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Abstract

The resolution complexity of the perfect matching principle was studied by
Razborov [Raz04], who developed a technique for proving its lower bounds for
dense graphs. We construct a a constant degree bipartite graph Gn such that the
resolution complexity of the perfect matching principle for Gn is 2Ω(n), where n is
the number of vertices inGn. This lower bound matches with the upper bound 2O(n)

up to an application of a polynomial. Our result implies the 2Ω(n) lower bounds
for the complete graph Kn and the complete bipartite graph Kn,O(n) that improve
the lower bounds followed from [Raz04]. Our results also implies the well-known
exponential lower bounds on the resolution complexity of the pigeonhole principle,
the functional pigeonhole principle and the pigeonhole principle over a graph.

We also prove the following corollary. For every natural number d, for every
n large enough, for every function h : {1, 2, . . . , n} → {1, 2, . . . , d}, we construct a
graph with n vertices that has the following properties. There exists a constant
D such that the degree of the i-th vertex is at least h(i) and at most D, and
it is impossible to make all degrees equal to h(i) by removing the graph’s edges.
Moreover, any proof of this statement in the resolution proof system has size 2Ω(n).
This result implies well-known exponential lower bounds on the Tseitin formulas
as well as new results: for example, the same property of a complete graph.

1 Introduction

The resolution proof system is one of the simplest and well-studied proof systems. There
are well known methods of proving lower and upper bounds on the complexity of several
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types of formulas. However, there are no known universal methods to determine an
asymptotic resolution complexity of a given family of formulas. We say that a family
of unsatisfiable CNF formulas Fn is weaker than a family of unsatisfiable formulas Hn

if every clause of Hn is an implication of a constant number of clauses of Fn. Since the
resolution proof system is implication complete, the size of any resolution proof of Hn

is at least the size of the minimal resolution proof of Fn. Thus it is interesting to prove
lower bounds for for fomulas as weak as possible.

CNF formulas PHPm
n encode the pigeonhole principle; PHPm

n states that it is possible
to put m pigeons into n holes in such a way that every pigeon is contained in at least
one hole and every hole contains at most one pigeon. PHPm

n depends on variables pi,j for
i ∈ [m] and j ∈ [n] and pi,j = 1 iff the i-th pigeon is in the j-th hole. PHPm

n is unsatisfiable
iff m > n. Haken [Hak85] proved the lower bound 2Ω(n) on the resolution complexity of
PHPn+1

n . Raz [Raz01a] proved the lower bound 2nε on the resolution complexity of PHPm
n

for some positive constant ε and arbitrary m > n. This lower bound was simplified and
improved to 2Ω(n1/3) by Razborov [Raz01b].

Urquhart [Urq03] and Ben-Sasson, and Wigderson [BSW01] consider formulas
G−PHPn

m that are defined by a bipartite graph G; the first part of G corresponds to pi-
geons and consists of m vertices, and the second part corresponds to holes and consists of
n vertices. Every pigeon must be contained in one of adjacent holes. Formulas G−PHPm

n

may be obtained from PHPm
n by substituting variables which do not have corresponding

edges in G with zeroes. The paper [BSW01] presents the lower bound 2Ω(n) for formulas
G−PHPm

n where m = O(n) and G is a bipartite constant degree expander.
Razborov [Raz03] considers a so called functional pigeonhole principle FPHPm

n that
is a weakening of PHPm

n ; the formula FPHPm
n is the conjunction of PHPm

n and additional
conditions stating that every pigeon is contained in at most one hole. Razborov proved

a lower bound 2
Ω
(

n
(logm)2

)
for FPHPm

n that implies a lower bound 2Ω(n1/3) depending only
on n.

Let for every graph G a formula PMPG (from the Perfect Matching Principle) encode
that G has a perfect matching. Variables of PMPG correspond to edges, and for every
vertex of G exactly one incident edge has value 1. Razborov [Raz04] proved that if G has

no perfect matchings, then the resolution complexity of PMPG is at least 2
δ(G)

log2 n , where
δ(G) is the minimal degree of the graph and n is the number of vertices.

