
2-Server PIR with sub-polynomial communication

Zeev Dvir∗ Sivakanth Gopi†

Abstract

A 2-server Private Information Retrieval (PIR) scheme allows a user to retrieve the ith
bit of an n-bit database replicated among two servers (which do not communicate) while
not revealing any information about i to either server. In this work we construct a 1-

round 2-server PIR with total communication cost nO(
√

log logn/ logn). This improves over
the currently known 2-server protocols which require O(n1/3) communication and matches
the communication cost of known 3-server PIR schemes. Our improvement comes from
reducing the number of servers in existing protocols, based on Matching Vector Codes,
from 3 or 4 servers to 2. This is achieved by viewing these protocols in an algebraic way
(using polynomial interpolation) and extending them using partial derivatives.

1 Introduction

Private Information Retrieval (PIR) was first introduced by Chor, Goldreich, Kuzhelevtiz and
Sudan [CKGS98]. In a k-server PIR scheme, a user can retrieve the ith bit ai of a n-bit
database a = (a1, · · · , an) ∈ {0, 1}n replicated among k servers (which do not communicate)
while giving no information about i to any server. The goal is to design PIR schemes that
minimize the communication cost which is the worst case number of bits transferred between
the user and the servers in the protocol. The trivial solution which works even with one server
is to ask a server to send the entire database a, which has communication cost n.

When k = 1 the trivial solution cannot be improved [CKGS98]. But when k ≥ 2, the
communication cost can be brought down significantly. In [CKGS98], a 2-server PIR scheme
with communication cost O(n1/3) and a k-server PIR scheme with cost O

(
k2 log kn1/k

)
were

presented. The k-server PIR schemes were improved further in subsequent papers [Amb97,

BI01, BIKR02]. In [BIKR02], a k-server PIR scheme with cost n
O
(

log log k
k log k

)
was obtained.

This was the best for a long time until the breakthrough result of Yekhanin[Yek08] who gave
the first 3-server scheme with sub-polynomial communication (assuming a number theoretic
conjecture). Later, Efremenko[Efr09] gave an unconditional k-server PIR scheme with sub-
polynomial cost for k ≥ 3 which were slightly improved in [IS10] and [CFL+13]. These new
PIR schemes follow from the constructions of constant query smooth Locally Decodable Codes

∗Department of Computer Science and Department of Mathematics, Princeton University. Email:
zeev.dvir@gmail.com. Research supported by NSF grants CCF-1217416 and CCF-0832797.
†Department of Computer Science, Princeton University. Email: sgopi@cs.princeton.edu.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 94 (2014)

(LDCs) of sub-exponential length called Matching Vector Codes (MVCs)[DGY10]. A k-query
LDC [KT00] is an error correcting code which allows the receiver of a corrupted encoding of
a message to recover the ith bit of the message using only k (random) queries. In a smooth
LDC, each query of the reconstruction algorithm is uniformly distributed among the code word
symbols. Given a k-query smooth LDC, one can construct a k-server PIR scheme by letting
each server simulate one of the queries. Despite the advances in 3-server PIR schemes, the
2-server PIR case is still stuck at O(n1/3) since 2-query LDCs provably require exponential size
encoding [KdW03] (which translates to Ω(n) communication cost in the corresponding PIR
scheme). For more information on the relation between PIR and LDC and the constructions
of sub-exponential LDCs and sub-polynomial cost PIR schemes with more than 2 servers we
refer to the survey [Yek12].

On the lower bounds side, there is very little known. The best known lower bound for the
communication cost of a 2-server PIR is 5 log n [WdW05] whereas the trivial lower bound is
log n. In [CKGS98], a lower bound of Ω(n1/3) is conjectured. In [RY06], an Ω(n1/3) lower
bound was proved for a restricted model of 2-server PIR called bilinear group based PIR. This
model encompasses all the previously known constructions which achieve O(n1/3) cost for 2-
server PIR. We elaborate more on the relation between this model and our construction after
we present our results below.

PIR is extensively studied and there are several variants of PIR in literature. The most
important variant with cryptographic applications is called Computationally Private Informa-
tion Retrieval (CPIR). In CPIR, the privacy guarantee is based on computational hardness of
certain functions i.e. a computationally bounded server cannot gain any information about
the user’s query. In this case, non-trivial schemes exist even in the case of one server under
some cryptographic hardness assumptions. For more information on these variants of PIR see
[Gar, Gas04, Lip]. In this paper, we are only concerned with information theoretic privacy i.e.
even a computationally unbounded server cannot gain any information about the user’s query
which is the strongest form of privacy.

1.1 Our Results

We start with a formal definition of a 2-server PIR scheme. A 2-server PIR scheme involves two
servers S1 and S2 and a user U . A database a = (a1, · · · , an) ∈ {0, 1}n is replicated between
the servers S1 and S2. We assume that the servers cannot communicate with each other. The
user U wants to retrieve the ith bit of the database ai without revealing any information about
i to either server. The following definition is from [CKGS98]:

Definition 1.1. A 2-server PIR protocol is a triplet of algorithms P = (Q,A,R). At the
beginning, the user U obtains a random string r. Next U invokes Q(i, r) to generate a pair
of queries (q1, q2). U sends q1 to S1 and q2 to S2. Each server Sj responds with an an-
swer ansj = A(j,a, qj). Finally, U computes its output by applying the recovery algorithm
R(ans1, ans2, i, r). The protocol should satisfy the following conditions:

• Correctness : For any n, a ∈ {0, 1}n and i ∈ [n], the user the outputs the correct
value of ai with probability 1 (where the probability is over the random strings r) i.e.

2

R(ans1, ans2, i, r) = ai

• Privacy : Each server individually learns no information about i i.e. for any fixed
database a and for j = 1, 2, the distributions of qj(i1, r) and qj(i2, r) are identical for all
i1, i2 ∈ [n] when r is randomly chosen.

