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Abstract

We consider computation in the presence of closed timelike curves (CTCs), as proposed by
Deutsch. We focus on the case in which the CTCs carry classical bits (as opposed to qubits).
Previously, Aaronson and Watrous showed that computation with polynomially many CTC
bits is equivalent in power to PSPACE. On the other hand, Say and Yakaryılmaz showed that
computation with just 1 classical CTC bit gives the power of “postselection”, thereby upgrading
classical randomized computation (BPP) to the complexity class BPPpath and standard quantum
computation (BQP) to the complexity class PP. It is natural to ask whether increasing the
number of CTC bits from 1 to 2 (or 3, 4, etc.) leads to increased computational power. We
show that the answer is no: randomized computation with logarithmically many CTC bits (i.e.,
polynomially many CTC states) is equivalent to BPPpath. (Similarly, quantum computation
augmented with logarithmically many classical CTC bits is equivalent to PP.) Spoilsports with
no interest in time travel may view our results as concerning the robustness of the class BPPpath

and the computational complexity of sampling from an implicitly defined Markov chain.

1 On time travel

We begin with a discussion of time travel. Readers not interested in this concept may skip directly
to Section 2, wherein we define the problem under consideration in a purely complexity-theoretic
manner, with no reference to time travel.

Kurt Gödel [Göd49] was the first to point out that Einstein’s theory of general relativity is
consistent with the existence of closed timelike curves (CTCs), raising the theoretical possibility of
time travel. Any model of time travel must deal with the “Grandfather Paradox”, wherein a trip
to the past causes a chain of events that leads to a future in which that very trip does not take
place. Assume that a time-traveler changes the state of the universe at the earlier end t0 of a time
loop from state s to some different state s′. Then just what is the state of the universe at time t0:
is it s or s′? Seeing a logical inconsistency in this scenario, most thinkers of earlier generations
concluded that time travel to the past must be impossible. There is, however, a way out. In an
influential paper [FMN+90], Friedman et al. suggested Nature might allow CTCs as long as they do
not “change the past”, an idea that has come to be known as the Novikov self-consistency principle.
The main two rivaling models of time travel — the “Deutschian model” (which we study in this
work), and the “postselected CTC model” from [LMGP+10] (which is mentioned in Section 4.2)
— both conform to the Novikov self-consistency principle.
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In the model put forward by Deutsch [Deu91], the universe need not be in a single deterministic
state at time t0. Rather, the state of the universe should be viewed as a probability distribution over
several states (possibly even quantum states) like s and s′ in the example above. The requirement
that the past should not change is fulfilled by stipulating that Nature sets the state x of the portion
of the universe affected by the CTC at time t0 to a fixed point of the operator f describing the
evolution in the CTC (meaning x = f(x)).

To take the traditional example, suppose a deranged scientist can access a CTC to the past
century, and he sends through it a bomb that is programmed to kill his grandfather (who is only
a child back then). We consider two (classical) states of the universe at the time of the bomb’s
arrival: state 1 is “grandfather dies” and state 2 is “grandfather lives”. We assume the universe
proceeds deterministically from that point on: if the grandfather is killed, then in the future no
bomb is sent through the CTC; conversely, if the grandfather lives, then the deranged scientist is
born and does send the bomb back in time. We can model this evolution by a 2-state Markov chain
with the following transition matrix (that happens to be deterministic):[

0 1
1 0

]
.

In Deutsch’s model, Nature sets the state of the universe to be the stationary distribution for this
chain: [

1
2
1
2

]
.

That is, the bomb arrives to kill the grandfather with probability 1
2 .

1.1 Computation with CTCs

As the reader can see, Nature performs a kind of computation here, determining the stationary
distribution of the Markov chain that has been arranged within the CTC by the deranged scientist.
It is natural to wonder if Nature’s power can be effectively harnessed by a computational device.
Indeed, Deutsch [Deu91] pointed out that in general his model involves Nature solving an NP-
hard problem; later, Brun [Bru03] discussed the possibility of using CTCs to solve the Factoring
problem efficiently. The first clear model of computation with Deutschian CTCs was proposed
by Bacon [Bac04]. Both Deutsch and Bacon consider sending qubits through a CTC. However,
as pointed out by Aaronson [Aar05a], it is also very interesting (and simpler) to consider only
classical bits passing through a CTC. Indeed, as far as we aware, there are no results showing that
time-traveling quantum bits confer a computational advantage over time-traveling classical bits.
Therefore, in the rest of this section we will sketch the Deutschian model of computation with
classical CTC bits, and mention prior work. A formal complexity-theoretic definition of the model
(with no reference to time travel) is given in Section 2.

