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Abstract

The celebrated PPAD hardness result for finding an exact Nash equilibrium in a two-player
game initiated a quest for finding approximate Nash equilibria efficiently, and is one of the major
open questions in algorithmic game theory.

We study the computational complexity of finding an ε-approximate Nash equilibrium with
good social welfare. Hazan and Krauthgamer and subsequent improvements showed that finding
an ε-approximate Nash equilibrium with good social welfare in a two player game and many
variants of this problem is at least as hard as finding a planted clique of size O(log n) in the
random graph G(n, 1/2).

We show that any polynomial time algorithm that finds an ε-approximate Nash equilibrium
with good social welfare refutes (the worst-case) Exponential Time Hypothesis by Impagliazzo

and Paturi. Specifically, it would imply a 2Õ(n1/2) algorithm for SAT.
Our lower bound matches the quasi-polynomial time algorithm by Lipton, Markakis and

Mehta for solving the problem.
Our key tool is a reduction from the PCP machinery to finding Nash equilibrium via free

games, the framework introduced in the recent work by Aaronson, Impagliazzo and Moshkovitz.
Techniques developed in the process may be useful for replacing planted clique hardness with
ETH-hardness in other applications.

∗Department of Computer Science, Princeton University, mbraverm@cs.princeton.edu, Research supported in
part by an NSF Award CCF-1215990, an NSF CAREER award (CCF-1149888), a Turing Centenary Fellowship, a
Packard Fellowship in Science and Engineering, and the Simons Collaboration on Algorithms and Geometry.
†Department of Computer Science, Princeton University, yko@CS.Princeton.edu,
‡Department of Computer Science, Princeton University, oweinste@cs.princeton.edu. Research supported by

a Simons Fellowship in Theoretical Computer Science and NSF Award CCF-1215990.

 

ISSN 1433-8092 

Electronic Colloquium on Computational Complexity, Report No. 92 (2014)



1 Introduction

An important aspect of algorithmic game theory is understanding whether it is possible to effi-
ciently compute or reach a stable state in various economic scenarios. The solution concept which
has attracted the most attention, from the algorithms, complexity and machine-learning communi-
ties, is that of Nash equilibrium. The celebrated results of [CDT06, DGP06] assert that computing
a Nash equilibrium in a finite game with two players is PPAD-complete. An attempt to circumvent
this impossibility result has initiated a line of research focused on the more modest goal of finding
an approximate Nash equilibrium:

Is there a polynomial time algorithm that finds an ε-Nash equilibrium for arbitrarily small but
fixed ε > 0?

An ε-Nash equilibrium (or simply, ε-equilibrium) is an equilibrium in which no party has an
incentive of more than ε to deviate from its current strategy. Besides being potentially more
tractable (computationally), the family of ε-Nash equilibria is significantly less restrictive than
that of exact Nash equilibria, and thus allows one to capture a richer set of desirable behaviors
observed in practice. An example of this is a n-round repeated Prisoners’ Dilemma — where the
only Nash equilibrium is repeated defection, but some of the strategies observed in experiments,
such as tit-for-tat and grim-trigger form ε-Nash equilibria for ε→ 0 as n→∞ [Axe87, Axe00].

While every finite two-player game is guaranteed to have at least one equilibrium, typical games
possess many equilibria, some of which are more desirable than others. A standard measure of the
“economic efficiency” of an equilibrium is its social welfare (i.e., the sum of payers’ payoffs). Thus,
a particularly appealing goal is that of finding an equilibrium or an ε-approximate equilibrium with
high social welfare. This goal captures the most efficient outcome one can achieve assuming the
players are ε-sensitive. More generally, being able to solve this problem appears to be an important
step in understanding the space of ε-Nash equilibria of a particular game.

Finding an (exact) equilibrium with maximal social welfare is known to be NP-hard [GZ89,
CS03], and is thus probably more difficult than finding just any equilibrium. A simple yet sur-
prising result of Lipton, Markakis and Mehta [LMM03] asserts that it is possible to find an ε-
equilibrium whose welfare is within an additive factor ε of the optimal one, in quasi-polynomial
time O(nε

−2 logn), assuming the game is represented by an n× n matrix. The [LMM03] argument
first uses random sampling to prove that any ε-equilibrium can be approximated by an (ε + ε′)-
equilibrium with only logarithmic support size. Once this fact has been established, one can use
exhaustive search to find such an approximate equilibrium in time nOε′ (logn). Note that such an
exhaustive search not only finds one approximate equilibrium, but constructs an ε′-net covering
all ε-equilibria. In particular, this allows one to find an approximate equilibrium that is close to
maximizing social welfare.

The existence of a quasi-polynomial algorithm sparked the hope that a polynomial algorithm for
this problem exists. The subsequent works of [DMP06, KPS06, DMP07, BBM07] made additional
encouraging progress in this direction, and the current state of the art is a polynomial time algorithm
that computes a 0.3393-equilibrium [TS07].

It is natural to ask whether one can give matching (quasi-polynomial) lower bounds for the
ε-Nash problem. The work [CDT06] rules out strongly-polynomial algorithms (under PPAD-
hardness). However, a weaker PTAS (one that can have tems of the form n1/ε) cannot be ruled out
at the moment. For variants of the ε-Nash problem whose exact version is NP-hard, such as ap-
proximating the best-value equilibrium lower bounds conditional on the planted clique assumption
previously existed. Hazan and Krauthgamer [HK09] showed that there is a constant ε > 0 such
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that finding an ε-equilibrium with welfare within ε of the highest-utility Nash equilibrium is planted
clique hard. Specifically, such an algorithm cane be used (in a black-box fashion) to find a planted
5 log n-clique in the random graph G(n, 1/2). Subsequently, Austrin et al. [ABC13] generalized the
results of [HK09] to tighter values of ε and to a number of other NP-hard variants of the Nash
equilibrium finding problem.