Alekhnovich [Ale04] and Dantchev and Riis [DR01] consider the graphs of the chess-
board 2n × 2n with two opposite corners removed. The perfect matching principle for
such graphs is equivalent to the possibility to tile such chessboards with domino. The
strongest lower bound 2Ω(n) was proved in [DR01] and this lower bound is polynomially
connected with the upper bound 2O(n). We note that the number of variables is Θ(n2).

Our results For all n and all m ∈ [n + 1, O(n)] we give an example of a bipartite
graph Gm,n with m and n vertices in its parts such that all degrees are bounded by a
constant and the resolution complexity of PMPGm,n is 2Ω(n). The number of variables
in such formulas is O(n), therefore the lower bound matches (up to an application of
a polynomial) the trivial upper bound 2O(n) that holds for every formula with O(n)
variables. This is the first lower bound for perfect matching principle that is exponential
in the number of variables. In particular, our results imply that the resolution complexity
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of PMPKm,n is 2Ω(n), where Km,n is the complete bipartite graph and m = O(n). And this

lower bound improves the lower bound 2Ω(n/ log2 n) that follows from [Raz04] and matches
(up to a polynomial application) the upper bound n2n that follows from the upper bound
for PHPn+1

n [SB97]. Our result implies the lower bound 2Ω(n) on the resolution complexity
of PMPKn , where Kn is a complete graph on n vertices, and it is also better than the
lower bound 2Ω(n/ log2 n) that follows from [Raz04]. We note that PMPGm,n is weaker
than Gm,n − PHPm

n , PHPm
n and FPHPm

n , therefore our lower bound implies the same
lower bound for Gm,n − PHPm

n , PHPm
n and FPHPm

n . To put it more precisely, we we
prove the following theorem:

Theorem 1.1. Let G be a bipartite graph with parts X and Y such that the folowing
holds:

1. G is a (r, c)-boundary expander; i.e. for all A ⊆ X, if |A| ≤ r then |δ(A)| ≥ c|A|,
where δ(A) is the set of all vertices in Y that are connected with exactly one vertex
in A;

2. There is a matching in G that covers all vertices from Y .

Then the width of all resolution proofs of PMPG is at least cr/2. If additionally degrees
of all vertices are at most D, then (using [BSW01] we get that) the size of any resolution

proof of PHPG is at least 2
Ω

(
(cr/2−D)2

n

)
, where n is the number of edges in G.

The condition that G has a matching covering all vertices from Y cannot be removed
for free since for every (r, c)-boundary expander it is possible to add one vertex to X
and dce vertices to Y such that the new vertex in X is connected with all new vertices
in Y . The resulting graph is also (r, c)-boundary expander but the resulting formula will
contain unsatisfiable subformula that depends on dce variables, hence it can be refuted
with width dce. We do not know whether it is possible to replace the second condition
in the theorem by a weaker condition.

To estimate the width we use the method introduced by Ben-Sasson and Wigderson
in [BSW01]. However, we use a non-standard notion of a semantic implication and a
non-standard measure on the set of clauses.

An example of a graph that suits the conditions of Theorem 1.1 can be constructed
from every lossless expander by removing vertices of high degrees as it was shown in
[IS11], and by adding a matching that covers all vertices from Y . For example, we can
use the explicit construction of lossless expanders from [MCW02] (or the randomized
construction [HLW06]).

Theorem 1.1 implies a more general theorem:

Theorem 1.2. For graph G(V,E) and function h : V → {1, 2, . . . , d} we define a formula

Ψ
(h)
G , that code that G has a subgraph H such that for all v in H the degree of v equals

h(v). For any d ∈ N, there exists D ∈ N that for all n large enough and every function
h : V → {1, 2, . . . , d}, where |V | = n, there exists graph G(V,E) with degrees of vertices

at most D such that the formula Ψ
(h)
G is unsatisfiable and the size of any resolution proof

of Ψ
(h)
G is at least 2Ω(n).
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If h maps V to {1, 2}, then Ψ
(h)
G is weaker than Tseitin formulas based on graph G.

Thus our result implies the lower bound 2Ω(n) on the resolution complexity of Tseitin
formulas that was proved in [Urq87].

