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Abstract

Considerable effort has been devoted to the development of streaming algorithms for analyzing mas-
sive graphs. Unfortunately, many results have been negative, establishing that a wide variety of problems
require Ω(n2) space to solve. One of the few bright spots has been the development of semi-streaming
algorithms for a handful of graph problems — these algorithms use space O(npolylog(n)).

In the annotated data streaming model of Chakrabarti et al. [CCMT14], a computationally limited
client wants to compute some property of a massive input, but lacks the resources to store even a small
fraction of the input, and hence cannot perform the desired computation locally. The client therefore
accesses a powerful but untrusted service provider, who not only performs the requested computation,
but also proves that the answer is correct.

We put forth the notion of semi-streaming algorithms for annotated graph streams (semi-streaming
annotation schemes for short). These are protocols in which both the client’s space usage and the length
of the proof are O(npolylog(n)). We give evidence that semi-streaming annotation schemes represent a
substantially more robust solution concept than does the standard semi-streaming model. On the positive
side, we give semi-streaming annotation schemes for two dynamic graph problems that are intractable
in the standard model: (exactly) counting triangles, and (exactly) computing maximum matchings. The
former scheme answers a question of Cormode [ope]. On the negative side, we identify for the first time
two natural graph problems (connectivity and bipartiteness in a certain edge update model) that can be
solved in the standard semi-streaming model, but cannot be solved by annotation schemes of “sub-semi-
streaming” cost. That is, these problems are just as hard in the annotations model as they are in the
standard model.
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1 Introduction

The rise of cloud computing has motivated substantial interest in protocols for verifiable data stream compu-
tation. These protocols allow a computationally weak client (or verifier), who lacks the resources to locally
store a massive input, to outsource the storage and processing of that input to a powerful but untrusted
service provider (or prover). Such protocols provide a guarantee that the answer returned by the prover is
correct, while allowing the verifier to make only a single streaming pass over the input.

Several recent works have introduced closely related models capturing the above scenario [GR13,CCMT14,
CCM+13, KP13, CCGT14, KP14, CMT13, CTY11, CMT12]. Collectively, these works have begun to re-
veal a rich theory, leveraging algebraic techniques developed in the classical theory of interactive proofs
[LFKN92, Sha92, Bab85, GMR89] to obtain efficient verification protocols for a variety of problems that
require linear space in the standard streaming model (sans prover).

The primary point of difference among the various models of verifiable stream computation that have
been proposed is the amount of interaction that is permitted between the verifier and prover. The annotated
data streaming model of Chakrabarti et al. [CCMT14] (subsequently studied in [CMT13, KP13, CCGT14,
CMT12]) is non-interactive, requiring the correctness proof to consist of just a single message from the
prover to the verifier, while other models, such as the Arthur–Merlin streaming protocols of Gur and Raz
[GR13, CCGT14] and the streaming interactive proofs of Cormode et al. [CTY11, CCM+13] permit the
prover and verifier to exchange two or more messages. Our focus in this paper is on the annotated data
streaming model of Chakrabarti et al. — owing to their non-interactive nature, protocols in this model
possess a number of desirable properties not shared by their interactive counterparts, such as reusability
(see Section 2 for details). We are specifically concerned with protocols for problems on graph streams,
described below.

Graph Streams. The ubiquity of massive relational data sets (derived, e.g. from the Internet and social
networks) has led to detailed studies of data streaming algorithms for analyzing graphs. In this setting, the
data stream consists of a sequence of edges, defining a graph G on n nodes, and the goal is to compute
various properties of G (is G connected? How many triangles does G contain?). Unfortunately, many
results on graph streaming have been negative: essentially any graph problem of the slightest practical
interest requires Ω(n) space to solve in the standard streaming model, and many require Ω(n2) space even
to approximate. Due to their prohibitive cost in the standard streaming model, many basic graph problems
are ripe for outsourcing.

One of the few success stories in the study of graph streams has been the identification of the semi-
streaming model as something of a “sweet spot” for streaming algorithms [Mut05, McG09]. The semi-
streaming model is characterized by an O(npolylogn) space restriction, i.e., space proportional to the num-
ber of nodes rather than the number of edges. For dense graphs this represents considerably less space than
that required to store the entire graph. It has long been known that problems like connectivity and bipartite-
ness possess semi-streaming algorithms when the stream consists only of edge insertions, with no deletions.
Recently, semi-streaming algorithms have been provided for these and other problems even for dynamic
graph streams, which contain edge deletions as well as insertions [AGM12a, AGM12b, GKP12]. We direct
the interested reader toward the recent survey of McGregor [McG14] on graph stream algorithms.

In this work, we put forth the notion of semi-streaming annotation schemes for graph problems. Here,
the term “scheme” refers to a protocol in the annotated data streaming model. A scheme’s total cost is
defined to be the sum of the verifier’s space usage (referred to as the space cost of the scheme) and the
length of the proof (referred to as the scheme’s help cost). A scheme is said to be semi-streaming if its total
cost is O(npolylogn).

We give evidence that semi-streaming annotation schemes represent a substantially more robust solution
concept (i.e., a “sweeter spot”) for graph problems than does the standard semi-streaming model. First,
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Reference TRIANGLES Scheme Costs (help cost, space cost) Total Cost Achieved
[CCMT14] (n2 logn, logn) O(n2 logn)
[CCMT14] (x logn,y logn) for any x · y≥ n3 O(n3/2 logn)

Theorem 1.1 (n logn,n logn) O(n logn)

Table 1: Comparison of our new scheme for TRIANGLES to prior work.

we give novel semi-streaming annotation schemes for two challenging dynamic graph problems, counting
triangles and maximum matching, that require Ω(n2) space in the standard streaming model. The total cost
of these schemes is provably optimal up to a logarithmic factor.

Second, we show that two canonical problems that do possess semi-streaming algorithms in the standard
streaming model (connectivity and bipartiteness in a certain edge update model) are just as hard in the
annotations model. Formally, we show that any scheme for these problems with space cost O(n1−δ ) requires
a proof of length Ω(n1+δ ) for any δ > 0. Thus, for these problems, giving a streaming algorithm access to
an untrusted prover does not allow for a significant reduction in cost relative to what is achievable without
a prover. This gives further evidence for the robustness of semi-streaming annotation schemes as a solution
concept: while several fundamental problems that cannot be solved by standard semi-streaming algorithms
can be solved by semi-streaming annotation schemes, there are “easy” problems (i.e., problems that do have
semi-streaming solutions in the standard model) that cannot be solved by schemes of “sub-semi-streaming”
cost.

1.1 Summary of Contributions and Techniques

Throughout this informal overview, n will denote the number of nodes in the graph defined by the data
stream, and m the number of edges. To avoid boundary cases in the statement of our lower bounds, we
assume that the help cost of any scheme is always at least 1 bit.

1.1.1 New Semi-Streaming Annotation Schemes

Prior work has given semi-streaming annotation schemes for two specific graph problems that require Ω(n2)
space in the standard semi-streaming model: bipartite perfect matching [CCMT14], and shortest s-t path in
graphs of polylogarithmic diameter [CMT13]. As discussed above, we give semi-streaming annotation
schemes for two more challenging graph problems: maximum matching (MAXMATCHING) and counting
triangles (TRIANGLES). Both schemes apply to dynamic graph streams.

Scheme for Counting Triangles.

Theorem 1.1 (Informal Version of Theorem 3.1). There is a scheme for TRIANGLES with total cost O(n logn).
Every scheme requires the product of the space and help costs to be Ω(n2), and hence requires total cost
Ω(n).

Theorem 1.1 affirmatively answers a question of Cormode [ope], resolves the Merlin-Arthur commu-
nication complexity of the problem up to a logarithmic factor, and improves over the best previous upper
bound of O(n3/2 logn), due to Chakrabarti et al. [CCMT14] (see Table 1 for a detailed comparison to prior
work).

