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Abstract

Shpilka and Wigderson [SW99] had posed the problem of proving exponential lower bounds
for (nonhomogeneous) depth three arithmetic circuits with bounded bottom fanin over a field
F of characteristic zero. We resolve this problem by proving a NΩ( dτ ) lower bound for (nonho-
mogeneous) depth three arithmetic circuits with bottom fanin at most τ computing an explicit
N -variate polynomial of degree d over F.

Meanwhile, Nisan and Wigderson [NW97] had posed the problem of proving superpolynomial
lower bounds for homogeneous depth five arithmetic circuits. We show a lower bound of NΩ(

√
d)

for homogeneous depth five circuits (resp. also for depth three circuits) with bottom fanin at
most Nµ, for any fixed µ < 1. This resolves the problem posed by Nisan and Wigderson only
partially because of the added restriction on the bottom fanin (a general homogeneous depth
five circuit has bottom fanin at most N).
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1 Introduction

The problem of proving super-polynomial lower bounds for arithmetic circuits occupies a central
position in algebraic complexity theory, much like the problem of proving super-polynomial lower
bounds for Boolean circuits does in Boolean complexity. The model of arithmetic circuits is an
algebraic analogue of the model of Boolean circuits: an arithmetic circuit contains addition (+)
and multiplication (×) gates and it naturally computes a polynomial in the input variables over
some underlying field. We typically allow the input edges to a + gate to be labelled with arbitrary
constants from the underlying field F so that a + gate can in fact compute an arbitrary F-linear
combination of its inputs. As a possible stepping stone, researchers have focussed on restricted
(but still nontrivial and interesting) subclasses of arithmetic circuits. In particular, circuits of low
depth1 are interesting for they correspond to computation which is highly parallel. But despite a
lot of attention, proving superpolynomial lower bounds for even bounded depth arithmetic circuits
remains an outstanding open problem.

Notation for low depth circuits. Bounded depth arithmetic circuits2 consist of alternating
layers of addition and multiplication gates. We will denote an arithmetic circuit of depth ∆ by a
sequence of ∆ symbols wherein each symbol (either Σ or Π) denotes the nature of the gates at the
corresponding layer and the leftmost symbol indicates the nature of the gates at the output layer.
For example, a ΣΠΣ circuit with input x = (x1, x2, . . . , xn) computes a polynomial in the following
manner:

C(x) =
∑
i

∏
j

(
aij0 +

n∑
k=1

aijkxk

)
, where each aijk ∈ F. (1)

In dealing with circuits it is useful to keep track of the fanin to various gates. Towards this end, we
extend the above notation and allow integer superscripts on the gate symbols (i.e. Σ or Π symbols)
which denotes an upper bound on the fanin of any gate in the corresponding layer3. So for example
a Σ[s]Π[e]Σ[τ ] circuit computes a polynomial of the form:

C(x) =
∑
i≤s

∏
j≤e

∑
k≤τ

aijk · yijk

 where each aijk ∈ F and yijk ∈ x ∪ {1}.

while a ΣΠ[a]ΣΠ[b] circuit computes a polynomial in the following manner:

C(x) =
∑
i

∏
j≤a

Qij(x) where degQij ≤ b for all i and j.

Depth Three Circuits. Being the shallowest nontrivial subclass of arithmetic circuits, depth
three arithmetic circuits, also denoted as ΣΠΣ circuits4 have been intensely investigated. ΣΠΣ cir-

1 Recall that the depth of a circuit is the maximum length of any path in the circuit.
2 Throughout the rest of this paper, we shall deal with bounded depth circuits - indeed of depth at most 5. In

this context, we will often use the words formulas and circuits interchangably, as depth-∆ circuits can be converted
to depth-∆ formulas with only a polynomial blow-up in size.

3 If there is no superscript on the symbol for a layer, then the fanin at that layer is allowed to be arbitrary.
4 Depth three circuits with a product gate at the output, i.e. ΠΣΠ-circuits, are uninteresting from the perspective

of proving lower bounds for they cannot even compute irreducible polynomials of degree more than 1 (regardless of
size).
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cuits (more specifically tensors) arise naturally in the investigation of the complexity of polynomial
multiplication and matrix multiplication5. Moreover, the optimal formula/circuit for some well
known families of polynomials are in fact depth three circuits. In particular, the best known circuit
for computing the permanent Permd is known as Ryser’s formula [Rys63] which is a (homogeneous6)
depth three circuit of size O(d2 · 2d). Recently it was shown [GKKS13a] that (nonhomogeneous)
ΣΠΣ circuits are surprsingly powerful - any polynomial f of small circuit complexity can also be
computed by a (nonhomogeneous) ΣΠΣ circuit which is not too large. Specifically7, if an n-variate
polynomial f of degree d can be computed by poly(n)-sized circuits, then it can also be computed
by nO(

√
d)-sized ΣΠΣ circuit8.

Lower Bounds for ΣΠΣ circuits. In a very influential piece of work, Nisan and Wigderson
[NW97] showed that over any field F, any homogeneous ΣΠΣ circuit computing the determinant
Detd must be of size 2Ω(d). Grigoriev and Karpinski [GK98], and Grigoriev and Razborov [GR00]
showed that any ΣΠΣ arithmetic circuit over any fixed finite field computing Detd must be of size
at least 2Ω(d). This also implies that any ΣΠΣ arithmetic circuit over integers computing Detd
must be of size at least 2Ω(d). Raz and Yehudayoff give 2Ω(d) lower bounds for multilinear ΣΠΣ
circuits9. But despite all this progress, even a superpolynomial lower bound for unrestricted ΣΠΣ
circuits (over an infinite field) has remained ellusive. The best known lower bound in the general
ΣΠΣ case is the quadratic lower bound due to Shpilka and Wigderson [SW99]. For more on ΣΠΣ
circuits, we refer the reader to the thesis of Shpilka [Shp01] and the references therein.

ΣΠΣ circuits with small bottom fanin. Nisan and Wigderson noted that (nonhomogeneous)
ΣΠΣ circuits with bottom fanin just two can be exponentially more powerful than homogeneous
ΣΠΣ circuits - any homogeneous ΣΠΣ circuit computing the elementary symmetric polynomial of
degree n on 2n variables10 must be of size 2Ω(n) but it can be computed by just O(n2)-sized ΣΠΣ[2]

5 For example it can be shown that the product of two n × n matrices can be computed with Õ(nω) arithmetic
operations if and only if the polynomial

Mn =
∑
i∈[n]

∑
j∈[n]

∑
k∈[n]

xij · yjk · zki

can be computed by a ΣΠΣ circuit where the top fanin s is at most Õ(nω).
6 Recall that a multivariate polynomial is said to be homogeneous if all its monomials have the same total degree.

An arithmetic circuit is said to be homogeneous if the polynomial computed at every internal node of the circuit is
a homogeneous polynomial. It is a folklore result (cf. the survey by Shpilka and Yehudayoff [SY10]) that as far as
computation by polynomial-sized arithmetic circuits of unbounded depth is concerned one can assume without loss of
generality that the circuit is homogeneous. Specifically, if a homogeneous polynomial f of degree d can be computed
by an (unbounded depth) arithmetic circuit of size s, then it can also be computed by a homogeneous circuit of size
O(d2 · s).

7 The quantitative version mentioned here is due to an improvement by Tavenas [Tav13].
8 This depth reduction is only valid over fields of characteristic zero.
9 The results of Raz and Yehudayoff are more general and extend to lower bounds for any constant depth multilinear

circuit.
10 The elementary polynomial of degree n on 2n formal variables is the arithmetic analog of the Majority function.

Formally, it is defined as

ESymn(x1, . . . , x2n)
def
=

∑
S⊆[2n]
|S|=n

∏
i∈S

xi.
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circuits11. They also noted that this contrasts sharply with the the exponential lower bounds for
Majority in the Boolean model and over fixed finite fields. Recently, Ramprasad Saptharishi
[Sap14] pointed out to us that the depth reduction in [GKKS13a] actually yields ΣΠΣ[O(

√
d)]-

circuits. This indicates that (nonhomogeneous) ΣΠΣ[τ ]-circuits are interesting and motivates the
effort to prove lower bounds for them. Indeed, Shpilka and Wigderson [SW99] had already noted
this frontier in arithmetic complexity and explicitly posed the problem of proving lower bounds
for (nonhomogeneous) depth three circuits with bounded bottom fanin (over fields of characteristic
zero). We resolve this challenge here by proving exponential lower bounds for such circuits. Our
proof techniques are based on recent developments in arithmetic circuit lower bounds.

Recent lower bound results. A series of recent works have built upon the work of Nisan and
Wigderson [NW97] to prove lower bounds for homogeneous depth four circuits. Motivated by the
depth reduction results of Agrawal and Vinay [AV08] and Koiran [Koi12] and Tavenas [Tav13]
and using a complexity measure introduced in Kayal [Kay12], the work of Gupta, Kamath, Kayal
and Saptharishi [GKKS13b] and Kayal, Saha and Saptharishi [KSS14] have led to lower bounds of
nΩ(
√
d) for homogeneous depth four circuits of bottom fanin O(

√
d). Follow-up work by Fournier,

Limaye, Malod and Srinivasan [FLMS14] showed the same lower bound for a family of polynomials
in VP. Subsequently, work by Kayal, Limaye, Saha and Srinivasan [KLSS14b, KLSS14a] removed
the restriction on the bottom fanin and obtained a nΩ(

√
d) lower bound for homogeneous depth

four circuits for a family of polynomials in VNP 12. Follow-up work by Kumar and Saraf [KS14a]
showed the same lower bounds for a family of polynomials in VP13.