Suppose that a computational agent A has access to a CTC which is “wide” enough to support
the transmission of w bits. Thus the physical object being sent through the CTC can be in one of
S = 2w states. (We may also more generally consider values of S that are not powers of 2.) Let us
think of A as a classical polynomial-time randomized Turing machine (though it might be of another
type; e.g., a BQP-machine). Say that A is trying to decide if a given input x ∈ {0, 1}n belongs to
language L. The algorithm A can read the w bits in the CTC, perform some computation, and
then send a new string of w bits through the CTC. Since the incoming and outgoing bit strings can
be in one of 2w = S states, and since A is a randomized algorithm, the operation of A on the CTC
constitutes an S-state Markov chain Mx, which depends on the input x ∈ {0, 1}n to the L-decision
problem.
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In the Deutschian model, we assume that once the Markov chain Mx is defined, Nature sets
the distribution of the bits in the CTC to some stationary distribution of Mx. We emphasize that
it’s merely some stationary distribution (at least one of which always exists) — we don’t assume
that Mx must have a unique stationary distribution. (Now is a good time to mention that if A is
allowed to send qubits along the CTC, then its operation constitutes a quantum channel. It is also
known [Deu91, Wol12] that every quantum channel has at least one stationary mixed state, and
we assume Nature selects one.) Finally, given that the incoming CTC bits are now presumed to be
in a stationary distribution for the Markov chain Mx, the algorithm A effectively gets one sample
from this stationary distribution. Using this sample, the algorithm A can output its decision on
whether or not x ∈ L. When thinking of A as a BPP-type machine, this decision should be correct
with probability at least 2

3 .

1.2 Prior work

Bacon [Bac04] considered the case of a 1-qubit CTC, though his construction actually works equally
well with a CTC supporting just 1 classical bit. However, Bacon’s model was also more generous in
that he allowed 1-bit CTC computations as “subroutines” within polynomial-time algorithms; in
effect, he allowed the use of poly(n) many 1-(qu)bit CTCs. Bacon showed that in this model one can
efficiently solve any NP problem. Subsequently, Aaronson and Watrous [Aar05a, AW09] investigated
the model in which the CTC supports poly(n) many bits (i.e., S = 2poly(n) many states). They
showed that this model is extremely powerful: if A’s computational power is anywhere between
AC0 and PSPACE (including the most usual choices of BPP or BQP), the result is that the model
becomes equivalent in power to PSPACE. Actually, this result was not even the main one in their
paper; their main result is that if poly(n) many CTC qubits are allowed, then the power of the
model is still only that of PSPACE.

Regarding the difference between using a 1-bit CTC polynomially many times, and using a
poly(n)-bit CTC once, Aaronson [Aar05a] remarked, “It is difficult to say which model is the
more reasonable!” One can argue that both models are rather impractical in that they require
constructing new/wider CTCs as the input length increases.1 Indeed, the main technical question
left open at the end of Aaronson and Watrous’s work was to understand the computational power of
the more realistic “narrow” CTCs; e.g., one-time-use CTCs that can only transmit a single bit, or
a bounded number of bits. In this direction, Say and Yakaryılmaz [SY12] showed that augmenting
standard complexity models with access to a 1-bit CTC is exactly equal in power to augmenting
them with “postselection” [Aar05b] (defined in Section 4). In particular, this shows that classical
randomized computation with a 1-bit CTC is equivalent to the complexity class BPPpath, and
quantum computation with a 1-bit CTC is equivalent to the complexity class PP. We recall in
further detail the class BPPpath in Section 4. For now, suffice it to say that it contains NP and
coNP, is likely equal to PNP

|| , and is very likely to be much smaller than PSPACE. In particular,
randomized computation with access to a 1-bit CTC can efficiently solve the SAT problem; this is
discussed below in Example 2.5.

To summarize, the aforementioned results show that for classical polynomial-time randomized
computation, adding a 1-bit CTC gives the power of BPPpath and adding a poly(n)-bit CTC gives
the power of PSPACE. What about in between (presuming of course that BPPpath 6= PSPACE)?
Sticking with the more “realistic” end of the spectrum, this is the question motivating our work:

Question. Are 2-bit (or 3-bit, 4-bit etc.) CTCs more powerful than 1-bit CTCs?

1Bearing in mind the comment concerning practical considerations in the final paragraph of Bacon’s work [Bac04].
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2 Formal computational complexity statements

In what follows we formally define the complexity model of computing with CTCs. Our definitions
are equivalent to those in [AW09, SY12]; however we phrase them differently, in terms of Markov
chains. Informally and in brief, BPPCTC[w] is the class of languages decidable by efficient randomized
algorithms that are allowed to set up a 2w-state Markov chain and then freely get one sample from
the chain’s stationary distribution.

Definition 2.1. Let M be an S-state Markov chain. A state-transition oracle M for M is any
algorithm that takes as input a state i ∈ [S] and outputs the state resulting from taking one
random step in M starting from state i. Most typically we think of S = 2w and M as being
implemented by a w-bit-input/output standard randomized circuit ; i.e., one with AND, OR, NOT,
and “probability-12 coin-flip” gates. We might also consider standard quantum circuits M in which
Hadamard and Toffoli gates (which are universal [Shi03]) are also used.

