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Abstract

We prove that the Fourier dimension of any Boolean function with Fourier sparsity s is at
most O

(
s2/3

)
. Our proof method yields an improved bound of Õ(

√
s) assuming a conjecture

of Tsang et. al. [TWXZ13], that for every Boolean function of sparsity s there is an affine
subspace of Fn

2 of co-dimension O(poly log s) restricted to which the function is constant. This
conjectured bound is tight upto poly-logarithmic factors as the Fourier dimension and sparsity
of the address function are quadratically separated. We obtain these bounds by observing that
the Fourier dimension of a Boolean function is equivalent to its non-adaptive parity decision
tree complexity, and then bounding the latter.

1 Introduction

The study of Boolean functions involves studying various properties of Boolean functions and
their inter-relationships. Two such properties, which we investigate in this article, are the Fourier
dimension and the Fourier sparsity, which were first studied in the context of property testing by
Gopalan et. al. [GOS+09]. Given a Boolean function f : Fn2 → {1,−1} with Fourier expansion

f(x) =
∑
γ∈F̂n

2

f̂(γ)χγ(x),

Fourier dimension and Fourier sparsity are defined as follows.

Definition 1.1 (Fourier dimension and sparsity). For a Boolean function f : Fn2 → {1,−1} with
Fourier expansion

f(x) =
∑
γ∈F̂n

2

f̂(γ)χγ(x),

the Fourier support of f , denoted by supp(f), is defined as

supp(f̂) := {γ ∈ F̂n2 : f̂(γ) 6= 0}.
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The Fourier sparsity of f , denoted by sparsity(f), is defined as the size of the support, i.e.,

sparsity(f) := | supp(f̂)|,

while the Fourier dimension dim(f) of f is defined as the dimension of span of supp(f̂).

The following inequalities easily follow from the definition of Fourier sparsity and dimension.

log2 sparsity(f) ≤ dim(f) ≤ sparsity(f). (1.1)

There are functions (e.g., indicator functions of subspaces) for which the first inequality is tight.
For the second inequality, the function known to us having the closest gap between dimension and
sparsity is the address function Adds : {0, 1}

1
2

log s+
√
s → {0, 1}, defined as

Adds(x, y1, y2, . . . , y√s) := yx, x ∈ {0, 1}
1
2

log s, yi ∈ {0, 1}.

In other words, at any input (x, y), Adds(x, y) is the value of the addresee input bit yx indexed by
the addressing variables x. The address function1 has sparsity s and dimension at least

√
s. It is

believed that this is the tight upper bound for dim(f) in terms of sparsity(f). I. e., it is believed
that the upper bound in (1.1) can be improved to dim(f) ≤

√
sparsity(f)2.

Our main result is the following, which to our knowledge is the first improvement over the
trivial dim(f) ≤ sparsity(f) bound.

Theorem 1.2. Let f be a Boolean function with sparsity(f) = s. Then, dim(f) = O
(
s2/3

)
.

This result is proved using a lemma of Tsang et. al. [TWXZ13] bounding the co-dimension of an
affine subspace restricted to which the function reduces to a constant, in terms of Fourier sparsity
of the function.

Lemma 1.3 (Corollary of [TWXZ13, Lemma 30]). Let f : Fn2 → {1,−1} be a Boolean function
with Fourier sparsity s. Then there is an affine subspace V of Fn2 of co-dimension O(

√
s) such that

f is constant on V .

Tsang et. al. [TWXZ13] proved a more general result in terms of Fourier l1-norm (see Section 2
for more details). Tsang et. al. proved this result while trying to investigate the log rank conjecture
in communication complexity for xor functions. The log rank conjecture is a long standing and
important conjecture in communication complexity. The statement of the conjecture is that the
deterministic communication complexity of a Boolean function is asymptotically bounded above
by some fixed poly-logarithm of the rank of it’s communication matrix. Tsang et. al. [TWXZ13]
suggested a direction towards proving log-rank conjecture for an important class of functions called
xor functions. A Boolean function f(x, y) on two n bit inputs is a xor function if there exists a
Boolean function F on n bits such that f(x, y) = F (x⊕ y). In particular, they propose a protocol
for such a f based on the parity decision tree of f and show that the communication complexity
of this proposed protocol is polylogarithmic in rank of the communication matrix if the following
related conjecture is true.