Our results. Our first result is a lower bound of NΩ( d
τ

) for (nonhomogeneous) ΣΠΣ[τ ] circuits
which resolves an open problem (specifically, Problem 7.5) posed by Shpilka and Wigderson in
[SW99]. It also implies that the depth reduction result of [GKKS13a] is optimal assuming that the
resulting depth three circuit has bottom fanin at most O(

√
d). The formal statement is as follows.

Theorem 1. Lower Bound for ΣΠΣ[τ ] circuits. Let F be a field of characteristic zero. There
is a family of N -variate, degree d polynomials {fN} in VP with N = dO(1) such that any ΣΠΣ[τ ]

circuit over F computing fN must have top fanin at least NΩ( dτ ).

We would like to stress here that there is no restriction of homogeneity on the ΣΠΣ[τ ] formula
in the above statement. Indeed the formal degree of the ΣΠΣ[τ ] circuit can be arbitarily large
(say doubly exponential) and yet we obtain the stated lower bound on the top fanin. We prove
Theorem 1 by first showing a reduction from ΣΠΣ[τ ] circuits to a subclass of homogeneous ΣΠΣΠΣ[τ ]

circuits14 (using a result implicit in [GKKS13a]; see Lemma 5 in Secton 4). It turns out fortunately
11 More accurately, [NW97] attribute Michael Ben-Or for an O(n2)-sized ΣΠΣ circuit for ESymn(x1, x2, . . . , x2n)

which has the following specific form:

ESymn(x) =

2n+1∑
i=1

ai

2n∏
j=1

(xj + i),

where the ai’s are appropriate field constants.
12Meanwhile, an independent work by Kumar and Saraf [KS14b] also showed a nΩ(log logn) lower bound for general

homogeneous depth-4 circuits without the bottom fanin restriction.
13 The result of [KS14a] is also valid over any field F.
14 The reduction from ΣΠΣ formulas to homogeneous ΣΠΣΠΣ formulas yields a restricted class of homogeneous

ΣΠΣΠΣ formulas wherein every product gate in the layer closest to the input layer is actually an exponentiation
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that the proof techniques/complexity measure used in [KLSS14a, KS14a] are readily applicable to
this subclass of homogeneous ΣΠΣΠΣ[τ ] circuits and this yields the above lower bound. Having
obtained a lower bound for a subclass of homogeneous ΣΠΣΠΣ circuits, can our techniques be
pushed further to yield lower bounds for general homogeneous ΣΠΣΠΣ formulas? It turns out that
proving superpolynomial lower bounds for general homogeneous ΣΠΣΠΣ formulas was explicitly
posed as an open problem by Nisan and Wigderson in [NW97]. We next give a lower bound
for homogeneous ΣΠΣΠΣ formulas with small bottom fanin. It resolves the above problem only
partially because of the added restriction on the bottom fanin.

Theorem 2. Lower Bound for homogeneous ΣΠΣΠΣ[τ ] circuits. Let F be a field of character-
istic zero and µ ∈ [0, 1) be any fixed positive real number less than 1. Let α = 2µ+1

1−µ and τ = O(Nµ).
There is a family of N -variate, degree d polynomials {fN} in VNP with N ∈ [d2+α, 2d2+α] such
that any homogeneous ΣΠΣΠΣ[τ ] formula over F computing fN has size NΩ(

√
d).

The family of polynomials in the above theorem is the Nisan-Wigderson design based polynomials
introduced in [KSS14], and later used in [KLSS14a, KS14a], but with an altered set of parameters.
The complexity measure that we use for this result is (almost) the same as the one introduced
in [KLSS14a] called the dimension of projected shifted partials under random restrictions. An
appropriate adaption of the techniques yields a lower bound for N -input homogeneous ΣΠΣΠΣ[Nµ]-
circuits for some fixed value of µ < 0.1. We felt that it would be worthwhile to push the analysis
further and obtain as good a lower bound as possible while allowing the bottom fanin to be as
large as possible - specifically, to allow the bottom fanin to be Nµ for any constant µ that is
arbitrarily close to 1. For this, we delve deeper into the analysis of [KLSS14a] and carefully tune it
at certain places, including the complexity analysis of the explicit polynomial family for which the
lower bound is shown. As a corollary, we also obtain a similar lower bound for (nonhomogeneous)
ΣΠΣ[Nµ] circuits for any constant µ < 1.

Corollary 3. Let F be a field of characteristic zero and µ ∈ [0, 1) be any fixed positive real number
less than 1. Let α = 2µ+1

1−µ . There is a family of N -variate, degree d polynomials {fN} in VNP with

N ∈ [d2+α, 2d2+α] such that any ΣΠΣ[Nµ] formula over F computing fN has size at least NΩ(
√
d).

2 Proof Overview

From depth three to homogeneous depth-5. Let f(x) ∈ F[x] be a homogeneous N -variate
polynomial of degree d. We first observe that if f is computed by a small (of size No(

√
d)) ΣΠΣ

circuit C(x) then it is also computed by a small (of size No(
√
d)) formula D(x) which is structurally

in a sublass of homogeneous ΣΠΣΠΣ formulas (see Lemma 5 in Secton 4). Further, this reduction
from depth three to homogeneous depth-5 preserves the bound on the bottom fanin of the formulas,
i.e. if the bottom fanin of C(x) is bounded by τ then same is true for D(x). It turns out that the
proof techniques/complexity measure employed in [KLSS14a, KS14a] are readily applicable to this
subclass of homogeneous ΣΠΣΠΣ[τ ] circuits and this yields the lower bound of theorem 1. We then
consider general homogeneous ΣΠΣΠΣ[τ ] circuits.

gate, i.e. a product gate all of whose inputs originate from the source node g, so that its output is of the form ge for
some e ∈ Z≥1. We denote such formulas as ΣΠΣ∧Σ formulas.
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Homogeneous depth five formulas. A homogeneous depth-5 formula is a representation of the
form

D(x) =
∑
i

∏
j

∑
r

Qijr, (2)

where Qijr is a product of linear forms. Also, suppose the number of variables in every linear form
in Qijr (for every i, j and r) is bounded by τ = Nµ for some fixed constant µ < 1. To prove a lower
bound on the size of D(x), our overall strategy is based on the complexity measure introduced
in [KLSS14a] called the dimension of projected shifted partials under random restrictions. As is
common to many lower bounds, the proof is in two steps:

1. Upper bound the measure for any ΣΠΣΠΣ[τ ]-formula D(x) as in equation (2), and

2. Lower bound the measure for an explicit (family of) polynomial(s) f .

Overall, the lower bound follows by comparing these two bounds. We will now describe the com-
plexity measure used and then indicate why it is small for ΣΠΣΠΣ[τ ]-formulas.

Random restriction. The random restriction we use in this paper is quite natural and (almost)
same as in [KLSS14a]. We consider the identity (2) and in that set each variable to zero indepen-
dently at random with probability (1−p), where p = d−β for a suitable constant β > 0 (a variable is
left untouched with probability p.) For ease of exposition, it is convenient to denote a restriction in
which a subset of variables R ⊆ [N ] is15 set to zero (and the variables outside R are left untouched)
as a homomorphism, σR : F[x] 7→ F[x]. Formally, σR : F[x] 7→ F[x] is a homomorphism such that
σR(f) def= f |xi=0 ∀i∈R. In this notation, a random restriction can also be viewed as constructing an
R by picking every variable independently at random with probability 1 − p and then applying16

the map σR to the expression given by equation (2).

The complexity measure. Let m = xi1 · · ·xik be a monomial in x. Denote ∂k

∂xi1 ···∂xik
f by ∂mf

and define
∂=k

ml f := {∂mf |m is a multilinear monomial of degree k}

We will refer to ∂=k
ml f as the set of all multilinear k-th order partial derivatives of f ∈ F[x]. Let x=`

be the set of all multilinear monomials in x of degree equal to `. We denote by x=`·∂=k
ml f the set of all

polynomials of the form m ·g where m ∈ x=` and g ∈ ∂=k
ml f . Define a map π : F[x] 7→ F[x] such that

when π acts on a polynomial f , it retains only and exactly the multilinear monomials of f . More
precisely, let Mf be the set of all monomials with nonzero coefficients in f . Then, π(f) :=

∑
u cumu

where mu is a multilinear monomial in Mf and coefficient of mu in f is cu. Naturally, π is a linear
map, i.e. π(af + bg) = a · π(f) + b · π(g) for every a, b ∈ F and f, g ∈ F[x]. The definition of π
extends naturally to sets of polynomials: For A ⊆ F[x], let π(A) := {π(f) | f ∈ A}. For integers k
and `, the space of projected shifted partials of f is the linear span (i.e. F-span) of the polynomials
in π(x=` · ∂=k

ml f). The measure we use is the dimension of this space of projected shifted partials,
denoted by DPSPk,` (or simply DPSP assuming parameters k and ` are fixed suitably):

DPSPk,`(f) := dim(π(x=` · ∂=k
ml f)).