Definition 2.2. Let w = w(n) be a “width” parameter. Consider a deterministic polynomial-time
Turing Machine A that, on input x ∈ {0, 1}n, outputs the description of two standard randomized
circuits, Mx and Dx. The circuit Mx should have w input and output bits, thereby defining a
state-transition oracle for a Markov chain Mx on S = 2w states. The “decision circuit” Dx should
have w input bits and one output bit. We suppose computation proceeds as follows: First, an
arbitrary stationary distribution π for Mx is chosen. Next, a sample i ∼ π is chosen from this
distribution and is fed as input to Dx. Finally, Dx’s output gate is considered to be the overall
output of A’s computation. We define BPPCTC[w] to be the class of all languages L such that there
exists an A as above with the following property: for every x (and every stationary distribution π
for Mx),

Pr
i

[A outputs 1] ≥ 2
3 when x ∈ L, Pr

i
[A outputs 1] ≤ 2

3 when x /∈ L.

We may also analogously define BQPCTC[w] in caseMx and Dx are allowed to be standard quantum
circuits.

Remark 2.3. We warn the reader that our notation CCTC[w] is different from that in [AW09, SY12],
in that “CTC[w]” signifies a CTC carrying w classical bits. We suggest notation such as BQPQCTC[w]

for the case of CTCs carrying w qubits; however we neither define nor consider CTC-qubits in this
paper (except in a concluding open problem).

Remark 2.4. There is nothing special about considering Markov chains with S states where S is
a power of 2. However we stick with the above notation for simplicity, and for consistency with
similar complexity class definitions such as that of PNP[w] (polynomial-time computation with 2w−1
parallel queries to an NP oracle).

Example 2.5. Following [SY12], let us show that NP ⊆ BPPCTC[1]. Equivalently, we illustrate how
SAT can be solved by a “1-bit CTC algorithm” A, which can set up a 2-state Markov chain and
get a sample from its stationary distribution. On input an n-variable CNF formula φ, algorithm A
constructs a state-transition circuit Mφ for a certain 2-state Markov chain Mφ. Think of state 0
of Mφ as meaning “no evidence that φ is satisfiable” and state 1 as meaning “evidence that φ is
satisfiable”. The operation of Mφ is as follows: On input state i, Mφ first chooses a uniformly
random string y ∈ {0, 1}n and checks if it satisfies φ. If y is satisfying,Mφ outputs state 1. If y is

unsatisfying, thenMφ outputs state 0 with probability ε := 2−n
2

and outputs its input state i with
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probability 1− ε. It is clear that A can write down Mφ’s description in deterministic polynomial
time. One can now check that the resulting Markov chains Mφ are as follows:

if φ is satisfiable, Mφ has transition matrix

[
1− 2−n 2−n

ε′ 1− ε′
]

(where ε′ := (1− 2−n)ε ≈ 2−n
2
);

if φ is unsatisfiable, Mφ has transition matrix

[
1 0
ε 1− ε

]
.

Now if φ is unsatisfiable, state 0 is absorbing and it’s clear that the (unique) stationary distribution π
of Mφ is entirely concentrated on state 0. On the other hand, suppose φ is satisfiable. Then since
the 0 → 1 transition probability of Mφ is much higher (relatively speaking) than the 1 → 0
transition probability, the long-term (i.e., stationary) distribution π of Mφ will be almost entirely

concentrated on state 1. (More precisely, π will put only probability ε′

2−n+ε′ ≈ 2−n
2+n on state 0.)

We now stipulate that for every φ, algorithm A outputs the same 1-bit decision circuit Dφ, which
on input i ∼ π simply outputs i. From the above discussion, we see that this correctly indicates
whether φ ∈ SAT except with negligible error probability.

The following theorems concerning BPPCTC[w] have previously been shown:

Theorem 2.6. (Aaronson–Watrous [AW09].) BPPCTC[poly(n)] = PSPACE.
(Indeed PCTC[poly(n)] = BQPQCTC[poly(n)] = PSPACE.)

Theorem 2.7. (Say–Yakaryılmaz [SY12].) BPPCTC[1] = BPPpath.
(Indeed, adding 1 CTC-bit generally confers the power of “postselection”, discussed in Section 4.

For example, it also holds that BQPCTC[1] = PostBQP = PP.)

As mentioned in Section 1.1 (and discussed further in Section 4), BPPpath is likely equal to
PNP
|| = PNP[O(logn)] (as it’s contained in BPPNP

|| ), and is very likely to be much smaller than PSPACE.