In the hidden clique problem [Jer92, Kuc95], the input is a graph G obtained by planting a
clique of size t > 5 log n in the random graph G(n, 1/2) (note that the typical max-clique number of
G(n, 1/2) is only ≈ 2 log2 n). The objective is to find the clique, or, more modestly, to distinguish
between the random graph G(n, 1/2) and the “planted” graph. When t = Θ(

√
n), this can be done

in polynomial time [AKS98] (subsequent algorithms with similar performance appear in [FK00,
FR10, DGGP10]). However, for t = o(

√
n), there is no known polynomial time algorithm that

finds even a (1 + ε) log2 n clique, for any constant ε > 0. Note that this problem is easily solvable
in quasi-polynomial time, since a “seed” of 3 log2 n nodes in the clique, which can be found using
brute force enumeration, allows one to identify the entire planted clique. The Planted Clique
Conjecture asserts that, indeed, this problem requires nΩ(logn) time [AAK+07, AKS98, Jer92,
Kuc95, FK00, DGGP10]. Recently, a fair number of diverse applications based on this conjecture,
such as [AAK+07, BBB+13, BR13], have been published. The main weakness of this hypothesis is
that it is an average-case assumption (where the instance is a random instance). It is often the case
that average-case instances, even of worst-case-hard problems, are in fact tractable. Moreover, the
average-case nature of the hypothesis makes it unlikely that one could prove its hardness based on
classical worst-case assumptions such as lower bounds on SAT.

In this work we provide a very strong piece of evidence for ruling out a polynomial-time algo-
rithm for finding an ε-equilibrium with an ε-additive approximation to the optimal welfare. We
show that solving this this bi-criteria problem in no(logn) time, would yield a 2o(n) algorithm for
SAT, thereby refuting the well known Exponential Time Hypothesis:

Conjecture 1.1 (Exponential Time Hypothesis [IP01]). Any deterministic algorithm for 3SAT
requires 2Ω(n) time.

We refer the reader to [LMS+13] for a more thorough background on this conjecture, and its
broader role within complexity theory.

The starting point of our reduction from SAT to Nash is a recent result, by Aaronson, Impagli-
azzo and Moshkovitz [AIM14] that connects classical PCP machinery to free two-prover games. In
their work, they first take a view of the PCP theorem as stating that approximating the value of so
called “two-prover” games (associated with the underlying SAT instance) is NP-hard. Informally,
a two-prover game is a cooperative constraint satisfaction game where two provers Alice and Bob
are given a pair of challenges (x, y) and output responses a and b, respectively. Alice and Bob win
if the verifier accepts their responses — that is if V (x, y, a, b) = 1, where V (·) is a predicate known
in advance. The value of a game is the highest probability of acceptance Alice and Bob can achieve
under a given distribution of challenges. Two-prover games have played an important role in the
theory of PCP and hardness of approximation.

Aaronson et al. explore a special type of two-prover games, called free games, in which the
challenges of Alice and Bob are independent of each other (distributed uniformly). While the
PCP theorem states that approximating the value of a general two prover game is NP-hard, free
games turn out to be much easier to approximate. Indeed, [AIM14] and [BH13] independently
give algorithms for approximating the value of a free game of size1 N to within an additive ε
factor in time O(N ε−2 logN ), the same as the running rime of LMM’s algorithm for finding a (high-
welfare) ε-approximate Nash equilibrium! This match is not a coincidence — the technique used by

1See Section 2.2 for the precise definitions.
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[AIM14] for proving their upper bound highly resembles that of [LMM03]: reducing the support-
size of the player’s strategy space by random sampling, and then exhaustively searching for the
best logarithmic-support strategies.

The main result of [AIM14] is a reduction which converts general games into free games, with
a sub-exponential blowup in the size of the game. A general game with challenge-sets of size n
can be converted into an (essentially) equivalent free game of size N := 2Õ(

√
n). Combined with

the above result, this shows that it is possible to approximate the value of a general two-prover
game to within arbitrary additive precision in time NO(log(N)) = 2Õ(n). Notice that the ETH
conjecture asserts this is tight — any asymptotic improvement on the quasi-polynomial running
time for approximating the value of free games wold imply a 2o(n) algorithm for approximating the
original constraint-satisfaction game, and therefore for SAT (by PCP). We elaborate more on this
entire line of results in Section 2.2.

We should note that it is not hard to construct a (randomized) reduction from the Planted
Clique problem to the free game vaule approximation problem. Thus, an No(logN) algorithm for
the latter would (in addition to breaking the ETH), also break the planted clique hypothesis,
providing further evidence for the superiority of relying on free-game value hardness over planted-
clique hardness.

1.1 Our results

Our main technical result is the following.

Theorem 1.2 (Main reduction). There exist global constants 1 > ε′, ε∗ > 0 such that the following

holds. There is a reduction running in time 2Õ(
√
n) which takes as an input an n-variable 3SAT

formula φ, and outputs a two player strategic game G, such that:

• If φ is satisfiable, then G has an equilibrium of value 1.

• If φ is not satisfiable, then any ε∗-equilibrium of G has value at most ε′.

The above theorem directly implies

Corollary 1.3. Assuming the (deterministic) ETH conjecture (Conjecture 1.1), there is a constant
ε∗ > 0 such any algorithm for finding an ε∗-approximate Nash equilibrium whose welfare is lower
by at most ε∗ than the optimal welfare of a Nash equilibrium of the game, requires nΩ̃(logn) time.

To best of our knowledge, this is the first computational relationship established between two-
prover games (as in ‘Unique Games Conjecture’) and strategic games (as in ‘Game Theory’).

2 Preliminaries

Throughout the paper we use capital letters to denote sets and calligraphic letters to denote set
families. We sometimes use calligraphic letters for probability distributions as well (For example,
x ∼ D). In particular, we denote by U(S) the uniform distribution over S (or simply U , when the
support is clear from context). We use ‖ · ‖1 as a conventional `1 norm, that is the sum of the
absolute values of the entries. The rest of notation is set forth in the following two introductory
subsections.
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2.1 Approximate Nash equilibria in games

We restrict our attention to symmetric games, hence our definition assumes square matrices for the
payoff. A (square) two player bi-matrix game is defined by two payoff matrices R,C ∈ Rn×n , such
that if the row and column players choose pure strategies i ∈ S := [n], j ∈ T := [n], respectively,
the payoff to the row and column players are R(i, j) and C(i, j), respectively. The game is called
symmetric if C = R>. A mixed strategy for a player is a distribution over pure strategies (i.e.
rows/columns), and for brevity we may refer to it simply as a strategy. An ε-approximate Nash
equilibrium (or simply, ε-equilibrium) is a pair of mixed strategies (x, y) such that:

∀x̃ ∈ ∆(S) , x̃>Ry ≤ x>Ry + ε, and ∀ỹ ∈ ∆(T ) , x>Cỹ ≤ x>Cy + ε,

where here and throughout the paper, ∆(S) denotes the family of all probability distributions over
the set S. If ε = 0, the strategy pair (x, y) is called a Nash equilibrium (NE).