As is the case for essentially all non-trivial protocols for verifiable stream computation, the scheme of
Theorem 1.1 uses algebraic techniques related to the famous sum-check protocol of Lund et al. [LFKN92]
from the classical theory of interactive proofs. Yet, our scheme deviates in a significant way from all
earlier annotated data stream and interactive proof protocols [GKR08,CCM+13,CCMT14,Sha92]. Roughly
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Reference MAXMATCHING Scheme Costs (help cost, space cost) Total Cost Achieved
[CMT13] (m logn, logn) O(m logn)

Theorem 3.2 (n logn,n logn) O(n logn)

Table 2: Comparison of our new scheme for MAXMATCHING to prior work.

speaking, in previous protocols, the verifier’s updates to her memory state were commutative, in the sense
that reordering the stream tokens would not change the final state reached by the verifier. However, our new
verifier is inherently non-commutative: her update to her state at time i depends on her actual state at time
i, and reordering the stream tokens can change the final state reached by the verifier. See Section 3.1.1 for
further discussion of this point.

Like our scheme for MAXMATCHING below, our scheme for TRIANGLES does not achieve smooth
tradeoffs between space and help costs: we do not know how to reduce the space usage to o(n logn) without
blowing the help cost up to Ω(n2), or vice versa. This is in contrast to prior work on annotated data streams
[CCMT14, CMT13, CCGT14, GR13], which typically achieved any combination of space and help costs
subject to the product of these two costs being above some threshold. We conjecture that achieving such
smooth tradeoffs for either problem is impossible.

Scheme for Maximum Matching.

Theorem 1.2. [Informal Version of Theorem 3.2] There is a scheme for MAXMATCHING with total cost
O(n logn). Every scheme for MAXMATCHING requires the product of the space and help costs to be Ω(n2),
and hence requires total cost Ω(n).

Our scheme combines the Tutte-Berge formula with algebraic techniques to allow the prover to establish
matching upper and lower bounds on the size of a maximum matching in the input graph. Schemes for
maximum matching had previously been studied by Cormode et al. [CMT13], but this prior work only
gave schemes with help cost proportional to the number of edges, which is Ω(n2) in dense graphs (like
us, Cormode et al. exploited the Tutte-Berge formula, but did not do so in a way that achieved help cost
sublinear in the input size). Prior work had also given a scheme achieving optimal tradeoffs between help
and space costs for bipartite perfect matching [CCMT14, Theorem 7.5] – our scheme for MAXMATCHING

can be seen as a broad generalization of [CCMT14, Theorem 7.5].

1.1.2 New Lower Bounds

On the other hand, we identify, for the first time, natural graph problems that possess standard semi-
streaming algorithms, but in a formal sense are just as hard in the annotations model as they are in the
standard streaming model. The problems that we consider are connectivity and bipartiteness in a certain
edge update model that we call the XOR update model. In this update model, the stream 〈e1, . . . ,em〉 is a
sequence of edges from [n]× [n], which define a graph G = (V,E) via: e ∈ E⇐⇒ |{i : ei = e}|= 1 mod 2.
Intuitively, each stream update ei is interpreted as changing the status of edge ei: if it is currently in the
graph, then the update causes ei to be deleted; otherwise ei is inserted. Our lower bound holds for schemes
for connectivity and bipartiteness in the XOR update model, even under the promise that e1, . . . ,em−n are all
unique (hence, all but the last n stream updates correspond to edge insertions), and the last n updates are all
incident to a single node.

Theorem 1.3 (Informal Version of Corollary 4.2). Consider any scheme for CONNECTIVITY or BIPAR-
TITENESS in the XOR update model with help cost ca and and space cost cv. Then (ca + n) · cv ≥ n2, even
under the promise that the first m− n stream updates are all unique, and the last n stream updates are all
incident to a single node. In particular, the total cost of any annotation scheme for these problems is Ω(n).
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Both connectivity and bipartiteness in the XOR update model possess standard semi-streaming algo-
rithms [AGM12a].1 Hence, Theorem 1.3 implies that the total cost of any annotation scheme is at most
a polylogarithmic factor smaller than the problems’ space complexity in the standard streaming model.
Like all prior work establishing lower bounds on the cost of protocols for verifiable stream computation, our
lower bounds are established using notions of Merlin-Arthur communication complexity [CCMT14,CMT13,
KP13, CCM+13, GR13].

Prior to this work, only one other problem was known to be as hard (up to logarithmic factors) in the
annotations model as in the standard streaming model [CCGT14, Corollary 3.3]. The problem considered
in [CCGT14, Corollary 3.3] was an “exponentially sparse” variant of the classic INDEX problem, in which
the data stream consists of a vector x ∈ {0,1}n promised to have Hamming weight O(logn), followed by an
index i ∈ [n], and the goal is to output the value xi. Clearly, connectivity and bipartiteness are qualitatively
very different from this problem, and arguably more natural.

Overview of the Proof. Our proof of Theorem 1.3 works by specifying a reduction from the INDEX problem
on inputs of length n2, for which a lower bound of Ω(n2) on the product of the help and space costs of any
annotation scheme was established in [CCMT14], to CONNECTIVITY and BIPARTITENESS on graphs with
n nodes and Θ(n2) edges.

Notice that in the standard (sans prover) streaming model, the INDEX problem on n2 variables is strictly
harder than connectivity and bipartiteness problems on graphs with n nodes, as the former requires Ω(n2)
space, while the latter two problems require only O(npolylog(n)) space. Yet Theorem 1.3 establishes that
in the annotations model, all three problems are of essentially equivalent difficulty (in particular, schemes
of total cost Õ(n) are necessary and sufficient to solve all three problems). To establish such a result, it
is necessary to use a reduction that is specifically tailored to the annotations model, in the sense that the
reduction must not apply in the standard streaming model (since INDEX and CONNECTIVITY are not of
equivalent difficulty in the standard setting). Namely, in our reduction from INDEX to connectivity, the
prover helps the verifier transform an instance of the INDEX problem into a CONNECTIVITY instance. This
“help” consists of Θ(n) bits, and this is why our lower bound is of the form (ca + n) · cv ≥ n2. This is in
contrast to prior lower bounds, which, with the exception of [CCGT14, Corollary 3.3], were all of the form
ca · cv = Ω(C) for some quantity C.

1.2 Other Related Work

As discussed above, several recent papers [CMT12,CCM+13,CTY11,KP13,KP14,GR13,CCGT14,CCMT14,
CMT13] have all studied annotated data streams and closely related models for verifiable stream computa-
tion. Refinements and implementations [VSBW13, CMT12, Tha13] have demonstrated genuine practicality
for many of the protocols developed in this line of work.

Protocols for verifiable stream computation have also been studied in the cryptography community
[CKLR11, PSTY13, SS12]. These works only require security against cheating provers that run in poly-
nomial time, as compared to the setting we consider, where security holds even against computationally
unbounded provers. In exchange for the weaker security guarantee, these protocols can achieve properties
that are impossible in our information-theoretic setting. For example, some of these protocols achieve a
stronger form of reusability than we do (see Section 2 for our definition of reusability) — they remain se-
cure for many uses even if the prover learns all of the verifier’s accept/reject decisions. The work of Chung
et al. [CKLR11] uses fully homomorphic encryption (FHE), which remains far from practical at this time.

1The algorithms of [AGM12a] are described in the turnstile update model, in which each stream update explicitly specifies
whether to insert or delete a (copy of) an edge. However, these algorithms are easily modified to apply to the XOR update model
as well. In brief, these algorithms have L0-sampling algorithms at their core. Existing L0-samplers are in turn built on top of
sparse recovery algorithms (see, e.g., [CF14]), and many sparse recovery algorithms can be implemented in the XOR update model
directly (see, e.g., [GM11]).
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Schröder and Schröder [SS12], and Papamanthou et al. [PSTY13] avoid the use of FHE, but handle only
much simpler queries (such as point queries and range search) than the graph problems we consider here.