2.1 Our theorem

Paraphrasing the above two theorems, we have that Markov chains with 2 states (w = 1) give the
power of BPPpath, and Markov chains with exponentially many states (w = poly(n)) give the power
of PSPACE. What about in between? Are 3-state or 4-state (w = 2) Markov chains more powerful
than 2-state chains? To take an analogy from another family of complexity classes, we remind the
reader that it’s widely believed that

PNP[1] ( PNP[2] ( PNP[3] ( · · ·

The main result of this paper is that in apparent contrast, “the hierarchy collapses” for BPPCTC[w];
polynomially many states (w = O(log n)) confer no more advantage than 2 states.

Main theorem. BPPCTC[O(logn)] ⊆ PostBPP = BPPpath; thus

BPPCTC[1] = BPPCTC[2] = BPPCTC[3] = · · · = BPPCTC[O(logn)] = BPPpath.

It will be clear from our proof that more generally, O(log n) CTC bits still only confer the power
of postselection, and in particular BQPCTC[O(logn)] = PostBQP = PP. Our main theorem may also
be seen as further demonstration of the robustness and naturalness of the class BPPpath.

5



2.2 Proof techniques

Here we briefly outline the proof of our theorem, with the actual proof being given in Section 5. Let’s
return to Example 2.5, which shows that SAT ∈ BPPCTC[1]. One might ask, why doesn’t the proof
show that SAT ∈ BPP? After all, the algorithm A simply constructs a 2-state Markov chain M
and then takes a sample from its stationary distribution. Why doesn’t A simply exactly solve
for M ’s stationary distribution? The trouble of course is that even though A constructed M itself,
in some sense M is still only “implicitly defined” from A’s point of view. A cannot directly access
the transition probabilities of M (doing so requires A to solve an NP-complete problem); rather,
A can only “simulate” M , by use of the state-transition matrixM it constructed. Naively, this still
might not seem like a problem; given the ability to simulate M , couldn’t A find a (near-)stationary
distribution π for M simply by simulating it for a long time? The trouble here is that even
though M only has 2 states, it has some transition probabilities that are “exponentially small”
(in n). Furthermore, the stationary distribution of M can be extremely sensitive to the relative
exponential smallness of these transition probabilities — Example 2.5 illustrates exactly this.

Our proof that BPPCTC[w] ⊆ PostBPP = BPPpath for w ≤ O(log n) in some sense follows Say
and Yakaryılmaz’s proof [SY12] in the case of w = 1. They essentially observed that using the
power of postselection (discussed further in Section 4), a randomized algorithm can get an exact
sample from the stationary distribution of a Markov chain given only a state-transition oracle for
it. Their proof of this was greatly facilitated by the fact that 2-state Markov chains are easy to
analyze: If the 0→ 1 transition probability is p and the 1→ 0 transition probability is q, then the
stationary distribution is

π =

[
q
p+q
p
p+q

]
.

(This presumes we don’t have p = q = 0, an important issue that we discuss later.) For our
main theorem, we need a similar postselecting algorithm for general poly(n)-state Markov chains.
The key technical tool for this will be the Markov Chain Tree Theorem, apparently first proved
by Hill [Hil66], and called by Aldous [Ald02] “the most often rediscovered result in probability
theory”; see also [WF70, Shu75, KV80, LR83, AT89, Bro89, Pok99]. We state here the version for
irreducible chains:

Markov Chain Tree Theorem. Let M be an S-state irreducible Markov chain with transition
matrix (pij)i,j∈[S]. Let GM be the underlying strongly connected digraph for M in which (i, j) is
a directed edge if and only if pij > 0. Recall that a rooted arborescence T in GM is a collection
of edges forming a rooted spanning tree in which all edges are directed toward the root vertex. We
write

‖T‖ =
∏

(i,j)∈T

pij .

Let Ti denote the set of all arborescences in GM rooted at i ∈ [S], and write T = ∪iTi. Then if
π denotes the (unique) stationary distribution of M , we have the formula

πi =

∑
T∈Ti ‖T‖∑
T∈T ‖T‖

.

We add that this theorem plays an important role in the theory of exact sampling from unknown
Markov chains [AGT92, LW95, PW98, Wil96]. That theory is concerned with a problem similar to
ours; however, there are two main differences: i) That theory involves only traditional algorithms,
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and therefore by necessity the running time may be exponential if the chain’s mixing time is expo-
nential. By contrast, we are using postselecting algorithms and therefore have the chance to run in
polynomial time. ii) That theory is concerned with exact sampling from the stationary distribution.
By contrast, we actually only need approximate sampling from the stationary distribution.

Finally, we mention one challenge for our proof that at first seems like a technicality but in fact
proves to be quite a nuisance: There is no promise in the definition of BPPCTC[w] that the Markov
chains Mx be irreducible. This is precisely the “p = q = 0 issue” elided in the discussion of 2-state
stationary distributions above. We overcome this difficulty by proving a somewhat technical lemma
that allows us to perturb general Markov chains into irreducible ones.