15 [N ] denotes the set of the first N positive integers, i.e. {1, 2, . . . , N}.
16 We will use the random restriction in two phases in Section 6 to obtain an appropriate upper bound on the

measure for homogeneous ΣΠΣΠΣ[τ ] formulas.
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Observe that the measure DPSPk,` obeys subadditivity, i.e. DPSPk,`(f + g) ≤ DPSPk,`(f) +
DPSPk,`(g).

From depth-5 to depth-4. Let D(x) be a homogeneous-ΣΠΣΠΣ[Nµ] formula as in equation
(2) of size at most No(

√
d) so that in particular the total number of Qijr’s appearing in it is at

most s = No(
√
d). We show that when a random restriction σR is applied on D(x), then with

high probability σR(D(x)) can be expressed as D1(x) + D2(x), where D1(x) is computed by a
homogeneous ΣΠΣΠ[

√
d] formula of top fanin at most No(

√
d) and D2(x) is a polynomial such that

DPSP(D2(x)) = 0. We will argue this shortly but assuming that this happens, we can infer (via
subadditivity) that

DPSP(σR(D(x))) ≤ DPSP(D1(x)) + DPSP(D2(x))
= DPSP(D1(x)).

DPSP(D1(x)) can then be upper bounded using known arguments from [KLSS14a] which in turn
yields an upper bound for DPSP(σR(D(x))).

Using random restrictions to obtain a decomposition. The reason σR(D(x)) decomposes
into D1(x) and D2(x) with high probability is as follows. Let t =

√
d. In equation (2), suppose a

Qijr has degree greater than 2t. Such a Qijr can be expressed as Q̃ijr ·Pijr with deg(Q̃ijr) = 2t, by
simply multiplying out 2t linear forms in Qijr. Since bottom fanin of D(x) is bounded by Nµ, the
number of monomials in Q̃ijr is bounded by N2µt. Monomials of Q̃ijr are of two kinds - those with
individual degree of variables bounded by 2 (and hence have support at least t), and those with at
least one variable having degree 3 or more. The probability any of the monomials in Q̃ijr survives
under the action of the random restriction σR is less than pt · N2µt. Running over all Qijr, with
probability at least 1− s · pt ·N2µt, we have

σR(D(x)) =
∑
i

∏
j

∑
r

deg(Qijr)≤2t

σR(Qijr) + P (x),

where every monomial in P (x) has a variable with degree 3 or more. Now observe that for any
multilinear monomial m, every monomial in ∂mP has a variable of degree 2 or more and hence
π(∂mP ) = 0, implying DPSP(P ) = 0. By taking D1(x) =

∑
i

∏
j

∑
r,deg(Qijr)≤2t σR(Qijr) and

D2(x) = P (x), we come to the desired conclusion, if the “bad” probability, namely s · pt ·N2µt, is
small. Now suppose N = d3 (as is the case in [KLSS14a]). Then the bad probability is s ·N−(β

3
−2µ)t

which is negligible for any constant µ less than β/6. This gives the required decomposition.

Extension for arbitrary µ < 1. Combining the above decomposition argument with the lower
bound available for homogeneous-ΣΠΣΠ[

√
d]-circuits (which imposes some additional constraints

on how large β can be), we get that if µ is sufficiently small (say, 0.01), any homogeneous
ΣΠΣΠΣ[Nµ] formula computing the same family of Nisan-Wigderson design based polynomials
as used in [KLSS14a], has size NΩ(

√
d). However, in order to prove the same size lower bound

for any constant µ < 1, we delve deeper into the analysis of [KLSS14a] and carefully tune it at
certain places, including the complexity analysis of the explicit polynomial family for which the
lower bound is shown.
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3 Preliminaries

Affine forms and linear forms. An affine form is simply another name for a degree one poly-
nomial, with a (possibly) nonzero constant term. Thus an affine form `(x) looks like

`(x) = a0 + a1x1 + a2x2 + . . .+ anxn,

where each ai ∈ F. The weight of such an affine form `(x) will be the number of nonzero coefficients
in it, i.e.

weight of ` def= |{i ∈ [0..n] : ai 6= 0}|
A homogeneous degree one polynomial (i.e. one whose constant term a0 is zero) we will refer to as
a linear form.

Notation for circuits with exponentiation gates. Sometimes a multiplication gate in our
circuit will have the feature that all its incoming edges originate from a single gate g (thus computing
ge, if there are e wires entering the multiplication gate). We will refer to such gates as exponentiation
gates and denote them by the symbol ∧. So for example, a Σ∧Σ circuit computes a polynomial in
the following manner:

C(x) =
∑
i∈[s]

`i(x)ei where each `i ∈ F[x] is an affine form.

A numerical estimate. The following numerical estimate from [GKKS13b] will be useful.

Lemma 4. Let a(n), f(n), g(n): Z>0 7→ Z be integer valued functions such that (|f |+ |g|) = o(a).
Then

ln
(a+ f)!
(a− g!)

= (f + g) ln a±O
(
f2 + g2

a

)

4 Depth Three Circuits with small bottom fanin

In this section, we will first see a reduction from (nonhomogeneous) ΣΠΣ[τ ] to a subclass of homo-
geneous ΣΠΣΠΣ[τ ] circuits. It can be easily inferred from the proof of lemma V.317 in [GKKS13a]
but we nevertheless give a proof here for completeness.

Lemma 5. (implicit in [GKKS13a].) Let d ≥ 1 be an integer and F be an infinite field of char-
acteristic larger than d (or of zero characteristic). Let f(x) ∈ F[x] be a homogeneous N -variate
polynomial of degree d computed by a Σ[s]Π[e]Σ[τ ] circuit. Then f can also be computed by a homo-
geneous Σ[s·exp(

√
d)]ΠΣ[e]∧Σ[τ ] circuit.

Proof. The premise that f can be computed by a Σ[s]Π[e]Σ[τ ] circuit means that there exist s · e
affine forms `ij ’s each of weight at most τ such that

f(x) =
s∑
i=1

e∏
j=1

`ij(x). (3)

17 Ramprasad Saptharishi [Sap14] has recently communicated to us that the consequence in the original lemma in
[GKKS13a] can be slightly improved quantitatively.
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Expressing f as a sum of projections of elementary symmetric polynomials. We will first
ensure that each of the affine forms `ij has a nonzero constant term. We can do this by applying
a random shift of the form x 7→ x + a to the above identity. That is, pick a random point a ∈ Fn
and replacing x by x + a in the identity (3) we get

f(x + a) =
s∑
i=1

e∏
j=1

`ij(x + a)

=
s∑
i=1

αi

e∏
j=1

(1 +mij(x)), where mij(x) def= `ij(x)− `ij(0) is a linear form of

weight at most τ and αi
def=

e∏
j=1

`ij(a)

Comparing the homogeneous components of degree d on the two sides of the above identity we get

f(x) =
s∑
i=1

αi ·ESymd(mi1, . . . ,mie), (4)

where
ESymd(y1, . . . , ye)

def=
∑
S⊆[e]
|S|=d

∏
i∈S

yi

is the elementary symmetric polynomial of degree d on the e formal variables y1, y2, . . . , ye.

Expressing ESymd in terms of the power symmetric polynomials. We now use Newton’s
identities to express each elementary symmetric polynomial that occurs above in terms of the
power-symmetric polynomials defined as:

PSymr(y1, . . . , ye)
def=
∑
j∈[e]

yrj .

We use the following implication of Newton’s identities (cf. [Lit50]):

ESymd =
1
d!
·

∣∣∣∣∣∣∣∣∣∣∣∣∣

PSym1 1 0 0 · · · 0 0
PSym2 PSym1 2 0 · · · 0 0
PSym3 PSym2 PSym1 3 · · · 0 0

...
...

...
...

. . .
...

...
PSymd−1 PSymd−2 PSymd−3 PSymd−4 · · · PSym1 n− 1
PSymd PSymd−1 PSymd−2 PSymd−3 · · · PSym2 PSym1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

In particular, this means that ESymd can be expressed as a polynomial function of the PSymi’s.
Let us now count how many terms are there in such a polynomial expression. Expanding out the
determinant above we see that there exist scalars βa’s such that

ESymd(y) =
∑

a=(a1,...,ad)∈Zd≥0∑
i i·ai=d

βa ·
∏
i∈[d]

PSymai
i (y). (5)

8



The number of solutions of
∑

i∈[d] i · ai = d is exactly the number of ways to partition the nat-

ural number d and hence is 2Θ(
√
d) by the Hardy-Ramanujan estimate for the partition function

[HR18]. Hence the number of terms in the above summation is 2Θ(
√
d). In particular this means

that ESymd(y) is computed by a homogeneous Σ[exp(
√
d)]ΠΣ[e]∧-circuit.

Combining (4) and (5) to get a homogeneous ΣΠΣ ∧ Σ circuit for f . If we now replace
each occurence of ESymd in equation (4) by its homogeneous ΣΠΣ∧ circuit given by the identity
(5) , we see that f(x) is computed by a homogeneous Σ[s·exp(

√
d)]ΠΣ[e]∧Σ[τ ] circuit. This proves

the lemma.

We next observe that the homogeneous ΣΠΣ∧Σ-circuit in the outcome of the above lemma cor-
responds to a certain structured form for expressing f that we make precise below. For ease of
subsequent exposition, let us introduce the following notation/terminology. Letm = xe11 ·x

e2
2 ·. . .·x

eN
N

in F[x1, x2, . . . , xN ] be a monomial. The support of m, denoted Supp(m) is the subset of variables
appearing in it, i.e.