2 Models of Streaming Computation
Our presentation of data streaming models closely follows Chakrabarti et al. [CCGT14]. Recall that a
(standard) data stream algorithm computes a function f of an input sequence x∈Um, where m is the number
of stream updates, and U is some data universe. The algorithm has only sequential access to x, uses a limited
amount of space, and has access to a random string. The function f may or may not be Boolean.

An annotated data stream algorithm, or a scheme, is a pair A = (h,V ), consisting of a help function
h : Um×{0,1}∗→ {0,1}∗ used by a prover and a data stream algorithm run by a verifier, V . The prover
provides h(x) as annotation to be read by the verifier. We think of h as being decomposed into (h1, . . . ,hm),
where the function hi : Um → {0,1}∗ specifies the annotation supplied after the arrival of the ith token xi.
That is, h acts on x to create an annotated stream xh defined as follows:

xh := (x1, h1(x), x2, h2(x), . . . , xm, hm(x)) .

Note that this is a stream over U ∪{0,1}, of length m+∑i |hi(x)|. The streaming verifier, who has access
to a (private) random string r, then processes this annotated stream, eventually giving an output outV (xh,r).

Online Schemes. We say a scheme is online if each function hi depends only on (x1, . . . ,xi). The scheme
A= (h,V ) is said to be δs-sound and δc-complete for the function F if the following conditions hold:

1. For all x ∈ Um, we have Prr[outV (xh,r) 6= F(x)]≤ δc.

2. For all x ∈ Um, h′ = (h′1,h
′
2, . . . ,h

′
m) ∈ ({0,1}∗)m, we have Prr[outV (xh′ ,r) 6∈ {F(x)}∪{⊥}]≤ δs.

An output of “⊥” indicates that the verifier rejects the prover’s claims in trying to convince the verifier to
output a particular value for F(x). We define err(A) to be the minimum value of max{δs,δc} such that the
above conditions are satisfied. We define the annotation length hc(A) = maxx ∑i |hi(x)|, the total size of the
prover’s communications, and the verification space cost vc(A) to be the space used by the verifier. We say
that A is an online (ca,cv) scheme if hc(A) = O(ca), vc(A) = O(cv), and err(A) ≤ 1

3 (the constant 1/3 is
arbitrary and chosen by convention).

Prescient Schemes. Chakrabarti et al. [CCMT14] also define the notion of a prescient scheme, which is
the same as an online scheme, except the annotation at any time i is allowed to depend on data which the
verifier has not seen yet. Prescient schemes have the undesirable property that the prover may need to “see
into the future” to convince the verifier to produce the correct output. Note that even though our TRIANGLES

and MAXMATCHING protocols are online, they are optimal up to logarithmic factors even among prescient
schemes (see Theorems 3.1 and 3.2 for details).

Additional Properties of Our Schemes. While the annotated data streams model allows the prover to in
leave the annotation with the stream, in all of the schemes we present in this paper, all of the annotation
comes at the end of the stream. This property avoids any need for fine-grained coordination between the
annotation and the stream, and permits the prover to send the annotation as a single email attachment, or
post it to a website for the verifier to retrieve at her convenience. We clarify that the lower bounds for
CONNECTIVITY and BIPARTITENESS that we establish in Section 4 apply to any online scheme, even those
which interleave the annotation with the stream.

The schemes we present in this work permit a natural form of reusability: if the verifier wants to compute
a function f on a given dataset x, the verifier can receive f (x) (with a correctness proof), and check the
validity of the proof using a “secret state” that she computed while observing the stream x. Further updates
to the stream x can then occur, yielding a (longer) stream x′, and the verifier can update her secret in
a streaming fashion. The verifier may then receive the answer f (x′) (with a correctness proof) on the
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updated dataset, and check its correctness using the updated secret state. The probability the verifier gets
fooled into outputting an incorrect answer on even a single query grows only linearly with the number of
times the prover sends the verifier an answer. This kind of reusability is not possible with many interactive
solutions [CTY11,CCM+13,KP14], which typically require the verifier to reveal information about r to the
prover over the course of the protocol.

3 Upper Bounds

Graph Streams in the Strict Turnstile Model. The annotation schemes of this section apply to graph
streams in the strict turnstile update model. In this model, a data stream σ consists of a sequence of undi-
rected edges, accompanied by (signed) multiplicities: 〈(e1,∆1), . . . ,(em,∆m)〉. Each edge ei ∈ [n]× [n], and
each ∆i ∈ Z. An update (ei,∆i) with ∆i > 0 is interpreted as an insertion of ∆i copies of edge ei into graph
G. If ∆i < 0, the update is interpreted as a deletion of ∆i copies of edge ei. It is assumed that at the end of
the stream, no edge has been deleted more times than it has been inserted (all of our protocols work even
if this property does not hold at intermediate time steps, as long as the property holds after the final stream
update has been processed).

When analyzing the time costs of our schemes, we assume that any addition or multiplication in a finite
field of size poly(n) takes one unit of time.

3.1 A Semi-Streaming Scheme for Counting Triangles

In the TRIANGLES problem, the goal is to determine the number of unordered triples of distinct vertices
(u,v,z) such that edges (u,v), (v,z), and (z,u) all appear in G. Computing the number of triangles is a
well-studied problem [AYZ97] and there has been considerable interest in designing algorithms in a variety
of models including the data stream model [BYKS02, PTTW13], MapReduce [SV11], and the quantum
query model [LMS13]. One motivation is the study of social networks where important statistics such as
the clustering coefficient and transitivity coefficient are based on the number of triangles. Understanding the
complexity of counting triangles captures the ability of a model to perform a non-trivial correlation within
large graphs. Chakrabarti et al. [CCMT14] gave two annotated data streaming protocols for this problem.
The first protocol had help cost O(n2 logn), and space cost O(logn). The second protocol achieved help cost
O(x logn) and space cost O(y logn) for any x,y such that x · y ≥ n3. In particular, by setting x = y = n3/2,
the second protocol of Chakrabarti et al. ensured that both help cost and space cost equaled O

(
n3/2 logn

)
.

Cormode [ope] asked whether it is possible to achieve an annotated data streaming protocol in which both
the help cost and space cost are Õ(n). We answer this question in the affirmative.

Theorem 3.1 (Formal Statement of Theorem 1.1). Assume there is an a priori upper bound B ≤ poly(n)
on the multiplicity of any edge in G. There is an online scheme for TRIANGLES with space and help costs
O(n logn). Every scheme (online or prescient) requires the product of the space and help costs to be Ω(n2),
and hence total cost Ω(n), even for B = 1, and even if G is promised to have exactly 0 or 1 triangles.

Proof. The lower bound was proved in [CCMT14, Theorem 7.1]. Details of the upper bound follow.
Let Gi denote the graph defined by the first i stream updates 〈(e1,∆1), . . . ,(ei,∆i)〉, and let Ei : [n]× [n]→

{0,1} denote the function that outputs the multiplicity of the edge (u,v) in graph Gi−1. On edge update
ei = (ui,vi), notice that the number of triangles that ei completes in Ei is precisely ∆i ·∑z∈[n] Ei(ui,z)Ei(vi,z).
Thus, at the end of the stream, the total number of triangles in the graph G = Gm is precisely

∑
i≤m

∆i ∑
z∈[n]

Ei(ui,z)Ei(vi,z). (1)
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We will use sum-check techniques to compute this quantity. To this end, let F denote a field of prime
order 6(B · n)3 ≤ |F| ≤ 12(B · n)3, where B is an a priori upper bound on the multiplicity of any edge,
and let Ẽi(X ,Y ) denote the unique polynomial over F of degree at most n in each variable X ,Y such that
Ẽi(u,v) = Ei(u,v) for all (u,v) ∈ [n]× [n].