For a pair of (mixed) strategies (x, y), the (expected) payoff of the row player is x>Ry and
similarly x>Cy for the column player. The value of an (approximate) equilibrium (µ, ν) for the
game G, denoted πx,y(G), is the average (expected) payoff of the players when the strategy pair
(x, y) is played. Notice that is equivalent to the social-welfare (the sum of players payoffs) of the
equilibrium up to a factor of 2. The value of the game G, denoted π(G), is the maximum, over all
equilibrium strategy pairs (x, y), of the average payoff of the two players. Nashε is the problem of
approximating the value of a two player game to within an additive constant ε:

Definition 2.1 (Nashε). Given as input a game G described by two bounded2 payoff matrices R,C,
estimate π(G) to within an additive factor ±ε (the input size of the problem is n := |R||C| and, ε
is an arbitrarily small constant, unless otherwise stated).

Note that we give a lower bound for an easier problem (thus making the lower bound stronger):
in a bounded-payoff game, distinguish the case when there is a welfare-1 Nash equilibrium from
the case when all ε-Nash equilibria have welfare < 1/2.

In [LMM03], the authors exhibited an algorithm for Nashε that runs in nO((logn)/ε2) time and
approximates the value of G within an additive error of ε. The idea behind their algorithm is to
show the existence of a small-support equilibrium, by randomly subsampling O((log n)/ε2) pure
strategies for each player. Then they argue, via standard concentration bounds and the probabilistic
method, that the uniform distribution over these randomly chosen strategies is an ε-equilibrium
with high probability, and furthermore this set contains (w.h.p) an equilibrium within ε of π(G).
Finding such an ε-equilibrium can in turn be done by an exhaustive search over all subsets of the
reduced support, yielding the claimed running time of nO(logn/ε2).

The hardness result of [HK09] implies that if one believes the “Planted Clique Conjecture”, i.e,
that finding a planted (but hidden) clique of size of O(log n) in the random graph G(n, 1/2) takes
nΩ(logn) time, then the above algorithm is tight. Our result can thus be cast as reproving this tight
lower bound, under the ETH conjecture instead of the Planted Clique conjecture.

2.2 Two-prover games and free games

In an effort to make this writeup as self-contained as possible, we henceforth introduce the necessary
background and previous results leading to our main reduction. We begin with the following
definition which is central to this paper:

2Since we are concerned with an additive notion of approximation, we assume that the entries of the matrices are
in the range [0,M ], for M which is a constant independent of all the other parameters (cf. [HK09]).
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Definition 2.2 (Two-Prover Game). A two-prover game G = (X,Y,A,B, V ) is a game between
two provers (Alice and Bob) and a referee (Charlie), consiststing of:

1. Finite challenge sets X,Y (one for Alice, one for Bob) and answer sets A,B,

2. A probability distribution D over challenge pairs (x, y) ∈ X × Y , and

3. A verification predicate V : X × Y ×A×B −→ [0, 1].

The value of the game, denoted ω(G), is

max
a:X→A , b:Y→B

E(x,y)∼D[V (x, y, a(x), b(y))],

where the maximum ranges over all pairs of response strategies of Alice and Bob.

A two-prover game can be interpreted as follows: The cooperating provers, Alice and Bob, can
agree on a strategy (a(X) and b(Y )) in advance but cannot communicate once the game starts.
First Charlie chooses a pair of questions (x, y) ∼ D, and sends x to Alice and y to Bob. The
provers then send back responses a = a(x) and b = b(y) respectively. Finally, Charlie declares the
provers to have won with probability equal to V (x, y, a, b). ω(G) is therefore the probability that
the provers win if they use an optimal strategy.

A two-prover game is called free if the challenges (x, y) are chosen independently, that is, if D
is a product distribution over X × Y (for our purposes, we assume without loss of generality that
this is the uniform distribution on challenges). FreeGameε is the problem of approximating the
value of a free game up to an additive constant ε:

Definition 2.3 (FreeGameε). Given as input a description of a free game G = (X,Y,A,B, V ),
estimate ω(G) to within an additive factor ±ε (unless otherwise stated, the input size is n :=
|X||Y ||A||B| and, ε is an arbitrarily small constant).

Computing the exact or even the approximate value of a general two prover game is NP-hard
— in fact, the celebrated PCP theorem can be restated as a hardness of approximation result for
computing the value of two-prover games, namely that approximating the value of such game to
within an additive constant error ε is NP-hard. Free games, however, turn out to be much easier
to approximate; [AIM14] and [BH13] independently gave algorithms for FreeGameε that runs in
time nO(logn/ε2). The work of [BH13] is based on an LP-relaxation algorithm while in [AIM14],
the authors show that a similar-in-spirit approach to that of [LMM03], of subsampling O(log n/ε2)
random challenges from each X and Y and restricting the free game to this smaller support, will
only change ω(G) by ±ε.

The authors in [AIM14] prove the above algorithm is in fact tight, assuming the ETH conjec-
ture. Since our reduction exploits the structure of the hard instance produced by the reduction of
[AIM14] (i.e, it is not a “black-box” reduction from Free Games), we give a brief overview of their
result. This reduction is the content of the next subsection.

2.3 An ETH-hardness result for FreeGameε ([AIM14])

The ETH conjecture involves a 3SAT instance. The following sequence of reductions described
in [AIM14] will allow us to consider a free game instance instead, as the starting point of our main
reduction. The first step in this sequence is the following result of Moshkovitz and Raz, who showed
how to map a 3SAT instance to a 2CSP instance, with a very mild blowup in the instance size:
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3SAT // 2CSP // Clause/Variable Game // FreeGameε

ϕ // φ // Hφ
// H
√
n×
√
n

n // n1+o(1) // n1+o(1) // 2Õ(
√
n)

Figure 1: A schematic outline of [AIM14]’s reduction from 3SAT to FreeGameε.