The communication cost of the protocol is the total number of bits exchanged between the user
and the servers in the worst case.

k-server PIR is similarly defined, with the database replicated among k servers which cannot
communicate between themselves. We only defined 1-round PIR i.e. there is only one round
of interaction between the user and the servers. All known constructions of PIR schemes are
1-round and it is an interesting open problem to find if interaction helps. We now state our
main theorem:

Theorem 1. There exists a 2-server PIR scheme with communication cost n
O
(√

log logn
logn

)
.

The definition of a 2-server PIR scheme can be generalized in an obvious manner to any

number of servers. In [Efr09] a 2r-server PIR schemes was given with nO((log logn/logn)1−1/r)

communication cost for any r ≥ 2. Using our techniques, we can reduce the number of servers
in this scheme by a factor of two. That is, we prove the following stronger form of Theorem 1.

Theorem 2. For any r ≥ 2, there exists a 2r−1-server PIR scheme with communication cost

nO((log logn/logn)1−1/r).

We note that the proof of Theorem 2 actually allows the database symbols to be in the
larger alphabet Zm, where m is the composite over which we construct the MV family.

There was some work on decreasing the 2r query complexity of the construction of Matching
Vector Codes in [Efr09]. A query complexity of 9 · 2r−4 for r ≥ 6 was achieved in [IS10] while
keeping the encoding length the same. This was improved in [CFL+13] to 3dr/2e for 2 ≤ r ≤ 103
and (34)51 · 2r for r ≥ 104. Using these LDCs directly to get a PIR scheme will do better than
our scheme when the number of servers is more than 26, whereas our scheme will do better
than these when the number of servers are less than 9.

1.2 Related work

Polynomial lower bounds for bilinear group based PIR: In [RY06], an Ω(n1/3) lower
bound was shown for a restricted model of 2-server PIR schemes. This lower bound holds
for schemes that are both bilinear and group based. Our scheme can be made into a bilinear
scheme∗ (see section 4.1) over the field F3 of three elements. However, it does not satisfy the
property of being group based as defined in [RY06]. Our scheme does satisfy a weaker notion
of employing a group-based secret sharing scheme (another technical term defined in [RY06]).
The difference between these two notions (of being group based as opposed to employing a

∗Our scheme can infact be made linear and using a simple transformation given in [RY06], any linear scheme
can be converted to a bilinear scheme

3

group based secret sharing scheme) is akin to the difference between LCCs and LDCs (LCCs
being the stronger notion). In group based PIR, the database is represented by the values of
a function over a subset of a group but the user should be able to recover the value of that
function at every group element. Our scheme encodes the database as a function over a group
and the user will only be able to recover the bits of the database from the function.

2-query LDCs over large alphabet: The reader familiar with the exponential lower
bounds for 2-query LDCs [KdW03] would wonder why our construction does not violate these
bounds. The reason is that, when one translates 2-server PIR schemes into LDC, the resulting
alphabet of the code can be quite large. Formally, a scheme with communication cost s will
translate into an LDC C : {0, 1}n 7→ ({0, 1}s)2s (with the blocks corresponding to all possible
answers by the servers). Thus, each one of the two queries used by the decoder is a string of
s bits. The known lower bounds for such LDCs are exponential only as long as s << log(n)
and so our construction does not violate them. Hence, our main theorem also gives the first
construction of a sub-exponential 2-query LDC over an alphabet of size 2n

o(1)
.

1.3 Proof Overview

On a very high level, the new protocol combines the existing 2-server scheme of [WY05], which
uses polynomial interpolation using derivatives, with Matching Vector Codes (MV Codes)
[Yek08, Efr09]. In particular, we make use of the view of MV codes as polynomial codes,
developed in [DGY10]. This short overview is meant as a guide to the ideas in the construction
and assumes some familiarity with [WY05] and [DGY10] (a detailed description will follow
in the next sections). The 2-server scheme of [WY05] works by embedding the database
a = (a1, . . . , an) as evaluations of a degree 3 polynomial F (x1, . . . , xk) over a small finite field
Fq with k ∼ n1/3. To recover the value ai = F (Pi) the user passes a random line through the
point Pi ∈ Fkq , picks two random points Q1, Q2 on that line and sends the point Qi to the ith
server. Each server responds with the value of F at Qi and the values of all partial derivatives
∂F/∂xj , j = 1, . . . , k at that point. The restriction of F to the line is a univariate degree 3
polynomial and the user can recover the values of this polynomial at two points as well as the
value of its derivative at these points. These four values (two evaluations plus two derivatives)
are enough to recover the polynomial and so its value at Pi. The key is that each server’s
response only depends on the point Qi (which is completely random). The user can compute
the derivatives of the restricted polynomial from these values (knowing the line equation).

To see how MV codes come into the picture we have to describe them in some detail. An
MV family is a pair of lists U = (u1, . . . ,un), V = (v1, . . . ,vn) with each list element ui and vj
belonging to Zkm and m is a small integer. These lists must satisfy the condition that 〈ui,vj〉
(taken mod m) is zero iff i = j. When m is a composite, one can construct such families
of vectors of size n = kω(1) [Gro99] (this is impossible if m is prime). From such a family
we can construct an m-query LDC as follows: given a message a = (a1, . . . , an) ∈ {0, 1}n
define the polynomial F (x1, . . . , xk) =

∑n
i=1 aix

ui (we denote xc = xc11 . . . xckk). We think of
F as a polynomial with coefficients in some finite field Fq containing an element γ ∈ Fq of
order m. The final encoding of a is the evaluations of F over all points in Fkq of the form

4

γc = (γc1 , . . . , γck) for all c ∈ Zkm. To recover ai in a ‘smooth’ way, we pick a random z ∈ Zkm
and consider the restriction of F to the ‘multiplicative line’ given by L = {γz+tvi | t ∈ Zm}.
That is, we denote G(t) = F (γz+tvi). In [DGY10] it was observed that this restriction can be
seen as a polynomial g(T) of degree at most m − 1 in the new ‘variable’ T = γt and so can
be reconstructed from the m values on the line g(γt) = G(t), t = 0, 1, . . . ,m − 1. The final
observation is that g(0) is a nonzero multiple of ai (since the only contribution to the free
coefficient comes from the monomial aix

ui) and so we can recover it if we know g(T).