Then Quantity (1) equals

∑
i≤m

∆i ∑
z∈[n]

Ei(ui,z)Ei(vi,z) = ∑
i≤m

∆i ∑
z∈[n]

Ẽi(ui,z)Ẽi(vi,z) = ∑
z∈[n]

∑
i≤m

∆i · Ẽi(ui,z)Ẽi(vi,z). (2)

In turn, the right hand side of Equation (2) can be written as ∑z∈[n] g(z), where g denotes the univariate
polynomial defined via:

g(Z) = ∑
i≤m

∆i · Ẽi(ui,Z)Ẽi(vi,Z). (3)

Notice g(Z) is a univariate polynomial of degree at most 2n. Our annotated data streaming protocol
proceeds as follows.

Prover’s computation. At the end of the stream, the prover is required to send a univariate polynomial
s(Z) of degree at most 2n, where s(Z) is claimed to equal g(Z). Notice that since s(Z) has degree at
most 2n, s(Z) can be specified by sending its values on all inputs in {0, . . . ,2n} – this requires help cost
O(n log |F|) = O(n logn).

Verifier’s computation. At the start of the stream, the verifier picks a random field element r ∈ F, and keeps
the value of r secret from the prover. We will show below that the verifier can evaluate g(r) with a single
streaming pass over the input, using space O(n logn). The verifier checks whether s(r) = g(r). If this check
fails, the verifier halts and rejects. If the check passes, the verifier outputs ∑z∈[n] s(z) as the correct answer.

We now explain how the verifier can evaluate g(r) with a single streaming pass over the input. The
high-level idea is as follows. Equation (3) expresses g(r) as a sum of m terms, where the ith term equals
∆i · Ẽi(ui,r)Ẽi(vi,r). For each u ∈ [n], we will show how the verifier can incrementally maintain the quantity
Ẽi(u,r) at all times i. The verifier will maintain all n of these quantities, resulting in a total space cost of
O(n log |F|) = O(n logn). With these quantities in hand, it is straightforward for the verifier to incrementally
maintain the sum ∑ j≤i ∆ j · Ẽ j(u j,r)Ẽ j(v j,r) at all times i: upon the ith stream update, the verifier simply
adds ∆i · Ẽi(ui,r) · Ẽi(vi,r) to the running sum.

To maintain the quantity Ẽi(u,r), we begin by writing the bivariate polynomial Ẽi(X ,Y ) in a convenient
form. Given a pair (u,v) ∈ [n]× [n], let δ̃(u,v) denote the following (Lagrange) polynomial:

δ̃(u,v)(X ,Y ) =
(

∏1≤u′≤n:u′ 6=u(X−u′)

∏1≤u′≤n:u′ 6=u(u−u′)

)(
∏1≤v′≤n:v′ 6=v(Y − v′)

∏1≤v′≤n:v′ 6=v(v− v′)

)
. (4)

Notice that δ̃(u,v) evaluates to 1 on input (u,v), and evaluates to 0 on all other inputs (x,y) ∈ [n]× [n]. Thus,
we may write Ẽi(X ,Y ) = ∑ j≤i δ̃(u j,v j)(X ,Y ). In particular, for each node u ∈ [n], Ẽi(u,r) = Ẽi−1(u,r) +
δ̃(ui,vi)(u,r)+ δ̃(vi,ui)(u,r). Thus, the verifier can incrementally maintain the quantity Ẽi(u,r) in a streaming
manner using space O(log |F|): while processing the ith stream update, the verifier simply adds δ̃(ui,vi)(u,r)+
δ̃(vi,ui)(u,r) to the running sum tracking Ẽi(u,r).

Completeness. It is evident that if the prover sends the true polynomial g(Z), then the verifier’s check will
pass, and the verifier will output the correct number of triangles in the final graph G.

Soundness. If the prover sends a polynomial s(Z) 6= g(Z), then with probability at least 1− 2n/|F| ≥
1−1/3n over the verifier’s random choice of r ∈ F, it will hold that s(r) 6= g(r). Hence, with probability at
least 1−1/3n≥ 2/3, the verifier’s check will fail and the verifier will reject.
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Verfier Pre-Processing Verifier Time Per Verifier Time to Prover Total
Time Stream Update Process Proof Time

O(n logn) O(1) O(n) O(m ·n)

Table 3: Statement of Time Costs For Our TRIANGLES Scheme (Theorem 3.1).

Several remarks regarding Theorem 3.1 are in order.

• Verifier Time. The verifier in the protocol of Theorem 3.1 can process each stream update in constant
time as follows. On stream update ei = (ui,vi), the verifier must add δ̃(ui,vi)(u,r)+ δ̃(vi,ui)(u,r) to each
of the Ei(u,r) values. However, using Equation (4), it is straightforward to check that δ̃(ui,vi)(u,r) = 0
for all u 6= ui, so the verifier need only update two quantities at time i: Ei(ui,r) and Ei(vi,r). We
explain how both of these updates can be computed in constant time.

It can be seen from Equation (4) that

δ̃(ui,vi)(ui,r) =
∏1≤v′≤n:v′ 6=vi(r− v′)

∏1≤v′≤n:v′ 6=vi(vi− v′)
(5)

The right hand side of Equation (5) can be computed in O(1) time if the verifier maintains a pre-
computed lookup table consisting of O(n) field elements. Specifically, for each v ∈ [n], it suffices for
the verifier to maintain the quantities q1(v) :=∏1≤v′≤n:v′ 6=vi(r−v′) and q2(v)=

(
∏1≤v′≤n:v′ 6=vi(vi− v′)

)−1.
All O(n) of these quantities can be computed in pre-processing in total time O(n logn), where the logn
term is due to the time required to compute a multiplicative inverse in the field F. Indeed, q1(1) and
q2(1) can be computed naively in O(n) time, and then for any v > 1, q1(v) and q2(v) can be computed
in O(logn) time from q1(v−1) and q2(v−1) via the identities q1(v) = q1(v−1) ·(r−v)−1 ·(r−v+1)
and q2(v) = q2(i−1) · (v−1)−1 · (n− v+1).

Finally, the verifier can process the proof itself in time O(n). Indeed, recall that the proof consists of
the values s(x) for x ∈ {0, . . . ,2n}, and the verifier simply needs to compute ∑1≤x≤n s(x) as well as
s(r). The first quantity can trivially be computed in time O(n), and the second can be computed in
time O(n) as well using standard techniques (see, e.g., [CMT12]).

• Prover Time. The honest prover in the protocol of Theorem 3.1 can be implemented to run in time
O(m ·n). Indeed, the honest prover needs to evaluate g(x) for O(n) points x∈F, and we have explained
above how g(x) can be computed in O(m) time (in fact, in O(1) time per stream update). Note that
this time is comparable to the cost of a naive triangle counting algorithm that, for each edge and node
combination, tests whether the two edges incident on the edge and node exist in the graph.

The time costs for both the prover and verifier are summarized in Table 3.

• Extensions. Let H be a graph on k vertices. It is possible to extend the protocol underlying Theorem
3.1 to count the number of occurrences of H as a subgraph of G. The protocol requires k−2 rounds,
and its help and space costs are O(kn logn) and O(n logn) respectively. We omit the details for brevity.

• MA communication. Theorem 3.1 implies that the (online) MA communication complexity of count-
ing triangles is O(n logn) (see Section 4.1 for the definition of the (online) MA communication
model). This essentially matches an Ω(n) lower bound on the (even non-online) MA communica-
tion complexity of the problem, proved by Chakrabarti et al. [CCMT14] via a standard reduction to
SET-DISJOINTNESS, and answers a question of Cormode [ope].
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3.1.1 Comparison to Prior Work

As is typical in the literature on interactive proofs, the verifier in our TRIANGLES protocol evaluates gσ (r)
for a random point r ∈ F, where g is a polynomial derived from the input stream σ . This quantity serves as
a “secret” that the verifier can use to catch a dishonest prover. However, our protocol qualitatively departs
from prior work in that for our definition of gσ , gσ (r) is not a linear sketch of the input. For purposes of
this discussion, we define a linear sketch as any summary of the form v ∈ Fw for some w > 0 which can be
computed as v = Sf(σ). Here, S ∈ Fw×n is a “sketch matrix” and f(σ) denotes the frequency-vector of the
stream, i.e., the ith element of f(σ) is the number of times item i appears in σ . To the best of our knowledge,
all existing protocols in the interactive proofs literature only require the verifier to compute a linear sketch
of the input [GKR08, Sha92, LFKN92, CCMT14, CTY11, CMT12, GR13, ?]. Typically, this linear sketch
consists of one or more evaluations of a low-degree extension of the frequency vector f itself.