Theorem 2.4 (PCP Theorem, [MR08]). Given a 3SAT instance ϕ of size n as well as δ > 0,
it is possible in poly(n) time to produce a 2CSP instance φ, with n1+o(1)poly(1/δ) variables and
constraints, and over an alphabet A = B of size |A| ≤ 2poly(1/δ), such that

• (Completeness) If OPT(ϕ) = 1 then OPT(φ) = 1.

• (Soundness) If OPT(ϕ) < 1 then OPT(φ) < δ.

• (Balance) The constraint graph of φ is bipartite, and every variable appears in exactly d
constraints, for some d = poly(1/δ).

The above 2CSP instance can in turn be viewed as a natural two-prover game:

Definition 2.5 (Clause/Variable Game Hφ (for 2CSP), [AIM14]). Given a 2CSP instance φ,
given by Theorem 2.4, with X and Y as the set of left and right variables respectively, we define the
following two-prover game as a respective Clause/Variable Game Hφ. Charlie chooses a random
constraint Ck which has i ∈ X and j ∈ Y as its variable. Then Charlie sends i to Alice and j
to Bob. Charlie accepts if and only if Alice and Bob gives a satisfying assignment to Ck, that is
Ck(a(i), b(j)) = 1.

Notice, however, that Hφ is not a free game, as the event of Alice receiving i ∈ X as her
challenge is highly dependent on the event of Bob receiving j ∈ Y as his challenge (challenge
i for Alice leaves only deg(i) possible challenges for Bob). In [AIM14], the authors introduce a
“hardness amplification” technique (“Birthday Repetition”) which converts Hφ into a free game
H, while (essentially) preserving its value.

The idea is that instead of choosing one challenge for Alice and one for Bob, Charlie chooses a
tuple of Θ(

√
n) of the n challenges uniformly at random, say S for Alice and T for Bob. Then Alice

gives assignments to all the challenges in S, and sends them back to Charlie. Similarly, Bob with
T . Charlie accepts if and only if all the edges between S and T are satisfied by the assignments
given by Alice and Bob. If there is no edge between S and T , Charlie just accepts regardless of
the assignment (and the players “win for free”). Intuitively, the birthday paradox ensures that by
choosing tuples of size Θ(

√
n), this event is very unlikely, and thus the value of the original game

is preserved (this is also the source of the term “birthday repetition”).
Making the game free, however, comes at a substantial cost: the size of the game blows up. New

challenges are O(
√
n)-sized sets of singleton challenges, therefore the answers to these challenges

must be also be O(
√
n)-long tuples. As a result we get the following blowup size:

|H| = (|X||A|)|S|(|Y ||B|)|T | = nO(
√
n) = 2O(

√
n logn) = 2Õ(

√
n).

Combining all the aforementioned steps (see Figure 1), one obtains a mapping from 3SAT to
a hard instance of FreeGameε, with the following particular structure:
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Theorem 2.6 (essentially [AIM14]). For some constant ε > 0, there exists a reduction running in

time 2Õ(
√
n) that maps 3SAT instances of size n to a FreeGameε instance H = (S, T ,A,B, V ) of

the following form:

• (Challenge and Answer sets) The challenge sets S and T are all
√
n/ε-sized subsets (of the

original challenge sets X and Y of Hφ defined above). Accordingly, the answer sets are

A = A
√
n/ε and B = B

√
n/ε.

• (Game Size) The size of H is thus |S||T ||A||B| = 2Õ(
√
n/ε).

• (Symmetry) X = Y and A = B. Therefore S = T and A = B.

• (Degree concentration) For any challenge S ∈ S, let N (S) denote the set of challenges T ∈ T
such that there exists some constraint C(x, y) in original φ such that x ∈ S and y ∈ T . Then
|N (S)| ≤ d|S| and :

Pr
S∼U(S)

[
|N (S)| > 9

10
d|S|

]
≥ 1− o(1). (1)

Furthermore, if S satisfies (1) then:

Pr
T

[
|N (S) ∩ T | < d

10ε2

]
≤ cε = poly(1/ε)e−poly(1/ε) < 0.1 (2)

The first two properties are by definition of the reduction of [AIM14]. The last two properties
(symmetry and concentration) are additional properties that will be used in our main reduction,
and we provide a complete proof of them in Section A.1 of the appendix.

Convention. To avoid confusion, from now on whenever considering the free game instance
H from Theorem 2.6 above, we shall refer to challenges (S, T ) ∈ S × T in H as challenge-tuples.
The challenges X and Y of the original game (Hφ) shall remain under the name challenges. This
distinction will be needed in the proof of Theorem 1.2. Now, assuming Conjecture 1.1, which gives
a natural lower bound for solving 3SAT, Theorem 2.6 directly implies the following.

Corollary 2.7 (Hardness of Free Games). Assuming the deterministic (randomized) ETH conjec-
ture, any deterministic (randomized) algorithm for FreeGameε (of the type described in Theorem

2.6) requires nΩ̃(ε2 logn) time, for all ε ≥ 1/n bounded below some constant.

3 From FreeGameε to Nashε: The main reduction

In this section we prove Theorem 1.2. By the previous discussion, it suffices to produce a gap-
preserving reduction from the FreeGameε instance from Theorem 2.6 to Nashε∗ with ε∗ = 1 −
Ω(1). Indeed, we show that

Lemma 3.1 (Main reduction). There is a reduction which runs in 2Õ(
√
n)-time, which maps the

Free Game H from Theorem 2.6 to a two-player strategic game G, such that:

• (Completeness) If ω(H) = 1, then G has an equilibrium of value 1.

• (Soundness) If ω(H) ≤ ε, then any ε∗-equilibrium of G has value at most ε∗ , for ε∗ =
Ω(1), ε∗ = 1− Ω(1).

