, and D. Zuckerman. List decoding Reed-Muller codes over small fields. In Proc. $40^{\text {th }}$ ACM Symposium on the Theory of Computing (STOC'08), pages 265-274, 2008.
[GL89] O. Goldreich and L. Levin. A hard-core predicate for all one-way functions. In Proc. $21^{\text {st }}$ ACM Symposium on the Theory of Computing, pages 25-32, 1989.
[Gop10] P. Gopalan. A Fourier-analytic approach to Reed-Muller decoding. In Proc. $51^{\text {st }}$ IEEE Symp. on Foundations of Computer Science (FOCS'10), pages 685-694, 2010.
[GRS00] O. Goldreich, R. Rubinfeld, and M. Sudan. Learning polynomials with queries: The highly noisy case. SIAM J. Discrete Math., 13(4):535-570, 2000.
[GS99] V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon and AlgebraicGeometric codes. IEEE Transactions on Information Theory, 45(6):1757-1767, 1999.
[GT09] B. Green and T. Tao. The distribution of polynomials over finite fields, with applications to the gowers norms. Contrib. Discrete Math, 4(2):1-36, 2009.
[Gur04] V. Guruswami. List Decoding of Error-Correcting Codes, volume 3282 of Lecture Notes in Computer Science. Springer, 2004.
[Gur06] V. Guruswami. Algorithmic Results in List Decoding, volume 2 of Foundations and Trends in Theoretical Computer Science. Now Publishers, 2006.
[Jac97] J. Jackson. An efficient membership-query algorithm for learning DNF with respect to the uniform distribution. Journal of Computer and System Sciences, 55:414-440, 1997.
[KLP10] T. Kaufman, S. Lovett, and E. Porat. Weight distribution and list-decoding size of Reed-Muller codes. In Innovations in Computer Science (ICS'10), pages 422-433, 2010.
[KM93] E. Kushilevitz and Y. Mansour. Learning decision trees using the Fourier spectrum. SIAM Journal of Computing, 22(6):1331-1348, 1993.
[Luc78] Edouard Lucas. Thorie des fonctions numriques simplement priodiques. American Journal of Mathematics, 1(2):pp. 184-196, 1878.
[PW04] R. Pellikaan and X. Wu. List decoding of q-ary Reed-Muller codes. IEEE Transactions on Information Theory, 50(4):679-682, 2004.
[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verication of polynomial identities. Journal of the ACM, 27:701-717, 1980.
[STV01] M. Sudan, L. Trevisan, and S. P. Vadhan. Pseudorandom generators without the XOR lemma. J. Comput. Syst. Sci., 62(2):236-266, 2001.
[SU05] Ronen Shaltiel and Christopher Umans. Simple extractors for all min-entropies and a new pseudorandom generator. J. ACM, 52(2):172-216, 2005.
[Sud97] M. Sudan. Decoding of Reed-Solomon codes beyond the error-correction bound. Journal of Complexity, 13(1):180-193, 1997.
[Sud00] M. Sudan. List decoding: Algorithms and applications. SIGACT News, 31(1):16-27, 2000.
[Tre03] L. Trevisan. List-decoding using the XOR lemma. In Proc. $44^{\text {th }}$ IEEE Symposium on Foundations of Computer Science (FOCS'03), page 126, 2003.
[TSZS01] A. Ta-Shma, D. Zuckerman, and S. Safra. Extractors from Reed-Muller codes. In Proc. $42^{\text {nd }}$ IEEE Symp. on Foundations of Computer Science (FOCS'01), pages 638-647, 2001.
[TTV09] Luca Trevisan, Madhur Tulsiani, and Salil Vadhan. Regularity, boosting, and efficiently simulating every high-entropy distribution. In Computational Complexity, 2009. CCC'09. 24th Annual IEEE Conference on, pages 126-136. IEEE, 2009.
[TZ11] T. Tao and T. Ziegler. The inverse conjecture for the Gowers norm over finite fields in low characteristic. ArXiv e-prints, January 2011.
[Vad12] Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer Science, 7(1-3):1-336, 2012.
[Woz58] J. Wozencraft. List decoding. Technical Report 48:90-95, Quarterly Progress Report, Research Laboratory of Electronics, MIT, 1958.
[Zip79] R E. Zippel. Probabilistic algorithms for sparse polynomials. Proceedings of EUROSAM, pages 216-226, 1979.

[^0]: *Research supported in part by NSF Grant CCF-1218723.
 ${ }^{\dagger}$ Supported by NSF CAREER award 1350481