In contrast, in our TRIANGLES protocol, we view the quantity gi,σ (r) := ∑ j≤i ∆ j · Ẽ j(u j,r) · Ẽ j(v j,r) as
the verifier’s sketch at time i. While Ẽ j(u,r) is a linear sketch of the input for each j and node u ∈ [n] (in
fact, this is what enables the verifier to compute Ẽ j(u,r) for each u ∈ [n] in a streaming manner), gi,σ (r) =
∑ j≤i ∆ j · Ẽ j(u j,r) · Ẽ j(v j,r) is not. A consequence is that, in our TRIANGLES protocol, the verifier’s update
to her state at time j depends on her state at time j (specifically, her update depends on the stored values
Ẽ j(u j,r) and Ẽ j(v j,r)). Moreover, the verifier’s final state gm,σ (r) at the end of the data stream depends on
the order of the stream stream tokens – it is easy to construct dynamic graph streams σ ,σ ′, such that σ is a
permutation of σ ′, and yet gm,σ (r) 6= gm,σ ′(r) with high probability over the random choice of r.

This contrasts with linear sketches, as in a linear sketch, each stream update (i,δ ) contributes the value
Sei to the sketch independently of all other stream updates, where ei is the vector consisting of a 1 in the ith
coordinate and zeros elsewhere. In particular, the final state of a linear sketch is independent of the order of
the data stream.

We conjecture that any semi-streaming scheme for counting triangles must have a “non-commuting”
verifier, as in the protocol of Theorem 3.1. In contrast, recent work has shown that, in the standard streaming
model, any “non-commutative” streaming algorithm that works in the turnstile streaming model can be
simulated with essentially no increase space usage by a “commutative” streaming algorithm (in fact, even
by a linear sketching algorithm) [LNW14].

3.2 A Semi-Streaming Scheme for Maximum Matching

We give a semi-streaming scheme for the MAXMATCHING problem in general graphs. Our scheme com-
bines the Tutte-Berge formula with algebraic techniques to allow the prover to prove matching upper and
lower bounds on the size of a maximum matching in the input graph.2

Theorem 3.2. [Formal Version of Theorem 1.2] Assume there is an a priori upper bound B ≤ poly(n) on
the multiplicity of any edge in G. There is an online scheme for MAXMATCHING of total cost O(B ·n logn).
Every scheme for MAXMATCHING (online or prescient) requires the product of the space and help costs to
be Ω(n2), and hence requires total cost Ω(n), even for B = 1.

Proof. The lower bound follows from an identical lower bound proved for the Bipartite Perfect Matching
problem by Chakrabarti et al. [CCMT14], combined with the fact that the MAXMATCHING problem is at
least as hard as Bipartite Perfect Matching. We now turn to the upper bound. We begin with a high-level
proof sketch that highlights the novel aspects of our scheme, before turning to a detailed scheme description.

Proof Sketch. The prover proves matching upper and lower bounds on the size of a maximum matching.
To establish a lower bound, the prover simply sends a set of edges, M, claimed to be a maximum matching,

2It is possible to modify our scheme to give meaningful answers on graphs with edges of negative multiplicity. Specifically, the
modified scheme can treat edges of negative multiplicity as having strictly positive multiplicity. We omit the details for brevity.
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and uses techniques from prior work [CCMT14] to establish that M ⊆ E. To establish an upper bound, we
exploit the Tutte-Berge formula, which states that the size of a maximum matching in G = (V,E) is equal to

1
2

min
U⊆V

(|U |−odd(G−U)+ |V |) . (6)

Here, G−U is the induced graph obtained from G by removing all vertices in U , and odd(G−U) denotes
the number of connected components with an odd number of vertices in G−U . The prover sends a set
U∗ ⊆ V claimed to achieve the minimum in Equation (6). The primary novelty in our scheme is a method
for computing odd(G−U∗) that (in contrast to the MAXMATCHING scheme of [CMT13]) avoids the need
for the prover to replay all of the edges that appeared in the stream.

Detailed Scheme Description. Suppose that the prover claims that the answer is k. Our scheme consists
of two parts: in the first part, the prover proves that the size of a maximum matching in G is at least k. In
the second part, the prover proves that the size of a maximum matching in G is at most k. We clarify that
the verifier will be able to perform the required processing for both parts of the scheme simultaneously with
a single pass over the input stream, and the prover can send the annotation for both parts of the scheme in
a single message (i.e., by simply concatenating the annotation for the two parts). If the prover successfully
passes all of the verifier’s checks in both parts, then the verifier is convinced that the size of a maximum
matching in G is exactly k.

Part One. This part of the scheme is similar to the analogous part of the bipartite perfect matching protocol
given in [CCMT14]: the prover sends a set M of k edges M = (e(1), . . . ,e(k)) that are claimed to comprise a
valid matching in G, and the verifier explicitly stores M (this requires at most n logn bits of annotation and
space). The verifier needs to check that M is indeed a valid matching for G. This requires checking two
properties:

• Property 1: For all nodes v ∈V , v is incident to at most one edge e(i) ∈M.

• Property 2: M ⊆ E.

Property 1 is trivial to check, because the verifier stores M explicitly. Property 2 can be checked using
a scheme for the SUBSET problem described in [CCMT14, Lemma 5.3]. Here, the input to the SUBSET

problem consists of two (multi-)sets, S1 and S2, over a data universe U , arbitrarily interleaved, and the
output is 1 if and only if S1 ⊆ S2. We apply the SUBSET scheme of Chakrabarti et al. with S1 = M, S2 = E,
and U equal to the set of all O(n2) possible edges. The scheme requires help cost O(Bx logn) and space cost
O(By logn) for any x ·y≥ |U|= O(n2), where B is an a prior upper bound on the multiplicity of any edge in
E. In particular, assuming that B = O(1), both the help and space costs of the SUBSET scheme can be set to
O(n logn).

Part Two. We exploit the Tutte-Berge formula. This formula states that the size of a maximum matching in
a graph G = (V,E) is equal to

1
2

min
U⊆V

(|U |−odd(G−U)+ |V |) .

Here, G−U is the induced graph obtained from G by removing all vertices in U , and odd(G−U)
denotes the number of connected components with an odd number of vertices in G−U .

Thus, to establish that the size of the a maximum matching in G is at most k, the prover first identifies a
subset U∗ ⊆V such that k = g(U∗), where

g(U∗) :=
1
2
(|U∗|−odd(G−U∗)+ |V |) .
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The prover sends U∗ to V , which requires O(n logn) bits of help, and the verifier stores U∗ explicitly, which
requires O(n logn) bits of space. Clearly the verifier can easily compute the quantity g(U∗) if she knows the
value odd(G−U∗). The remainder of the scheme is therefore devoted to computing odd(G−U∗).

A (Sub-)Scheme for Computing odd(G−U∗). The prover first assigns each connected component in
G−U∗ a unique label in [C] arbitrarily, where C is the number of connected components in G−U∗. The
prover then sends a list L to the verifier that contains a pair (v, `v) for each node v ∈ V \U∗, where `v is
claimed to equal the label of v’s connected component in G−U∗. The verifier stores the list L explicitly
— the help and space costs for the prover to send L and the verifier to store L are both O(n logn). Since
the verifier stores L and U∗ explicitly, it is trivial for the verifier to check that every node in V \U∗ appears
exactly once in L.

If the list L is as claimed, then it is easy for the verifier to compute odd(G−U∗) in O(n logn) space, as
the verifier can simply count of the number of labels that appear in L an odd number of times. The remainder
of the scheme is therefore devoted to ensuring that the list L is as claimed.