Our new protocol combines these two constructions by using the MV code construction
and then asking each server for the evaluations of F at a point, as well as the values of a
certain differential operator (similar to first order derivatives) at these points. For this to work
we need two ingredients. The first is to replace the field Fq with a certain ring which has
characteristic m and an element of order m (we only use m = 6 and can take the polynomial
ring Zm[γ]/(γ6 − 1)). The second is an observation that, in known MV families constructions
[Gro99], the inner products 〈ui,vj〉 that are nonzero (that is, when i 6= j) can be made to
fall in a small set. More precisely, over Z6, the inner products are either zero or in the set
{1, 3, 4}. This means that the restricted polynomial only has nonzero coefficients corresponding
to powers of T coming from the set {0, 1, 3, 4}. Such a polynomial has four degrees of freedom
and can be recovered from two evaluations and two derivatives (of order one). We are also able
to work with arbitrary MV families by using second order derivatives at two points (which are
sufficient to recover a degree 5 polynomial).

1.4 Organization

In section 2 we give some preliminary definitions and notations. In section 3, we review
the construction of a 2-server PIR scheme with O(n1/3) communication cost which is based
on polynomial interpolation with partial derivatives [WY05]. In section 4, we present our
new construction of sub-polynomial 2-server PIR schemes and some of its variants. Then, in
Section 5 we analyze the generalization to more servers. We conclude in Section 6 with some
remarks on future directions.

2 Preliminaries

Notations: We will use bold letters like u,v, z etc. to denote vectors. The inner product
between two vectors u = (u1, · · · , uk),v = (v1, · · · , vk) is denoted by 〈u,v〉 =

∑k
i=1 uivi. For a

commutative ring R we will denote by R[x1, · · · , xk] the ring of polynomials in formal variables
x1, . . . , xk with coefficients in R. We will use the notation xz with x = (x1, · · · , xk), z =
(z1, · · · , zk) ∈ Zk to denote the monomial

∏k
i=1 x

zi
i . So any polynomial F (x) ∈ R[x1, · · · , xk]

can be written as F (x) =
∑

z czx
z.

Zm = Z/mZ is the ring of integers modulo m. When u ∈ Zkm, xu denotes xũ where
ũ ∈ {0, 1, · · · ,m − 1}k is the unique vector such that u ≡ ũ mod m. Fq denotes the finite
field of size q.

5

2.1 The rings Rm,r

For our construction it will be convenient (although not absolutely necessary, see Section 4.1)
to work over a ring which has characteristic 6 and contains an element of order 6. We now
discuss how to construct such a ring in general.

Let m > 1 be an integer and let γ be a formal variable. We denote by

Rm,r = Zm[γ]/(γr − 1)

the ring of univariate polynomials Zm[γ] in γ with coefficients in Zm modulo the identity
γr = 1.† More formally, each element f ∈ Rm,r is represented by a degree ≤ r − 1 polynomial
f(γ) =

∑r−1
`=0 c`γ

` with coefficients ci ∈ Zm. Addition is done as in Zm[γ] (coordinate wise
modulo m) and multiplication is done over Zm[γ] but using the identity γr = 1 to reduce
higher order monomials to degree ≤ r − 1. It is easy to see that this reduction is uniquely
defined: to obtain the coefficient of γ` we sum all the coefficients of powers of γ that are of the
form `+ km for some integer k ≥ 0. This implies the following lemma.

Lemma 2.1. Let f =
∑r−1

`=0 c`γ
` be an element in Rm,r. Then, f = 0 in the ring Rm,r iff

ci = 0 (in Zm) for all 0 ≤ i ≤ r − 1.

Remark 2.2. For any t ∈ {0, 1, · · · , r−1}, γt is not a zero divisor of the ring Rm,r. This holds
since the coefficients of γt · f(γ) are the same as those of f(γ) (shifted cyclicly t positions).

2.2 Matrices over Commutative Rings

Let R be a commutative ring (with unity). Let M ∈ Rn×n be an n × n matrix with entries
from R. Most of the classical theory of determinants can be derived in this setting in exactly
the same way as over fields. One particularly useful piece of this theory is the Adjugate (or
Classical Adjoint) matrix. For an n× n matrix M ∈ Rn×n the Adjugate matrix is denoted by
adj(M) ∈ Rn×n and has the (j, i) cofactor of A as its (i, j)th entry (recall that the cofactor is
the determinant of the matrix obtained from M after removing the ith row and jth column
multiplied by (−1)i+j). A basic fact in matrix theory is the following identity.

Lemma 2.3 (Theorem 1.7 from [McD84]). Let M ∈ Rn×n with R a commutative ring with
identity. Then M · adj(M) = adj(M) ·M = det(M) · In where In is the n× n identity matrix.

The way we will use this fact is as follows:

Remark 2.4. Suppose M ∈ Rn×n has non-zero determinant and let a = (a1, . . . , an)t ∈ Rn
be some column vector where a1 = 0 or a1 = c, where c is not a zero-divisor. Then we can
determine the value of a1 (i.e., tell whether its 0 or c) from the product M · a. The way to do
it is to multiply M · a from the left by adj(M) and to look at the first entry. This will give us
det(M) · a1 which is zero iff a1 is (since det(M) · c is always nonzero).