2.3 Outline of the remainder of the paper

In Section 3 we prove the aforementioned technical lemma on Markov chain perturbations, allowing
us to work only with irreducible Markov chains. In Section 4 we recall BPPpath and postselection
in more detail, and we also describe the “restarting” view of postselection (from [YS13]) that will
be helpful in the proof of our main theorem. Finally, we give the proof of the main theorem in
Section 5, and then end with an open question.

3 A technical lemma on Markov chain perturbations

Our main theorem essentially requires us to give a PostBPP = BPPpath algorithm for sampling
from some stationary distribution of a given Markov chain M , specified by a state-transition oracle
circuitM. We would like to do this using the Markov Chain Tree Theorem; however, that theorem
requiresM to be irreducible. In fact there is an extension of the theorem to reducible Markov chains,
due to Leighton and Rivest [LR83]; however, its use requires determination of the communication
classes of the graph GM , which in turn requires determining which transition probabilities are 0.
This is already NP-hard in the 2-state case — consider again Example 2.5, in which φ is satisfiable if
and only if Mφ is irreducible. We resolve this difficulty by showing that we can “blindly” perturb M
to a necessarily irreducible chain M ′ with the property that the unique stationary distribution of M ′

is close to some stationary distribution of M . (Recall that BPPCTC[w] algorithms are required to
work given access to any stationary distribution for M .) Here by “blindly” we mean that we can
easily construct a state-transition circuit M′ for M ′ using M as a black box.

The idea behind the perturbation is a simple and natural one; it was implicitly used in [SY12]
in the 2-state case, and it even occurs in the “random surfer” model of PageRank [PBMW99].
Specifically, for each state we introduce a tiny probability ε of jumping to a uniformly random
other state. We will make ε small even in comparison with all nonzero transition probabilities
in M ; these probabilities are at worst exponentially small, since M is a polynomial-size circuit.
With such a small ε, it is somewhat intuitive that the perturbation should yield an irreducible
chain M ′ whose (unique) stationary distribution is close to a mixture of the stationary distributions
of the communication classes of M . The below technical lemma makes this intuition precise. We
should add that since there is significant prior work on Markov chain perturbations (see, e.g., [Sch68,
CM01]), it’s possible that the lemma is not new. However we were unable to find anything like
it in the literature, all of which seemed to make the assumption that the original chain is already
irreducible.

Before stating and proving the lemma, we introduce one piece of notation:

Notation 3.1. Let B be a matrix (possibly a vector or even just a scalar) with rational entries.
We write 〈B〉 for the number of bits needed to represent B; see, e.g., [GLS88] for precise details.
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Lemma 3.2. Let M be an S-state Markov chain (S ≥ 2) with rational transition matrix K. Let
0 < ε ≤ 2−〈K〉

c
, where c ∈ Z+ is a certain universal constant. Define

K ′ = (1− ε)K + ε 1SJ,

where J is the S × S all-1’s matrix. In other words, K ′ is the transition matrix for the Markov
chain M ′ defined as follows: With probability 1− ε, take a step according to M ; with probability ε,
jump to a uniformly random state. Let π′ be the stationary distribution for M ′, which is unique
because M ′ is irreducible. Then there exists a stationary distribution π for M satisfying

‖π − π′‖1 ≤ 2〈K〉
c
ε.

Proof. Let L = I −K be the Laplacian for M . Similarly define L′, so L′ = (1− ε)L + ε(I − 1
SJ).

Then

0 = π′L′ = (1−ε)π′L+επ′(I− 1
SJ) =⇒ π′L =

ε

1− ε
π′( 1

SJ−I) =⇒ ‖π′L‖2 ≤
ε

1− ε
. (1)

The last inequality here is justified as follows (writing u = 1
S

[
1 1 · · · 1

]
):

‖π′( 1
SJ − I)‖22 = ‖u−π′‖22 = ‖u‖22− 2〈u, π′〉+ ‖π′‖22 = 1

S − 2 · 1S + ‖π′‖22 ≤ − 1
S + ‖π′‖21 = 1− 1

S ≤ 1.

Write π′ = π1 + π2, where π1 is in the kernel of L and π2 is in the range. Note that π1K = π1; our
goal will be to show that π2 is very small, so that we may take π ≈ π1.