1To be precise, we should consider the ±1 version of the address function described here, where the 0 and 1 in the
range are interpreted as +1 and −1 respectively.

2This is one of the conjectures proposed in the open problem session at the Simons workshop on Real Analysis in
Testing, Learning and Inapproximability.
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Conjecture 1.4 ([TWXZ13, Conjecture 27]). There exists a constant c > 0 such that for every
Boolean function f with Fourier sparsity s, there exists an affine subspace of co-dimension O (logc s)
on which f is constant.

Tsang et. al. prove the above conjecture for certain classes of functions, which include functions
with constant F2 degree and prove Lemma 1.3 for general functions. Our next result shows that if
we assume this conjecture instead of Lemma 1.3, we can improve the bound in Theorem 1.2 to the
following (which is optimal upto poly-logarithmic factors).

Theorem 1.5. Let f be a Boolean function with Fourier sparsity s. Assuming Conjecture 1.4,
dim(f) = Õ (

√
s) .

Proof Idea: We begin by making a simple, but crucial observation that the Fourier dimension
of a Boolean function is equivalent to its non-adaptive parity decision tree complexity (see Propo-
sition 2.7). This offers us a potential approach towards upper bounding the Fourier dimension of a
Boolean function: exhibiting a shallow non-adaptive parity decision tree of the function.

Towards this end, we first recall the construction of the (adaptive) parity decision tree of
Tsang et. al. [TWXZ13], which in turn improves on an earlier construction due to Shpilka et. al. [STlV14,
Theorem 1.1]. The broad idea of their construction is as follows: At any point in time, a partial tree
is maintained whose leaves are functions which are restrictions of the original function on different
affine subspaces. Then a non-constant leaf is picked arbitrarily, and a small set of linear restric-
tions is obtained by invoking Lemma 1.3, such that the restricted function at that leaf becomes
constant. The next step is observing that if the function at the same leaf is restricted to all the
affine subspaces obtained by setting the same set of parities in all possible ways, the sparsity of
each of the corresponding restricted functions is at most half of that of the original function. This
is because, in the former restriction, since the function becomes constant, the Fourier coefficients
corresponding to non-constant characters must disappear in the restricted space. This can only
happen if every non-constant parity gets identified with at least one other parity. This identification
leads to halving of the support. Proceeding in this way, they obtain a parity decision tree of depth
O(
√
s).

Note that the choice of parities depends on the leaf (function) chosen, and hence on the outcomes
of the preceding queries. Thus the constructed tree is an adaptive one. In this article, we make this
tree non-adaptive, at the cost of a small increase in depth. At each level, we choose an appropriate
function, invoke Lemma 1.3, and obtain the restrictions which make it constant. Then we query
the same set of parities at every leaf. The next step is arguing that this leads to a significant
reduction of sparsity in the next level. This is done using the Uncertainty Principle (Theorem 2.4).
Continuing in this fashion, we show that in a small number of levels, the size of the union of the
Fourier supports of all the leaves becomes so small that we can query all of them, thereby turning
all the leaves into constants.

2 Preliminaries

let f : Fn2 → {1,−1} be a Boolean function. We think of the range {+1,−1} as a subset of R. The
inputs to f are n variables x1, . . . , xn which take values in F2. We identify the additive group in F2

with the group {+1,−1} under real number multiplication, and think of the variables as taking +1
and −1 values, where 0 and 1 of F2 get mapped to +1 and −1 respectively. We denote this group
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isomorphism by (−1)(·), ı.e., (−1)0 is 1 and (−1)1 is −1. When the xi’s are ±1, it is well known
that every Boolean function f(x) (where x stands for x1, . . . , xn) can be uniquely written as

f(x) =
∑
S⊆[n]

f̂(S)
∏
i∈S

xi.

Thus, when the variables are ±1, f can be written as a multilinear real polynomial. For every
S ⊆ [n], the product

∏
i∈S xi is the logical xor of the bits in S, and f̂(S) is a real number. These

products are exactly the characters of Fn2 , which are ±1 versions of the linear forms belonging to

the dual vector space F̂n2 of Fn2 . We adopt the following notation in this paper:

f(x) =
∑
γ∈F̂n

2

f̂(γ)χγ(x).

