
Small value parallel repetition for general games

Mark Braverman ∗ Ankit Garg †

April 3, 2015

Abstract

We prove a parallel repetition theorem for general games with value tending to 0. Previously
Dinur and Steurer proved such a theorem for the special case of projection games. We use
information theoretic techniques in our proof. Our proofs also extend to the high value regime
(value close to 1) and provide alternate proofs for the parallel repetition theorems of Holenstein
and Rao for general and projection games respectively. We also extend the example of Feige
and Verbitsky to show that the small-value parallel repetition bound we obtain is tight. Our
techniques are elementary in that we only need to employ basic information theory and discrete
probability in the small-value parallel repetition proof.

1 Introduction

Parallel repetition theorem is one of the cornerstones of complexity theory. It studies hardness
amplification of 2-prover 1-round games. In a 2-prover 1-round game G, there are 2 provers, Alice
and Bob, and a verifier. The verifier samples a challenge (x, y) from a joint distribution and gives
x to Alice and y to Bob. Alice and Bob answer based on x and y, (a(x), b(y)), respectively, and
they win the game if some predicate of x, y, a, b is satisfied. The central notion of study is the
value of game val(G), which is the maximum probability of winning over all strategies of Alice and
Bob. A natural question is what is the value of n independent parallel repetitions of the game,
in other words, is it true that val(Gn) ≤ val(G)n? The main difficulty in proving such a theorem
arises from the ability of the players to correlate their answers across different coordinates. The
first bound on val(Gn) was proven by Verbitsky [Ver94] who showed that the value must go to zero
as n goes to infinity. Later, Raz [Raz98] proved exponential convergence to zero with the conver-
gence rate depending on the answer length of the game. Feige and Verbitsky [FV02] provided an
example to show that the dependence on answer length is necessary. Raz’s proof was subsequently
simplified and improved by Holenstein [Hol07]. Rao [Rao08] improved Holenstein’s proof for the
special class of projection games. The techniques of Raz, Holenstein and Rao were information the-
oretic. Parallel repetition theorem is very useful for gap amplification of PCPs. Rao’s theorem for
projection games was useful for reducing the Unique Games Conjecture (UGC) to a weaker version.
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Parallel repetition for small value: The proofs of Raz, Holenstein and Rao worked only when
the value of the game is close to 1. It wasn’t known if a version of parallel repetition could be true
when val(G) is o(1). Dinur and Steurer [DS14] recently proved such a theorem for the special case
of projection games, introducing linear-algebraic techniques for parallel repetition along the way.
In this paper, we give a proof for a tight parallel repetition theorem in the general small-value case
using information theoretic techniques. In the process, we also give an alternative proof for the
asymptotically tight bound in the small value projection case, albeit with weaker constants than
[DS14].

1.1 Proof overview, intuition, and discussion

We start with a somewhat informal proof outline1. Here we opt to gloss over some technical details
to convey the main ideas of the proof. This brief exposition is followed by a brief technical overview
of the innovations in this proof compared to previous attempts, aimed at those familiar with the
previous line of work on parallel repetition. We hope that this exposition will help elucidate our
techniques and make them reusable in other related settings.

A high-level overview. All proofs of parallel repetition theorems, including the present one,
follow the same high-level strategy: we want to prove that if the value of Gn is too high, then there is
a “too-good-to-be-true” strategy for G. Note that if the optimal strategy Sn for Gn were independent
over the n coordinates then we would have had val(Gn) = val(G)n, or val(G) = val(Gn)1/n. A more
contrived equivalent way of saying this is that if Sn were independent over the n coordinates,
Alice and Bob could have dealt with a challenge (x, y) by embedding (x, y) into a coordinate i of
a challenge ((x1, . . . , xn), (y1, . . . , yn)) (by jointly sampling the remaining pairs (x−i, y−i)); having
Alice and Bob calculate the strategies (a1, . . . , an) and (b1, . . . , bn) prescribed by Sn, respectively;
and having Alice output ai and Bob output bi as their response to the challenge (x, y)). Since Sn
is a product strategy, this clearly works.

The challenge is to make this embedding work even when Sn is a general strategy where each ai
depends on the entire vector (x1, . . . , xn). Note that as we know from counterexamples that it can
happen that val(Gn) � val(G)n, this is not a mere technicality. Still, while the näıve embedding
above breaks down, the general mold of the construction is a valid one: (1) embedding (x, y) into
the i-th coordinate for some i; (2) sampling some public information R conditioned on (x, y); (3)
having Alice and Bob play according to Sn conditioned on (R, xi = x) and (R, yi = y), respectively;
(4) arranging R so that we can prove that the success probability of this strategy is sufficiently
high.

Some previous parallel repetition proofs use the assumption that the success probability on
coordinate i given success on some other coordinates is high as their departure point, and arrive
at a contradiction. By proving that many of these conditional probabilities are low, these proofs
establish that the probability of winning all coordinates simultaneously is also low by using the fact
that

Pr[win on all coords] =

n∏
i=1

Pr[win on coord i|win on coords < i].

1Note that while we formulate our proofs for the low-value case, as this is the case that had been open, our proof
easily extends to match existing proofs for val(G) close to 1.
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Since our main tool is symmetrization, we instead opt to define the random variable 1W representing
whether the players win on all n coordinates, and condition everything on the event W that they
do win. Under the assumption that pW = Pr[W ] is not too small, we hope (and eventually prove)
that this conditioning does not distort individual coordinates by too much: after sampling the
“big” public variable R conditioned on W , Alice and Bob will sample their respective strategies
on xi and yi ignoring W altogether. This is achieved by a careful choice of what to include in the
variable R. This choice is made to balance the parameters of the problem.

The most näıve strategy would have Alice and Bob sample (x−i, y−i) and then play the strategy
prescribed by Sn as they did in the special “product strategy” case above. Unfortunately, this only
leads to a success probability of pW , which is exponentially worse than what we would hope for. We
would like to somehow “zoom” on the strategies of Alice and Bob conditioned on W . In other words,
they would like to sample (ai, bi) conditioned on (xi, yi), and W . The problem is that conditioned
on W , ai is very far from being independent from yi (or, for that matter from bi conditioned on xi).
This makes such sampling impossible. To address this issue, we will have Alice and Bob sample a
public variable R such that conditioned on R and xi = x, ai is (almost) independent of 1W and
yi. Thus to sample ai conditioned on xi, R and the event W , Alice can ignore W and the fact she
doesn’t know yi = y, and just sample her strategy conditioned on xi, R.

The remaining challenge is carefully selecting the variable R. Ignoring W for the moment, we
would like ai conditioned on xi, R to be independent from yi. Note that in general the distribution
of the answer ai in Sn depends on the distribution of all coordinates x−i and not just on xi = x.
We could have R empty, and thus have Alice and Bob sample x−i and y−i on their own, but since
xj and yj are not independent, this would lead to a wrong distribution of inputs to Sn, and thus
to a wrong distribution of outputs. Another extreme solution would be to have R = {x−i, y−i}
contain all coordinates except for the i-th one. This would solve the dependence problem, but
create a new one: conditioned on W , there could be a very high dependence (∼ log 1/Pr[1W ] bits
of mutual information) between R and e.g. xi, thus making it impossible for Alice and Bob (who
each only have access to either xi or yi but not both) to sample R. As an illustration, consider
the following example. Let M = 1/Pr[W ] be an integer, and imagine an n-coordinate game where
Alice and Bob win if and only if

∑n
j=1(xj + yj) = 0 mod M . Then sampling (x−i, y−i) correctly

conditioned on W requires the knowledge of xi + yi mod M , something neither Alice nor Bob
possesses. Our solution is similar to previous solutions, although its exact execution is inspired by
the latest developments of information complexity techniques, particularly in the context of direct
product for communication complexity. R will contain a set xG of x’s and yH of y’s such that each
coordinate j 6= i is contained in G ∪H. Thus for each such j either xj or yj is publicly sampled.
Conditioning on R breaks the dependence between the remaining x’s and y’s, which can then be
sampled privately. Still, R “misses” enough coordinates that the mutual information between R
and yi conditioned on W is small, and thus R can be simultaneously jointly sampled by Alice and
Bob (at least with high enough probability).

Such dependence breaking appeared in previous parallel repetition proofs, as well as in in-
formation complexity/communication complexity contexts [BYJKS04, BR11]. Here, however, the
existence of the arbitrary random variable 1W on which we are conditioning, creates technical dif-
ficulties that do not exists in previous context. We address those by choosing G and H to have a
Θ(n) overlap — a technical innovation that, to the best of our knowledge, was only employed once
before [BRWY13], and the potential applications of which are still not fully understood.