Since π2 is in the range of L,
π2 = π2LL

+ = π′LL+, (2)

where L+ is the Moore–Penrose pseudoinverse of L. We claim that ‖L+‖ ≤ 2〈K〉
b

for some universal
b ∈ Z+; this is because there is a strongly polynomial time algorithm for computing L+ from L
(equivalently, from K), and the spectral norm of a matrix is at most its dimension times its
maximum entry (in absolute value) [GLS88, Chapters 0.1, 1.3, 1.4]2. Combining this with (1), (2)
we get

‖π2‖2 = ‖π′LL+‖2 ≤ 2〈K〉
b‖π′L‖2 ≤ 2〈K〉

b ε

1− ε
≤ 2 · 2〈K〉bε =: δ. (3)

Recall that π1 = π′−π2, where π′ is a nonnegative vector with ‖π′‖1 = 1. From (3) we deduce:

‖π1 − π′‖1 ≤
√
Sδ; (π1)i ≥ −δ ∀i ∈ [S]; ‖π1‖1 ≥ 1− ‖π2‖1 ≥ 1−

√
Sδ. (4)

Further, π1 is in the kernel of L. By Perron–Frobenius theory (specifically, see [Rot75, Theorem 3.1,
Corollary 3.5], [And11, Chapter 3.5.1]) it is known that there is a basis for the kernel of L consisting
of stationary distributions ν1, . . . , νs for M with disjoint supports (1 ≤ s ≤ S). Thus

π1 = α1ν1 + α2ν2 + · · ·+ αsνs (5)

for some αj ’s satisfying α1+· · ·+αs = 1. Some of the αj ’s may be negative; however we must always
have αj ≥ −Sδ, as otherwise αjνj would have an entry smaller than −δ, contradicting (4) (recall
that the νj ’s have disjoint supports). Let us form π̃1 ≥ 0 by dropping from (5) all contributions
αjνj with αj nonpositive. As there are at most S such j, this changes the `1-norm by at most S2δ;

2This reference only discusses computing the usual inverse of a nonsingular matrix, but it is clear from the Gaussian
Elimination-based algorithm how to extend it to pseudoinverses.
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we therefore conclude that π̃1 ≥ 0 is a positive linear combination of stationary distributions for M
satisfying

‖π̃1 − π′‖1 ≤ (S2 +
√
S)δ ≤ 2S2δ = 4S2 · 2〈K〉bε ≤ 1

2 · 2
〈K〉cε, (6)

the last inequality by taking c > b large enough (and using 〈K〉 ≥ S). Finally, we normalize π̃1 to
make it a stationary distribution for M , setting π = π̃1/‖π̃1‖1 (note that the denominator ‖π̃1‖1 is
nonzero; in fact, it’s at least 1

2 by (6) and the assumption ε ≤ 2−〈K〉
c
). Then

‖π − π̃1‖1 =
∥∥∥π − ‖π̃1‖1 · π∥∥∥

1
=
∣∣∣1− ‖π̃1‖1∣∣∣ · ‖π‖1 =

∣∣∣1− ‖π̃1‖1∣∣∣ ≤ 1
2 · 2

〈K〉cε, (7)

the inequality following from (6). Now combining (6) and (7) yields ‖π− π′‖1 ≤ 2〈K〉
c
ε, as needed.

4 BPPpath, postselection, and restarts

In this section we describe three different viewpoints on the class BPPpath.
The complexity class BPPpath was originally defined by Han, Hemaspaandra, and Thierauf [HHT93,

HHT97], in a paper also concerned with certain cryptographic problems. (It was also independently
defined much later in a paper by Aspnes, Fischer, Fischer, Kao, and Kumar [AFF+01, AFF+04]
on the computational complexity of the stock market.) We quote Fortnow’s explanation of the
original definition when he named it “Complexity Class of the Week” [For03]:

“Let us call a nondeterministic Turing machine M balanced if for every input x, all of its
computational paths have the same length. [We can define the] class BPP as follows: L is in BPP
if there is a balanced nondeterministic polynomial-time M such that:

• If x is in L then there are at least twice as many accepting as rejecting paths of M(x).

• If x is not in L then there are at least twice as many rejecting as accepting paths of M(x).

Suppose we use the same definition without the “balanced” requirement. This gives us the class
BPPpath.”

Interestingly, the analogous class “PPpath” — for which x ∈ L iff M(x) has more accepting than
rejecting (unbalanced) paths — was defined much earlier in Simon’s 1975 thesis [Sim75]. Simon
showed that PPpath is equal to the class PP (which had recently been defined by Gill [Gil74]).
By way of contrast, BPPpath is very unlikely to equal BPP, as it is known [HHT93] that BPPpath

contains both MA and PNP
|| . BPPpath is also known [HHT93] to be contained in BPPNP

|| . Indeed,

under the standard complexity assumptions used to derandomize AM, Shaltiel and Umans [SU06]
showed that BPPpath = PNP

|| . For a related class known as SBP, which sits between MA and BPPpath,

see [BGM06, BGM03].
Another characterization of BPPpath was given by Aaronson, via the notion of adding post-

selection (see [Aar05b]) to a complexity class. Suppose that you have a probabilistic algorithm
that can end in three kinds of final states: accepting, rejecting, and indecisive. We assume the
probability of ending in a decisive state is guaranteed to be nonzero. “Postselection” refers to
the (nonrealistic) ability to condition the computation on ending in a decisive state. This yields
probabilistic computation with just the usual two kinds of final states. For example, one says that
L ∈ PostBPP if there is a polynomial-time randomized Turing machine as described above which,
for each input x, gives the correct answer about x ∈ L with probability at least 2

3 , conditioned on
not ending in an indecisive state. More generally, if C is a probabilistic or quantum complexity
class, PostC is the class of languages decided by C-machines with the ability to postselect on ending
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in a decisive state. In [Aar04a], Aaronson proved that PostBQP = PP; later [Aar04b], he observed
that PostBPP = BPPpath.