We begin with an intuitive overview of our reduction.
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3.1 Overview of the reduction

Consider the free game instance H from Theorem 2.6. A natural idea is to convert this constraint
satisfaction game into a cooperative strategic game where the payoff is the value of the constraint
satisfaction game. The näıve way of doing so is to create a matrix whose columns are indexed by
all |A||S| possible (pure) strategy functions Alice may use (similarly, columns are indexed by all
|B||T | strategies Bob might use). For any pair of strategies (a, b) chosen by the players, we can then
assign both players an (identical) payoff of E(S,T )∼U [V (S, T, a(S), b(T ))]. Clearly, any equilibrium
strategy played by the players in the resulting game induces a response strategy for the original
free-game with the same payoff, and in particular any ε-approximate Nash equilibrium provides
an ε-approximation to ω(H). The problem, of course, is that the size of this game is prohibitively
large – 2Ω(N), while our reduction is only allowed to run in time (and space) comparable to the size

of H which is 2Õ(
√
n). One may try to apply the more clever subsampling technique of Barak et.

al. [BHHS09] to reduce the instance size. Unfortunately, even this technique can at best reduce

the size to 2Ω(log2(N)) = 2Ω(n), while our reduction must run in 2o(n) time in order to refute ETH.
The first step of our reduction is therefore to use a much more efficient encoding of the players’

response strategies in the payoff matrix – the strategy space for Alice consists of all pairs (S, a)
of her (challenge-tuple, response) in H, and, similarly, the strategy space for Bob are pairs (T, b).
The payoff is (1, 1) if V (S, T, a(S), b(T )) = 1 and (0, 0) otherwise. Notice that the above encoding

yields a game of size only |S||A| · |T ||B| = 2Õ(
√
n), as desired.

If ω(H) = 1, Alice and Bob can always achieve an equilibrium with welfare equal to 1: Alice will
choose S uniformly, and will choose a = a(S) according to her strategy in the constraint satisfaction
game. Bob will choose (T, b) in a similar fashion, and neither player has an incentive to defect.
This ensures that the value of the cooperative game is at least the value of the free game3. For
the reduction to work, however, it also needs to be sound: if the value of H is low, the strategic
game must not have a high-welfare equilibrium. The näıve construction above clearly fails at this
task: Alice and Bob can ensure the maximum payoff of (1, 1) by choosing any tuple (S0, T0, a0, b0)
satisfying V (·) and playing the pure strategy pair ((S0, a0), (T0, b0)).

To address this problem, we would like to modify the game above in a way that forces players
to play a (near) uniform strategy on the respective challenge sets, in which case finding a high-
welfare Nash equilibrium entails approximating the optimal response strategy in H. This is also
the main technical challenge of the proof. As in [HK09], we would like to add a negative-sum
part to the game which allows e.g. Bob to “punish” Alice if she plays far from uniformly on her
challenges. Unfortunately, following the [HK09] directly would cause an exponential blow-up in the
size of the game (we can’t afford even a quasi-polynomial blow-up). The planted clique reduction of
[HK09] only needed to rule out distributions of support O(log n), while we need to enforce statistical
closeness to the uniform distribution (although we manage to weaken this requirement). Luckily, H
is not arbitrary, but has a very particular structure: Every challenge-tuple S ∈ S (T ∈ T ) induced
by Alice’s (Bob’s) choice is a subset of

√
n/ε original challenges from the ground set X (Y ).

In order to implement the aforementioned idea, we will append additional payoff matrices to the
game which allows Bob (reps. Alice) to specify a (distribution over) subset Z of size ρ

√
n from the

ground set X, and we will reward him with a positive payoff in the event that Z∩S 6= ∅ (where S is
the tuple chosen by Alice). Alice, on the other hand, will get penalized by a negative payoff if this
event occurs (we make sure this part of the game is zero-sum, hence any high-welfare equilibrium
should have a significant mass on the “original” part of the game). We set the size of the “penalzing”

3We remark that since we are only considering uncoordinated, simultaneous-move strategic games, the joint
distribution on S × T obtained by players’ mixed strategies, is always a product distribution (p(S, T ) = µ(S)ν(T )),
the same as in free games. Thus, the freeness of the game is inherent to the reduction above.
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subsets Z small enough (ρ
√
n) so that if a player plays fairly (i.e, the induced distribution on his

challenge-tuples is uniform), the opponent cannot gain by defecting to this auxiliary part of the
game, in particular the optimal response strategy in H remains a Nash equilibrium.

Notice that the number of (ρ
√
n)-sized subsets from X = [n] is 2Õ(

√
n), so encoding the above

payoff matrices is within our budget. However, it is not a priori clear that adding the above
“intersection constraints” on subsets of size only O(

√
n) is a good enough proxy to imply near-

uniform behavior of the players. We show that the above construction is enough to enforce closeness
to the uniform distribution only on a certain set of marginal probability distributions, thus our
reduction is actually from a (general) two-prover game to a strategic game of size nO(

√
n). Making

this reduction work, and analyzing the equilibria of the resulting game (mainly showing that indeed
if the two player game has a low success value then the strategic game has no good-welfare equilibria)
constitutes the bulk of our construction and proof.

3.2 Construction

Given as input the free game instance H from Theorem 2.6, we create the following payoff matrices
R and C for Alice and Bob respectively : Each row of R,C corresponds to a pair (S, a) ∈ S × A,
and each column of R,C corresponds to a pair (T, b) ∈ T ×B. To describe the payoffs of each entry
of R and C, recall (from Theorem 2.6) that each challenge-tuple S ∈ S (T ∈ T ) of H is a subset of√
n/ε original challenges from X (Y ). For each entry of R, we set

R(S,a),(T,b) =


0 if |N (S)| < 0.9d|S| or |N (T )| < 0.9d|T |

αS · V (S, T, a(S), b(T )) if |N (S) ∩ T | > d
10ε2

0 otherwise

,

where αS := 1
PrDT [|N (S)∩T |> d

10ε2
]
∈ [1, 1.2) is a normalization factor we will need to ensure the

existence of an equilibrium with welfare 1 in case that ω(H) = 1, and DT is defined as the uniform
distribution over T ∈ T such that |N (T )| ≥ 0.9d|T |. Similarly, we define each entry of C as:

C(S,a),(T,b) =


0 if |N (S)| < 0.9d|S| or |N (T )| < 0.9d|T |

βT · V (S, T, a(S), b(T )) if |S ∩N (T )| > d
10ε2

0 otherwise

,

where βT := 1

PrDS

[
|S∩N (T )|> d

10ε2

] with DS defined similarly on S.