An additional complication that we need to address is that even if the mutual information be-
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tween yi and R given xi is “small” (and thus it should be possible for Alice to sample R without
knowing yi), and similarly for Bob, this mutual information will not be very small. In particular,
the best we can hope for is something of the form O((log 1/Pr[1W ])/n), which, in the small success
probability regime, is still ω(1). In previous (high success probability) works, this mutual informa-
tion was o(1), and thus the statistical distance between R|xi, R|yi, and the variable R|(xi, yi) Alice
and Bob really want to sample is also o(1) by Pinsker Inequality. In this case, an approximate
sample from R|(xi, yi) is obtained using a joint sampling technique employed by Holenstein and
Rao [Hol07, Rao08] in their simplified proofs of the parallel repetition theorem. In the low-success-
probability case we end up proving the following statement: if the mutual information I(Yi;R|Xi)
and I(Xi;R|Yi) are < log 1/δ, then R can be correctly jointly sampled with probability > poly(δ).
Note that this probability is o(1) when log 1/δ = ω(1), but is still high enough for our purposes.
More precisely, we sample a distribution that doesn’t over-sample any value of R by more than
a factor of 2; it is noteworthy that such a sampling is sufficient for our purposes. The sampling
lemma we prove may find other applications in complexity theory.

With R having been sampled, Alice and Bob are able to independently sample ai and bi con-
ditioned on (R, xi = x) and (R, yi = y), respectively. There is one last concern: to win the game,
Alice and Bob need to sample (ai, bi) conditioned on R, their respective inputs, and the event W .
They are only able to sample these conditioned on R and their inputs. Thus, as discussed above,
our final goal is to limit the dependence between 1W and (ai, bi). Here we employ a trick that
has been used before, though our presentation perhaps shows it in a slightly different light. To
reduce the interaction between (ai, bi) and 1W conditioned on R, we “hide” (ai, bi) among ∼ T
other pairs of answers to challenges in G∩H. This reduces the dependence between 1W and (ai, bi)
to O((log 1/Pr[1W ])/T ) bits of information, which becomes small as T increases. However, adding
the answers to T creates and additional dependence and adds to I(Yi;R|Xi,W ) and I(Xi;R|Yi,W ).
The additional contribution is on the order of T (log s)/n, where s is the size of the answer space
(and thus O(T log s) is the entropy of the publicly sampled answers). Finally, a T is chosen to
balance the two constraints.

Discussion of techniques. At a technical level, the present paper further develops the idea of
symmetrizing out a dependence through a careful choice of conditioning. Similar to the situation
in the study of direct sum and product questions in communication complexity, all we want is to
claim that there is a coordinate that is “average” in the effect conditioning on winning has on it.
The simplest tool available to us which allows us to make such claims in the information-theoretic
domain is the chain rule. Unfortunately, breaking the mutual information of a family of variables
using the chain rule produces a family of conditional mutual information expressions, each of which
has a different conditioning. The main challenge was thus to select a distribution of conditioning
terms consistent with the various chain rules needed in the proof. In particular, as was the case
in the proof of the direct product theorem for randomized communication complexity [BRWY13],
we seem to need to condition on a family of overlapping variables. Understanding why this is the
case, and systematizing the use of such conditioning remains an interesting challenge.

The second technical innovation is a joint sampling procedure for the high information-discrepancy
regime. Informally, it allows Alice and Bob who each have a distribution µA, µB, respectively,
such that D(µ||µA), D(µ||µB) ≤ k to jointly (approximately) sample from µ with probability
> 2−O(k). The proof of the lemma is similar to previous low-success probability constructions
in [BW12, KLL+12], but its current formulation might be of use elsewhere.
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We should note that while the notation is somewhat intimidating, the new proof is completely
elementary. It only uses basic probability, repeated applications of the chain rule, and some elemen-
tary calculus. In particular, it does not use more advanced tools e.g. from linear algebra or spectral
graph theory. Still, it is quite possible to draw parallels between our proof and the algebraic proof
of Dinur and Steurer for the projection case [DS14]. This raises the tantalizing possibility of finding
deeper connections between spectral and information-theoretic tools, and exploiting tools from one
to advance the other.

One challenge involving the parallel repetition theorem the present paper does not address is
the gap that is present in the case of general games with value close to 1. Assuming val(G) = 1− ε,
the best upper bound on val(Gn) is (1−ε3)Ω(n/ log s) [Hol07], while the best counterexample [Raz11]
only gives a lower bound of (1 − ε2)O(n). If indeed the lower bound is the tight one (in terms of
dependence on ε), it would be interesting to see whether our techniques can be used to prove it.

2 Preliminaries

2.1 Notation

We will use capital letters, e.g. A,B,X, Y to denote random variables. If X is a random variable, we
will use PX to denote its distribution. We will frequently use expectations of mutual information,
so we will have a compact notation for it. Suppose A1, . . . , An, B1, . . . , Bn and C1, . . . , Cn are
random variables. Let S,G,H be random subsets of [n]. Then we will use the notation:

EPS,G,H
I(AS ;BG|CH) := Es,g,h∼PS,G,H

I(As;Bg|Ch)

Here As denotes (Ai)i∈s. Also we will use the notation:

EPC,D
D(PA|C ||PB|D) := Ec,d∼PC,D

D(PA|C=c||PB|D=d)

2.2 Information theory

In this section we briefly provide the essential information-theoretic concepts required to understand
the rest of the paper. For a thorough introduction to the area of information theory, the reader
should consult the classical book by Cover and Thomas [CT91]. Unless stated otherwise, all log’s
in this paper are base-2.

Definition 2.1. Let µ be a probability distribution on sample space Ω. Shannon entropy (or just
entropy) of µ, denoted by H(µ), is defined as H(µ) :=

∑
ω∈Ω µ(ω) log 1

µ(ω) .

For a random variable A we shall write H(A) to denote the entropy of the induced distribution on
the range of A. The same also holds for other information-theoretic quantities appearing later in
this section.

Definition 2.2. Conditional entropy of a random variable A conditioned on B is defined as

H(A|B) = Eb(H(A|B = b)).

Fact 2.3. H(AB) = H(A) +H(B|A).
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Definition 2.4. The mutual information between two random variable A and B, denoted by
I(A;B) is defined as

I(A;B) := H(A)−H(A|B) = H(B)−H(B|A).

The conditional mutual information between A and B given C, denoted by I(A;B|C), is defined
as

I(A;B|C) := H(A|C)−H(A|BC) = H(B|C)−H(B|AC).

Fact 2.5 (Chain Rule). Let A1, A2, B,C be random variables. Then

I(A1A2;B|C) = I(A1;B|C) + I(A2;B|A1C).

Definition 2.6. Given two probability distributions µ1 and µ2 on the same sample space Ω such
that (∀ω ∈ Ω)(µ2(ω) = 0 ⇒ µ1(ω) = 0), the Kullback-Leibler Divergence (also known as relative
entropy) between them is defined as

D(µ1||µ2) =
∑
ω∈Ω

µ1(ω) log
µ1(ω)

µ2(ω)
.

Fact 2.7 (Chain Rule for relative entropy). Let PV1,V2 and PU1,U2 be two bivariate distributions.
Then

D (PV1,V2 ||PU1,U2) = D (PV1 ||PU1) + Ev1∼PV1
D
(
PV2|V1=v1 ||PU2|U1=v1

)
Fact 2.8 (Convexity of relative entropy). Let P1, P2, Q1, Q2 be distributions and λ ∈ [0, 1] be a
number. Then

D (λP1 + (1− λ)P2||λQ1 + (1− λ)Q2) ≤ λD (P1||Q1) + (1− λ)D (P2||Q2)

The connection between the mutual information and the Kullback-Leibler divergence is provided
by the following fact.

Fact 2.9. For random variables A,B, and C we have

I(A;B|C) = Eb,c(D(Abc||Ac)).

where Abc denotes the random variable A|B = b, C = c.

Fact 2.10 (Pinsker’s inequality). Let P,Q be two distributions. Then

D(P ||Q) ≥ ||P −Q||
2
1

2 ln 2

Here ||P −Q||1 is the l1 distance between the distributions P and Q.
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2.3 Basic facts and lemmas

Fact 2.11. Let A,B,C,D be random variables s.t. I(A;D|C) = 0. Then

I(A;B|C) ≤ I(A;B|C,D)

Proof. Consider I(A;B,D|C) and expand it using chain rule in two ways.

The following lemma is well known and is used in parallel repetition proofs of Holenstein and Rao
as well. We provide a proof for completeness.

Lemma 2.12. Let PV1,...,Vn and PU1,...,Un be two distributions over some space Un. Also suppose
that PU1,...,Un is a product distribution i.e. PU1,...,Un(u1, . . . , un) = PU1(u1) · · ·PUn(un). Then

n∑
i=1

D (PVi ||PUi) ≤ D (PV1,...,Vn ||PU1,...,Un)

Proof. By the chain rule for relative entropy, we get that:

D (PV1,...,Vn ||PU1,...,Un) =
n∑
i=1

Ev1,...,vi−1∼PV1,...,Vi−1
D
(
PVi|V1=v1,...,Vi−1=vi−1

||PUi|U1=v1,...,Ui−1=vi−1

)
=

n∑
i=1

Ev1,...,vi−1∼PV1,...,Vi−1
D
(
PVi|V1=v1,...,Vi−1=vi−1

||PUi

)
≥

n∑
i=1

D (PVi ||PUi)

The second equality is because PU1,...,Un is a product distribution. The inequality follows by con-
vexity of relative entropy.