To this end, the verifier must ensure that the labels `v in L actually correspond to the connected compo-
nents of G−U∗. This requires checking two properties.

• Property A: For each label `, all nodes v with label `v = ` are connected to each other in G−U∗.

• Property B: For every pair of nodes u,v in V \U∗ with different labels `u 6= `v, it holds that (u,v) 6∈ E.
That is, there is no edge in G−U∗ connecting two nodes that are claimed to be in different connected
components.

To prove that Property A holds, the prover sends, for each connected component ` in G−U∗, a set of
edges T`⊆ (V \U∗)×(V \U∗) that is claimed to be a spanning tree for all nodes with label ` (and the verifier
explicitly stores each of the T`’s). Note that sending and storing the T`’s requires O(n logn) bits of help and
space in total. For each `, the verifier must check that T` spans all nodes with label ` in L, and that ∪`T` ⊆ E.

Checking that T` spans all nodes with label ` is trivial, as the verifier has explicitly stored the list L
of (vertex, label) pairs, as well as the trees T`. To check that ∪`T` ⊆ E, we use the SUBSET scheme of
[CCMT14, Lemma 5.3].

A (Sub-)Scheme for Checking that Property B holds. Checking that Property B holds requires more care.
Notice that Property B holds if and only if:

0 = ∑
(u,v)∈[n]×[n]

D(u,v) ·E(u,v). (7)

Here, D(u,v) : [n]× [n]→{0,1} is defined to be the function that outputs 1 if `u 6= `v, and is 0 otherwise
(to clarify, if either u or v is in U∗ itself, then D(u,v) is defined to be 0) — we choose the letter D because
such edges are disallowed, if the component labels provided by the prover are correct. Abusing notation,
E(u,v) : [n]× [n]→ {0,1} in Equation (7) denotes the function that on input (u,v), outputs the multiplicity
of edge (u,v) in E.

To check that Equation (7) holds, we let D̃ denote the unique bivariate polynomial over a field F of prime
order, 2n3 ≤ |F| ≤ 4n3, such that the degree of D̃ is at most n in each variable, and D̃(u,v) = D(u,v) for all
(u,v) ∈ [n]× [n]. Likewise, we let Ẽ denote the unique bivariate polynomial over F such that the degree of
Ẽ is at most n in each variable, and Ẽ(u,v) = E(u,v) for all (u,v) ∈ [n]× [n].

Prover’s Computation. After the stream has passed and the prover has sent the list L, the prover is required
to send a univariate polynomial s(Y ) of degree at most 2n claimed to equal

g(Y ) := ∑
u∈[n]

D̃(u,Y ) · Ẽ(u,Y ).
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Because of the degree bound on s(Y ), this can be done with help cost O(n log |F|) = O(n logn).

Verifier’s Computation. At the start of the stream, the verifier picks a random r ∈ F. We will explain in the
next two paragraphs how the verifier can evaluate g(r) in a streaming fashion, with space cost O(n logn).
The verifier then checks that s(r) = g(r). If this check fails, then the verifier halts and rejects. If the check
passes, then verifier checks that ∑

n
v=1 s(i) = 0. If so, the verifier is convinced that Property B holds, and

accepts k as an upper bound on the size of any maximum matching in G.
While observing the data stream, the verifier incrementally computes the n values Ẽ(u,r) for each u∈ [n].

The proof of Theorem 3.1 explained how the verifier can do this in a streaming manner, using O(log |F|) =
O(logn) space for each value u ∈ [n], and thus O(n logn) space in total. Similarly, after the prover has sent
U∗ and L, the verifier computes the n values D̃(u,r) for each u ∈ [n]. Notice that the function D̃ is uniquely
determined by U∗ and the list L of (vertex, label) pairs. Since the verifier has explicitly stored U∗ and L, it is
straightforward for the verifier to evaluate each of these n values with total space O(n log |F|)=O(n logn) (in
the remarks following the theorem, we also explain in detail how the verifier can perform these n evaluations
in O(n) total time).

Once the verifier has computed the values Ẽ(u,r) and D̃(u,r) for each u ∈ [n], it is straightforward for
the verifier to compute g(r) = ∑u∈[n] Ẽ(u,r) · D̃(u,r).

Soundness and Completeness of the (Sub-)Scheme for Property B. The proofs of soundness and com-
pleteness are essentially identical to Theorem 3.1. If Equation (7) holds and s = g, then the verifier’s checks
will pass with probability 1, and the verifier will accept k as an upper bound on the size of any maxi-
mum matching in G. If Equation (7) is false, then the prover is forced to send a polynomial s 6= g, or the
verifier’s final check that ∑

n
v=1 s(v) = 0 will fail. But if s 6= g, then s(r) 6= g(r) with probability at least

1− 2n/|F| ≥ 1− 1/n, because any two distinct polynomials of degree at most 2n can agree on at most 2n
inputs.

Several remarks are in order regarding Theorem 3.2.

• The Bottleneck in Reducing Space Costs. In a formal sense, the most difficult part of the MAX-
MATCHING scheme given in Theorem 3.2 is checking that Property B holds. Indeed, this is the only
part of the entire MAXMATCHING scheme for which we are presently unable to reduce the verifier’s
space usage to o(n) without increasing the help cost to Ω(n2). That is, if it were possible for the ver-
ifier to avoid checking Property B, we would be able to give a scheme with help cost O(x logn) and
space cost O(y logn) for any pair x,y such that x ·y≥ n2 and x≥ n (in contrast to Theorem 3.2, which
only gives a scheme for the special values x = y = n). We conjecture, however, that the difficulty is
inherent, i.e., that there is no way to reduce the space cost to o(n) without increasing the help cost to
Ω(n2).

• Prover Time. In the scheme of Theorem 3.2, the prover has to compute a maximum matching and
identify the (possibly non-unique) set U∗ whose existence is guaranteed by the Tutte-Berge formula.
Fortunately, standard algorithms for computing maximum matchings identify the set U∗ as a natu-
ral byproduct of their execution.3 Using Fast Fourier Transform techniques described in [CMT12],
the remainder of the prover’s computation in the scheme of Theorem 3.2 can be executed in time
O(n2 logn). Hence, the total runtime of the prover is O(T +n2 logn), where T is the time required to
find a maximum matching along with the Tutte-Berge decomposition U∗.

3See for example the Boost Graph Library, http://www.boost.org/doc/libs/1_45_0/libs/graph/doc/maximum_

matching.html.
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Verfier Pre-Processing Verifier Time Per Verifier Time to Prover Total
Time Stream Update Process Proof Time

O(n logn) O(1) O(n) O(T +n2 logn)

Table 4: Statement of time costs for our MAXMATCHING scheme (Theorem 3.2). T denotes the time required to find
a maximum matching, as well as the Tutte-Berge decomposition of G.

• Verifier Time. Recall that we explained in Section 3.1 how to implement a verifier running in constant
time per stream update, after a pre-processing stage requiring O(n) time (see the remarks following
Theorem 3.1). These techniques are easily modified to enable the verifier in the scheme of Theorem
3.2 to also run in constant time per stream update, after a pre-processing stage requiring O(n logn)
time.

Finally, we explain that the verifier can process the proof in O(n) time. Indeed, when processing the
proof, the verifier’s tasks fall into three categories: (1) run two SUBSET protocols involving the sets
M and ∪`T` provided by the prover (note both sets are of size at most n), (2) Evaluate D̃(u,r) for
each u ∈ [n] as part of the (sub-)scheme to check that Property B holds, and (3) perform various other
checks on the proof that require O(n) time in total by inspection.

The verifier’s computation for the two SUBSET schemes on the sets M and ∪`T`, both of size at most
n, can easily be implemented in O(n) total time using the same techniques as above the ensure that the
verifier processes each element of M and ∪`T` in constant time — we omit the straightforward details
for brevity. Evaluating D̃(u,r) for each u ∈ [n] in total time O(n) can be done in a similar fashion, but
requires more care. It is straightforward to check that

D̃(u,r) = ∑
v∈V\U∗:`v 6=`u

δ̃v(r), (8)

where

δ̃v(X) =
∏1≤v′≤n,v 6=v′(r− v′)

∏1≤v′≤n,v 6=v′(v− v′)
.