Here, each γ ∈ F̂n2 is a linear function from Fn2 to F2, and χγ is (−1)γ .
We recall some standard definitions and facts about the Fourier coefficients.

Definition 2.1. Let f(x) =
∑

γ∈F̂n
2
f̂(γ)χγ(x) be a Boolean function. The p-th spectral norm ‖f̂‖p

of f is defined as:

‖f̂‖p :=

∑
γ∈F̂n

2

|f̂(γ)|p


1/p

.

Lemma 2.2 (Parseval’s identity). For a Boolean function f , ‖f̂‖2 = 1.

The 1st spectral norm of a Boolean function can be bounded via sparsity as follows.

Claim 2.3. For a Boolean function f , ‖f̂‖1 ≤
√
s.

Proof.

‖f̂‖1 ≤ ‖f̂‖2.
√
s =
√
s.

The first inequality follows due to Cauchy-Schwarz inequality while the second equality follows
from Parseval’s identity.

For proving our results, we shall use the following version of the Uncertainty Principle. The
reader is referred to [O’D] for a proof.

Theorem 2.4 (Uncertainty Principle). Let p : Rn → R be a real multilinear n-variate polynomial
with sparsity s (i.e, it has s monomials with non-zero coefficients). Let Un denote the uniform
distribution on {+1,−1}n. Then

Pr
x∼Un

[p(x) 6= 0] ≥ 1

s
.

As stated in the introduction, we need the following theorem due to Tsang et. al. [TWXZ13].

Theorem 2.5 ([TWXZ13, Lemma 30]). let f : Fn2 → {1,−1} be such that ‖f̂‖1 = A. Then there
is an affine subspace V of Fn2 of co-dimension O(A) such that f is constant on V .
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Lemma 1.3 is a simple corollary of this theorem via Claim 2.3.
We end this section by a simple proposition which is crucial to our proofs.

Definition 2.6 (non-adaptive parity decision tree complexity). Let f be a Boolean function. The
non-adaptive parity decision tree complexity of f , (denoted by NADT⊕(f)), is defined as the mini-

mum integer t such that there exist t linear forms γ1, . . . , γt ∈ F̂n2 such that f is a junta of γ1, . . . , γt.
In other words, on every input, specifying the outputs of the γi’s specifies the output of f .

Proposition 2.7. For a Boolean function f , NADT⊕(f) = dim(f).

Proof. If the outputs of a basis of span of supp(f̂) is specified, then that clearly specifies the outputs
of all characters in supp(f̂), and hence it specifies the output of the function. Thus NADT⊕(f) ≤
dim(f).

Now, Let NADT⊕(f) = t. Let the outputs of γ1, . . . , γt specify the output of f , and without loss of

generality assume these linear forms to be linearly independent as vectors in F̂n2 . Arbitrarily extend

γ1, . . . , γt to a basis γ1, . . . , γn of F̂n2 . For x = (x1, . . . , xn) ∈ Fn2 , let L(x) = (γ1(x), . . . , γn(x)). L
is easily seen to be an invertible linear transformation from Fn2 onto itself. Now, ∀x ∈ Fn2 , ∀i =
1, . . . , n, γi(x) = (L(x))i. Replacing x by L−1(x) we have γi(L

−1(x)) = xi. Now consider the
Boolean function g(x) = f(L−1(x)) =

∑
γ∈F̂n

2
f̂(γ)(−1)γ(L−1(x)). Clearly dim(g) = dim(f). Also, g

is completely specified by the outputs of γi(L
−1(x))’s for i = 1, . . . , t. Since γi(L

−1(x)) = xi, we
have that g is a junta of x1, . . . , xt. Thus all the monomials in supp(ĝ) contain only the variables
x1, . . . , xt. Thus dim(f) = dim(g) ≤ t = NADT⊕(f).

The proposition follows by combining the two inequalities.

3 Upper Bounding Parity Decision Tree Complexity

In this section, we upper bound the non-adaptive parity decision tree complexity of a Boolean
function f with Fourier sparsity at most s. Consider the following procedure, parametrized by a
parameter τ ∈ N (that we will set later) that constructs the non-adaptive parity decision tree.