Fact 2.13. Let PU be the distribution of some random variable U and let W be an arbitrary event.
Then

D
(
PU |W ||PU

)
≤ log(1/Pr[W ])

Proof.

D
(
PU |W ||PU

)
=
∑
u

PU |W (u) log(PU |W (u)/PU (u))

≤
∑
u

PU |W (u) log(1/Pr[W ]) = log(1/Pr[W ])

The following lemma is taken from [BRWY13].

Fact 2.14 ([BRWY13], Lemma 19). Suppose A,B,C are random variables s.t. I(A;B|C) = 0 and
W be an arbitrary event. Then

I(A;B|C,W ) ≤ log(1/Pr[W ])
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The following lemma is used in a lot of information complexity papers.

Lemma 2.15. Let P and Q be distributions over a universe U . Let B = {u : P (u)
Q(u) ≥ 2t}. Then

P (B) ≤ D (P ||Q) + 1

t

Proof.

D (P ||Q) =
∑
u∈B

P (u) · log(P (u)/Q(u)) +
∑
u/∈B

P (u) · log(P (u)/Q(u))

≥ P (B) · t+
∑
u/∈B

P (u) · log(P (u)/Q(u)) (1)

Denote the complement of B by B̄. Then∑
u/∈B

P (u) · log(P (u)/Q(u)) ≥ P (B̄) log(P (B̄)/Q(B̄))

≥ P (B̄) log(P (B̄))

> −1 (2)

The first inequality follows from log-sum inequality. The second inequality is true becauseQ(B̄) ≤ 1.
The third inequality follows from the fact that x log(x) > −1 for all x ≥ 0. Now combining equations
(1) and (2) completes the proof of the lemma.

Fact 2.16. Let P and Q be distributions over a universe U . Suppose V ⊆ U is such that P (V) = 1.
Then Q(V) ≥ 2−D(P ||Q).

Proof. It directly follows from the log-sum inequality. Denote the complement of V by V̄.

D (P ||Q) =
∑
u∈U

P (u) · log(P (u)/Q(u)) ≥ P (V) · log(P (V)/Q(V)) + P (V̄) · log(P (V̄)/Q(V̄))

= log(1/Q(V))

2.4 Games

Here we formally define a 2-player 1-round game. Such a game G consists of a verifier and two
provers Alice and Bob. The verifier draws (x, y) from some distribution µ on X × Y, and gives x
to Alice and y to Bob. Alice and Bob answer a ∈ A and b ∈ B depending on x and y i.e. there
exists functions f : X → A and g : Y → B s.t. a = f(x) and b = g(y). They win the game if
some predicate of x, y, a, b is satisfied i.e. there exists a subset V ⊆ X ×Y ×A×B such that they
win the game if (x, y, a, b) ∈ V . Here V and µ are part of the definition of the game G, so that
G = (X ,Y,A,B, V, µ). Value of the game val(G) is defined as the maximum probability of winning
over all strategies of Alice and Bob. Formally

val(G) = max
f,g

Pr
(x,y)∼µ

[(x, y, f(x), g(y)) ∈ V ]
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The game Gn is defined as follows: Alice gets x1, . . . , xn and Bob gets y1, . . . , yn, where (x1, y1), . . . , (xn, yn)
are distributed according to µn (n independent copies of µ). Alice outputs a1, . . . , an = F (x1, . . . , xn),
where F : X n → An and Bob outputs b1, . . . , bn = G(y1, . . . , yn), where G : Yn → Bn. They win
the game if for all i, (xi, yi, ai, bi) ∈ V . The value is defined similarly:

val(Gn) = max
F,G

Pr
(x1,y1),...,(xn,yn)∼µn

[
n∧
i=1

((xi, yi, F (x1, . . . , xn)i, G(y1, . . . , yn)i) ∈ V )

]
It is not hard to see that allowing shared randomness between Alice and Bob doesn’t change the
value of the game. But we’ll allow Alice and Bob to use shared randomness to facilitate the proofs.
We’ll denote the size of the answer set of the game, |A| · |B| by s.

There are two special cases of games which are interesting: unique and projection games. A
game is unique if its accepting predicate has the following property: for each x, y, a, there exists a
unique b s.t. (x, y, a, b) ∈ V . Also for each x, y, b, there exists a unique a s.t. (x, y, a, b) ∈ V . A
game is called a projection game if for each x, y, a, there exists a unique b s.t. (x, y, a, b) ∈ V . Note
that in a projection game, there might exist multiple accepting answers of Alice corresponding to
an answer of Bob, once we fix the questions.

2.5 Previous work

Exponential decay in the value of the game was first proven by Raz [Raz98]. He proved the following
theorem:

Theorem 2.17 ([Raz98]). Let G be a game with val(G) = 1 − ε and let log(s) be the answer size
of the game. Then val(Gn) ≤ (1− ε32/2)Ω(n/ log(s)).

This was improved by Holenstein [Hol07] who proved the following theorem:

Theorem 2.18 ([Hol07]). Let G be a game with val(G) = 1− ε and let log(s) be the answer size of
the game. Then val(Gn) ≤ (1− ε3/2)Ω(n/ log(s)).

Holenstein also proved parallel repetition for no-signaling strategies. Later Rao [Rao08] im-
proved the bound for projection games.

Theorem 2.19 ([Rao08]). Let G be a projection game with val(G) = 1 − ε. Then val(Gn) ≤
(1− ε2/2)Ω(n).

Recently Dinur and Steurer proved parallel repetition for projection games in the small value
regime.

Theorem 2.20 ([DS14]). Let G be a projection game with val(G) = β. Then val(Gn) ≤ (4β)n/4.

There has been a substantial amount of other work on improved parallel repetition for special
classes of games, e.g. for free games [BRR+09], expanding games [RR12] and projection games
with low threshold rank [TWZ14]. Derandomizing parallel repetition theorems is an important
question and there has been some work on it e.g. [Sha13], [DM11]. Recently Moshkovitz [Mos14]
has given an operation on projection games, called “fortification”, which makes the value of the
game to behave nicely under parallel repetition. This enables improvements in the state of the
art projection PCP theorem, while bypassing some of the difficulty with general parallel repetition.
There also has been a lot of work around parallel repetition for games with entanglement [CSUU08,
KV11, DSV14, JPY14, CS14].

9



3 Results

The main theorem of the paper is the following:

Theorem 3.1. Let G be a 2-prover 1-round game. Let s be the size of answer set of the game. If
val(G) = β, where 1/s ≤ β. Then val(Gn) ≤ βΩ(n log(1/β)/ log(s)), where β is sufficiently small and n
sufficiently large.

The theorem is stated formally in theorem 4.12 below.

Remark 3.2. We assume in the theorem that β ≥ 1/s. Note that this is a very natural assumption,
since if for all x, y, there exist a, b s.t. the provers win on x, y, a, b, then provers can just output
random answers and they win w.p. ≥ 1/s. Even without the assumption, a simple reduction can
be used to handle the case β < 1/s. In this case, the bound of the theorem is too strong, as the
best we can hope for is a bound of the form βΩ(n). Let Gw be the sub-game of G over question
pairs (x, y) for which there exists some pair of answers that wins the game. Also let p be the
probability that we draw such an (x, y) from the distribution for the game, i.e. p is the probability
that game is winnable. Then val(G) = p · val(Gw) and val(Gn) = pn · val(Gnw). Then if val(G) = β
and val(Gw) = α, where β < 1/s. There are two cases: (1) If log(1/α) < log(s)/2 ≤ log(1/β)/2,
then val(G) ≤ pn = βn/αn ≤ βn/2. (2) If log(1/α) ≥ log(s)/2, then we can apply theorem 3.1 to
the game Gw:

val(Gn) ≤ pn · αc·n log(1/α)/ log(s) = pn · αΩ(n) ≤ (pα)Ω(n) = βΩ(n)

Remark 3.3. val(Gn) ≤ βΩ(n/ log(1/β)·log(s)) is what we’ll get if we apply the parallel repetition
theorem of Raz [Raz98]. It is not clear how to get val(Gn) ≤ βΩ(n/ log(s)), however even in this
bound, there is no “small-value behavior”, since βΩ(n/ log(s)) ≥ 2−Θ(n), if β ≥ 1/s. However our
bound has the “small-value behavior” and it says that we get strong parallel repetition up to
constants, if β and 1/s are polynomially related.

We also show that Feige and Verbitsky’s example [FV02] with tweaking of the parameters proves
tightness of theorem 3.1.

Theorem 3.4. There is a family of games Gk parametrized by k with val(Gk) = βk → 0 s.t.

val(Gnk ) ≥ βO(n log(1/βk)/ log(sk))
k , where log(sk) is the answer size of the game Gk with log(1/βk)

log(sk) → 0.

Remark 3.5. Theorem 3.1 is clearly tight when log(1/β) = Θ(log(s)). However we give an example
where it is tight even when log(1/β) = o(log(s)).

Remark 3.6. Feige and Verbitsky’s example is not tight for games with constant value (it has a
slack of log log(s)). Our work shows that for games with sub-constant value, it is exactly tight upto
constant factors.