2 Preliminaries

We consider simple graphs without loops and multiple edges. The graph G is called
bipartite if its vertices can be divided into two disjoint parts X and Y in such a way that
any edge is incident to one vertex from X and one vertex from Y . We denote G(X, Y,E)
a bipartite graph with parts X and Y and set of edges E. A matching in a graph G(V,E)
is such a set of edges E ′ ⊆ E that any vertex v ∈ V has at most one incident edge from
E ′. A matching E ′ covers a vertex v if there exists e ∈ E ′ that is incident to v. A perfect
matching is a matching that covers all vertices of G. For a bipartite graph G(X, Y,E)
and a set A ⊆ X we denote Γ(A) a set of all neighbors of vertices from A.

Lemma 2.1 (Hall). Consider such a bipartite graph G(X, Y,E) that for some A ⊆ X
for all B ⊆ A the following inequality holds: Γ(B) ≥ |B|. Then there is a matching that
covers all vertices from A.

For a CNF formula ϕ a proof of its unsatisfiability in the resolution proof system is a
sequence of clauses with the following properties: the last clause is an empty clause (we
denote it by �); any other clause is either a clause of initial formula ϕ or can be obtained
from previous ones by the resolution rule. The resolution rule admits to infer a clause
(B ∨C) from clauses (x∨B) and ¬x∨C. The size of a resolutional proof is the number
of clauses in it.

In [BSW01] E. Ben-Sasson and A. Wigderson introduced a notion of formula width.
A width of a clause is a number of literals contained it it. For a k-CNF formula ϕ a width
of ϕ is a maximum width of clauses of ϕ. A width of a resolution proof is a width of the
largest clause used in it.

Theorem 2.1 ([BSW01]). For any k-CNF unsatisfiable formula ϕ the size of resolution

proof is at least 2
Ω

(
(w−k)2

n

)
, where w is a minimal width of a resolutional proof and n is

a number of variables used in ϕ.

Lemma 2.2. Let φ be a formula that is obtained from unsatisfiable formula ψ by a
substitution of several variables. Then φ is unsatisfiable and the size of the minimal
resolution proof of ψ is at least the size of the minimal resolution proof of φ.

3 Subgraph extraction

3.1 Existence of a perfect matching

For an undirected graph G(V,E) we construct a formula PMPG that encodes that G
has a perfect matching. We assign a binary variable xe for all e ∈ E . PMPG is the
conjunction of the following conditions: for all v ∈ V exactly one edge that incident to v
has value 1. Such conditions can be written as the conjunction of the statement that at
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least one edge takes value 1:
∨

(v,u)∈E x(v,u) and the statement that for any pair of edges
e1, e2 incident to v at most one of them takes value 1: ¬xe1 ∨ ¬xe2 .

Note that if degrees of all vertices are at most D, then PMPG is a D-CNF formula.
In this section we prove the following theorem:

Theorem 3.1. There exists a constant D such that for all C that for all n large enough
and for all m ∈ [n+1, Cn] it is possible to construct in polynomial in n time such bipartite
graph G(V,E) with m and n vertices in parts that all degrees are at most D and the
formula PMPG is unsatisfiable and the size of any resolution proof of PMPG is at least
2Ω(n).

Definition 3.1. A bipartite graph G(X, Y,E) is (r, c)-boundary expander if for any set
A ⊆ X such that |A| ≤ r the following inequality holds |δ(A)| ≥ c|A|, where δ(A) denotes
the set of all such vertices in Y that are connected with the set A by the unique edge.

Lemma 3.1. Let bipartite graph G(X, Y,E) have two matchings, the first one covers
all vertices from Y and the second covers all vertices from A ⊆ X. Then there exists a
matching in G that covers A and Y simultaneously.

Proof. Let L denote the matching that covers all vertices from the set A and let F be a
matching that covers all vertices from Y . We prove that if F does not cover all vertices
from A, then one may construct a matching F ′ that covers more vertices of A than F
and also covers all vertices from Y . Therefore there is such a matching that covers A and
Y .