†The rings Rm,r are sometimes denoted by Zm[Cr] and referred to as the group ring of the cyclic group Cr
with coefficients in Zm. See e.g., [KS13, HH11] for some recent applications of these rings in cryptography.

6

2.3 Matching Vector Families

Definition 2.5 (Matching Vector Family). Let S ⊂ Zm \ {0} and let F = (U ,V) where
U = (u1, · · · ,un),V = (v1, · · · ,vn) and ∀i ui,vi ∈ Zkm. Then F is called an S-matching
vector family of size n and dimension k if ∀ i, j,

〈ui,vj〉

{
= 0 if i = j

∈ S if i 6= j

If S is omitted, it implies that S = Zm \ {0}.

Theorem 2.6 (Theorem 1.4 in [Gro99]). Let m = p1p2 · · · pr where p1, p2 · · · , pr are distinct
primes with r ≥ 2, then there exists an explicitly constructible S-matching vector family F in

Zkm of size n ≥ exp
(

Ω
(

(log k)r

(log log k)r−1

))
where S = {a ∈ Zm : a mod pi ∈ {0, 1} ∀ i ∈ [r]} \ {0}.

Remark 2.7. The size of S in the above theorem is 2r−1 by the Chinese Remainder Theorem.
Thus, there are matching vector families of size super-polynomial in the dimension of the space
with inner products restricted to a set of size 2r = |S ∪ {0}|.

In the special case when p1 = 2, p2 = 3, we have m = 6 and the following corollary:

Corollary 2.8. There is an explicitly constructible S-matching vector family F in Zk6 of size

n ≥ exp
(

Ω
(

(log k)2

log log k

))
where S = {1, 3, 4} ⊂ Z6

2.4 A number theoretic lemma

We will need the following simple lemma. Recall that the order of an element a in a finite
multiplicative group G is the smallest integer w ≥ 1 so that aw = 1.

Lemma 2.9. Let Fp be a field of prime order p and let k ≥ 1 be an integer co-prime to p.
Then, the algebraic closure of Fp contains an element ζ of order k.

Proof. Since k, p are co-prime, p ∈ Z∗k which is the multiplicative group of invertible elements
in Zk. Let w ≥ 1 be the order of p in the group Z∗k, so k divides pw−1. Consider the extension
field Fpw , which is a sub field of the algebraic closure of Fp. The multiplicative group F∗pw of
this field is a cyclic group of size pw − 1. Since k divides this size, there must be an element in
Fpw of order k.

3 Review of O(n1/3) cost 2-server PIR

There are several known constructions of 2-server PIR with O(n1/3) communication cost.
We will recall here in detail a particular construction due to [WY05] which uses polynomial
interpolation using derivatives (over a field). In the next section we will replace the field with
a ring and see how to use matching vector families to reduce the communication cost.

7

Let a = (a1, · · · , an) be the database, choose k to be smallest integer such that n ≤
(
k
3

)
. Let

Fq be a finite field with q > 3 elements and suppose for simplicity that q is prime (so that partial
derivatives behave nicely for polynomials of degree at most 3). Let φ : [n] 7→ {0, 1}k ⊂ Fkq
be an embedding of the n coordinates into points in {0, 1}k of Hamming weight 3. Such an
embedding exists since n ≤

(
k
3

)
.

Define F (x1, · · · , xk) = F (x) ∈ Fq[x1, · · · , xk] as

F (x) =
n∑
i=1

ai

 ∏
j:φ(i)j=1

xj


Note that F (x) is a degree 3 polynomial satisfying F (φ(i)) = ai ∀ i ∈ [n]. Fix any two nonzero
field elements t1 6= t2 ∈ Fq \ {0}.

Suppose the user U wants to recover the bit aτ . The protocol is as follows: The user picks
a uniformly random element z ∈ Fkq and sends φ(τ) + t1z to S1 and φ(τ) + t2z to S2. Each
server Si then replies with the value of F at the point received F (φ(τ) + tiz) as well as the
values of the k partial derivatives of F at the same point

∇F (φ(τ) + tiz) =

(
∂F

∂z1
(φ(τ) + tiz), · · · , ∂F

∂zk
(φ(τ) + tiz)

)
The partial derivatives here are defined in the same way as for polynomials over the real
numbers.

U : Picks a uniformly random z ∈ Fkq
U → Si : φ(τ) + tiz

Si → U : F (φ(τ) + tiz),∇F (φ(τ) + tiz)

The protocol is private since φ(τ) + tz is uniformly distributed in Fkq for any τ and t 6= 0.

Consider the univariate polynomial

g(t) = F (φ(τ) + tz).

Observe that, be the chain rule,

g′(t) = 〈∇F (φ(τ) + tz), z〉.

Thus the user can recover the values g(t), g′(t) for t = t1, t2 from the server’s responses. From
this information the user needs to find g(0) = F (φ(τ)) = aτ . Since F is a degree 3 polynomial,
g(t) is a univariate degree 3 polynomial, let g(t) =

∑3
`=0 c`t

`. Therefore we have the following
matrix equation:


g(t1)
g′(t1)
g(t2)
g′(t2)

 =


1 t1 t21 t31
0 1 2t1 3t21
1 t2 t22 t32
0 1 2t2 3t22



c0
c1
c2
c3

 = M


c0
c1
c2
c3


8

The matrix M has determinant det(M) = (t2−t1)4 and so M is invertible as long as t1 6= t2.
Thus the user can find c0 = g(0) = F (φ(τ)) = aτ by multiplying by the inverse of M .

The communication cost of this protocol is O(k) = O(n1/3) since the user sends a vector
in Fkq to each server and each server sends an element in Fq and a vector in Fkq to the user.