In the derivation of our main theorem we will prefer a third perspective on BPPpath and post-
selection, introduced by Yakaryılmaz and Say [YS13]: that of randomized algorithms with restarts.
For some probabilistic complexity class C, suppose again that we have C-machines that can end in
one of three states: accept, reject, or indecisive. We think of the third state as the restart state,
imagining that whenever the C-machine enters such a state, it immediately restarts its computation
from the initial configuration, using no information that it may have gathered up to that point.3 As
observed in [YS13], the class of languages decided by such a machine is again PostC. In particular,
BPPpath is the class of languages that are decided by bounded-error probabilistic polynomial-time
Turing machines with this ability to restart. This perspective seems most useful for algorithm
design. As an illustration, we believe it is fairly “obvious” that the following restarting-algorithm
decides SAT with very high probability, thereby showing NP ⊆ BPPpath:

“On input formula φ with n variables, randomly choose an assignment y. If y satisfies φ, accept.

Otherwise, restart with probability 1− 2−n
2

and reject with probability 2−n
2
.”

(8)
The reader may compare (8) with the 1-bit CTC algorithm for SAT from Example 2.5, which also
shows NP ⊆ BPPpath in light of Say and Yakaryılmaz’s Theorem 2.7, BPPCTC[1] = BPPpath. For
another characterization of BPPpath in terms of time-traveling bits, see Section 4.2.

Remark 4.1. For all three definitions of BPPpath described above, it is easy to see that the
“2
3 cutoff” for success could equivalently be an “α cutoff” for any fixed constant 1

2 < α < 1, just
as is the case for the class BPP.

4.1 Remarks on random coins for BPPpath algorithms

In informal descriptions of randomized algorithms, it’s typical to make statements like, “Next,
with probability 1

3 the algorithm. . . ” Such statements sweep a well-known, minor detail under the
rug; namely, the traditional BPP model (based on nondeterministic branching) only has “access”
to probability-12 coin flips. Of course, this is not an essential problem, since one can simulate a
1
3 -biased coin flip to error δ in time O(log 1

δ ), and δ needn’t be smaller than 1/poly(n). Here we
remark that in the context of restarting algorithms, the problem is not just inessential, it’s literally
no problem at all:

Lemma 4.2. A restarting randomized algorithm can simulate a p-biased coin flip exactly in
time O(〈p〉), and can simulate a uniformly random draw from [n] exactly in time O(log n).

Proof. We give the simplest example, leaving the general case for the reader. Suppose we wish
to draw r ∼ [3] uniformly at random. We toss two probability-12 coins, forming a 2-bit integer
0 ≤ r ≤ 3. Then if r = 0, we restart.

On the other hand, it’s also important to remember that time Ω(〈p〉) is also required to flip
a p-biased coin; for example, in algorithm (8) the step “reject with probability 2−n

2
else restart”

takes n2 time steps.

3Note that the new algorithm obtained in this manner will in general have unbounded runtime, even if C is a
time-bounded class.
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4.2 Postselected CTCs

A physically inequivalent alternative to Deutsch’s model of time travel is the paradigm of post-
selected CTCs [LMGP+10], wherein the time-traveler is forbidden by Nature from changing his
own past: The grandfather simply cannot be killed by the time-traveling bomb, precisely because
he flourished and went on to have grandchildren! Any outcome of the time-travel device that has
the effect of changing the past is assigned a probability of zero, and the remaining outcomes are
postselected.

Postselected CTCs are especially straightforward to use as a computational aid, since their very
definition indicates that they may be used to realize a computer with the power of postselection:
Read a single bit b from the CTC, run a probabilistic algorithm with final states classified into the
accepting, rejecting, and indecisive categories as described above, flip b to 1− b if and only if you
reach an indecisive state, and send that bit back through the CTC at the end. This has the effect
of creating a Grandfather Paradox precisely for the computational paths ending with indecision,
which would then never occur according to the model. It has been shown [LMGP+10, BW12, SY12]
that the class of languages decided by C-machines which have been augmented with a (postselected)
CTC register of width 1 is PostC, and this characterization does not change if one increases the
width of the CTC register. We therefore have yet another characterization of BPPpath, as the class
of languages decided by polynomial-time probabilistic algorithms augmented with a postselected
CTC of any width.

5 Proof of the main theorem

We now give the proof of our main theorem, that BPPCTC[O(logn)] ⊆ BPPpath.