Consider some vertex v1 ∈ A that is not covered by F and such path
v1, u1, v2, u2, . . . , uk−1, vk that (vi, ui) ∈ L, (ui, vi+1) ∈ F and v1, v2, . . . , vk−1 ∈ A and
vk /∈ A.

For any fixed v1 ∈ A such a path can be constructed deterministically: starting at
vertex v1 the edges of the path belong to alternating matchings L and F . For every vertex
from X at most one of outgoing edges belongs to L. For every vertex from Y exactly
one of outgoing edges belongs to F . The path can’t become a cycle because v1 has no
incident edges from F , therefore the constructed path will lead to some vertex vk /∈ A.

Let matching F ′ be constructed from F by removing all edges (vi, vi+1) and adding
edges (ui, vi) for 1 ≤ i < k. Now F ′ covers all Y and covers one additional vertex of A in
comparison with F .

Lemma 3.2. Let G(X, Y,E) be a bipartite (r, d, c)-boundary expander with c > 2 and
|X| > |Y |. Let G have a matching that covers all vertices from the part Y . Then the
formula PMPH is unsatisfiable and the width of its resolution refutation is at least cr/2.

Proof. Parts X and Y have different number of vertices, hence there are no perfect
matchings in G and PMPG is unsatisfiable.

We call an assignment to variables of PMPG proper if for every vertex v at most one
edge incident to v has value 1. For some subset S ⊆ V and for a clause C we say that S
properly implies C if any proper assignment that satisfies all constraints in vertices from
S, also satisfies C. We denote it as S ` C.

Now we define a measure on clauses from a resolution refutation of PMPG: µ(C) =
min{|S ∩X| | S ` C}.
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The measure µ has the following properties:
1) The measure of any clause from PMPG equals 0 or 1.
2) Semiadditivity: µ(C) ≤ µ(C1) + µ(C2), if C is obtained by applying of resolution

rule to C1 and C2.
Let S1 ` C1, |S1 ∩X| = µ(C1) and S2 ` C2 , |S2 ∩X| = µ(C2). Hence S1 ∪ S2 ` C1

and S1 ∪ S2 ` C2, so S1 ∪ S2 ` C, therefore µ(C) ≤ |S1 ∩X|+ |S2 ∩X| = µ(C1) + µ(C2).
3) The measure of the empty clause � is more than r.
Let µ(�) ≤ r, then there is such S ⊆ V that S ` � and |S∩X| ≤ r. For all A ⊆ S∩X

the following holds |Γ(A)| ≥ |δ(A)| ≥ (c − 1)|A| ≥ |A|, and Hall’s Lemma (Lemma 2.1)
implies that there is a matching in H that covers all S ∩X. By construction of H it has
a matching that covers all vertices of Y , therefore Lemma 3.1 implies that there exists a
matching that covers S ∩X and Y , hence it covers S. This matching corresponds to an
assignment that satisfies all constraints for vertices from S, but it is impossible to satisfy
the empty clause and we get a contradiction with the fact that µ(�) ≤ r.

The semiadditivity of the measure implies that any resolution proof of the formula
PMPG contains a clause C with the measure in the interval r

2
≤ µ(C) ≤ r. Let S ` C

and |S ∩X| = µ(C). For the sake of brevity let A = S ∩X. Since G is a (r, c)-boundary
expander, δ(A) ≥ c|A|. Let F denote the set of edges between A and δ(A). Every vertex
from δ(A) has exactly one incident edge leading to A, therefore |F | = |δ(A)|. Consider one
particular edge f ∈ F , let f = (u, v), where u ∈ A. Since |(S \{u})∩X| < |S∩X|, clause
C is not properly implied from the set S\{u}, i. e. there exists a proper assignment σ that
satisfies all restrictions in the vertices S \ {u}, but refutes the clause C. Such assignment
σ cannot satisfy the constraint in the vertex u, since otherwise σ would satisfy S and
therefore satisfy C. Since σ is a proper assignment, σ assigns value 0 to all edges that
are incident with u .

We consider two cases: 1) σ refutes a constraint in the vertex v; 2) σ satisfies a
constraint in the vertex v.