To enforce uniformity over the challenges, we further define the following payoff matrix. Let
K > 1 be a constant to be defined shortly. Define the matrix D whose rows are indexed by S ×A
(the same as R), and whose columns are indexed by all subsets Z ⊆ X of size ρ

√
n, for ρ := ε

c2·K
with c2 a universal constant to be defined shortly. Define the entries of D as follows:

D(S,a),Z =

{
K if S ∩ Z 6= ∅
0 otherwise

.

Notice that since the game H is symmetric (S = T ), the rows of the matrix D> can be similarly
interpreted as indexing all subsets of W ⊆ Y of size ρ

√
n. Thus:

D>W,(T,b) =

{
K if W ∩ T 6= ∅
0 otherwise

.

The final two-player game G constructed by our reduction is described by the following payoff
matrices (for Alice and Bob respectively):
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P =

(
R −D
D> 0

)
; Q =

(
C D
−D> 0

)
.

Notice that the above reduction runs in time and space 2Õ(
√
n). We now turn to analyze the

equilibria of the above game.

Notation. We use the following shorthands: The |S||A| × |T ||B| upper left entries of P,Q are
called the (R,C)-part of G, while the remaining entries of P,Q shall be called the D-part. For a
(row player) Alice strategy µ, we denote by µ|R,C the strategy µ projected4 to the entries in the
(R,C)-part of G, and by µ|D the strategy µ projected to the entries in the D-part. Define ν|R,C , ν|D
analogously for Bob’s (the column player) strategy ν.

3.3 Completeness

In this section, we show the completeness part of our reduction :

Lemma 3.2 (Completeness). If ω(H) = 1, then G has a Nash equilibrium of welfare at least 1.

Proof. Consider an optimal strategy pair (a, b) achieving value 1 in the free-game H, i.e., under the
uniform distribution over S × T , and recall the distributions DS ,DT on challenge-tuples, defined
in Section 3.2. Consider the following strategy pair for players in G:

• Alice’s (mixed) strategy µ is obtained by choosing S ∼ DS , and setting a = a(S). This
specifies a mixed strategy over rows (S, a) of R,C.

• Bob’s (mixed) strategy ν is obtained by choosing T ∼ DT , and setting b = b(T ). This specifies
a mixed strategy over columns (T, b) of R,C.

By the definition of R,C and third and fourth item in Theorem 2.6, we have πµ,ν(G) = 1 (this is
due to the way we defined αS , βT ). In particular, both Alice’s and Bob’s payoff is 1. It remains
to show that (µ, ν) is an equilibrium, that is neither Alice nor Bob has an incentive to deviate to
some other strategy. To show this, it suffices to argue that Bob does not have a better response
to the strategy µ played by Alice (the argument will be symmetric for the reverse case). Indeed,
suppose Bob has a better response strategy. By the averaging principle, this strategy can assumed
to be pure, i.e., a single column ei of G. There are two cases:

• If ei is a column of C, then the column ei corresponds some fixed challenge-tuple T ∗ of
size
√
n/ε from the set Y with an assignment b on T ∗. Then the payoff of Bob should be∑

S∈S C(S,a),(T ∗,b). By definition, if |N (T ∗)| < 0.9d|T ∗|, the payoff is 0. Hence without loss
of generality, T ∗ is such that |N (T ∗)| > 0.9d|T ∗|. But for such T ∗ :

ES∼DSC(S,a),(T ∗,b) ≤
1

PrDS [|S ∩N (T ∗)| > d
10ε2

]
ES∼DS [I|S∩N (T ∗)|> d

10ε2
] = 1

where I is the indicator variable of the event “|S ∩ N (T ∗)| > d
10ε2

”. Therefore Bob does not
have an incentive to deviate to ei.

4Unless otherwise stated, this is not a restriction but rather just the measure obtained by truncating all the entries
not in R,C. It would need to be normalized to become a restriction.
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• If ei is a column of D, then ei corresponds a fixed set of size ρ
√
n = ε

c2·K
√
n of X, call it Z.

By definition of the payoffs of D and since Alice’s strategy µ is uniform over S, Bob’s payoff
from defecting to ei is K · PrS∼DS [S ∩ Z 6= ∅]. But we have

Pr
S∼DS

[S ∩ Z 6= ∅] = 1− Pr
S∼DS

[S ∩ Z = ∅] ≤ 1− Pr
S∼U(S)

[S ∩ Z = ∅] + o(1)

= 1−

(n−|Z||S|
)(

n
|S|
)
+ o(1) = 1− (n− |S|)(n− |S| − 1) . . . (n− |Z| − |S|+ 1)

n(n− 1) . . . (n− |Z|+ 1)
+ o(1)

≤ 1−
(
n− |Z| − |S|
n− |Z|

)|Z|
+ o(1) = 1−

(
1− |S|

n− |Z|

)|Z|
+ o(1)

≤ 1−
(

1− |S|
0.9 · n

)|Z|
+ o(1) ≤ 1− e−

|S||Z|
0.9·n + o(1) ≤ 2

0.9 · c2 ·K
.

where we have used the fact that 1 +x ≤ ex ≤ 1 +x+x2/2 and PrS∼U(S)[S ∩Z = ∅]− o(1) ≤
PrS∼DS [S ∩ Z = ∅]. Here, α is some universal constant such that α < 1. Therefore, Bob’s
payoff from the strategy ei is upper bounded by 2K

0.9·c2·K = 2
0.9·αc2 . Thus if we set c2 so that

2/0.9 ≤ c2, say c2 = 5/2, Bob does not have an incentive to deviate to ei.

Repeating a symmetric argument for Alice, we conclude that (µ, ν) is a (perfect) Nash equilibrium
with social welfare = 1, as desired.

3.4 Soundness

In this section, we give a proof of soundness part of our reduction :

Theorem 3.3 (Soundness). There is some constant ε∗ = Ω(1) such that if ω(G) ≤ ε, then any
ε∗-equilibrium of G has value at most O(ε).