Supp(m) def= {i : ei ≥ 1} ⊆ [N ].

The support size of a polynomial Q, denoted |Supp(Q)| is the maximum support size of any mono-
mial appearing in Q.

Proposition 6. Let d ≥ 1 be an integer and F be an infinite field of characteristic larger than d
(or of zero characteristic). Let f(x) ∈ F[x] be a homogeneous N -variate polynomial of degree d
computed by a Σ[s]Π[e]Σ[τ ] circuit. Then f admits an expression of the form

f(x) =
s·exp(

√
d)∑

i

∏
j

Qij , Supp(Qij) ≤ τ (6)

Proof. The premise that f can be computed by a Σ[s]Π[e]Σ[τ ] circuit means that there exist s · e
affine forms `ij ’s each having at most τ nonzero coefficients such that

f(x) =
s∑
i=1

e∏
j=1

`ij(x). (7)

First observe that if we have a linear form ` in which at most τ coefficients are nonzero, then for
all j ≥ 1, we have

Supp(`j) ≤ τ.

In particular, this means that for all r ≥ 1 and all i ≤ s we have Supp(PSymr(`i1, `i2, . . . , `ie)) ≤ τ.
By the proof of lemma 5 we get that f can be expressed as a sum of product of the PSymr’s
in a homogeneous fashion, with the expression having s · exp(

√
d) many terms. Hence f has a

representation of the form given by equation (6).

This means that our problem reduces to proving lower bounds for representations of the form
given by the right-hand side of equation (6) which we refer to as τ -supported homogeneous ΣΠΣΠ
circuits. It turns out that such representations occur also as an intermediate step in prior work
and [KLSS14a] explicitly gives an NΩ( d

τ
) lower bound for such representations.

9



Theorem 7. [KLSS14a]. There exists an explicit family {fN} of homogeneous degree d polynomi-
als on N = d3 variables in VNP such that any τ -supported homogeneous ΣΠΣΠ circuit computing
fN has top fanin at least NΩ( d

τ
).

In the follow-up work of [KS14a], the class of τ -supported homogeneous ΣΠΣΠ circuits occurs
implicitly. It follows from their work that the above lower bound is in fact valid for the family of
iterated matrix multiplication polynomial which is in VP (in fact is complete for a subclass of VP
called algebraic branching programs).

Theorem 8. [KS14a]. There exists an explicit family {fN} of homogeneous degree d polynomials
on N = dO(1) variables in VP such that any τ -supported homogeneous ΣΠΣΠ circuit computing fN
has top fanin at least NΩ( d

τ
).

Combining Proposition 6 with the above theorem immediately yields theorem 1. In the next section
we move on investigating homogeneous ΣΠΣΠΣ[τ ] circuits.

5 The lower bound for homogeneous ΣΠΣΠΣ[Nµ] formulas

Here we follow the outline given in section 2 and derive a lower bound for homogeneous ΣΠΣΠΣ[Nµ]-
formulas.

Step 1: an upper bound for homogeneous ΣΠΣΠΣ[Nµ]-formulas. Let 0 ≤ µ < 1 be a fixed
constant. Consider a homogeneous ΣΠΣΠΣ[Nµ] formula of size s as in equation (2) computing a
homogeneous N -variate polynomial of degree d. We pick a random set R ⊆ [N ] by picking each
variable independently at random with probability 1 − p, where p = d−β (for a suitable constant
β > 0), and upper bound the DPSP-complexity of σR(D(x)).

Lemma 9. Let t =
√
d, α = 2µ+1

1−µ and d2+α ≤ N ≤ 2d2+α be an integer. If s ≤ N
0.03
2+α
·
√
d then there

exists a constant 0 < β < α such that with probability at least 1− 1

NΩ(
√
d)

, a random restriction σR
satisfies:

DPSPk,`(σR(D(x))) ≤ s ·
(d
t + 1
k

)
·
(

N

`+ 2kt

)
for all k, ` ≥ 0 satisfying `+ 2kt ≤ N

2
. (8)

We defer the proof of this lemma to section 6.

Step 2.1: constructing a suitable family of polynomials. The explicit family of polynomials
for which we prove the lower bound is a variant of the Nisan-Wigderson design based polynomials
used in [KSS14, KLSS14a, KS14a]. The choice of this family depends on the bottom fanin of the
depth 5 formulas. When the bottom fanin is τ = Nµ, for some fixed 0 ≤ µ < 1, the family is defined
as follows. For an integer d and α = 2µ+1

1−µ , let q be the smallest prime number between d1+α and
2d1+α (such a prime is guaranteed to exist by the Bertrand-Chebyshev theorem [Erd32])18. We
define a family of Nisan-Wigderson polynomials of degree d on N = d · q variables, parametrized
by a number r (to be fixed later in the analysis).

NWr(x1,1, x1,2, . . . , xd,q) :=
∑

h(z)∈Fq [z]

deg(h)≤r

∏
i∈[d]

xi,h(i),

18 We are avoiding ceil/floor notations for simplicity of exposition
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where Fq is the finite field with q elements.

Step 2.2: lower bounding the DPSP-complexity of our polynomial family. For appropriate
choices of integers r, k, ` and a random restriction σR, we show that DPSPk,`(σR(NWr)) is large
with high probability.

Lemma 10. The main technical lemma. Let NWr be the Nisan-Wigderson design based poly-
nomial defined above. Suppose R is a set formed by picking each variable independently at random
with probability 1−p, where p = d−β and β > 0 is a constant less than α. Over any field F of char-
acteristic zero, for r = α+β

2(1+α) · d− 1, k = δ ·
√
d (for a small constant δ > 0) and ` = N

2 (1− k ln d
d ),

we have

DPSPk,`(σR(NWr)) ≥
1

dO(1)
min

(
pk

4k
·
(
N

k

)
·
(
N

`

)
,

(
N

`+ d− k

))
, (9)

with probability at least 1− 1
dΘ(1) .

We will prove this lemma in Section A of the appendix.

Final Step: comparing the two bounds. Comparing the probabilities with which equations
(8) and (9) are satisfed, we see that there exists a set R such that both of them are simultaneously
satisfied, implying:

s ≥
DPSPk,`(σR(NWr))( d

t
+1

k

)
·
(

N
`+2kt

)
= NΩ(

√
d) (for small enough constant δ)

The above implication can be worked out using the numerical estimates given in lemma 4. This
proves the lower bound of theorem 2.

6 Upper bounding the measure for homogeneous ΣΠΣΠΣ[τ ] formu-
las

Let D(x) be a homogeneous ΣΠΣΠΣ[τ ] formula with bottom fanin bounded by τ = Nµ where
µ ∈ [0, 1) is a fixed constant.

D(x) =
∑
i

∏
j

∑
r

Qijr, (10)

where Qijr is a product of linear forms. As before, let α = 2µ+1
1−µ . In this section we give a

proof of lemma 9. We first show that when we apply a random restriction to a small homoge-
neous ΣΠΣΠΣ[Nµ] formula, then with high probability it decomposes into two pieces which are
individually much easier to deal with.

Lemma 11. Decompostion under random restrictions. Suppose that D(x) has size s ≤
N

0.03
2+α
·
√
d. Then, it is possible to fix a constant 0 < β < α and19 form a set R by picking each

19 The requirement of β < α in the statement of lemma 11 comes from Lemma 10.
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variable independently at random with probability 1− p, where p = d−β, such that with probability
at least 1− 1

NΩ(
√
d)

the following is true:

σR(D(x)) = D1(x) +D2(x),

where D1(x) is a homogeneous ΣΠΣΠ[2
√
d] formula having top fanin same as that of D(x), and

DPSPk,`(D2(x)) = 0 for any choice of k and `.

Before proving this, let us see why it implies the required upper bound of lemma 9.

Proof of lemma 9. Using the decomposition lemma 11, with probability at least 1 − 1

NΩ(
√
d)

we
have:

DPSPk,`(σR(D(x))) ≤ DPSPk,`(D1(x)).

Let t =
√
d and k, ` be arbitary integers satisfying `+2kt ≤ N

2 . Then the dimension of the projected
shifted partials of D1(x) is upper bounded as in [KLSS14a],

DPSPk,`(σR(D(x))) ≤ s ·
(d
t + 1
k

)
·
(

N

`+ 2kt

)
. (11)

This proves lemma 9.

6.1 Proof of the decomposition lemma.

We will prove lemma 11 here by considering two cases separately: 0 ≤ µ ≤ 1
5 and 1

5 < µ < 1. Let
t =
√
d.

Case 1. Suppose 0 ≤ µ ≤ 1
5 . In this case the analysis is similar to the one outlined in Section

2. Let Qijr be a product of linear forms as in equation (10) and deg(Qijr) > 2t. Then Qijr can
be expressed as Qijr = Q̃ijr · Pijr such that deg(Q̃ijr) = 2t, by simply multiplying out 2t linear
forms in Qijr. Since the support of every linear form in Qijr is bounded by τ = Nµ, the number
of monomials in Q̃ijr is bounded by τ2t = (Nµ)2t. The monomials of Q̃ijr are of two types - those
with individual degree of every variable bounded by 2 (and hence has support at least t), and those
with at least one variable of degree 3 or more.