In the first case we consider another assignment σ′ that differs from σ in the value of
the edge f . Note that σ′ is proper and satisfies all constraints from S, so it satisfies C.
Since σ does not satisfy C, the variable f is contained in C.

In the second case σ satisfies v. There is an edge e incident to v such that σ(e) = 1.
The vertex v is a boundary vertex for A, therefore the other endpoint of e does not belong
to A. Consider an assignment σ′′ that is obtained from σ by changing the values of f
and e, σ′′ is proper and it satisfies all constraints from S, and hence it satisfies C. Thus
C contains either e or f . Thus for all v ∈ δ(A) at least one of the edges incident to v
occurs in C. Therefore the size of the clause C is at least |δ(A)| ≥ c|A| ≥ cr/2.

We say that a graph is explicit if it can be constructed in time polynomial in the
number of its vertices.

Lemma 3.3 ([IS11], lemma 6.2). For all d large enough and for all m there exists explicit
construction of (r, 0.5d)-boundary expander G(X, Y,E) with |X| = |Y | = m, r = Ω(m)
such that degrees of all vertices from X are at most d and degrees of all vertices from Y
are at most d2.

Corollary 3.1. For all d large enough and for all C and all n and m ∈ [n+1, Cn] there is
an explicit construction of (r, 0.4d)-boundary expander G(X, Y,E) with |X| = m, |Y | = n
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and r = Ω(n) such that degrees of all vertices from X are at most d and degrees of all
vertices from Y are at most d2.

Proof. The required graph can be obtained from Lemma 3.3 by deleting several vertices
from the part Y .

Proof of Theorem 3.1. Consider some d > 5 that satisfies Corollary 3.1; consider (r, 0.4d)-
boundary expander H from the Corollary 3.1 that has m and n vertices in parts. Let
graph G be obtained from H by adding any matching that covers all vertices from the
part Y . Graph G is a (r, c − 1)-boundary expander, since the addition of a matching
increases degrees of vertices in X at most by 1 and for every A ⊆ X the size of δ(A)
decreases by at most |A|.

Lemma 3.2 implies that the width of any resolution proof of PMPG is at least Ω(n).
Theorem 2.1 implies that the size of any resolution proof of PMPG is at least 2Ω(n).

4 Subgraph extraction

Let G(V,E) be an undirected graph and h be a function V → N such that for every vertex

v ∈ V , h(v) is at most the degree of v. We consider formula Ψ
(h)
G ; its variables corresponds

to edges of G. Ψ
(h)
G is a conjunction of the following statements: for every v ∈ V exactly

h(v) edges that are incident to v have value 1. Formula PMPG is a particular case of Ψ
(h)
G

for h ≡ 1.

Lemma 4.1. For all d ∈ N and for all n large enough for any set V of cardinality n and
any function h : V → {1, 2, . . . , d} there exists explicit construction of a graph G(V,E)
with the following properties: 1)V consists of two disjoint sets U and T with no edges
between them; 2)The degree of every vertex u ∈ U equals h(u) − 1 and the degree of
every vertex v ∈ T equals h(v); 3) |U | ≥ n

2
− 2d2.

Proof. Let n ≥ 4d2 and the vertices v1, v2, . . . , vn be arranged in non-decreasing order
of h(vi). Let k be the largest number that satisfies the inequality

∑k
i=1(h(vi) − 1) <∑n

i=k+1 h(vi) − d(d − 1). We denote U = {v1, v2, . . . , vk} and T = V \ U . Obviously,
|U | = k ≥ n/2 − d(d − 1). Now we construct a graph G based on the set of vertices V .
We start with an empty graph and will add edges one by one. For every vertex v ∈ T we
call co-degree of v the difference between h(v) and the current degree of v. From every
u ∈ U we add h(u)−1 edges to G that lead from u to distinct vertices of V \U . Doing so,
we maintain degrees of all v ∈ T under the value h(v). This always can be done since by
the construction of U the total co-degree of all vertices from T is greater than d(d− 1),
hence for all big enough n there exists at least d vertices with co-degree at least 1.