We first argue that the projection of any approximate Nash Equilibrium to the (R,C)-part of
G can be decomposed into “uniform+ small noise” components. To this end, for any Alice strategy
µ, let

µ̃(i) :=
1

|S|
∑
S:S3i

µ(S)

denote the marginal frequency of challenge i ∈ X under µ. Define ν̃(i) analogously with respect to
any Bob strategy ν.

Lemma 3.4 (Decomposition lemma). Suppose (µ, ν) is an ε∗-Nash Equilibrium of G, where ε∗ <
1/2. Then one can write µ|R,C = µ1 + µ2 such that

• µ̃1 is near uniform; that is, for all i ∈ X, µ̃1(i) < 5/n.

• ‖µ2‖1 < 2
K .

An analogues decomposition holds for ν|R,C .5

Proof. By Proposition A.5, we know that the entries in R and C are at most 1 + O(cε) < 1.2.
Therefore, by convexity, the payoff for Alice and Bob is bounded above by 1.2 for any (µ, ν).

For µ|R,C , consider the following recursive procedure for decomposition:

5Note that µ1, µ2, µ|R,C are not distributions, but non-negative vectors over rows of payoff matrices, P and Q
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• Set k = 1, µ1
1 = µ, µ1

2 = 0, B ←− ∅.

• If (a) ‖µ̃k1‖∞ < 5/n or (b) ‖µ2‖1 ≥ 2/K then halt. Otherwise pick ik = arg max µ̃k1(i). Add
ik to B.

• Define µk+1
1 = µk1 − µk1|ik∈S and µk+1

2 = µk2 + µk1|ik∈S

• Set k ←− k + 1 and repeat.

First we argue that above algorithm must terminate, that is if (a) does not hold at any round,
then (b) must hold after some number of rounds. So long as (a) does not hold, we know that there
exists some ik for each k such that µ̃k1(ik) ≥ 5/n. Then,

‖µk1|ik∈S‖1 =
∑
ik∈S

µk1(S) = |S| · µ̃k1(ik) > |S| ·
5

n
=

5

ε
√
n
,

that is, the `1 norm of µ2 increases in each round by at least 5
ε
√
n

. Thus after T = 2ε
5K

√
n rounds,

‖µT2 ‖1 >
5

ε
√
n
· T =

2

K

which violates (b). Therefore, our algorithm must halt before k = T .
Now, we show that if our algorithm terminates, it should either output a valid decomposition,

or (µ, ν) is not a valid ε∗-equilibrium. If our algorithm halts via (a) before reaching (b), µ1 and
µ2 become our desired decomposition. Now suppose instead our algorithm halts via (b). Then
consider the set of indices B in our algorithm. If Bob deviates to the corresponding column for B
in D, which we know that exists since |B| ≤ T = 2ε

5K

√
n. (Choosing any set in D that contains B

suffices) Then his new payoff is

K · Pr
S∼µ

[B ∩ S 6= ∅] ≥ K · ‖µ2‖1 ≥ 2,

Thus, Bob’s payoff increases by more than 1/2 by deviating to such B. Therefore, (µ, ν) is not an
ε∗-equilibrium.

Repeating a symmetric argument for Alice, we conclude that any equilibrium with distribution
(µ, ν) must satisfy above decomposition properties.

Now if ε∗-Nash Equilibrium indeed satisfies above decomposition, we then show that its payoff
cannot be large:

Lemma 3.5 (Payoff Bound). Suppose µ and ν satisfies the condition in Lemma 3.4, and forms an
ε∗-Nash Equilibrium. Then the payoff of the game is at most O(ε).

Proof. Let M = 1
2 · (R+ C). Then we can decompose the value of the game in a following way:

µ ·M · νT ≤ µ1MνT1 + µ2MνT1 + µ1MνT2 + µ2MµT2

≤ µ1MνT1 + (1 + cε) (‖µ2‖1‖ν1‖1 + ‖µ1‖1‖ν2‖1 + ‖µ2‖1‖ν2‖1)

≤ µ1MνT1 +
6

K

Note that any mass on µ|D and ν|D will contribute a zero payoff by our construction. Here cε is a
small constant dependent on ε introduced in Proposition A.5, which can be assumed to be < 0.1.
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Now we wish to bound payoff given by R and C under (µ1, ν1) separately. Recall that our original
assumption about the 2CSP instance gives us :

1

|E|
∑

(i,j)∈E

V (i, j) < ε

where V (i, j) refers to the “squashed” value of the constraint between i ∈ X and j ∈ Y , in a sense
that it is whether (i, j) is being satisfied within the challenge-tuples, and E is the set of constraints.
Then the following chain of inequalities hold :

µ1 ·R · νT1 ≤ (1 + cε) ·
10ε2

d

∑
(i,j)∈E

Pr
S∼µ1,T∼ν1

[i ∈ S, j ∈ T, V (i, j, a, b) = 1]

= (1 + cε) ·
10ε2

d

∑
(i,j)∈E

Pr
S∼µ1,T∼ν1

[i ∈ S, j ∈ T ]V (i, j)

= (1 + cε) ·
10ε2

d

∑
(i,j)∈E

V (i, j) Pr
S∼µ1

[i ∈ S] Pr
T∼ν1

[j ∈ T ]

≤ (1 + cε) ·
10ε2

d

∑
(i,j)∈E

V (i, j)
5|S|
n

5|T |
n
≤ (1 + cε) ·

10ε2

d

ε · 52 · |E| · |S| · |T |
n2

= (1 + cε) · 250 · ε ≤ O(ε)

The first inequality holds since we need at least d
10ε2

pairs of (i, j) to gain the payoff. Second
equality holds since our game is a free game, that is µ1 and ν1 are independent.

Repeating a symmetric argument for C, µ1MνT1 ≤ O(ε). Setting K = O(1/ε), the payoff is at
most O(ε).