We also reprove Dinur and Steurer’s parallel repetition theorem for projection games in the
small value regime. However they get much better constants in their proof. Our proof also extends
to the high value regime and it provides an alternate proof for the theorems of Holenstein and Rao.
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4 Proof for general games

We will denote by X1, . . . , Xn and Y1, . . . , Yn inputs to Alice and Bob respectively in the n copy
game. If f, g is a strategy for the game, then we’ll denote by A1, . . . , An = f(X1, . . . , Xn) and
B1, . . . , Bn = g(Y1, . . . , Yn) the answers of Alice and Bob respectively. Let W be the event that
they win the game on all coordinates and let 1W be the indicator random variable for it.

Let S,G,H be random subsets of [n] distributed as follows: Let sh and sg be random numbers
from {3n/4 + 1, . . . , n}. Let σ : [n] → [n] be a uniformly random permutation. Set H = σ([sh]),
G = σ({n−sg+1, . . . , n}). Let I be a uniformly random element ofG∩H. Let l be a random number
from [T ], where T < n/2 is a parameter. Let S be a uniformly random subset of G ∩ H\{I} of
size l. Let RS,G,H,I denote the random variable XG\{I}YH\{I}ASBS . We will use s, g, h, i to denote
instantiations of the random variables S,G,H, I respectively.

Lemma 4.1. EPS,G,H,I
I(AIBI ; 1W |XI , YI , RS,G,H,I) ≤ H(1W )/T .

Proof. Let |g∩h| = m, and let l1, l2, . . . , lm be the elements of g∩h. Then the distribution PS,G,H,I
can also be described as follows: G,H be distributed as in PS,G,H,I . Let κ be a random permutation
such that κ({l1, . . . , lm}) = {l1, . . . , lm}, and t ∈R [T ]. Set I = κ(lt) and S = κ({lt+1, . . . , lT+1}).
Then

EPS,G,H,I
I(AIBI ; 1W |XIYIRS,G,H,I)

= EPG,H
EκEt∈R[T ]I(Aκ(lt)Bκ(lt); 1W |Aκ({lt+1,...,lT+1})Bκ({lt+1,...,lT+1})XGYH)

= EPG,H
Eκ

1

T

T∑
t=1

I(Aκ(lt)Bκ(lt); 1W |Aκ({lt+1,...,lT+1})Bκ({lt+1,...,lT+1})XGYH)

=
1

T
EPG,H

EκI(Aκ({l1,...,lT })Bκ({l1,...,lT }); 1W |Aκ(lT+1)Bκ(lT+1)XGYH)

≤ H(1W )

T

Remark 4.2. The variable size of the set S (or the variable sizes of the sets G and H, as we will
see in the next lemma) is very important for the symmetrization trick to work (it enables the chain
rule via an alternate description of the distribution).

Lemma 4.3. EPS,G,H,I
I(RS,G,H,I ;XI |YI ,W ) ≤ 4

nH(1W )/Pr[W ] + 2(T+1)
n · log(s).

Proof. Note that RS,G,H,I consists of two parts : XG\{I}YH\{I} and ASBS . We will prove

EPS,G,H,I
I(XG\{I}YH\{I};XI |YI ,W ) ≤ 4

n
H(1W )/Pr[W ] (3)

and

EPS,G,H,I
I(ASBS ;XI |XG\{I}YH\{I}YI ,W ) ≤ 2(T + 1)

n
· log(s) (4)

11



which together will prove the lemma. To prove the first statement, we first prove the following
statement:

EPG,H,I
I(XI ; 1W |YI , XG\{I}YH\{I}) ≤ 4H(1W )/n

The distribution PG,H,I can be seen in the following way: let H be distributed as in PG,H,I . Let
κH be a random permutation that maps [|H|] to H. Choose a random number l ∈ {1, . . . , n/4}.
Set I = κH(l) and G = κH({l, . . . , n}). Then

EPG,H,I
I(XI ; 1W |YI , XG\{I}YH\{I}) = EHEκHEl∈R[n/4]I(XκH(l); 1W |XκH({l+1,...,n})YH)

= EHEκH
4

n

n/4∑
l=1

I(XκH(l); 1W |XκH({l+1,...,n})YH)

=
4

n
EHEκH I(XκH({1,...,n/4}); 1W |XκH({n/4+1,...,n})YH)

≤ 4H(1W )/n

Now we relate I(Xi; 1W |Yi, Xg\{i}Yh\{i}) to I(Xg\{i}Yh\{i};Xi|Yi,W ). Consider I(Xi;Xg\{i}Yh\{i}1W |Yi).

I(Xi;Xg\{i}Yh\{i}1W |Yi)
= I(Xi;Xg\{i}Yh\{i}|Yi) + I(Xi; 1W |YiXg\{i}Yh\{i})

= I(Xi; 1W |YiXg\{i}Yh\{i}) (5)

Also writing it in another way, we get

I(Xi;Xg\{i}Yh\{i}1W |Yi)
= I(Xi; 1W |Yi) + I(Xi;Xg\{i}Yh\{i}|Yi1W )

≥ Pr[W ] · I(Xi;Xg\{i}Yh\{i}|Yi,W ) (6)

Combining (5) and (6), we get EPS,G,H,I
I(XI ;XG\{I}YH\{I}|YI ,W ) ≤ 4

nH(1W )/Pr[W ].
To prove (4), notice that the distribution PS,G,H,I can also be described as follows: Let S,H be
distributed as in PS,G,H,I . Let κS,H be a random permutation conditioned on κS,H([|S|]) = S and
κS,H([|H|]) = H. Choose a random number l from {|S| + 1, . . . , |S| + n/4}. Set I = κS,H(l) and
G = S ∪ κS,H({l, . . . , n}). Then

EPS,G,H,I
I(ASBS ;XI |XG\{I}YH\{I}YI ,W )

= ES,HEκS,HEl∈R{|S|+1,...,|S|+n/4}I(ASBS ;XκS,H(l)|XκS,H({l+1,...,n})XSYH ,W )

= ES,HEκS,H
4

n

|S|+n/4∑
l=|S|+1

I(ASBS ;XκS,H(l)|XκS,H({l+1,...,n})XSYH ,W )

=
4

n
ES,HEκS,H I(ASBS ;XκS,H({|S|+1,...,|S|+n/4})|XκS,H({|S|+n/4+1,...,n})XSYH ,W )

≤ 4

n
ESH(ASBS |W )

≤ 4

n
ES |S| · log(s)

=
2(T + 1)

n
· log(s)
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Remark 4.4. Note that the similar statement EPS,G,H,I
I(RS,G,H,I ;YI |XI ,W ) ≤ 4

nH(1W )/Pr[W ] +
2(T+1)

n · log(s) is also true since the distribution of G and H is symmetric.

The next lemma considers the following situation: Alice and Bob have rough estimates of a distri-
bution P and they want to jointly sample from it. This is very similar to the settings in [BW12]
and [KLL+12].

Lemma 4.5. Suppose Alice knows a distribution P1 and Bob knows a distribution P2, and they
want to jointly sample from a distribution P (all three are distributions over U ). Also D (P ||P1) ≤
log(1/η) and D (P ||P2) ≤ log(1/η), where η ≤ 1

2 . Then there is a sampling procedure (using shared
randomness) such that

1. Suppose Alice outputs p1 and Bob outputs p2. There is an event E (which depends just on the
shared randomness of the sampling procedure) with Pr[E] ≥ η10, such that Pr[p1 = p2|E] = 1.

2. The distribution of p1|E is multiplicatively bounded by P i.e. ∀u, Pr[p1 = u|E] ≤ 2 · P (u).

Proof. Consider the sampling procedure described in protocol 1. Let A = {i s.t. qi < P1(ui)/η
8},

B = {i s.t. qi < P2(ui)/η
8} and C = {i s.t. qi < P (ui)}. Let E be the event: first index in A ∪ B

lies in A∩B ∩ C. Let us first prove that Pr[E] ≥ η10. Let (u, q) be a uniformly random element of
U × [0, 1]. Then

Pr[E] =
Pr[q ≤ min(P1(u)/η8, P2(u)/η8, P (u))]

Pr[q ≤ max(P1(u)/η8, P2(u)/η8)]

≥ Pr[q ≤ min(P1(u)/η8, P2(u)/η8, P (u))]

Pr[q ≤ P1(u)/η8] + Pr[q ≤ P2(u)/η8]

≥ 1

2
· η8 · |U| · Pr[q ≤ min(P1(u)/η8, P2(u)/η8, P (u))]

Let U ′ = {u ∈ U|P (u) ≤ min(P1(u)/η8, P2(u)/η8)}. Then

Pr[q ≤ min(P1(u)/η8, P2(u)/η8, P (u))] ≥ 1

|U|
· P (U ′)

and hence

Pr[E] ≥ 1

2
· η8 · P (U ′)

Since Prx∼P [P (x)/P1(x) ≥ 1/η8] ≤ (log(1/η) + 1)/(8 log(1/η)) ≤ 1/4 (by lemma 2.15), and
Prx∼P [P (x)/P2(x) ≥ 1/η8] ≤ 1/4, we have that P (U ′) ≥ 1/2. Thus Pr[E] ≥ η10.