4 The new 2-server scheme

In this section we describe our main construction which proves Theorem 1. Before describing
the construction we set up some of the required ingredients and notations.

The first ingredient is a matching vector family over Z6 as in Corollary 2.8. That is, we
construct an S = {1, 3, 4}- matching vector family F = (U ,V) where U = (u1, · · · ,un),V =
(v1, · · · ,vn) have elements in Zk6. Corollary 2.8 tells us that this can be done with n =
exp(Ω(log2 k/ log log k)) or k = exp(O

(√
log n log logn

)
).

We will work with polynomials over the ring

R = R6,6 = Z6[γ]/(γ6 − 1)

(see Section 2). We will denote the vector (γz1 , γz2 , · · · , γzk) by γz where z = (z1, · · · , zk) ∈ Zk6.
We will need to extend the notion of partial derivatives to polynomials in R[x1, . . . , xk]. This
will be a non standard definition, but it will satisfy all the properties we will need. Instead of
defining each partial derivative separately, we define one operator that will include all of them.

Definition 4.1. Let R be a commutative ring and let F (x) =
∑
czx

z ∈ R[x1, . . . , xk]. We
define F (1) ∈ (Rk)[x1, . . . , xk] to be

F (1)(x) :=
∑

(cz · z)xz

For example, when F (x1, x2) = x21x2 + 4x1x2 + 3x22 (with integer coefficients),

F (1)(x1, x2) =

[
2
1

]
x21x2 +

[
4
4

]
x1x2 +

[
0
6

]
x22

One can think of F (1) both as a polynomial with coefficients in Rk as well as a k-tuple of
polynomials in R[x1, . . . , xk]. This will not matter much since the only operation we will
perform on F (1) is to evaluate it at a point in Rk.

The Protocol: Let a = (a1, a2 · · · , an) ∈ {0, 1}n be an n-bit database shared by two servers
S1 and S2. The user U wants to find the bit aτ without revealing any information about τ to
either server. For the rest of this section, R = R6,6 = Z6[γ]/(γ6 − 1). The servers represent
the database as a polynomial F (x) ∈ R[x] = R[x1, · · · , xk] given by

F (x) = F (x1, · · · , xk) =

n∑
i=1

aix
ui ,

9

where U = (u1, . . . ,un) are given by the matching vector family F = (U ,V).

The user samples a uniformly random z ∈ Zk6 and then sends z+ t1vτ to S1 and z+ t2vτ to
S2 where we fix t1 = 0 and t2 = 1 (other choices of values would also work). Si then responds
with the value of F at the point γz+tivτ , that is with F (γz+tivτ) and the value of the ‘first
order derivative’ at the same point F (1)(γz+tivτ). Notice that the protocol is private since
z + tvτ is uniformly distributed over Zk6 for any fixed τ and t.

U : Picks a uniformly random z ∈ Zk6
U → Si : z + tivτ

Si → U : F (γz+tivτ), F (1)(γz+tivτ)

Recovery: Define

G(t) := F (γz+tvτ) =
n∑
i=1

aiγ
〈z,ui〉+t〈vτ ,ui〉

Using the fact that γ6 = 1, we can rewrite G(t) as:

G(t) =
5∑
`=0

c` · γt`,

with each c` ∈ R given by

c` =
∑

i:〈ui,vτ 〉=` mod 6

aiγ
〈z,ui〉.

Since

〈ui,vτ 〉 mod 6

{
= 0 if i = τ

∈ S = {1, 3, 4} if i 6= τ

we can conclude that c0 = aτγ
〈uτ ,z〉 and c2 = c5 = 0. Therefore

G(t) = c0 + c1γ
t + c3γ

3t + c4γ
4t.

Next, consider the polynomial

g(T) = c0 + c1T + c3T
3 + c4T

4 ∈ R[T].

By definition we have

g(γt) = G(t) = F (γz+tvτ)

g(1)(γt) =
5∑
`=0

`c`γ
t` = 〈F (1)(γz+tvτ),vτ 〉,

where the last equality holds since c2 = c5 = 0 and

〈F (1)(γz+tvτ),vτ 〉 =

〈
n∑
i=1

aiuiγ
〈z,ui〉+t〈vτ ,ui〉,vτ

〉

10

=
n∑
i=1

ai〈ui,vτ 〉γ〈z,ui〉+t〈vτ ,ui〉

=
5∑
`=0

`

 ∑
i:〈ui,vτ 〉=` mod 6

aiγ
〈z,ui〉

 γt` =
5∑
`=0

`c`γ
t`

So the user can find the values of g(γt), g(1)(γt) for t = t1, t2. Since t1 = 0, t2 = 1, we obtain
the following matrix equation:


g(1)

g(1)(1)
g(γ)

g(1)(γ)

 =


1 1 1 1
0 1 3 4
1 γ γ3 γ4

0 γ 3γ3 4γ4



c0
c1
c3
c4

 = M


c0
c1
c3
c4


The determinant (over R) of the matrix M is

det(M) = γ(γ − 1)4(γ2 + 4γ + 1) = 3γ5 + 4γ4 + 3γ3 + 2γ (1)

and so, by Lemma 2.1, is a non-zero element of the ring R. Since c0 = aτγ
〈uτ ,z〉, either c0 = 0

or c0 = γ〈uτ ,z〉 which is not a zero-divisor by remark 2.2. Hence, by Remark 2.4, the user can
find whether c0 = 0 from the vector [g(1), g(1)(1), g(γ), g(1)(γ)]t by multiplying it from the left
by adj(M). Since c0 = aτγ

〈uτ ,z〉, aτ will be zero iff c0 is and so the user can recover aτ ∈ {0, 1}.