Proof of Theorem 3.3. Suppose (µ, ν) forms an ε∗-equilibrium for ε∗ = 1−Ω(1), and ε∗ < 1/2,
and our original PCP had value < ε. By Lemma 3.4, we know that µ|R,C and ν|R,C can be
decomposed, if they are indeed an ε∗-equilibrium. But then by Lemma 3.5, πµ,ν(G) = O(ε), which
completes the proof. �
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A Appendix

A.1 Symmetry and Concentration properties of the free-game of [AIM14]

In this section, we prove third and fourth properties in Theorem 2.6, which will be used in Section
3.3

Proposition A.1 (Symmetry). Let φ = (X,Y,E) be a 2CSP instance formed by [MR08], where
X, Y and E refers to the set of left, right vertices and edges between them respectively when viewed
as a bipartite graph. Define φ̃ = (X̃, Ỹ , Ẽ) as “symmetrized” version of φ (viewed as a bipartite
graph), which is formed by setting X̃ = Ỹ = X ∪ Y and

Ẽ = {(u, v)|(u, v) ∈ E or (v, u) ∈ E} ∪ {(v, v)|v ∈ X or v ∈ Y }

and setting a uniform distribution over such Ẽ. e ∈ {(u, v)|(u, v) ∈ E or (v, u) ∈ E} is considered
satisfied if the assignment to u and v is considered satisfied in the original φ. e ∈ {(v, v)|v ∈
X or v ∈ Y } is considered satisfied if the assignment to both v are equal.

Then if ω(φ) = 1 then ω(φ̃) = 1. If ω(φ) < δ, then ω(φ̃) < 2δ

Proof. If ω(φ) = 1, then ω(φ̃) = 1, since we can simply copy the assignment for φ to φ̃. Now
suppose ω(φ) ≤ δ. Suppose we pick a random e ∈ Ẽ. If e ∈ {(u, v)|(u, v) ∈ E or (v, u) ∈ E}, the
probability of e being satisfied is at most δ, and the probability of picking such e is 2d/(2d + 2).
Then:

ω(φ̃) ≤ 2d

2d+ 2
δ +

2

2d+ 2
· 1 =

dδ + 1

d+ 1
≤ 2δ

The last inequality holds since 1 ≤ δd+ 2δ, as d > 1/δ in [MR08].

Therefore, we can assume from now on that for any φ formed by [MR08] and the corresponding
Clause/Variable game Gφ = (X,Y,A,B, V ) as:

• X = Y and A = B

• For any subset of size k say S ⊆ X, the number of variables in Y that shares a challenge
(edge) with some variable in S denoted as N (S) is at least |S| and at most (d + 1)|S|, thus
Θ(|S|).

We henceforth denote by d the degree of the symmetric game Gφ.

Proposition A.2 (Expansion concentration). Under the uniform distribution over S, the number
of neighbors for S ⊆ X where |S| =

√
n/ε is concentrated.

Pr
S∼U(S)

[0.9d|S| < |N (S)| ≤ d|S|] ≥ 1− o(1) (3)

Proof. For each i ∈ Y define the following random variable :

Xi =

{
1 if i ∈ N (S)

0 otherwise
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Then |N (S)| =
∑

i∈Y Xi. Also observe that for i ∈ Y to be in N (S), one of neighbors of i must be
in S. Therefore

E[|N (S)|] =
∑
i∈Y

E[Xi] =
∑
i∈Y

Pr[Xi = 1] = n ·

(
1−

(
n−d
|S|
)(

n
|S|
) )

≥ n ·

(
1−

(
1− d

n

)|S|)
≥ n ·

(
1− e−

d
ε
√
n

)
=
d
√
n

ε
− d2

2ε2
+ o(1)

Now Proposition A.1 ensures that |N (S)| ≤ d|S| = d
√
n
ε . Thus we can view d|S| − |N (S)| as a

nonnegative random variable and bound the concentration using Markov inequality :

Pr[0.9d|S| ≤ |N (S)| ≤ d|S|] = Pr[d|S| − |N (S)| ≤ d|S|
10

]

= 1− Pr

[
d|S| − |N (S)| > d|S|

10

]
≥ 1− d2

2ε2
· 10

d|S|
= 1− o(1)

This completes the proof.

To show the final concentration property, we need to use two well-known facts.

Fact A.3 (Approximation of
(
n
k

)
). If n is large and k ≤

√
n/ε, then

e−1/ε2 n
k

k!
≤
(
n

k

)
≤ nk

k!
(4)

Fact A.4 (Stirling’s approximation).

n! = Θ
(√

2πn
(n
e

)n)
(5)

Proposition A.5. Fix S that satisfies expansion concentration, that is |N (S)| = κSd|S| > 0.9d|S|.
Then under the uniform distribution over T ⊆ Y with |T | =

√
n/ε satisfies the following concen-

tration inequalities.

Pr
T

[
|N (S) ∩ T | < d

c1ε2

]
≤ poly(1/ε)e−poly(1/ε) (6)

where c1 is some universal constant such that log c1+1
c1

< 0.9.
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Proof. Set t = d
c1ε2

then

Pr [|N (S) ∩ T | < t] =
t∑

k=1

Pr [|N (S) ∩ T | = k] ≤ t · Pr [|N (S) ∩ T | = t]

= t ·

(n−|N (S)|
|T |−t

)
·
(|N (S)|

t

)(
n
|T |
) ≤ t ·

(n−|N (S)|)|T |−t
(|T |−t)! · |N (S)|t

t!

e−1/ε2 n|T |

|T |!

= t · e1/ε2 ·
(
|T |
t

)
·
(

1− |N (S)|
n

)|T |−t
·
(
|N (S)|
n

)t
≤ t · e1/ε2 · 1

t!
·
(

1− |N (S)|
n

)|T |−t
·
(
|N (S)| · |T |

n

)t
=
t · e1/ε2

t!
·
(

1− |N (S)|
n

)|T |−t
·
(
κSd

ε2

)t
≈
√
t · et · e1/ε2

√
2πtt

· e−
κSd|S|(|T |−t)

n · et·log
κSd

ε2

=
1√
2π

√
t · et·(log(κSc1t)+1−log t) · eo(1) · e−

κSd

ε2

≤ 1√
2π

√
t · et log(ec1) · eo(1)e−0.9c1t = poly(1/ε)e−poly(1/ε) = cε

where second inequality uses (4) and the approximation uses (5).

Therefore, we can set c1 = 10.

Corollary A.6. By choosing ε as a small enough constant, we can assume that for any S ⊆ X of
size
√
n/ε such that |N (S)| > 0.9d|S|:

Pr

[
|N (S) ∩ T | ≥ d

10ε2

]
≥ 1− cε > 0.9
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