1. Using shared randomness, get many uniformly random samples from U × [0, 1]. Denote these
samples by (ui, qi)

∞
i=1.

2. Alice outputs the first ui s.t. qi < P1(ui)/η
8 and Bob outputs the first uj s.t. qj < P2(uj)/η

8.

Protocol 1: Sampling strategy
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Since a subevent of E is the event that first index in A ∪ B lies in A ∩ B, Pr[p1 = p2|E] = 1. It
remains to prove ∀u, Pr[p1 = u|E] ≤ 2 · P (u).

Pr[p1 = u|E] =
min(P1(u)/η8, P2(u)/η8, P (u))∑
u∈U min(P1(u)/η8, P2(u)/η8, P (u))

≤ P (u)∑
u∈U ′ min(P1(u)/η8, P2(u)/η8, P (u))

=
P (u)

P (U ′)
≤ 2 · P (u)

This completes the proof of the lemma.

Lemma 4.6. EPI
D
(
PXI ,YI |W ||PXIYI

)
≤ log(1/Pr[W ])

n .

Proof.

EPI
D
(
PXI ,YI |W ||PXIYI

)
=

1

n

n∑
i=1

D
(
PXi,Yi|W ||PXiYi

)
≤ 1

n
D
(
PX1,Y1,...Xn,Yn|W ||PX1,Y1,...Xn,Yn

)
≤ log(1/Pr[W ])

n

The first equality is true because PI is uniform over [n]. First inequality follows from lemma 2.12.
The second inequality follows from the fact 2.13.

Lemma 4.7. Suppose 2−20 ≥ Pr[W ] ≥ δn log(1/δ)/ log(s), where δ ≥ 1/s1/4, and n ≥ 4 log(s)
log(1/δ) . Fix

the parameter T in the definition of PS,G,H,I to be n log(1/δ)
2 log(s) − 1 (we needed T < n/2 which is true).

Then there exists a fixing of s, g, h, i such that:

1. Ex,y∼µiD
(
PRs,g,h,i|Xi=x,Yi=y,W ||PRs,g,h,i|Xi=x,W

)
≤ 10 log(1/δ).

2. Ex,y∼µiD
(
PRs,g,h,i|Xi=x,Yi=y,W ||PRs,g,h,i|Yi=y,W

)
≤ 10 log(1/δ).

3. D
(
PXiYi|W ||PXiYi

)
≤ 10 log(1/δ).

4. EPRs,g,h,i,Xi,Yi|W
D
(
PAiBi|Xi,Yi,Rs,g,h,i,W ||PAiBi|Xi,Yi,Rs,g,h,i

)
≤ 10 log(1/δ).

Here µi denotes the distribution PXi,Yi|W .

Proof. Lemma 4.3 proves that

EPS,G,H,I
I(RS,G,H,I ;XI |YI ,W ) ≤ 4

n
H(1W )/Pr[W ] +

2(T + 1)

n
· log(s)

Similarly one can prove that

EPS,G,H,I
I(RS,G,H,I ;YI |XI ,W ) ≤ 4

n
H(1W )/Pr[W ] +

2(T + 1)

n
· log(s)
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Since Pr[W ] ≤ 2−20, we have

H(1W ) = Pr[W ] log(1/Pr[W ]) + (1− Pr[W ]) log(1/(1− Pr[W ))

≤ Pr[W ] log(1/Pr[W ]) + log(1 + 2 · Pr[W ])

≤ Pr[W ] log(1/Pr[W ]) + 4 · Pr[W ]

≤ 1.2 · Pr[W ] log(1/Pr[W ])

The first inequality follows from 1
1−x ≤ 1 + 2x, for all 0 ≤ x ≤ 1/2. The second inequality is true

since log(1 + 2x) ≤ 4x, for all x ≥ 0. The third inequality follows from Pr[W ] ≤ 2−20.

Now we have T = n log(1/δ)
2 log(s) − 1 and 2(T+1)

n · log(s) = log(1/δ). Also

4

n
H(1W )/Pr[W ] ≤ 4 · 1.2 · log(1/Pr[W ])

n

≤ 4 · 1.2 · log(1/δ)2

log(s)

≤ 1.2 log(1/δ)

Thus

Es,g,h,i∼PS,G,H,I
Ex,y∼µiD

(
PRs,g,h,i|Xi=x,Yi=y,W ||PRs,g,h,i|Xi=x,W

)
=

EPS,G,H,I
I(RS,G,H,I ;YI |XI ,W ) ≤ 2.2 log(1/δ) (7)

Similarly

Es,g,h,i∼PS,G,H,I
Ex,y∼µiD

(
PRs,g,h,i|Xi=x,Yi=y,W ||PRs,g,h,i|Yi=y,W

)
≤ 2.2 log(1/δ) (8)

By lemma 4.6, we get that

Ei∼PI
D
(
PXiYi|W ||PXiYi

)
≤ log(1/δ)2/ log(s) ≤ log(1/δ)/4 (9)

Also, by lemma 4.1

EPS,G,H,I
I(AIBI ; 1W |XI , YI , RS,G,H,I) ≤ H(1W )/T (10)

Note that

I(AiBi; 1W |Xi, Yi, Rs,g,h,i) ≥

EPXi,Yi,Rs,g,h,i
Pr[W |Xi, Yi, Rs,g,h,i] ·D

(
PAiBi|Xi,Yi,Rs,g,h,i,W ||PAiBi|Xi,Yi,Rs,g,h,i

)
(11)

Combining (10) and (11), we get

H(1W )

T · Pr[W ]
≥

EPS,G,H,I
EPXI,YI ,RS,G,H,I

(Pr[W |XI , YI , RS,G,H,I ]/Pr[W ]) ·D
(
PAIBI |XI ,YI ,RS,G,H,I ,W ||PAIBI |XI ,YI ,RS,G,H,I

)
=

EPS,G,H,I
EPXI,YI ,RS,G,H,I |W

D
(
PAIBI |XI ,YI ,RS,G,H,I ,W ||PAIBI |XI ,YI ,RS,G,H,I

)
15



Now

H(1W )

T · Pr[W ]
≤ 1.2 · log(1/Pr[W ])

T

≤ 1.2 · n log(1/δ)2

log(s)
· 1
n log(1/δ)

2 log(s) − 1

= 2.4 · log(1/δ)

1− 2 log(s)
n log(1/δ)

≤ 4.8 log(1/δ) (since n ≥ 4 log(s)

log(1/δ)
)

This gives:

Es,g,h,i∼PS,G,H,I
EPRs,g,h,i,Xi,Yi|W

D
(
PAiBi|Xi,Yi,Rs,g,h,i,W ||PAiBi|Xi,Yi,Rs,g,h,i

)
≤ 4.8 log(1/δ) (12)

Applying a Markov argument to (7), (8), (9) and (12) completes the proof.

Lemma 4.8. Let i satisfy the condition in lemma 4.7 i.e. D (µi||µ) ≤ 10 log(1/δ), where µi is the
distribution PXi,Yi|W and µ is the distribution PXi,Yi. Also suppose δ120 ≤ 1/2. Then there exists a
distribution νi s.t. νi ≤ 2 · µi and µ ≥ δ380 · νi.

Proof. Let B = {(x, y)|µi(x, y) ≥ µ(x, y)/δ260}. Then µi(B) ≤ (10 log(1/δ) + 1)/(260 log(1/δ)) ≤
1/2 (by lemma 2.15 and δ120 ≤ 1/2). Now define the distribution νi as follows:

νi(x, y) =

{
0 : (x, y) ∈ B
µi(x,y)

1−µi(B) : (x, y) /∈ B

It is clear from the definition of νi that νi ≤ 2 · µi. Now, if (x, y) ∈ B, then clearly µ(x, y) ≥
νi(x, y) = 0. If (x, y) /∈ B, then νi(x, y) ≤ 2 · µi(x, y) ≤ 2 · 1

δ260
· µ(x, y) ≤ µ(x, y)/δ380. This

completes the proof.

The next lemma is about breaking dependencies between Alice and Bob, which will be very crucial
in the proof of main theorem.