Let R be a set formed by picking every variable independently at random with probability 1− p,
where p = d−β for an appropriate choice of β (to be fixed shortly). The probability that any
monomial of support at least t in Q̃ijr survives under the random restriction σR is bounded by
pt · (Nµ)2t. Running over all Qijr in equation (10), with probability at least 1− s · pt · (Nµ)2t,

σR(D(x)) =
∑
i

∏
j

∑
r

deg(Qijr)≤2t

σR(Qijr) + P,

where every monomial in P has a variable of degree 3 or more. Naturally, DPSPk,`(P ) = 0 for any

choice of k and `. Since s ≤ N
0.03
2+α
·
√
d, p = d−β, α = 2µ+1

1−µ and t =
√
d, the “bad” probability is

s · pt · (Nµ)2t ≤ (N
0.03
2+α · d−β ·N2µ)t

≤ (N
0.03
2+α ·N−

β
2+α · 2

β
2+α ·N2µ)t, as

(
N

2

) 1
2+α

≤ d ≤ N
1

2+α

The above quantity is at most 1

NΩ(
√
d)

if
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1. 2µ+ 0.03
2+α <

β
2+α , and

2. 0 < β < α.

It is easy to verify that these two conditions are satisfied if β = 6.5µ+0.03
1−µ and considering µ ≤ 1

5 .

Case 2. Suppose 1
5 < µ < 1. In this case we apply the random restriction in two phases.

Phase 1: Pick each variable independently at random with probability 1−p1, where p1 = d−β1 , and
form a set R1. (β1 will be fixed shortly.) Let g be a linear form in a product Qijr. Assume without
loss of generality that the support of g is exactly τ = Nµ (if not, simply fill in g with variables
having zero coefficients). Then, the expected value of the support size of σR1(g) is

γ := E [support size of g] = d−β1 ·Nµ.

By Chernoff bound,

Pr{bottom fanin of σR1(D(x)) ≥ (1 +
√

3) · γ} ≤ s · e−γ .

One can verify that the above probability is less than 1

NΩ(
√
d)

if

µ · (2 + α) > β1 +
1
2

(12)

We will set β1 shortly to satisfy the above condition.

Phase 2: Pick each variable independently at random (and independent of Phase 1) with probability
1 − p2, where p2 = d−β2 , and form a set R2. (β2 will be set to an appropriate value shortly.) We
wish to study the formula σR2(σR1(D(x))) = σR1∪R2(D(x)).

If we set β1 satisfying equation (12) then with high probability the bottom fanin of σR1(D(x))
is less than (1 +

√
3) · γ — assume that this happens after Phase 1. The argument from here on is

similar to that in Case 1. Let
σR1(D(x)) =

∑
i

∏
j

∑
r

Q′ijr,

where each linear form in every Q′ijr has support size bounded by (1 +
√

3) · γ. If deg(Q′ijr) ≥ 2t
then Q′ijr = Q̃′ijr · P ′ijr where deg(Q̃′ijr) = 2t and number of monomial in Q̃′ijr is bounded by
(1 +

√
3)2t · γ2t. Once again, focus on those monomials in Q̃′ijr that have support at least t. (Each

of the remaining monomials in Q̃′ijr has a variable of degree 3 or more.) The probability that
any of those monomials in Q̃′ijr survives after the random restriction σR2 is applied is bounded by
pt2 · (1 +

√
3)2t · γ2t. Hence with probability at least 1− s · pt2 · (1 +

√
3)2t · γ2t,

σR1∪R2(D(x)) = σR2(σR1(D(x))) =
∑
i

∏
j

∑
r

deg(Q′ijr)≤2t

σR2(Q′ijr) + P ′,

where DPSPk,`(P ′) = 0 for any k, `. Let us calculate the bad probability a bit more closely.

s · pt2 · (1 +
√

3)2t · γ2t ≤ [N
0.03
2+α · p2 · (1 +

√
3)2 · γ2]t

= [N
0.03
2+α · d−β2 · (1 +

√
3)2 · d−2β1 ·N2µ]t.

13



The above quantity is less than 1

NΩ(
√
d)

if

2µ · (2 + α) + 0.03 < β2 + 2β1, and (13)

β1 + β2 < α & β1, β2 > 0 (14)

The requirement stated in equation (14) comes from Lemma 10, as Phase 1 and 2 together amounts
to setting each variable zero independently with probability 1− p1p2 = 1− d−(β1+β2). It is easy to
verify that the conditions stated by equations (12), (13) and (14) are satisfied by choosing

β1 = µ · (2 + α)− 0.51
β2 = 1.06,

and keeping in mind that µ > 1
5 . This completes the proof of the decomposition lemma.

7 Summary and discussion

A recent line of research on arithmetic circuit lower bounds uses the dimension of the space of shifted
partials and its variant the projected shifted partials under random restriction as a complexity mea-
sure to make progress on proving lower bounds for certain interesting classes of arithmetic circuits,
namely regular formulas and homogeneous depth four formulas. (The dimension of the space of
shifted partials measure is in turn based on the classical measure of the dimension of the space of
partial derivatives.) The formal degree of a homogeneous depth four formula (or a regular formula)
is bounded by the degree (or the order of the degree) of the polynomial that it computes. At this
point it was not clear if the present techniques are applicable to models where the formal degree
is much higher than the degree of the computed polynomial. One very interesting (and arguably
the simplest nontrivial) example of such an unrestricted formal degree model is (nonhomogeneous)
depth three circuits over fields of characteresic zero - its power being exhibited by the recent work
of [GKKS13a].

Our work takes a step forward in this direction by showing an exponential lower bound for (nonho-
mogeneous) depth three circuits with small bottom fanin over fields of characteristic zero. Along
the way we also show an exponential lower bound for homogeneous depth five formulas with small
bottom fanin. The second result is for an explicit polynomial in VNP. An immediate question is
whether the combinatorial argument from [KS14a] can be suitably adapted so that the lower bound
of theorem 2 holds for iterated matrix multiplication as well. Both these results are obtained by
building upon the current techniques on shifted patials based measures. It would be very interesting
to prove analogous lower bounds for less restrictive subclasses of arithmetic circuits.

• Can we drop the restriction of ‘small bottom fanin’ from both the models - (nonhomogeneous)
depth three circuits and homogeneous depth five circuits - and still show an exponential lower
bound?

A few other intriguing problems on arithmetic circuit lower bounds are worth mentioning here:

• Show a super-polynomial lower bound for homogeneous bounded depth arithmetic circuits.

• Show a super-polynomial lower bound for homogeneous arithmetic formulas.

14



• Show a super-polynomial separation between homogeneous product-depth-∆ formulas and
homogeneous product-depth-(∆− 1) formulas.

• Solve the above problems without the assumption of homogeneity.

Solutions to these problems, using present or new techniques, would give a significant boost to our
understanding of arithmetic circuit lower bounds.
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A Proof of Lemma 10

In this section we prove lemma 10, i.e. we show that the dimension of projected shifted partial
derivatives of a randomly restricted Nisan-Wigderson design based polynomial is within a ‘small’
factor of the maximum possible with high probability. Our proof is very similar to the proof of
Lemma 13 in [KLSS14a] - in fact, we reuse quite a bit of the argument from there but carefully
tune it at places to achieve the required setting of parameters. Proofs of some of the propositions
in this section are collected in Section B. Let e def= (d− k) throughout the rest of this section.

Preliminaries. Note that in the construction in Section 5 of NWr, there is a 1-1 correspondence
between the variable indices in [N ] and points in [d] × [q]. Being homogeneous and multilinear of
degree d, the monomials of NWr are in 1-1 correspondence with sets in

([N ]
d

)
≡
([d]×[q]

d

)
. Indeed,

from the construction it is clear that the coefficient of any monomial in NWr is either 0 or 1 and that
there is a 1-1 correspondence between monomials in the support of NWr and univariate polynomials
of degree at most r in Fq[z]. Now since two distinct polynomials of degree r over a field have at
most r common roots we get:

17

http://www.math.ias.edu/~avi/PUBLICATIONS/MYPAPERS/NW96/final.pdf
http://www.math.ias.edu/~avi/PUBLICATIONS/MYPAPERS/NW96/final.pdf
http://eccc.hpi-web.de/report/1999/023/


Proposition 12. [A basic property of our construction.] For any two distinct sets D1, D2 ∈([d]×[q]
d

)
in the support of NWr, we have

|D1 ∩D2| ≤ r.

Let R be a set formed by picking each variable independently at random with probability 1 − p,
where p = d−β for 0 < β < α. Our goal for the remainder of this section is to lower bound
DPSPk,`(σR(NWr)).

Reformulating our goal in terms of the rank of an explicit matrix. Let f be any homo-
geneous multilinear polynomial of degree d on N variables. Then we have

∂=k
ml f =

{
∂Cf : C ∈

(
[N ]
k

)}
.

Note that every k-th order derivative of f is homogeneous and multilinear of degree (d− k). Hence

π(x=` · ∂=k
ml f) =

{
xA · σA

(
∂Cf

)
: A ∈

(
[N ]
`

)
, C ∈

(
[N ]
k

)}
.

Thus we have

Proposition 13. For any homogeneous multilinear polynomial f of degree d on N variables and
for all integers k and `:

DPSPk,`(f) = dim
({

xA · σA
(
∂Cf

)
: A ∈

(
[N ]
`

)
, C ∈

(
[N ]
k

)})
.