While the number of vertices in T with positive co-degree is greater than d, we will
choose one of those vertices w ∈ T and add to graph exactly co-degree of w edges that
connect w with other vertices from T . Finally we have that T contains at most d vertices
with co-degrees at most d. Now we connect them with distinct vertices from the set U ,
remove that vertices from U and add them to T . It is possible that in the last step some
vertex v ∈ T is already connected with several vertices from U , in that case we should
connect v with new vertices. By this operation we deleted at most d2 vertices from U
and therefore |U | ≥ n/2− 2d2.
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Theorem 4.1. For all d ∈ N there is such D ∈ N that for all n large enough and for any
function h : V → {1, 2, . . . , d}, where V is a set of cardinality n, there exists such explicit

graph G(V,E) with maximum degree at most D, that formula Ψ
(h)
G is unsatisfiable and

the size of any resolution proof for Ψ
(h)
G is at least 2Ω(n).

Proof. By Lemma 4.1 we construct a graph G1(V,E1) and a set U ⊆ V of size at least
n
2
− 2d2 such that for all v ∈ U , the degree of v is equal to h(v)− 1 and for all v ∈ V \U

the degree of v is equal to h(v). Consider graph G(U,E2) from Theorem 3.1 with U as the
set of its vertices. Define a new graph G(V,E), where the set of edges E equals E1 ∪E2.
Recall that edges from the set E2 connect vertices of the set U and edges from E1 do
not connect pairs of vertices from U (that follows from the construction of the graph in
Lemma 4.1 ).

For every vertex v ∈ V \U its degree equals h(v). Therefore if Ψ
(h)
G is satisfiable, then

in any satisfying assignment of Ψ
(h)
G all edges that are incident to vertices V \ U must

have the value 1. After substitution the value 1 for all these variables Ψ
(h)
G becomes equal

to the formula PMPG2 that is unsatisfiable because of Theorem 3.1.

Formula PMPG2 is obtained from Ψ
(h)
G by substitution of several variables, thus

Lemma 2.2 implies that the size of any resolution proof of Ψ
(h)
G is at least the size of

the minimal proof for PMPG, that is at least 2Ω(n) by Theorem 3.1.

4.1 Colloraries

Tseitin formulas. A Tseitin formula T
(f)
G can be constructed by an arbitrary graph

G(V,E) and a function f : V → {0, 1}; variables of T
(f)
G corresponds to edges of G. The

formula T
(f)
G is a conjunction of the following conditions: for every vertex v we write

down a CNF condition that encode that the parity of the number of edges incident to v
that have value 1 is the same as the parity of f(v).

Based on the function f : V → {0, 1} we define a function h : V → {1, 2} by the
following way: h(v) = 2−f(v). In other words if f(v) = 1, then h(v) = 1, and if f(v) = 0,
then h(v) = 2. By Theorem 4.1 there exists such number D, that for all n large enough
it is possible to construct graph G with n vertices of degree at most D such that the size
of any resolution proof of the formula Ψh

G is at least 2Ω(n).

Note that every condition corresponding to a vertex of the formula T
(h)
G is implied

from the condition corresponding to the formula Ψh
G. Since the resolution proof system

is implication complete, every condition of T
(h)
G may be derived from a condition of Ψh

G

by derivation of size at most 2D Hence all clauses of the Tseitin formula may be obtained
from clauses of formula Ψh

G by the derivation of size O(n). Thus the size of any resolution

proof of T
(f)
G is at least 2Ω(n). This lower bound was proved in the paper [Urq87].

Complete graph. Let Kn be a complete graph with n vertices and h : V →
{0, 1, . . . , d}, where d is a some constant. Let formula Ψ

(h)
Kn

be unsatisfiable. By Theo-
rem 4.1 there exists D such that for all n large enough there exists an explicit graph G
with n vertices of degree at most D that the size of any resolution proof of Ψh

G is at least
2Ω(n). The graph G can be obtained from Kn by removing of several edges, hence the
formula Ψ

(h)
G can be obtained from Ψ

(h)
Kn

by the substitution zeroes to edges that do not
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present in G. Therefore by Lemma 2.2 the size of the resolution proof of Ψ
(h)
Kn

is at least

2Ω(n).
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