Lemma 4.9. Let G be a 2-prover 1-round game. Suppose (X1, Y1), .., (Xn, Yn) are inputs for Gn
and let f , g be a strategy for Gn. Let A1, . . . , An = f(X1, . . . , Xn) and B1, . . . , Bn = g(Y1, . . . , Yn).
Suppose G,H, Sa, Sb ⊂ [n] and i ∈ [n] be such that G ∪H = [n]\{i}. Then

PAi,Bi|XG=x̄,YH=ȳ,ASa=ā,BSb
=b̄,Xi=x,Yi=y

=

PAi|XG=x̄,YH=ȳ,ASa=ā,Xi=x ⊗ PBi|XG=x̄,YH=ȳ,BSb
=b̄,Yi=y

if Pr[XG = x̄, YH = ȳ, ASa = ā, BSb
= b̄, Xi = x, Yi = y] > 0.
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Proof. Note that

PAi,Bi|XG=x̄,YH=ȳ,ASa=ā,BSb
=b̄,Xi=x,Yi=y

(a, b) =

PAi|XG=x̄,YH=ȳ,ASa=ā,BSb
=b̄,Xi=x,Yi=y

(a) · PBi|XG=x̄,YH=ȳ,ASa=ā,BSb
=b̄,Xi=x,Yi=y,Ai=a

(b)

Lets first prove

PAi|XG=x̄,YH=ȳ,ASa=ā,BSb
=b̄,Xi=x,Yi=y

(a) =

PAi|XG=x̄,YH=ȳ,ASa=ā,Xi=x(a)

The other part,

PBi|XG=x̄,YH=ȳ,ASa=ā,BSb
=b̄,Xi=x,Yi=y,Ai=a

(b) =

PBi|XG=x̄,YH=ȳ,BSb
=b̄,Yi=y

(b)

would follow similarly with the set Sa changed to Sa ∪ {i}.
Let X a be the set of x′1, . . . , x

′
n s.t. f(x′1, . . . , x

′
n) = a, (x′j)j∈G = x̄ and x′i = xi i.e. set of

all completions of x̄, xi which evaluate to a under the strategy f . Also let Q be the distribution
of X1, . . . , Xn conditioned on XG = x̄, YH = ȳ, ASa = ā, BSb

= b̄, Xi = x, Yi = y. This is the
same as distribution of X1, . . . , Xn conditioned on XG = x̄, YH = ȳ, ASa = ā, Xi = x, since
[n]\(G ∪ {i}) ⊆ H. Denote this distribution by Q′. Then

PAi|XG=x̄,YH=ȳ,ASa=ā,BSb
=b̄,Xi=x,Yi=y

(a) = Q(X a)

= Q′(X a)
= PAi|XG=x̄,YH=ȳ,ASa=ā,Xi=x(a)

Remark 4.10. A weaker statement is:

PAi,Bi|XG=x̄,YH=ȳ,ASa=ā,BSb
=b̄,Xi=x,Yi=y

=

PAi|XG=x̄,YH=ȳ,ASa=ā,BSb
=b̄,Xi=x

⊗ PBi|XG=x̄,YH=ȳ,ASa=ā,BSb
=b̄,Yi=y

which is all we will need for the proof of lemma 4.11.

Lemma 4.11. If 2−20 ≥ Pr[W ] ≥ δn log(1/δ)/ log(s), where δ ≥ 1/s1/4, δ120 ≤ 1/2 and n ≥ 4 log(s)
log(1/δ) ,

then there exists a strategy for winning a single game w.p. > δ2000.

Proof. Consider the strategy described in protocol 2 for a single copy of the game. We prove that
if Pr[W ] ≥ δn log(1/δ)/ log(s), then the strategy wins w.p. ≥ δ1940. Let Q(x, y) denote the probability
of winning when Alice and Bob get x and y, respectively. Note that the probability of winning is
Ex,y∼µQ(x, y). By lemma 4.8, there exists a distribution νi s.t. νi ≤ 2 · µi and µ ≥ δ380 · νi. We
will prove that Ex,y∼νiQ(x, y) ≥ δ1560, which will imply that Ex,y∼µQ(x, y) ≥ δ1940.
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Inputs : Alice gets x, Bob get y, (x, y) ∼ µ.

1. Let s, g, h, i be as in lemma 4.7.

2. Alice knows the distribution PRs,g,h,i|Xi=x,W and Bob knows the distribution PRs,g,h,i|Yi=y,W .
They use the sampling procedure in lemma 4.5 to sample from PRs,g,h,i|Xi=x,Yi=y,W . Suppose
Alice samples r1 and Bob samples r2.

3. Alice outputs according to the distribution PAi|Xi=x,Rs,g,h,i=r1 and Bob outputs according the
distribution PBi|Yi=y,Rs,g,h,i=r2 .

Protocol 2: Strategy for a single game

Lemma 4.7 together with νi ≤ 2 · µi implies that (the lemma applies since δ ≥ 1/s1/4):

Ex,y∼νiD
(
PRs,g,h,i|Xi=x,Yi=y,W ||PRs,g,h,i|Xi=x,W

)
≤ 20 log(1/δ)

Ex,y∼νiD
(
PRs,g,h,i|Xi=x,Yi=y,W ||PRs,g,h,i|Yi=y,W

)
≤ 20 log(1/δ))

Ex,y∼νiEPRs,g,h,i|Xi=x,Yi=y|WD
(
PAiBi|Xi=x,Yi=y,Rs,g,h,i,W ||PAiBi|Xi=x,Yi=y,Rs,g,h,i

)
≤ 20 log(1/δ))

Let S ⊂ X × Y be the set of x, y s.t.

D
(
PRs,g,h,i|Xi=x,Yi=y,W ||PRs,g,h,i|Xi=x,W

)
≤ 120 log(1/δ)

D
(
PRs,g,h,i|Xi=x,Yi=y,W ||PRs,g,h,i|Yi=y,W

)
≤ 120 log(1/δ)

EPRs,g,h,i|Xi=x,Yi=y|WD
(
PAiBi|Xi=x,Yi=y,Rs,g,h,i,W ||PAiBi|Xi=x,Yi=y,Rs,g,h,i

)
≤ 120 log(1/δ)

Note that νi(S) ≥ 1/2. Fix a pair x, y ∈ S. We will prove that Q(x, y) ≥ δ1440, which will imply
that Ex,y∼νiQ(x, y) ≥ δ1560 (since 1/2 ≥ δ120). Applying lemma 4.5 with η = δ120 (note that
η ≤ 1/2), we get that there exists an event E with Pr[E] ≥ δ1200, Pr[r1 = r2|E] = 1, and the
distribution of r1|E is bounded by 2 · PRs,g,h,i|Xi=x,Yi=y,W . This implies that:

Er∼r1|ED
(
PAiBi|Xi=x,Yi=y,Rs,g,h,i=r,W ||PAiBi|Xi=x,Yi=y,Rs,g,h,i=r

)
≤ 240 log(1/δ) (13)

Let Gx,y = {(a, b)|V (x, y, a, b) = 1}, that is the set of accepting answers when the questions are
x, y. Note that PAiBi|Xi=x,Yi=y,Rs,g,h,i=r,W (Gx,y) = 1. This implies (by fact 2.16):

PAiBi|Xi=x,Yi=y,Rs,g,h,i=r(Gx,y) ≥ 2
−D

(
PAiBi|Xi=x,Yi=y,Rs,g,h,i=r,W ||PAiBi|Xi=x,Yi=y,Rs,g,h,i=r

)

which along with (13) and convexity of the function 2−x implies that:

Er∼r1|EPAiBi|Xi=x,Yi=y,Rs,g,h,i=r(Gx,y) ≥ δ
240

Let QE(x, y) be the probability of winning conditioned on event E. A very important observation
is that:

QE(x, y) = Er∼r1|EPAiBi|Xi=x,Yi=y,Rs,g,h,i=r(Gx,y)
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This is true because PAiBi|Xi=x,Yi=y,Rs,g,h,i=r = PAi|Xi=x,Rs,g,h,i=r⊗PBi|Yi=Y,Rs,g,h,i=r (lemma 4.9, it

applies since Pr[Xi = x, Yi = y,Rs,g,h,i = r] > 0), and Pr[r1 = r2|E] = 1. ThusQE(x, y) ≥ δ240, and
hence Q(x, y) ≥ Pr[E] ·QE(x, y) ≥ δ1440. Note that PAiBi|Xi=x,Yi=y,Rs,g,h,i=r = PAi|Xi=x,Rs,g,h,i=r ⊗
PBi|Yi=Y,Rs,g,h,i=r is very crucial for us, otherwise the whole proof breaks down. It is crucial to
break the dependencies between Alice and Bob and all the weird conditionings were needed so that
this property is true.

Theorem 4.12. Let the probability of winning of single game be β, where β ≤ 1/220 and β ≥ 1/s.

Then probability of winning n copies of the game ≤ βn log(1/β)/(2000)2 log(s). Here n ≥ 4 log(s)
log(1/δ) .

Proof. Suppose that Pr[W ] ≥ βn log(1/β)/(2000)2 log(s). Then apply lemma 4.11 with δ = β1/2000.
Since β ≤ 1/220, we get δ120 ≤ 1/2 and Pr[W ] ≤ β ≤ 2−20. Also since β ≥ 1/s, we have δ ≥ 1/s1/4.
Note that βn log(1/β)/(2000)2 log(s) = δn log(1/δ)/ log(s). Hence there exists a strategy for winning a single
game w.p. > δ2000 = β, a contradiction.

5 Projection games

Theorem 5.1. Suppose G is a projection game and val(G) ≤ β, for β sufficiently small. Then
val(Gn) ≤ βΩ(n).