Now the F-linear dimension of any set of polynomials is the same as the rank of the matrix cor-
responding to our set of polynomials in the natural way. In fact, we will focus our attention on a
subset of rows of this matrix and prove a lower bound on the rank of the matrix defined by this
subset of rows. Specifically,

Proposition 14. Let f be a homogeneous multilinear polynomial of degree d on N variables. Let
k, ` be integers. Define a matrix M(f) as follows. The rows of M(f) are labelled by pairs of subsets
(A,C) ∈

([N ]
`

)
×
([N ]
k

)
such that A∩C = Φ (null set) and columns are indexed by subsets S ∈

( [N ]
`+e

)
.

Each row (A,C) corresponds to the polynomial

fA,C
def= xA · σA

(
∂Cf

)
in the following way. The S-th entry of the row (A,C) is the coefficient of xS in the polynomial
fA,C . Then,

DPSPk,`(f) ≥ rank(M(f)).

So our problem is equivalent to lower bounding the rank of the matrix M(f) for our constructed
polynomial f . Now note that the entries of M(f) are coefficients of appropriate monomials of f
and it will be helpful to us in what follows to keep track of this information. We will do it by
assigning a label to each cell of M(f) as follows. We will think of every location in the matrix
M(f) being labelled with either a set D ∈

([N ]
d

)
or the label InvalidSet depending on whether

that entry contains the coefficient of the monomial xD of f or it would have been zero regardless
of the actual coefficients of f . Specifically, let us introduce the following notation. For sets A,B
define:
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1.

A B =

{
A \B ifB ⊆ A
InvalidSet otherwise

2.

A ]B =

{
A ∪B ifB ∩A = ∅
InvalidSet otherwise

Then the label of the ((A,C), S)-th cell of M(f) is defined to be the set (SA)]C. Equivalently, if
the label of a cell of the (A,C)-th row of M is a set D then the column must be the one correspond-
ing to S = (DC)]A (if C is not a subset of D or if D and A are not disjoint then D cannot occur
in the row indexed by (A,C)). For the rest of this section, we will refer to M(σR(NWr)) simply
as the matrix M . Our goal then is to show that the rank of this matrix M is reasonably close to
the trivial upper bound, viz. the minimum of the number of rows and the number of columns of
M with high probability. It turns out that our matrix M is a relatively sparse matrix and we will
exploit this fact by using a relevant lemma from real matrix analysis to obtain a lower bound on
its rank.

The Surrogate Rank. Consider the matrix B def= MT ·M . Then B is a real symmetric, positive
semidefinite matrix. From the definition of B it is easy to show that:

Proposition 15. Over any field F we have

rank(B) ≤ rank(M).

Over the field R of real numbers we have

rank(B) = rank(M).

So it suffices to lower bound the rank of B. By an application of Cauchy-Schwarz on the vector of
nonzero eigenvalues of B, one obtains:

Lemma 16. [Alo09] Over the field of real numbers R we have:

rank(B) ≥ Tr(B)2

Tr(B2)
.

Let us call the quantity Tr(B)2

Tr(B2)
as the surrogate rank of B, denoted SurRank(B). It then suffices to

show that this quantity is within a ‘small’ factor of U = min(
(
N
`+e

)
,
(
N
`

)
·
(
N
k

)
) with high probability.

In the rest of this section, we will first derive an exact expression for SurRank(B) and then show
that it is close to U (again, with high probability). In the following discussion we would need
an estimate of a quantity Rd(w, r) that denotes the number of univariate polynomials in Fq[z] of
degree at most r having exactly w distinct roots in [d].

An estimate for Rd(w, r). First note that any polynomial h(z) ∈ Fq[z] of degree at most r that
has w roots in [d] must be of the form

h(z) = (z − α1) · (z − α2) · . . . · (z − αw) · ĥ(z),
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where each αi is in [d] and ĥ(z) ∈ Fq[z] is of degree at most (r − w). Thus we have

Rd(w, r) ≤ qr−w+1 ·
(
d

w

)
≤ qr+1 ·

(
d

q

)w
· 1
w!

(15)

A.1 Deriving an exact expression for SurRank(B).

We will now calculate an exact expression for SurRank(B), or equivalently an exact expression for
Tr(B) and Tr(B2).

Calculating Tr(B). Calculating Tr(B) is fairly straightforward. From the definition of the matrix
B we have:

Proposition 17. For any 0,±1 matrix M (i.e. a matrix all of whose entries are either 0, or +1
or −1) we have

Tr(B) = Tr(MT ·M) = number of nonzero entries in M.

Now we can calculate the number of nonzero entries in M by going over all sets D ∈
([N ]
d

)
∩

Supp(σR(NWr)), calculating the number of cells of M labelled with D and adding these up. Clearly

σR(NWr) =
∑

D∈Supp(NWr)

eD · xD,

where eD is an indicator variable such that eD = 1 if σR(xD) 6= 0, and eD = 0 otherwise. Hereafter,
we will refer to σR(NWr) as g at some places, and the number of monomials in σR(NWr) as µ(g).

µ(g) =
∑

D∈Supp(NWr)

eD

⇒ E [µ(g)] = pd · qr+1 = γ (say)

⇒ E [Tr(B)] = γ ·
(
d

k

)
·
(
N − d
`

)
.

Proposition 18. Pr
[
Tr(B) ≤ 1

2 · γ ·
(
d
k

)
·
(
N−d
`

)]
≤ 10

pdα . ( Proof in Section B)

Calculating Tr(B2). From the definition of B = MT ·M and expanding out the relevant summa-
tions we get:

Proposition 19.

Tr(B2) =
∑

(A1,C1),(A2,C2)∈
(
([N ]
` )×([N ]

k )
)2

∑
S1,S2∈( [N ]

`+e)
2

M(A1,C1),S1
·M(A1,C1),S2

·M(A2,C2),S1
·M(A2,C2),S2

.

We will use the following notation in doing this calculation. For a pair of row indices

((A1, C1), (A2, C2)) ∈
(([N ]

`

)
×
([N ]
k

))2
and a pair of column indices S1, S2 ∈

(( [N ]
`+e

))2
, the box

b defined by them, denoted b = 2− box((A1, C1), (A2, C2), S1, S2) is the four-tuple of cells

(((A1, C1), S1), ((A1, C1), S2), ((A2, C2), S1), ((A2, C2), S2)).

Since all the entries of our matrix M are either 0 or 1 we have:
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Proposition 20.

Tr(B2) = Number of boxes b with all four entries nonzero.

For a box b = 2−box((A1, C1), (A2, C2), S1, S2), its tuple of labels, denoted labels(b) is the tuple of
labels of the cells ((A1, C1), S1), ((A1, C1), S2), ((A2, C2), S1), ((A2, C2), S2)) in that order. In other
words,

labels(b) = ((S1 A1) ] C1, (S2 A1) ] C1, (S1 A2) ] C2, (S2 A2) ] C2).

We then have

Proposition 21. Tr(B2) equals the number of boxes

b = 2− box((A1, C1), (A2, C2), S1, S2)

such that all the four labels in labels(b) are valid sets in the support of our design polynomial
σR(NWr).

So our problem boils down to counting the number of boxes in which all the four labels are valid
sets in the support of our polynomial σR(NWr). Let us analyze the box

b = 2− box((A1, C1), (A2, C2), S1, S2)

a bit closely. Suppose labels(b) = (D1, D2, D3, D4) as shown in the table below whereD1, D2, D3, D4

are valid sets in
([N ]
d

)
.

S1 S2

(A1,C1) D1 D2

(A2,C2) D3 D4

Define the following sets:

E1 := A1\(A1 ∩A2) E2 := A2\(A1 ∩A2)
E3 := C1 E4 := C2

E5 := D1\(E2 ] E3) E6 := D2\(E2 ] E3)
= D3\(E1 ] E4) = D4\(E1 ] E4)

Note that E2 ] E3 must be a subset of both D1 and D2, similarly E1 ] E4 must be a subset of
both D3 and D4. Also, D1\(E2 ] E3) = D3\(E1 ] E4) as (D1  C1) ] A1 = (D3  C2) ] A2 = S1.
Similarly, D2\(E2 ] E3) = D4\(E1 ] E4). Verify that D1, D2, D3 and D4 can be expressed as:

D1 = E2 ] E5 ] E3 D2 = E2 ] E6 ] E3 (16)
D3 = E1 ] E5 ] E4 D4 = E1 ] E6 ] E4

From the above definitions, if |A1 ∩A2| = v then

|E1| = |E2| = `− v (17)
|E3| = |E4| = k

|E5| = |E6| = d− (`− v + k)
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Proposition 22. Unless D1, D2, D3, D4 are all distinct sets, labels(b) contains at most two distinct
sets. Furthermore, if D1, D2, D3 are distinct then `− v + k ≤ r and d− (`− v + k) ≤ r.

Proof. We show that if D1 equals any of D2, D3 or D4 then labels(b) has at most two distinct
sets. The argument is similar for other cases. Suppose D1 = D2 then by Equation 16 E5 = E6,
implying D3 = D4. If D1 = D3 then again by Equation 16, E2 ]E3 = E1 ]E4 implying D2 = D4.
Now suppose D1 = D4, then by Equation 16, E6 ⊆ D1. But E6 ⊆ D2, which means D2 ⊆ D1 as
E2 ] E3 ⊆ D1. Since |D2| = |D1| = d, D1 = D2 and hence D1 = D2 = D3 = D4.