Communication Cost: The user sends a vector in Zk6 to each server. Each server sends a
element ofR and a vector inRk to the user. Since elements ofR have constant size description,
the total communication cost is O(k) = no(1).

4.1 Working over Z6 or F3

Using the ring R6,6 = Z6[γ]/(γ6 − 1) in the above construction makes the presentation clearer
but is not absolutely necessary. Observing the proof, we see that one can replace it with any
ring R as long as there is a homomorphism from R6,6 to R such that the determinant of the
matrix M (Eq. 1) doesn’t vanish under this homomorphism.

For example, we can work over the ring Z6 and use the element −1 as a substitute for γ.
Since (−1)6 = 1 all of the calculations we did with γ carry through. In addition, the resulting
determinant of M is non zero when setting γ = −1 and so we can complete the recovery
process. More formally, define the homomorphism τ : Z6[γ]/(γ6 − 1) 7→ Z6 by extending the
identity homomorphsim on Z6 using τ(γ) = −1. Observe that the determinant of the matrix
M in Eq. (1) doesn’t vanish under this homomorphism, τ(det(M)) = −4 = 2.

A more interesting example is the ring of integers modulo 3, which we denote by F3 to
highlight that it is also a field. We can use the homomorphsim φ : Z6[γ]/(γ6 − 1) 7→ F3 by
extending the natural homomorphsim from Z6 to F3 (given by reducing each element modulo
3) using φ(γ) = −1. Again the determinant in Eq. (1) doesn’t vanish. This also shows that

11

our scheme can be made to be bilinear, as defined in [RY06], since the answers of each server
become linear combinations of database entries over a field.

4.2 An Alternative Construction

In the construction above we used the special properties of Grolmusz’s construction, namely
that the non-zero inner products are in the special set S = {1, 3, 4}. Here we show how to
make the construction work with any matching vector family (over Z6). This construction also
introduces higher order differential operators, which could be of use if one is to generalize this
work further.

Suppose we run our protocol (with R = R6,6) using a matching vector family with S =
Z6 \ {0}. Then, we cannot claim that c2 = c5 = 0, but we still have c0 = aτγ

〈uτ ,z〉. We can
proceed by asking for the ‘second order’ derivative of F (x) =

∑n
i=0 aix

ui which we define as

F (2)(x) :=
∑

cz (z⊗ z) xz

where z ⊗ z is the k × k matrix defined by (z ⊗ z)ij = zizj . For example, when P (x1, x2) =
x21x2 + 4x1x2 + 3x22,

P (2)(x1, x2) =

[
4 2
2 1

]
x21x2 + 4

[
1 1
1 1

]
x1x2 + 3

[
0 0
0 4

]
x22.

The final protocol is:

U : Picks a uniformly random z ∈ Zkm
U → Si : z + tivτ

Si → U : F (γz+tivτ), F (1)(γz+tivτ), F (2)(γz+tivτ)

Notice that privacy is maintained and the communication is O(k2) = no(1) as before.

For recovery, define g(T) ∈ R[T] as before and notice that, in addition to the identities

g(γt) =

5∑
`=0

c`γ
t` = F (γz+tvτ)

g(1)(γt) =

5∑
`=0

`c`γ
t` = 〈F (1)(γz+tvτ),vτ 〉,

we also get the second order derivative of g from

g(2)(γt) =

5∑
`=0

`2c`γ
t` = 〈F (2)(γz+tvτ),vτ ⊗ vτ 〉,

where the inner product of matrices is taken entry-wise and using the identity 〈u⊗u,v⊗v〉 =
〈u,v〉2.

12

By choosing t1 = 0, t2 = 1, we have the following matrix equation:



g(1)

g(1)(1)

g(2)(1)
g(γ)

g(1)(γ)

g(2)(γ)

 =



1 1 1 1 1 1
0 1 2 3 4 5
0 1 4 9 16 25
1 γ γ2 γ3 γ4 γ5

0 γ 2γ2 3γ3 4γ4 5γ5

0 γ 4γ2 9γ3 16γ4 25γ5





c0
c1
c2
c3
c4
c5

 = M



c0
c1
c2
c3
c4
c5


det(M) = 4γ3(γ − 1)9 = 4 + 2γ3 6= 0 and so we can use recover aτ as before.

5 Generalization to more servers

In this section we prove Theorem 2. As was mentioned in the introduction, we will allow the
database symbols to belong to a slightly larger alphabet Zm.

Let q = 2r−1 denote the number of servers S1, · · · ,Sq for some r ≥ 2. Let m = p1p2 · · · pr
where p1, p2, · · · , pr are distinct primes. By theorem 2.6, there is an explicit S-matching vector

family F = (U ,V) of size n and dimension k = nO((log logn/ logn)1−1/r) where S = {a ∈ Zm : a
mod pi ∈ {0, 1} ∀ i ∈ [r]} \ {0}. By remark 2.7, |S ∪ {0}| = 2r = 2q.

The Protocol: We will work over the ring R = Rm,m = Zm[γ]/(γm − 1). The servers
represent the database a = (a1, · · · , an) ∈ Znm as a polynomial F (x) ∈ R[x] = R[x1, · · · , xk]
given by

F (x) = F (x1, · · · , xk) =
n∑
i=1

aix
ui ,

where U = (u1, . . . ,un) are given by the matching vector family F = (U ,V).

The user samples a uniformly random z ∈ Zkm and then sends z+tivτ to Si for i ∈ [q] where
ti = i− 1. Si then responds with the value of F at the point γz+tivτ , that is with F (γz+tivτ)
and the value of the ‘first order derivative’ at the same point F (1)(γz+tivτ). Notice that the
protocol is private since z + tvτ is uniformly distributed over Zkm for any fixed τ and t.