Non-adaptive-parity-decision-tree-procedureτ (f)

Input: Boolean function f : Fn2 → {1,−1}; Parameter: τ ∈ N

1. Set Γ← ∅, S ← supp(f̂) and F ← {f}.
2. While |S| > τ , do

(a) Let g be a function in F with the largest Fourier sparsity. Let γ1, . . . , γng be linear
functions and b1, . . . , bng ∈ F2 be such that a largest affine subspace on which g is
constant is {x ∈ Fn2 : γ1(x) = b1, . . . , γng(x) = bng}. Query γ1, . . . , γng .

(b) Set Γ← Γ ∪ {γ1, . . . , γng}.
(c) For each b = (bγ)γ∈Γ ∈ F|Γ|2 , let Vb be the affine subspace {x ∈ Fn2 : ∀γ ∈ Γ, γ(x) =

bγ}. Set F ←
⋃
b∈F|Γ|2

{f |Vb}.

(d) S ←
⋃
h∈F supp(ĥ).
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3. Query all the parities in S.

Notation: After each iteration of the while loop in the procedure, Γ is the set of parities that
have been queried so far, F is the set of all restrictions of f to the affine subspaces obtained by
different assignments to parities in Γ and S the union of the Fourier supports of functions in F .
Let Γ(i),F (i) and S(i) denote Γ,F and S resepectively at the end of the i-th iteration of the while
loop.

For each i, let b = (bγ)γ∈Γ(i) ∈ F |Γ
(i)|

2 and let Vb be the affine subspace defined by linear

constraints {γ(x) = bγ : γ ∈ Γ(i)}. In Vb, more than one linear functions of the original space
may get identified as same.3 More specifically, δ1 and δ2 get identified as same in Vb if and only
if δ1 + δ2 ∈ span Γ(i). Thus, supp(f̂) gets partitioned into equivalence classes, such that for each

class, for every b ∈ F |Γ
(i)|

2 , the linear functions belonging to that class are identified as same in Vb.

Let l(i) denote the number of cosets of the subspace span Γ(i) with which supp(f̂) has non-empty

intersection. For j = 1, . . . , l(i), let β
(i)
j be some representative element in supp(f̂) of the j-th coset

of span Γ(i) having non-empty intersection with supp(f̂). For each j, let β
(i)
j + α

(i)
j,1, . . . , β

(i)
j + α

(i)
j,kj

be the k
(i)
j (≥ 1) elements in supp(f̂) which are in the same coset of span Γ(i) as β

(i)
j . For each

i, j, define the polynomials P
(i)
j (x) :=

kj∑
l=1

f̂
(
β

(i)
j + α

(i)
j,l

)
χ
α

(i)
j,l

(x). Note that the polynomials P
(i)
j ,

j = 1, . . . , l(i), are non-zero.
Given this notation, we can then write the Fourier expansion of f in the following form:

f(x) =

l(i)∑
j=1

P
(i)
j (x)χ

β
(i)
j

(x).

Observation 3.1. ∀i,
l(i)∑
j=1

k
(i)
j = s.

Observation 3.2. |S(i)| = l(i).

We now argue that after every iteration of the while loop, there exists a function h ∈ F (i) which
has large support.

Lemma 3.3. After i-th iteration, there exists a h ∈ F (i) such that | supp(ĥ)| is at least
(
l(i)
)2
/s.

Proof. Consider any function f |Vb ∈ F (i). The Fourier decomposition of f |Vb is given by f |Vb =∑l(i)

j=1 P
(i)
j (b)χ

β
(i)
j

(x). Thus, | supp(f̂ |Vb)| is exactly the number of polynomials P
(i)
j , j = 1, . . . , l(i)

such that P
(i)
j (b) is non-zero. We analyze this quantity as follows. Pick a b ∈ F|Γ

(i)|
2 uniformly at

random. For each j, j = 1, . . . , l(i), by Theorem 2.4, Prb[P
(i)
j (b) 6= 0] ≥ 1

k
(i)
j

(since each P
(i)
j is a

3By ‘same’ we also include their being negations of each other as the smaller subspace is an affine space and not
always a vector space.
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non-zero polynomial). Thus,

Eb
[
| supp(f̂ |Vb)|

]
≥

l(i)∑
j=1

1

k
(i)
j

≥ l(i) · 1(∑l(i)

j=1 k
(i)
j

)
/l(i)

[By convexity of 1/x]

=

(
l(i)
)2
s

[By Observation 3.1].