We recall the definition of a projection game. A game is called a projection game if for each x, y, a,
there exists a unique b s.t. (x, y, a, b) ∈ V i.e. the provers win on the tuple (x, y, a, b).
We will denote by X1, . . . , Xn and Y1, . . . , Yn inputs to Alice and Bob respectively in the n copy
game. If f, g is a strategy for the game, then we’ll denote by A1, . . . , An = f(X1, . . . , Xn) and
B1, . . . , Bn = g(Y1, . . . , Yn) the answers of Alice and Bob respectively. Let W be the event that
they win the game on all coordinates and let 1W be the indicator random variable for it.

We will use a slightly different proof strategy. As before, let S,G,H be random subsets of [n]
distributed as follows: Let sh and sg be random numbers from {3n/4 + 1, . . . , n}. Let σ : [n]→ [n]
be a uniformly random permutation. Set H = σ([sh]), G = σ({n − sg + 1, . . . , n}). Let I be a
uniformly random element of G ∩ H. Let l be a random number from [T ], where T = n/4. Let
S be a uniformly random subset of G ∩H\{I} of size l. Let LS,G,H,I denote the random variable
XG\{I}YH\{I}BS . The upshot is that we can afford a larger T (= n/4) here, whereas in
the general games proof, we could only afford T = Θ(n log(1/β)/ log(s)).

Lemma 5.2. EPS,G,H,I
I(AI ;YI |XI , LS,G,H,I ,W ) ≤ 4 · log(1/Pr[W ])

n

Proof. As in the proof of lemma 4.3, the distribution PS,G,H,I can also be described as follows: Let
S,G be distributed as in PS,G,H,I . Let κS,G be a random permutation conditioned on κS,G([|S|]) = S
and κS,G([|G|]) = G. Choose a random number l from {|S|+ 1, . . . , |S|+n/4}. Set I = κS,G(l) and
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H = S ∪ κS,G({l, . . . , n}).

EPS,G,H,I
I(AI ;YI |XI , LS,G,H,I ,W )

= EPS,G,H,I
I(AI ;YI |XG, YH\{I}, BS ,W )

≤ EPS,G,H,I
I(X[n]\G;YI |XG, YH\{I}, BS ,W )

= ES,GEκS,GEl∈R{|S|+1,...,|S|+n/4}I(X[n]\G;YκS,G(l)|YκS,G({l+1,...,n}), YS , XG, BS ,W )

=
4

n
· ES,GEκS,G

|S|+n/4∑
l=|S|+1

I(X[n]\G;YκS,G(l)|YκS,G({l+1,...,n}), YS , XG, BS ,W )

=
4

n
· ES,GEκS,GI(X[n]\G;YκS,G({|S|+1,...,|S|+n/4})|YκS,G({|S|+n/4+1,...,n}), YS , XG, BS ,W )

≤ 4 · log(1/Pr[W ])

n

The first inequality is true since X[n] determines Ai. The last inequality follows from fact 2.14
and that I(X[n]\g;Yκs,g({|s|+1,...,|s|+n/4})|Yκs,g({|s|+n/4+1,...,n}), Ys, Xg, Bs) = 0. This is because |g| >
3n/4 > T + n/4 ≥ |s| + n/4, therefore κs,g({|s| + 1, . . . , |s| + n/4}) ⊆ g and hence ([n]\g) ⊆
κs,g({|s|+n/4 + 1, . . . , n}). Note that conditioning on Bs creates dependencies between Y1, . . . , Yn,
however conditioned on Y[n]\g, there is no dependency between X[n]\g and other Yj ’s.

Lemma 5.3. EPS,G,H,I
I(LS,G,H,I ;YI |XI ,W ) ≤ 8 · log(1/Pr[W ])

n

Proof. LS,G,H,I consists of two parts: XG\{I}YH\{I} and BS . We know from the proof of lemma
4.3 that

EPS,G,H,I
I(YI ;XG\{I}YH\{I}|XI ,W ) ≤ 4

n
· log(1/Pr[W ]) (14)

So we care about:

EPS,G,H,I
I(BS ;YI |XG, YH\{I},W ) ≤ EPS,G,H,I

I(AS ;YI |XG, YH\I ,W )

≤ EPS,G,H,I
I(X[n]\G;YI |XG, YH\I ,W ) (15)

The first inequality is extremely important and this is where we use the projection property.
The inequality holds because conditioned on W , Xs, Ys and As determine Bs. Note that we use
the fact that s ⊆ (g ∩ h)\{i}. The second inequality is true since X[n] determines As. Now by an
averaging argument similar to the proof of lemma 5.2, we have that:

EPS,G,H,I
I(X[n]\G;YI |XG, YH\I ,W ) ≤ 4 · log(1/Pr[W ])

n
(16)

The only difference from the proof of lemma 5.2 is that we will use

I(X[n]\g;Yκs,g({|s|+1,...,|s|+n/4})|Yκs,g({|s|+n/4+1,...,n}), Ys, Xg) = 0

instead of

I(X[n]\g;Yκs,g({|s|+1,...,|s|+n/4})|Yκs,g({|s|+n/4+1,...,n}), Ys, Xg, Bs) = 0.

Combining equations (14), (15) and (16) proves the lemma.
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Lemma 5.4. EPS,G,H,I
I(LS,G,H,I ;XI |YI ,W ) ≤ 8 · log(1/Pr[W ])

n

Proof. The proof of lemma 4.3 gives:

EPS,G,H,I
I(XG\{I}YH\{I};XI |YI ,W ) ≤ 4 · log(1/Pr[W ])

n
(17)

Also

EPS,G,H,I
I(BS ;XI |XG\I , YH ,W ) ≤ EPS,G,H,I

I(Y[n]\H ;XI |XG\I , YH ,W )

≤ 4 · log(1/Pr[W ])

n
(18)

The first inequality holds because Y[n] determines Bs. The second inequality is similar to the proof
of lemma 5.3. Combining equations (17) and (18) proves the lemma.

Lemma 5.5. EPS,G,H,I
I(BI ; 1W |XI , YI , LS,G,H,I , AI) ≤ H(1W )/T = 4H(1W )

n

Proof. Since I(Bi;X[n]\g|Xi, Yi, Ls,g,h,i, Ai) = 0, we have by fact 2.11 that:

I(Bi; 1W |Xi, Yi, Ls,g,h,i, Ai) ≤ I(Bi; 1W |Xi, Yi, Ls,g,h,i, Ai, X[n]\g)

≤ I(Bi; 1W |Xi, Yi, Ls,g,h,i, X[n]\g)

The second inequality follows from the fact that Ai is a deterministic function of X[n]. Also

Xi, Yi, Ls,g,h,i, X[n]\g = X[n], Yh, Bs

Hence

EPS,G,H,I
I(BI ; 1W |XI , YI , LS,G,H,I , AI) ≤ EPS,G,H,I

I(BI ; 1W |X[n], YH , BS) (19)

As in the proof of lemma 4.1, the distribution PS,G,H,I can also be described as follows: G,H be
distributed as in PS,G,H,I . Let κ be a random permutation such that κ({l1, . . . , lm}) = {l1, . . . , lm},
and t ∈R [T ]. Set I = κ(lt) and S = κ({lt+1, . . . , lT+1}). Here G ∩H = {l1, . . . , lm}. Now

EPS,G,H,I
I(BI ; 1W |X[n], YH , BS) = EPG,H

EκEt∈R[T ]I(Bκ(lt); 1W |X[n], YH , Bκ({lt+1,...,lT+1}))

=
1

T
· EPG,H

Eκ
T∑
t=1

I(Bκ(lt); 1W |X[n], YH , Bκ({lt+1,...,lT+1}))

=
1

T
· EPG,H

EκI(Bκ({l1,...,lT }); 1W |X[n], YH , Bκ(lT+1))

≤ H(1W )

T
(20)

Combining (19) and (20) completes the proof of the lemma.

Lemma 5.6. Let G be a projection game. Suppose f, g is a strategy for Gn and let W be the event
of winning in all coordinates. If 2−20 ≥ Pr[W ] ≥ δn, then there exists a fixing of s, g, h, i such that:

1. Ex,y∼PXi,Yi|W
D
(
PLs,g,h,i|Xi=x,Yi=y,W ||PLs,g,h,i|Yi=y,W

)
≤ O(log(1/δ))
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2. Ex,y∼PXi,Yi|W
D
(
PLs,g,h,i|Xi=x,Yi=y,W ||PLs,g,h,i|Xi=x,W

)
≤ O(log(1/δ))

3. D(PXi,Yi|W ||PXi,Yi) ≤ O(log(1/δ))

4. Ex,y∼PXi,Yi|W
Er∼Ls,g,h,i|Xi=x,Yi=y,WD

(
PAi|Xi=x,Yi=y,Ls,g,h,i=r,W ||PAi|Xi=x,Ls,g,h,i=r,W

)
≤ O(log(1/δ))

5. Ex,y∼PXi,Yi|W
Er∼Ls,g,h,i|Xi=x,Yi=y,W

D
(
PAi,Bi|Xi=x,Yi=y,Ls,g,h,i=r,W ||PAi|Xi=x,Ls,g,h,i=r,W ⊗ PBi|Yi=y,Ls,g,h,i=r

)
≤ O(log(1/δ))