Using the techniques described in Section 3.1, the verifier can store and compute the values δ̃v(r) for
all v ∈ [n] in pre-processing, in O(n logn) total time. The verifier also computes and stores the value
H := ∑v∈V\U∗ δ̃v(r) in O(n) time.

With these values in hand, the verifier can compute all n values D̃(u,r) : u ∈ [n] in O(n) total time. To
see this, notice that Equation (8) implies that D̃(u,r) depends only on the label `u of the connected
component of u in G−U∗. That is, D̃(u,r) = D̃(u′,r) for all u′ such that `u = `′u. Moreover, letting
S(`) denote the set of all vertices v with `v = `, D̃(u,r) can be computed in time O(|S(`u)|), given the
precomputed values described above, via the following identity that follows from Equation (8):

D̃(u,r) = H− ∑
v:`v=`u

δ̃v(r).

Hence, all of the D̃(u,r) values can be computed in total time ∑distinct labels `u O(|S(`u)|) = O(n).

The prover and verifier’s time costs in the MAXMATCHING scheme of Theorem 3.2 are summarized
in Table 4.
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4 Lower Bounds for CONNECTIVITY and BIPARTITENESS

In this section, we establish our lower bounds on the cost of online schemes for CONNECTIVITY and BIPAR-
TITENESS in the XOR update models. Like almost all previous lower bounds for data stream computations,
our lower bounds use reductions from problems in communication complexity. To model the prover in a
scheme, the appropriate communication setting is Merlin-Arthur communication, which we now introduce.

4.1 Merlin-Arthur Communication

Consider a communication game involving three parties, named Alice, Bob, and Merlin. Alice holds an
input x ∈ X , Bob and input y ∈ Y , and Merlin is omniscient (he sees both x and y) but untrusted. Alice and
Bob’s goal is to compute f (x,y) for some agreed upon function f : X ×Y → {0,1}.

In an MA communication protocolP , Merlin first broadcasts a message mM to both Alice and Bob. Alice
and Bob then engage in a randomized communication protocol, before outputting a single bit. To clarify,
Merlin does not learn the randomness that Alice and Bob use until after sending the message mM(x,y). For
each input (x,y), the protocol P defines a game between Merlin, Alice, and Bob, in which Merlin’s goal is
to make Alice and Bob output 1. We define the value ValP(x,y) to be Merlin’s probability of winning this
game with optimal play. Given a Boolean function f , we say that P computes f if, for all (x,y) we have
(1) f (x,y) = 0 =⇒ValP(x,y)≤ 1/3, and (2) f (x,y) = 1 =⇒ValP(x,y)≥ 2/3. We refer to the Property (1)
as soundness and Property (2) as completeness. Notice that the completeness requirement is qualitatively
weaker than what we require for schemes: in a scheme, we required that there exist a prover strategy that
can convince the verifier of the value of f (x) for all x, while in an MA communication protocol we only
require this to hold for x ∈ f−1(1).

The help cost, or hc(P), of P is max(x,y) |mM(x,y)|, i.e., the maximum length of Merlin’s message in
bits. The verification cost, or vc(P), of P is the maximum number of bits that Alice and Bob exchange,
where the maximum is taken over all inputs (x,y), all possible Merlin messages mM, and all choices of Alice
and Bob’s randomness. The total cost of P is the sum of the help and verification costs of P .

In an online MA communication protocol (OMA protocol for short), neither Merlin nor Bob can talk to
Alice. This condition models the one-pass streaming restriction on the verifier in an online scheme. Indeed,
given any online scheme for a function f , we naturally obtain an OMA protocol P for the communication
problem in which Alice holds a prefix of a stream, Bob holds a suffix, and the goal is to evaluate f on the
concatenated stream x◦ y. The help cost of P is equal to the help cost of the scheme, while the verification
cost of P is equal to the space cost of the scheme. Hence, if we establish lower bounds on the help and
verification costs of any OMA protocol for f , we may conclude an equivalent lower bound on the help and
space costs of any online scheme for f .

In this section, we establish lower bounds on the help and verification costs of any OMA protocol for the
DISCONNECTIVITY and BIPARTITENESS problems in the XOR update model. More precisely, we consider
the communication problems DISCONNECTIVITYcc and BIPARTITENESScc in which Alice holds the first
m− n tuples in a graph stream in the XOR update model, Bob holds the length n tuples, and the output
function evaluates to 1 if and only if the resulting graph is disconnected or bipartite, respectively.

4.2 The Lower Bound

Theorem 4.1. Consider any OMA protocol P for DISCONNECTIVITYcc or BIPARTITENESScc. Then

(hc(P)+n) ·vc(P) = Ω(n2).

This holds even under the promise that the first m−n stream updates (i.e., Alice’s input) are all unique, and
the last n stream updates (i.e., Bob’s input) are all incident to a single node. In particular, the total cost of
P is Ω(n).
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Proof. We begin with the DISCONNECTIVITYcc problem. Let P denote any OMA protocol for DISCON-
NECTIVITYcc that works on graphs with n+1 nodes, under the promise described in the theorem hypothesis.
As discussed in the outline of Section 1.1.2, our proof will use a reduction from the INDEX problem on

(n
2

)
inputs. In this problem, Alice’s input consists of a bitstring x of length

(n
2

)
, Bob’s input is an index i∗ ∈ [

(n
2

)
],

and the goal is to output xi∗ . It was established in [CCMT14] that any OMA protocol Q for INDEX on
(n

2

)
inputs requires

hc(Q) ·vc(Q) = Ω(n2). (9)

We show how to use P to construct a protocol Q for INDEX on
(n

2

)
inputs with hc(Q) = n+ hc(P) and

vc(Q) = vc(P). It will then follow from Equation (9) that (hc(P)+n) ·vc(P)≥ n2 as claimed.

Description of Q. In Q, Alice interprets her input x ∈ {0,1}(
n
2) as an undirected graph G1 with n nodes as

follows. She associates each index i ∈
(n

2

)
with a unique edge (ui,vi) out of the set of all

(n
2

)
possible edges

that could appear in G1. Alice also adds to G1 a special node v∗, and Alice connects v∗ to every other node v
in G1. Denote the resulting graph on n+1 nodes by G2. Notice that G2 is always connected (as every node
is connected to v∗ by design).

Likewise, Bob interprets his input i∗ ∈ [
(n

2

)
] as an edge (ui∗ ,vi∗). Clearly, determining whether xi∗ = 1

is equivalent to determining whether edge (ui∗ ,vi∗) appears in Alice’s graph G2. Merlin sends Bob a list L
claimed to equal all edges incident to node ui∗ in G2. This requires only n bits of “help”, since there are only
n nodes to which ui∗ might be adjacent. Bob treats L as his input to the DISCONNECTIVITYcc problem.

Alice, Bob, and Merlin now run the DISCONNECTIVITYcc protocol P (with Alice’s input equal to G2
and Bob’s input equal to L). Bob outputs 1 if and only if the protocol P outputs 1, and L contains the edge
(ui∗ ,vi∗).

Costs of Q. The help cost of Q is equal to n+ hc(P), since the honest Merlin sends Bob the list L, and
then behaves as he would in the protocol P . The verification cost ofQ is just vc(Q), since the only message
Alice sends to Bob is the message she would send in P .

Completeness and Soundness of Q. Let G3 denote the graph obtained from G2 by XORing all the edges
in the list L. Let I(ui∗) denote the set of edges incident to ui∗ in G3. We claim that G3 is disconnected if and
only if L is equal to I(ui∗). For the first direction, suppose that L is equal to I(ui∗). Then by XORing the
edges in G3 with the edges in L, every edge incident to node ui∗ is deleted from the graph. Hence, ui∗ is an
isolated vertex in G3, implying that G3 is disconnected.