Hence, there exists a h ∈ F (i) such that | supp(ĥ)| is at least
(
l(i)
)2
/s.

Lemma 3.4. Assume that Non-adaptive-parity-decision-tree-procedureτ (f) runs for t
iterations. Then for all i, i = 1, . . . , t− 1,

l(i+1) ≤ l(i) −
(
l(i)
)2
/s− 1

2
.

Proof. Let g be the chosen function at Step 2a in the (i + 1)-th iteration of the procedure. Let
γ1, . . . , γng be the parities queried at that step. Hence there is b = (b1, . . . , bng) ∈ Fng

2 such that
g is constant on the affine subspace Vb obtained by setting each γj to bj for j = 1, . . . , ng. Since
g is constant on Vb, each non-zero parity in it’s Fourier support must disappear in Vb. Thus, for
every b′ = (b′)j ∈ Fng

2 , in the affine space Vb′ obtained by restricting each γj to b′j , every non-zero

parity in supp(ĝ) is matched to some other parity in supp(ĝ). Since supp(ĝ) ⊆ S(i), it follows

that |S(i+1)| is at least
| supp(ĝ)|−1

2 less than |S(i)|. The proof now follows from Lemma 3.3 and
Observation 3.2.

Lemma 3.5. Let Non-adaptive-parity-decision-tree-procedure be run with parameter τ ≥√
2s. Assume that it runs for t iterations. Then for i = 1, . . . , t, l(i) ≤ 4s

i .

Proof. We will prove it by induction on i. Base case, i = 1, is trivial as l(1) can be at most s.
Now let us assume that the statement is true for all i ≤ m. From Lemma 3.4, we have that

l(m+1) ≤ l(m) −
((
l(m)

)2
/s− 1

)
/2. Since γ ≥

√
2s, (

(
l(m)

)2
/s − 1)/2 can be lower bounded by(

l(m)
)2
/4s. We thus have

l(m+1) ≤ l(m) −
(
l(m)

)2
4s

= s−

(
√
s− l(m)

2
√
s

)2

≤ s−
(√

s− 2s

m
√
s

)2

[By inductive hypothesis]

=
4s(m− 1)

m2
=

(
4s

m+ 1

)(
m2 − 1

m2

)
≤ 4s

m+ 1
.

This completes the proof of the lemma.

Theorems 1.2 and 1.5 follow easily from the above lemma using Lemma 1.3 and Conjecture 1.4
respectively as follows.
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Proof of Theorem 1.2. Run the Non-adaptive-parity-decision-tree-procedure with param-
eter τ = Θ

(
s2/3

)
. Since l(i) ≤ 4s

i (Lemma 3.5), the procedure terminates after t = O(s1/3)

iterations. From Lemma 1.3, in the i-th iteration, the number of parities set is at most O(
√
l(i)).

Thus the total number of queries made by the procedure is

t∑
i=1

O
(√

l(i)
)

+ τ =

t∑
i=1

O

(√
s

i

)
+ τ [By Lemma 3.5]

=
√
s

(
t∑
i=1

O

(√
1

i

))
+ τ =

√
s

(
O

(∫ t

1

dx√
x

))
+ τ = O

(√
s.
√
t
)

+ τ

= O
(
s1/2+1/6

)
+ τ [Since t = O

(
s1/3)

)
]

= O
(
s2/3

)
[Since τ = Θ

(
s2/3

)
].

Thus, NADT⊕(f) = O
(
s2/3

)
. From Proposition 2.7, it follows that dim(f)=NADT⊕(f) =

O
(
s2/3

)
.

Proof of Theorem 1.5. Run the Non-adaptive-parity-decision-tree-procedure with param-
eter τ = 2

√
s. By Lemma 3.5, it runs for at most 4s

2
√
s

= 2
√
s iterations. If Conjecture 1.4 is true,

the total number of parities set is at most O (logc s) 2
√
s+ τ which is Õ (

√
s).
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