Proof. Let L ∈ BPPCTC[O(logn)]; say L is defined by algorithm A as in Definition 2.2. Thus there
are constants c1, c2, c3 ∈ N such that on inputs x ∈ {0, 1}n, algorithm A outputs state-transition
circuits Mx of size O(nc1) defining Markov chains Mx on S = O(nc2) states, as well as decision
circuits Dx of size O(nc3). Further, we have that for each x, if π is any stationary distribution
for Mx and i ∼ π, then

Pr[Dx(i) = 1{x∈L}] ≥ 2
3 . (9)

Our goal will be to define a polynomial-time randomized restarting algorithm R that has

Pr[R(x) = 1{x∈L}] ≥ 0.65 (10)

for all x. As discussed in Section 4, this will show that L ∈ BPPpath, as required.
On input x ∈ {0, 1}n, the first step of algorithm R involves invoking the technical Lemma 3.2,

with a certain ε = 2−poly(n) to be described later. More precisely, R first simulates A to get
state-transition oracle circuitMx for Markov chain Mx. It then constructs a state-transition oracle
circuit M′x for the irreducible perturbed chain M ′x, using the description of Mx in a black-box
fashion. Let π′ denote the stationary distribution for M ′x and let K denote the transition matrix
for Mx. By definition, K is square matrix of dimension S ≤ O(nc2) in which each entry is an
integer multiple of 2−size(Mx) = 2−O(nc1 ). It follows that 〈K〉 ≤ O(nc4) for some constant c4 ∈ N.

We will now specify that ε = 2−bn
b

for a sufficiently large constant b depending on c1, c2, and the c
of Lemma 3.2, so that the lemma implies

‖π − π′‖1 ≤ .01 (11)
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for some stationary distribution π of Mx. It is easy to see that with this choice of ε, algorithm R
can construct M′x from Mx in poly(n) time. (Here we use the fact that ε is “only” exponentially
small; cf. the last paragraph in Section 4.1.)

The remainder of the proof is devoted to showing that R can obtain an exact sample r ∼ π′.
Having shown this, we only need to let R simulate A to get Dx, and then output Dx(r). Then
combining (11) with (9) shows that (10) holds for all x, as required.

We now exhibit the subroutine which the restarting-algorithm R will use to obtain an exact
sample r ∼ π′ (the unique stationary distribution of irreducible chain M ′x):

• Choose a uniformly random labeled, rooted, undirected tree T on vertex set [S]. This can
be done exactly (i.e., with each T occurring with probability 1/SS−1) in poly(S) = poly(n)
time, by choosing a uniformly random Prüfer Code [Prü18, Wik14] in [S]S−2, converting it
to a tree T , and then choosing a random vertex r of T to be the root.4

• Make T into a rooted arborescence ~T by directing all edges toward the root r.

• For each directed edge (i, j) ∈ ~T , simulateM′x(i) and “check” if the output is j. If the check
fails, restart.

• If all S − 1 checks pass, halt with output r.

The fact that this subroutine restarts with probability strictly less than 1 follows from the fact
that M ′x is irreducible; indeed, its underlying digraph G = GM ′x is the complete digraph. The
probability Pr that this subroutine outputs r = r without encountering any restarts is precisely

Pr =
∑

r-rooted arborescences T

1

SS−1

∏
(i,j)∈T

pij ,

where pij denotes the transition probability from i to j in the Markov chain M ′x. It follows that
the probability of R finally outputting r (when restarts are taken into account) is

Pr∑
r∈[S] Pr

=

∑
r-rooted arborescences T

∏
(i,j)∈T pij∑

arborescences T

∏
(i,j)∈T pij

.

By the Markov Chain Tree Theorem, this is indeed precisely the probability π′(r) of r under the
stationary distribution of M ′x.

We conclude this section by observing that besides the power of restarting, algorithm R only
really needed the power to simulate the state-transition circuits Mx and the decision circuits Dx.
For example, if these were standard quantum circuits, it would suffice for R to be a quantum
algorithm. Thus we may also conclude BQPCTC[O(logn)] ⊆ PostBQP = PP.

We also add that Say and Yakaryılmaz [SY12] studied various models of finite automata aug-
mented with 1-bit CTCs; they showed that this augmentation causes both probabilistic and quan-
tum finite automata to become as powerful as their respective postselected versions. The technique
used in the proof of our main result can be simplified easily to show that no additional gain arises
when these machines are augmented with larger constant-width CTCs.

4Here we may use restarting to get exactly random samples from [S]; see Lemma 4.2.
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6 Conclusion

A very interesting open question left by our work is one also raised at the end of [SY12]:

What is the computational power conferred by 1 time-traveling qubit?

Answering this question precisely would seem to require a good understanding of stationary density
matrices for 1-qubit quantum channels. As mentioned in Section 1.1, we are not aware of any work
showing that time-traveling qubits confer more computational power than time-traveling bits.
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