For the second direction, suppose that L is not equal to I(ui∗). Let (ui∗ ,v) denote an edge in L \ I(ui∗).
Then (ui∗ ,v) is in the graph G3. Moreover, v is adjacent to node v∗, as are all nodes in G3 other than ui∗ .
Hence G3 is connected.

To complete the proof of completeness ofQ, note that if xi∗ = 1, then the edge (ui∗ ,vi∗) is in G3. If Merlin
sends L = I(ui∗), then G3 will be disconnected, and by the the completeness of P , Merlin can convince Bob
that G3 is disconnected with probability at least 2/3. In this event, Bob will output 1, because (ui∗ ,vi∗) will
be in the list L.

To complete the proof of soundness ofQ, note that if xi∗ = 0, then the edge (ui∗ ,vi∗) is not in G3. Hence,
if Merlin sends L = I(ui∗), then Bob will reject automatically, because (ui∗ ,vi∗) will not be in the list L. On
the other hand, if Merlin sends a list L that is not equal to I(ui∗), then G3 will be connected. By the the
soundness of P , Merlin can convince Bob that G3 is disconnected with probability at most 1/3. Hence, Bob
will output 1 in Q with probability at most 1/3, completing the proof for DISCONNECTIVITYcc.

Proof for BIPARTITENESScc. The proof for the BIPARTITENESScc problem follows a similar high-level
outline. Let P ′ be an online MA protocol for BIPARTITENESScc on graphs with n+ 1 nodes. We show
how to use P ′ to to construct a protocol Q′ for INDEX on (n/2) · (n/2) inputs with hc(Q′) = n+ hc(P ′)
and vc(Q′) = vc(P ′) (we assume that n is even for simplicity). It will then follow from Equation (9) that
(hc(P ′)+n) ·vc(P ′) = Ω(n2) as claimed.
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Description of Q′. In Q′, Alice interprets her input x ∈ {0,1}n2/4 as an undirected bipartite graph G′1 with
n/2 nodes on the left and n/2 nodes on the right, as follows. She associates each index i ∈ [n2/4] with a
unique edge (ui,vi) out of the set of all n2/4 possible edges that could appear in the bipartite graph G′1. Alice
also adds to G′1 a special node v∗, and Alice connects v∗ to all n/2 nodes on the right side of G′1. Denote
the resulting graph on n+ 1 nodes by G′2. Notice that G′2 is always bipartite by design. Indeed, letting S1
denote the set of all nodes on the left side of G′1, and S2 denote the set of all nodes on the right side of G1,
then every edge in G′2 connects a vertex in S1∪{v∗} to one in S2.

Likewise, Bob interprets his input i∗ ∈ [n2/4] as an edge (ui∗ ,vi∗). Clearly, determining whether xi∗ = 1
is equivalent to determining whether edge (ui∗ ,vi∗) appears in Alice’s graph G′2. Merlin sends Bob a list L
claimed to equal all edges incident to node ui∗ in G′2. This only requires n bits of “help”, since there are
only n nodes that ui∗ might be adjacent to. Bob treats L∪{(ui∗ ,v∗)} as his input to the BIPARTITENESScc

problem.
Alice, Bob, and Merlin now run the BIPARTITENESScc protocol P ′ (with Alice’s input equal to G′2 and

Bob’s input equal to L∪{(ui∗ ,v∗)}). Bob outputs 1 if and only if the protocol P ′ outputs 1, and L contains
the edge (ui∗ ,vi∗).

Costs ofQ′. Analogous to the case of DISCONNECTIVITYcc, the help cost ofQ′ is equal to n+hc(P ′), since
the honest Merlin sends Bob the list L, and then behaves as he would in the protocol P ′. The verification
cost of Q′ is just vc(Q′), since the only message Alice sends to Bob is the message she would send in P ′.
Completeness and Soundness of Q′. Let G′3 denote the graph obtained from G′2 by XORing all the edges
in L∪{(ui∗ ,v∗)}. Let I(ui∗) denote the set of edges incident to ui∗ in G′3. We claim that G′3 is bipartite if
and only if L is equal to I(ui∗). For the first direction, suppose that L is equal to I(ui∗). Then by XORing
the edges in G′3 with the edges in L∪{(ui∗ ,v∗)}, every edge incident to node ui∗ in G′2 is deleted from the
graph, and edge {(ui∗ ,v∗)} is inserted. It follows that G′3 is bipartite. Indeed, recall that S1 denotes the set of
all nodes on the left side of G′1, and S2 denotes the set of all nodes on the right side of G′1. Then every edge
in G′3 connects a vertex in (S1 \{ui∗})∪{v∗} to a node in S2∪{ui∗}. That is, if L is equal to I(ui∗), then the
bipartition of G′3 is identical to that of G′2, except that ui∗ has switched from the left hand side of G′2 to the
right hand side of G′3.

For the second direction, suppose that L is not equal to I(ui∗). Let (ui∗ ,v) denote an edge in L \ I(ui∗).
Then (ui∗ ,v) is in the graph G′3. Moreover, v is adjacent to node v∗ in G′3, as is ui∗ . Hence, there is a triangle
in G′3, so G′3 cannot be bipartite.

To complete the proof of completeness ofQ′, note that if xi∗ = 1, then (ui∗ ,vi∗) is in G′3. If Merlin sends
L = I(ui∗), then G′3 will be bipartite, and by the the completeness of P ′, Merlin can convince Bob that G′3 is
indeed bipartite with probability at least 2/3. In this event, Bob will output 1 inQ′, because (ui∗ ,vi∗) will be
in the list L.

To complete the proof of soundness of Q′, note that if xi∗ = 0, then (ui∗ ,vi∗) is not in G′3. Hence, if
Merlin sends L = I(ui∗), then Bob will reject automatically, because (ui∗ ,vi∗) will not be in the list L. On
the other hand, if Merlin sends a list L that is not equal to I(ui∗), then G′3 will be non-bipartite. By the the
soundness of P ′, Merlin can convince Bob that G′3 is bipartite with probability at most 1/3. Hence, Bob
will output 1 in Q′ with probability at most 1/3, completing the proof for BIPARTITENESScc.

Because any online scheme for CONNECTIVITY or BIPARTITENESS can be simulated by an OMA com-
munication protocol, we obtain the following corollary.

Corollary 4.2 (Formal Version of Theorem 1.3). Consider any online scheme for CONNECTIVITY or BI-
PARTITENESS in the XOR update model with help cost ca and and space cost cv. Then (ca + n) · cv ≥ n2,
even under the promise that the first m−n stream updates are all unique, and the last n stream updates are
all incident to a single node. In particular, the total cost of any annotation scheme for these problems is
Ω(n).
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5 Open Questions

A number of questions regarding annotated data streams in general, and semi-streaming annotation schemes
in particular, remain open. Here, we highlight five.

• Exhibit any explicit function for which all online schemes require total cost asymptotically larger than
the square root of the input size. In particular, it is open to exhibit any graph problem that cannot be
solved by an online semi-streaming scheme.

• Do there exist schemes of total cost o(n2) for any of the following graph problems: shortest s-t path
in general graphs, diameter, and computing the value of a maximum flow. Note that a semi-streaming
scheme is known for shortest s-t path in graphs of polylogarithmic diameter [CMT13], but not in
general graphs (neither directed nor undirected).

• Do there exist schemes of total cost o(n) for connectivity or bipartiteness in the strict turnstile update
model? What about the insert-only update model? We conjecture that the answer is no in all cases.

• Is it possible to give a scheme for TRIANGLES or MAXMATCHING of space cost o(n) and help cost
o(n2)? We conjecture that the answer is no for both problems.

• Is it possible to give a semi-streaming scheme for TRIANGLES with a “commutative” verifier? We
conjecture that the answer is no. If true, this would contrast with the standard (sans prover) streaming
model, where it is known that any streaming algorithm that works in the turnstile update model can
be simulated by a linear sketch [LNW14].
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