U : Picks a uniformly random z ∈ Zkm
U → Si : z + tivτ

Si → U : F (γz+tivτ), F (1)(γz+tivτ)

Recovery: Similarly to the 2-server analysis, we define

G(t) := F (γz+tvτ) =

n∑
i=1

aiγ
〈z,ui〉+t〈vτ ,ui〉 = c0 +

∑
`∈S

c`γ
t`,

13

and
g(T) = c0 +

∑
`∈S

c`T
` ∈ R[T],

so that c0 = aτγ
〈uτ ,z〉 and

g(γt) = G(t) = F (γz+tvτ)

g(1)(γt) =

m−1∑
`=0

`c`γ
t` = 〈F (1)(γz+tvτ),vτ 〉,

Hence, the user can calculate the values of g(γt), g(1)(γt) for t = t1, · · · , tq and we end up with
the following (square) system of equations:


g(γt1)

g(1)(γt1)
...

g(γtq)

g(1)(γtq)

 =


1 · · · γt1` · · ·
0 · · · `γt1` · · ·
...

...
...

1 · · · γtq` · · ·
0 · · · `γtq` · · ·



c0
...
c`
...

 = M


c0
...
c`
...


where the 2r = 2q columns are indexed by ` ∈ {0} ∪ S. Instead of computing the determinant
(and the Adjugate matrix), we will use the following Lemma (proven below).

Lemma 5.1. There exists a row vector

λ = [α1, β1, · · · , αq, βq] ∈ R2q

such that λM = [µ, 0, · · · , 0] for some µ ∈ R where µ mod pi 6= 0 ∀i ∈ [r].

Using this Lemma, the user can recover aτ as follows. We have

ν := λ


g(γt1)

g(1)(γt1)
...

g(γtq)

g(1)(γtq)

 = λM


c0
...
c`
...

 = [µ, 0, · · · , 0]


c0
...
c`
...

 = µc0

Taking this equation modulo pi we get,

(ν mod pi) = (µc0 mod pi) = (µ mod pi)(aτ mod pi)γ
〈uτ ,z〉

Let µ =
∑m−1

j=0 µjγ
j and ν =

∑m−1
j=0 νjγ

j . Since µ mod pi 6= 0, there exists j such that µj
mod pi 6= 0. So (aτ mod pi) = (µj mod pi)

−1(νj+〈uτ ,z〉 mod pi). So we can find aτ mod pi
for each i ∈ [r]. Finally we use Chinese Remainder Theorem to find aτ ∈ Zm.

14

5.1 Proof of Lemma 5.1

For any λ = [α1, β1, · · · , αq, βq] ∈ R2q we can define a function h : S ∪ {0} 7→ R as:

h(`) = (λM)` =

(
q∑
i=1

αiγ
ti`

)
+ `

(
q∑
i=1

βiγ
ti`

)
.

Our goal is then to construct an h of this form such that

h(`)

{
= 0 if ` ∈ S
= µ if ` = 0

where (µ mod pi) 6= 0 ∀i ∈ [r].

Notice that, by Chinese Remaindering,

R = Rm,m ∼= Rp1,m × . . .×Rpr,m, (2)

where we recall that Rpi,m = Zpi [γ]/(γm−1). Therefore, we also get that, for a formal variable
x, the rings of univariate polynomials also satisfy

R[x] ∼= Rp1,m[x]× . . .×Rpr,m[x].

In other words, any family of polynomials fi ∈ Rpi,m[x], i ∈ [r] can be ‘lifted’ to a single
polynomial f ∈ R[x] so that (f mod pi) = fi for all i (reducing f mod pi is done coordinate-
wise). Moreover, since this lift is done coefficient-wise (using Eq.2), we get that the degree of
f is equal to the maximum of the degrees of the fi’s.

We begin by constructing, for each i ∈ [r] the following polynomial fi(x) ∈ Rpi,m[x]:

fi(x) =
∏

`∈S, `=0 mod pi

(x− γ`)

The degree of fi is 2r−1 − 1 = q − 1 so, by the above comment, we can find a polynomial
f(x) ∈ R[x] of degree q − 1 such that f(x) ≡ fi(x) mod pi for all i ∈ [r]. Define αi, i ∈ [q] to
be the coefficients of the polynomial f so that f(x) =

∑q
i=1 αix

i−1. Since we defined ti = i−1,
we have f(x) =

∑q
i=1 αix

ti . Define βi = −αi for all i ∈ [q]. Our final construction of h is thus

h(`) = f(γ`)− `f(γ`)

Claim 5.2. h(`) = 0 ∀` ∈ S

Proof. Since 0 /∈ S, ` 6= 0. We will look at h(`) modulo each of the primes.

h(`) mod pi = fi(γ
`)− (` mod pi)fi(γ

`) =

{
fi(γ

`) = 0 if ` = 0 mod pi

fi(γ
`)− fi(γ`) = 0 if ` = 1 mod pi

Therefore, using Chinese Remaindering, h(`) = 0 ∀` ∈ S.

15

Claim 5.3. (h(0) mod pj) 6= 0 for all j ∈ [r]

Proof. Suppose in contradiction that (h(0) mod pj) = 0, then

h(0) mod pj = fj(1) =
∏

`∈S, `=0 mod pj

(1− γ`) = 0.