To prove the second statement of the lemma, observe that |D1∩D2| ≥ |E2]E3| = `−v+k. So, if
`−v+k ≥ r+1 then D1 = D2. Similarly, |D1∩D3| ≥ |E5| = d−(`−v+k). If d−(`−v+k) ≥ r+1
then D1 = D3.

This means that any box b that contributes to Tr(B2) must have the property that its label set
labels(b) contains at most two distinct sets in the support of σR(NWr), or four distinct sets in the
support of σR(NWr). A set D is in the support of σR(NWr) if D is in the support of NWr and
σR(xD) 6= 0. (Recall that eD is an indicator variable which is 1 if σR(xD) 6= 0, and zero otherwise.)

Corollary 23. For any four distinct sets D1, D2, D3, D4 ∈
([N ]
d

)
define

µ0(D1) def= {box b : labels(b) = (D1, D1, D1, D1)}

µ1(D1, D2) def= {box b : labels(b) = (D1, D2, D1, D2)}

µ2(D1, D2) def= {box b : labels(b) = (D1, D1, D2, D2)}

µ3(D1, D2, D3, D4) def= {box b : labels(b) = (D1, D2, D3, D4)}

Let the support of NWr, denoted Supp(NWr) ⊂
([N ]
d

)
, be the set of all sets D ∈

([N ]
d

)
such that the

coefficient of the monomial xD in NWr is nonzero. Define T0, T1, T2, T3 as follows:

T0 =
∑

D1∈Supp(NWr)

eD1 · |µ0(D1)|

T1 =
∑

D1 6=D2∈Supp(NWr)

eD1 · eD2 · |µ1(D1, D2)|

T2 =
∑

D1 6=D2∈Supp(NWr)

eD1 · eD2 · |µ2(D1, D2)|

T3 =
∑

D1 6=D2 6=D3 6=D4∈Supp(NWr)

eD1 · eD2 · eD3 · eD4 · |µ3(D1, D2, D3, D4)| (18)

Then
Tr(B2) = T0 + T1 + T2 + T3.

We are using the notation D1 6= D2 6= D3 6= D4 to mean that the four sets are distinct. The proof
of Proposition 22 rules out the existence of any box b having labels(b) = (D1, D2, D2, D1) with
distinct D1, D2 ∈ Supp(NWr) and that is why there is no term in Tr(B2) corresponding to such
boxes.

Proposition 18 shows that Tr(B) is large with high probability. In order to lower bound Tr(B)2

Tr(B2)
, we

will show that Tr(B2) is less than an upper bound with high probability. This is achieved by upper
bounding the expected values of T0, T1, T2 and T3 and then applying Markov’s inequality.
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A.2 Upper bound for E [T3]

Let ρ(D1, D2, D3) be the number of pairs of rows ((A1, C1), (A2, C2)) in which D1, D2, D3 (all
distinct) can possibly occur as labels (as depicted in the table before). For a fixed D1, D2, D3 we
upper bound ρ(D1, D2, D3) with the help of Equation 16. Notice that for a fixed D1, D2, D3, if
we specify E2, E3, E4 and A1 ∩ A2 then the sets A1, C1, A2, C2 are determined. Let us count the
number of ways we can pick E2, E3, E4 and A1∩A2 for a given D1, D2, D3. Taking the size bounds
on the sets into account from Equation 17, this quantity is upper bounded by,(

d

`− v

)
·
(
d− (`− v)

k

)
·
(
`− v + k

k

)
·
(
N − d
v

)
.

The quantity
(
N−d
v

)
is an upper bound on the number of ways we can pick A1 ∩A2 as A1 must be

disjoint from D1. By Proposition 22, `− v + k ≤ r < d, (also, v ≤ ` < N−d
2 ) implying

ρ(D1, D2, D3) ≤ 2d ·
(
d

k

)2

·
(
N − d
`

)
= ρ (say). (19)

Hence,
T3 ≤ ρ ·

∑
D1 6=D2 6=D3∈Supp(NWr)

eD1 · eD2 · eD3 (20)

Now we upper bound the expected value of the quantity
∑

D1 6=D2 6=D3∈Supp(NWr)
eD1 · eD2 · eD3 =

η (say) in the following proposition.

Proposition 24. E [η] ≤ 4 · γ2 · q(r+1) ·
(
d
q

)d
, where γ is as in Proposition 18. This implies

E [T3] ≤ 4 ·
(

2

d
α−β

2

)d
· γ2 ·

(
d

k

)2

·
(
N − d
`

)
.

Proof of the above proposition can be found in Section B. We show in the later sections that E [T3]
is negligible compared to E [T0 +T1 +T2] and hence does not contribute much to the expected value
of Tr(B2).

In what follows we will derive expressions for |µ0(D1)| , |µ1(D1, D2)| and |µ2(D1, D2)| and compute
expected values of T0, T1 and T2 by summing these up over D1, D2 ∈ Supp(σR(NWr)). We first
observe:

Proposition 25. For any set D1 ∈
([N ]
d

)
and any row (A,C) of M , there can be at most one cell

in that row labelled with the set D1.

This means that any box b = 2 − box((A1, C1), (A2, C2), S1, S2) contributing to either µ0(D1) or
µ2(D1, D2), the columns S1 and S2 must be the same.

A.3 Calculating µ0(D1) and E [T0].

Every box b ∈ µ0(D1) is of the form b = 2− box((A1, C1), (A2, C2), S1, S1) where both the entries
((A1, C1), S1) and ((A2, C2), S1) are both labelled by D1. This implies A1 = A2 and C1 = C2: By
Equation 16, E1 ⊆ D3 = D1, but A1 is disjoint from D1 and E1 ⊆ A1. Hence, E1 is an empty set
and similarly E2 is also an empty set. This also implies E3 = E4 from Equation 16 as D3 = D1.
Analyzing this situation gives
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Proposition 26.

|µ0(D1)| =
(
N − d
`

)
·
(
d

k

)
and E [T0] = γ ·

(
N − d
`

)
·
(
d

k

)
Proof. For a fixed D1, we can choose C1 in

(
d
k

)
ways and A1 in

(
N−d
`

)
ways. (Recall A1 must be

disjoint from D1.) The expression for E [T0] follows immediately from Equation 18.

A.4 Calculating µ1(D1, D2) and E [T1].

Let D1, D2 ∈
([N ]
d

)
be two distinct subsets in the support of NWr. We consider a box b =

2 − box((A1, C1), (A2, C2), S1, S2) in µ1(D1, D2). Observe that even in this case it must be that
A1 = A2 and C1 = C2: By the same reason as before since D3 equals D1 in Equation 16. Analyzing
this situation gives

Proposition 27. If |D1 ∩D2| = w then

|µ1(D1, D2)| =
(
N − 2d+ w

`

)
·
(
w

k

)
and hence E [T1] ≤ d · γ2

d(α−β)k · k!
·
(
N − 2d+ k

`

)
.

Proof of the above proposition is given in Section B.

A.5 Calculating µ2(D1, D2) and E [T2].

Let D1, D2 ∈
([N ]
d

)
be two distinct subsets in the support of NWr. We consider a box b =

2 − box((A1, C1), (A2, C2), S1, S2) in µ2(D1, D2). As we observed before this can happen only if
S1 = S2 = S (say). Let |C1 ∩ C2| = u. Analyzing this situation gives

Proposition 28. If |D1 ∩D2| = w then

|µ2(D1, D2)| =
∑

0≤u≤k

(
N − 2d+ w

`− d+ k + w − u

)
·
(
d− w
k − u

)
·
(
d− w
k − u

)
·
(
w

u

)
, and hence

E [T2] ≤ dk · γ2 ·
(
N − 2d
`− d+ k

)
·
(
d

k

)2

.

Proof. The expectation calculation is similar to the one in the proof of Proposition 27 - the maxima
of the relevant expression is touched at w = u = 0.

A.6 Lower bound on SurRank(B)

A comparison between the binomial coefficients
(
N−2d
`−d+k

)
and

(
N−d
`

)
shows that(

N − 2d
`− d+ k

)
≥ 1

3d
·
(
N − d
`

)
.

Thus, from Proposition 26, 28 and 24, the upper bound on E [T2] dominates the upper bounds on
E [T0] and E [T3]. Applying Markov’s inequality,

Tr(B2) ≤ d2 · γ2

d(α−β)k · k!
·
(
N − 2d+ k

`

)
+ 3d2k · γ2 ·

(
N − 2d
`− d+ k

)
·
(
d

k

)2
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with probability at least 1− 1
d . Coupled with Proposition 18,

SurRank(B) ≥ min

 1
4 · γ

2 ·
(
d
k

)2 · (N−d` )2
2d2 · γ2

d(α−β)k·k!
·
(
N−2d+k

`

) , 1
4 · γ

2 ·
(
d
k

)2 · (N−d` )2
6d2k · γ2 ·

(
N−2d
`−d+k

)
·
(
d
k

)2
 ,

with probability at least 1− 1
dΩ(1) . The first ratio is at least pk

dO(1) · 1
4k
·
(
N
k

)
·
(
N
`

)
as(

N−d
`

)2(
N−2d+k

`

) ≥ 1
2kdO(1)

·
(
N

`

)
and dαk · k! ·

(
d

k

)2

≥ 1
2kdO(1)

·
(
N

k

)
.

The second ratio is at least 1
dO(1) ·

(
N

`+d−k
)

as,(
N−d
`

)2(
N−2d
`−d+k

) ≥ 1
dO(1)

·
(

N

`+ d− k

)
.