The above equation holds in the ring
(
Zpj [γ]/(γm − 1)

)
.Therefore, if we consider what happens

in the ring Zpi [γ] ∼= Fpi [x] (we replace the formal variable γ with x to highlight the fact that
x does not satisfy any relation) we get that∏

`∈S, `=0 mod pj

(1− x`) = (xm − 1)θ(x) (3)

for some polynomial θ(x) ∈ Fpj [x]. The above equation is an identity in the ring Fpj [x]. So
we can check its validity by substituting values for x from the algebraic closure of Fpj . Let
m′ = m/pj and let ζ be an element in the algebraic closure of Fpj of order m′ (so ζ` = 1
iff m′ divides `). Since m′ and pj are co-prime, such an element exists by Lemma 2.9. If we
substitute ζ into Eq. 3, the RHS is zero (since m′ divides m). However, each term in the LHS
product is nonzero, since if ` = 0 mod pj and m′ divides ` then ` = 0 mod m but we know
that 0 /∈ S. Since we are working over the algebraic closure of Fpj which is a field, the product
of nonzero elements is nonzero. This is a contradiction, and so Eq. 3 does not hold.

6 Concluding remarks

In this work we presented the first 2-server PIR scheme (information theoretic) with sub-
polynomial cost. It is unclear what is the optimal communication cost of 2-server schemes and
we conjecture that our protocol is far from optimal.

One approach to decrease the communication cost is to take m to be a product of r > 2
prime factors in theorem 2.6 to get a larger S-matching vector family where S = {a ∈ Zm : a
mod pi ∈ {0, 1} ∀ i ∈ [r]} \ {0} which is of size 2r − 1. So we need 2r−1 independent equations
from each server to find c0. We can ask the servers for derivatives of F at γz+tvτ up to
order 2r−1 − 1. If these equations are ‘independent’ i.e. the determinant of the coefficient
matrix doesn’t vanish then we can find c0. If we can do this, we can decrease the cost to

nO(2r(log logn/ logn)1−1/r). But observe that for each l ∈ S, l2 = l mod m since l mod pi ∈
{0, 1} ∀i ∈ [r]. So higher order derivatives of g are equal to the first order derivative and we
get repeated rows in the coefficient matrix M . One avenue for improvement could be by trying
to construct S such that elements of S doesn’t satisfy a low-degree monic polynomial.

7 Acknowledgements

We would like to thank Klim Efremenko and Sergey Yekhanin for helpful comments.

16

References

[Amb97] Andris Ambainis. Upper bound on communication complexity of private informa-
tion retrieval. In ICALP, pages 401–407, 1997.

[BI01] Amos Beimel and Yuval Ishai. Information-theoretic private information retrieval:
A unified construction. In ICALP, pages 912–926, 2001.

[BIKR02] Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and Jean-François Raymond. Breaking
the o(n1/(2k−1)) barrier for information-theoretic private information retrieval. In
FOCS, pages 261–270, 2002.

[CFL+13] Yeow Meng Chee, Tao Feng, San Ling, Huaxiong Wang, and Liang Feng Zhang.
Query-efficient locally decodable codes of subexponential length. Computational
Complexity, 22(1):159–189, 2013.

[CKGS98] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private infor-
mation retrieval. J. ACM, 45(6):965–981, 1998.

[DGY10] Zeev Dvir, Parikshit Gopalan, and Sergey Yekhanin. Matching vector codes. In
FOCS, pages 705–714, 2010.

[Efr09] Klim Efremenko. 3-query locally decodable codes of subexponential length. In
STOC, pages 39–44, 2009.

[Gar] William Gararch. A webpage on private information retrieval. https://www.cs.

umd.edu/~gasarch/TOPICS/pir/pir.html.

[Gas04] William I. Gasarch. A survey on private information retrieval (column: Computa-
tional complexity). Bulletin of the EATCS, 82:72–107, 2004.

[Gro99] Vince Grolmusz. Superpolynomial size set-systems with restricted intersections
mod 6 and explicit ramsey graphs. Combinatorica, 20:2000, 1999.

[HH11] Barry Hurley and Ted Hurley. Group ring cryptography. CoRR, abs/1104.1724,
2011.

[IS10] Toshiya Itoh and Yasuhiro Suzuki. Improved constructions for query-efficient locally
decodable codes of subexponential length. IEICE Transactions, 93-D(2):263–270,
2010.

[KdW03] Iordanis Kerenidis and Ronald de Wolf. Exponential lower bound for 2-query locally
decodable codes via a quantum argument. In STOC, pages 106–115, 2003.

[KS13] C. Koupparis Kahrobaei and V. Shpilrain. Public key exchange using matrices over
group rings. Groups, Complexity, and Cryptology, 5:97–115, 2013.

[KT00] Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for
error-correcting codes. In 32nd ACM Symposium on Theory of Computing (STOC),
pages 80–86, 2000.

17

https://www.cs.umd.edu/~gasarch/TOPICS/pir/pir.html
https://www.cs.umd.edu/~gasarch/TOPICS/pir/pir.html

[Lip] Helger Lipmaa. A webpage on oblivious transfer or private information retrieval.
http://www.cs.ut.ee/~lipmaa/crypto/link/protocols/oblivious.php.

[McD84] B. R. McDonald. Linear Algebra Over Commutative Rings. Pure and Applied
Mathematics #87. Marcel Dekker, New York, 1984.

[RY06] Alexander A. Razborov and Sergey Yekhanin. An Ω(n1/3) lower bound for bilinear
group based private information retrieval. In FOCS, pages 739–748, 2006.

[WdW05] Stephanie Wehner and Ronald de Wolf. Improved lower bounds for locally decodable
codes and private information retrieval. In ICALP, pages 1424–1436, 2005.

[WY05] David P. Woodruff and Sergey Yekhanin. A geometric approach to information-
theoretic private information retrieval. In IEEE Conference on Computational Com-
plexity, pages 275–284, 2005.

[Yek08] Sergey Yekhanin. Towards 3-query locally decodable codes of subexponential
length. J. ACM, 55(1), 2008.

[Yek12] Sergey Yekhanin. Locally decodable codes. Foundations and Trends in Theoretical
Computer Science, 6(3):139–255, 2012.

18

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

http://www.cs.ut.ee/~lipmaa/crypto/link/protocols/oblivious.php