Therefore,

SurRank(B) ≥ 1
dO(1)

min
(
pk

4k
·
(
N

k

)
·
(
N

`

)
,

(
N

`+ d− k

))
.

B Proofs of certain propositions

Proposition 18. Pr
[
Tr(B) ≤ 1

2 · γ ·
(
d
k

)
·
(
N−d
`

)]
≤ 10

pdα .

Proof. As in Proposition 17, Tr(B) = Tr(MT ·M) = number of nonzero entries in M .

Tr(B) = µ(g) ·
(
d

k

)
·
(
N − d
`

)
⇒ E [Tr(B)] = γ ·

(
d

k

)
·
(
N − d
`

)
Hence,

Pr
[
Tr(B) ≤ 1

2
· γ ·

(
d

k

)
·
(
N − d
`

)]
= Pr

[
µ(g) ≤ 1

2
· γ
]
.

It turns out that the variance of µ(g), denoted by Var(µ(g)), can be upper bounded as follows.

Var(µ(g)) ≤ γ · (1− pd) + γ2 · 2
pdα

⇒ Pr
[
µ(g) ≤ 1

2
· γ
]
≤ 10

pdα
(by Chebyshev’s inequality)

The last inequality also uses the fact that γ > 2pdα which is true since r = α+β
2(1+α) · d− 1 and hence

γ = dΩ(d). Now, let us bound the variance of µ(g). In the summations below, D,D1, D2 run over
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all elements in Supp(NWr).

Var(µ(g)) = E [µ(g)2]− E [µ(g)]2

= E

(∑
D

eD

)2
− E [∑

D

eD

]2

= E

∑
D

e2
D +

∑
D1,D2
D1 6=D2

eD1 · eD2

−
[∑
D

E [eD]

]2

(by linearity of expectation)

= E

∑
D

eD +
∑
D1,D2
D1 6=D2

eD1 · eD2

−
∑

D

E [eD]2 +
∑
D1,D2
D1 6=D2

E [eD1 ] · E [eD2 ]

 (as e2
D = eD)

= E

[∑
D

eD

]
−
∑
D

E [eD]2 + E

 ∑
D1,D2
D1 6=D2

eD1 · eD2

− ∑
D1,D2
D1 6=D2

E [eD1 ] · E [eD2 ]

= pd · qr+1 − p2d · qr+1 +
r∑

w=0

E
 ∑

D1,D2
D1 6=D2,|D1∩D2|=w

eD1 · eD2

− ∑
D1,D2

D1 6=D2,|D1∩D2|=w

E [eD1 ] · E [eD2 ]



= γ · (1− pd) +
r∑

w=0

 ∑
D1,D2

D1 6=D2,|D1∩D2|=w

(E [eD1 · eD2 ]− E [eD1 ] · E [eD2 ])


(by linearity of expectation)

= γ · (1− pd) +
r∑

w=0

 ∑
D1,D2

D1 6=D2,|D1∩D2|=w

(
pd · pd−w − pd · pd

)
(as E [eD2 |eD2 = 1] = pd−w if |D1 ∩D2| = w)

= γ · (1− pd) +
r∑

w=1

∑
D1

∑
D2

D1 6=D2,|D1∩D2|=w

(
p2d−w − p2d

)
= γ · (1− pd) +

r∑
w=1

∑
D1

Rd(w, r) · p2d
(
p−w − 1

) (recall Rd(w, r) from Equation 15)

≤ γ · (1− pd) + p2d ·
r∑

w=1

[
qr+1 ·Rd(w, r) · p−w

]
≤ γ · (1− pd) + γ2 ·

r∑
w=1

1
(pdα)w

( since Rd(w, r) ≤ qr+1 ·
(
d

q

)w
· 1
w!

)

≤ γ · (1− pd) + γ2 · 2
pdα 26



The last inequality is true as without loss of generality pdα = dα−β > 2.

Proposition 24. E [η] ≤ 4 · γ2 · q(r+1) ·
(
d
q

)d
, where γ is as in Proposition 18. This implies

E [T3] ≤ 4 ·
(

2

d
α−β

2

)d
· γ2 ·

(
d

k

)2

·
(
N − d
`

)
.

Proof. Observe that

w := |D1 ∩D2| ≥ |E2 ] E3| = `− v + k

w′ := |(D3 ∩D1) ∪ (D3 ∩D2)| ≥ |D3 ∩D1| ≥ |E5| = d− (`− v + k)

Hence,

η ≤
∑

D1∈Supp(NWr)

∑
w≥`−v+k

∑
D2∈Supp(NWr)

D2 6=D1,|D1∩D2|=w

∑
w′≥d−(`−v+k)

∑
D3∈Supp(NWr)

D3 6=D2 6=D1,|(D3∩D1)∪(D3∩D2)|=w′

eD1 · eD2 · eD3

E [η] ≤
∑

D1∈Supp(NWr)

∑
w≥`−v+k

∑
D2∈Supp(NWr)

D2 6=D1,|D1∩D2|=w

∑
w′≥d−(`−v+k)

∑
D3∈Supp(NWr)

D3 6=D2 6=D1,|(D3∩D1)∪(D3∩D2)|=w′

pd · pd−w · pd−w′

≤
∑

D1∈Supp(NWr)

∑
w≥`−v+k

∑
D2∈Supp(NWr)

D2 6=D1,|D1∩D2|=w

∑
w′≥d−(`−v+k)

p3d−w−w′ ·
(
d

w′

)
· q(r+1)−w′ ,

as the number ofD3 with |(D3∩D1)∪(D3∩D2)| = w′ for a fixedD1, D2 is bounded by
(
d
w′

)
·q(r+1)−w′ .

This implies,

E [η] ≤
∑

D1∈Supp(NWr)

∑
w≥`−v+k

∑
D2∈Supp(NWr)

D2 6=D1,|D1∩D2|=w

∑
w′≥d−(`−v+k)

p3d−w−w′ · dw′ · q(r+1)−w′

≤
∑

D1∈Supp(NWr)

∑
w≥`−v+k

∑
D2∈Supp(NWr)

D2 6=D1,|D1∩D2|=w

p3d−w · q(r+1) ·
(
d

pq

)d−(`−v+k)

· 2

(assuming pq > 2d as q ≥ d1+α)

≤ 2 ·
∑

D1∈Supp(NWr)

∑
w≥`−v+k

p3d−w · q(r+1) ·
(
d

pq

)d−(`−v+k)

·Rd(w, r)

(recall Rd(w, r) from Equation 15)

≤ 2 ·
∑

D1∈Supp(NWr)

∑
w≥`−v+k

p3d−w · q(r+1) ·
(
d

pq

)d−(`−v+k)

· q(r+1) ·
(
d

q

)w

≤ 4 ·
∑

D1∈Supp(NWr)

p3d · q2(r+1) ·
(
d

pq

)d

≤ 4 · p2d · q3(r+1) ·
(
d

q

)d
= 4 · γ2 · q(r+1) ·

(
d

q

)d
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Therefore,

E [T3] ≤ ρ · E [η]

≤ 2d ·
(
d

k

)2

·
(
N − d
`

)
· 4 · γ2 · q(r+1) ·

(
d

q

)d
Since r + 1 = α+β

2(1+α) · d and q ≥ d1+α,

E [T3] ≤ 4 ·
(

2

d
α−β

2

)d
· γ2 ·

(
d

k

)2

·
(
N − d
`

)
.

Proposition 27. If |D1 ∩D2| = w then

|µ1(D1, D2)| =
(
N − 2d+ w

`

)
·
(
w

k

)
and hence E [T1] ≤ d · γ2

d(α−β)k · k!
·
(
N − 2d+ k

`

)
.

Proof. For a given D1, D2, let us count the number of rows (A,C) in which D1 and D2 can occur
as labels. Since C ⊂ D1 ∩D2 and |D1 ∩D2| = w, we can pick C in

(
w
k

)
ways. For every choice of

C, we can pick A in
(
N−2d+w

`

)
ways as A must be disjoint from D1 ∪D2 and |D1 ∪D2| = 2d− w.

By Equation 18,

T1 =
∑

D1∈Supp(NWr)

∑
w≥k

∑
D2∈Supp(NWr)

D2 6=D1,|D2∩D1|=w

eD1 · eD2 · |µ1(D1, D2)|

⇒ E [T1] =
∑

D1∈Supp(NWr)

∑
w≥k

∑
D2∈Supp(NWr)

D2 6=D1,|D2∩D1|=w

pd · pd−w ·
(
N − 2d+ w

`

)
·
(
w

k

)

≤ p2d ·
∑

D1∈Supp(NWr)

∑
w≥k

Rd(w, r) · p−w ·
(
N − 2d+ w

`

)
·
(
w

k

)

≤ p2d ·
∑

D1∈Supp(NWr)

∑
w≥k

qr+1 ·
(
d

pq

)w
· 1
w!
·
(
N − 2d+ w

`

)
·
(
w

k

)

≤ p2d · qr+1 ·
∑

D1∈Supp(NWr)

∑
w≥k

(
1

dα−β

)w
· 1
w!
·
(
N − 2d+ w

`

)
·
(
w

k

)

The term
(

1
dα−β

)w · 1
w! ·

(
N−2d+w

`

)
·
(
w
k

)
is maximized at w = k as β < α. So,

E [T1] ≤ d · γ2

d(α−β)k · k!
·
(
N − 2d+ k

`

)
.
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