Proof. The proof is similar to the proof of lemma 4.7. The proof is a Markov bound applied to the
expected versions (expectation over PS,G,H,I) of the statements. The expected versions of 1 and 2
follow from lemma 5.4 and 5.3 respectively, as in lemma 4.7. The expected version of 3 is lemma
4.6. The expected version of 4 follows from lemma 5.2. For the expected version of 5, note that:

Es,g,h,i∼PS,G,H,I
Ex,y∼PXi,Yi|W

Er∼Ls,g,h,i|Xi=x,Yi=y,W

D
(
PAi,Bi|Xi=x,Yi=y,Ls,g,h,i=r,W ||PAi|Xi=x,Ls,g,h,i=r,W ⊗ PBi|Yi=y,Ls,g,h,i=r

)
= Es,g,h,i∼PS,G,H,I

Ex,y∼PXi,Yi|W
Er∼Ls,g,h,i|Xi=x,Yi=y,WD

(
PAi|Xi=x,Yi=y,Ls,g,h,i=r,W ||PAi|Xi=x,Ls,g,h,i=r,W

)
+ Es,g,h,i∼PS,G,H,I

Ex,y∼PXi,Yi|W
Er∼Ls,g,h,i|Xi=x,Yi=y,WEa∼PAi|Xi=x,Yi=y,Ls,g,h,i=r,W

D
(
PBi|Ai=a,Xi=x,Yi=y,Ls,g,h,i=r,W ||PBi|Yi=y,Ls,g,h,i=r

)
≤ O(log(1/δ)) +O(log(1/δ))

= O(log(1/δ))

The first inequality is expected version of 4. The second inequality we prove below, which will
complete the proof of the lemma. We want to prove that:

Es,g,h,i∼PS,G,H,I
EPXi,Yi,Ls,g,h,i,Ai|W

D
(
PBi|Xi,Yi,Ls,g,h,i,Ai,W ||PBi|Yi,Ls,g,h,i

)
≤ O(log(1/δ))

which is the same as

Es,g,h,i∼PS,G,H,I
EPXi,Yi,Ls,g,h,i,Ai|W

D
(
PBi|Xi,Yi,Ls,g,h,i,Ai,W ||PBi|Xi,Yi,Ls,g,h,i,Ai

)
≤ O(log(1/δ))

since by lemma 4.9, PBi|Xi,Yi,Ls,g,h,i,Ai
is the same as PBi|Yi,Ls,g,h,i

. Now note that:

4H(1W )

nPr[W ]
≥ Es,g,h,i∼PS,G,H,I

I(Bi; 1W |Xi, Yi, Ls,g,h,i, Ai)

Pr[W ]

≥ Es,g,h,i∼PS,G,H,I
EPXi,Yi,Ls,g,h,i,Ai

Pr[W |Xi, Yi, Ls,g,h,i, Ai]

Pr[W ]
·D
(
PBi|Xi,Yi,Ls,g,h,i,Ai,W ||PBi|Xi,Yi,Ls,g,h,i,Ai

)
= Es,g,h,i∼PS,G,H,I

EPXi,Yi,Ls,g,h,i,Ai|W
D
(
PBi|Xi,Yi,Ls,g,h,i,Ai,W ||PBi|Xi,Yi,Ls,g,h,i,Ai

)
(21)

The first inequality is lemma 5.5. The second inequality follows by writing mutual information

as an expected divergence. Now since Pr[W ] ≤ 2−20, 4H(1W )
nPr[W ] ≤ O

(
log(1/Pr[W ])

n

)
≤ O(log(1/δ)),

which completes the proof.
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Lemma 5.7. Let G be a projection game. Suppose val(Gn) ≥ δn, for δ sufficiently small, then
val(G) ≥ δO(1).

Proof. The proof is very similar to proof of lemma 4.11. We use the strategy for Gn to obtain a
strategy for G. Suppose X1, . . . , Xn and Y1, . . . , Yn be inputs to Alice and Bob in Gn and A1, . . . , An
and B1, . . . , Bn be their answers. W be the event of winning on all copies. Consider the strategy
defined in protocol 3. Let Q(x, y) denote the probability of winning when Alice and Bob get x and y,
respectively. The probability of winning is Ex,y∼µQ(x, y). Let µi denote the distribution PXi,Yi|W .
Since by lemma 5.6, D(µi||µ) ≤ O(log(1/δ)), we get by lemma 4.8, there exists a distribution νi
s.t. νi ≤ 2 · µi and µ ≥ δO(1) · νi. We’ll prove that Ex,y∼νiQ(x, y) ≥ δO(1), which will imply that
Ex,y∼µQ(x, y) ≥ δO(1).

Inputs : Alice gets x, Bob get y, (x, y) ∼ µ.

1. Let s, g, h, i be as in lemma 5.6.

2. Alice knows the distribution PLs,g,h,i|Xi=x,W and Bob knows the distribution PLs,g,h,i|Yi=y,W .
They use the sampling procedure in lemma 4.5 to sample from PLs,g,h,i|Xi=x,Yi=y,W . Suppose
Alice samples r1 and Bob samples r2.

3. Alice outputs according to the distribution PAi|Xi=x,Ls,g,h,i=r1,W and Bob outputs according
the distribution PBi|Yi=y,Ls,g,h,i=r2 .

Protocol 3: Strategy for a single game: Projection case

Lemma 5.6 together with νi ≤ 2 · µi implies that:

Ex,y∼νiD
(
PLs,g,h,i|Xi=x,Yi=y,W ||PLs,g,h,i|Yi=y,W

)
≤ O(log(1/δ))

Ex,y∼νiD
(
PLs,g,h,i|Xi=x,Yi=y,W ||PLs,g,h,i|Xi=x,W

)
≤ O(log(1/δ))

Ex,y∼νiEr∼Ls,g,h,i|Xi=x,Yi=y,WD
(
PAi,Bi|Xi=x,Yi=y,Ls,g,h,i=r,W ||PAi|Xi=x,Ls,g,h,i=r,W ⊗ PBi|Yi=y,Ls,g,h,i=r

)
≤ O(log(1/δ))

Let S ⊂ X × Y be the set of x, y s.t.

D
(
PLs,g,h,i|Xi=x,Yi=y,W ||PLs,g,h,i|Yi=y,W

)
≤ 6 ·O(log(1/δ)) = O(log(1/δ))

D
(
PLs,g,h,i|Xi=x,Yi=y,W ||PLs,g,h,i|Xi=x,W

)
≤ 6 ·O(log(1/δ)) = O(log(1/δ))

Er∼Ls,g,h,i|Xi=x,Yi=y,WD
(
PAi,Bi|Xi=x,Yi=y,Ls,g,h,i=r,W ||PAi|Xi=x,Ls,g,h,i=r,W ⊗ PBi|Yi=y,Ls,g,h,i=r

)
≤ 6 ·O(log(1/δ)) = O(log(1/δ))

Then νi(S) ≥ 1/2. Fix a pair x, y ∈ S. We will prove that Q(x, y) ≥ δO(1), which will imply
that Ex,y∼νiQ(x, y) ≥ δO(1), for δ sufficiently small. Applying lemma 4.5 with η = δO(1) (note
that η ≤ 1/2 for δ sufficiently small), we get that there exists an event E with Pr[E] ≥ δO(1),
Pr[r1 = r2|E] = 1, and the distribution of r1|E is bounded by 2 · PLs,g,h,i|Xi=x,Yi=y,W . This implies
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that:

Er∼r1|ED
(
PAi,Bi|Xi=x,Yi=y,Ls,g,h,i=r,W ||PAi|Xi=x,Ls,g,h,i=r,W ⊗ PBi|Yi=y,Ls,g,h,i=r

)
≤ O(log(1/δ))

(22)

Let Gx,y = {(a, b)|V (x, y, a, b) = 1}, that is the set of accepting answers when the questions are
x, y. Note that PAiBi|Xi=x,Yi=y,Ls,g,h,i=r,W (Gx,y) = 1. This implies (by fact 2.16):

PAi|Xi=x,Ls,g,h,i=r,W ⊗ PBi|Yi=y,Ls,g,h,i=r(Gx,y)

≥ 2
−D

(
PAi,Bi|Xi=x,Yi=y,Ls,g,h,i=r,W ||PAi|Xi=x,Ls,g,h,i=r,W⊗PBi|Yi=y,Ls,g,h,i=r

)

which along with (22) and convexity of the function 2−x implies that:

Er∼r1|EPAi|Xi=x,Ls,g,h,i=r,W ⊗ PBi|Yi=y,Ls,g,h,i=r(Gx,y) ≥ δ
O(1) (23)

Let QE(x, y) be the probability of winning conditioned on event E. Then by (23), QE(x, y) ≥ δO(1),
which implies Q(x, y) ≥ Pr[E] ·QE(x, y) ≥ δO(1).

Proof. (Of theorem 5.1) Follows from lemma 5.7.

6 Unique games

For unique games, we can obtain a simpler proof for the following theorem:

Theorem 6.1. Let G be a unique game. Then if val(G) = β, then for β sufficiently small, val(Gn) ≤
βΩ(n).

The idea is the same as in the proof of general games, but we can afford to sample Ω(n)
answers. Let S,G,H be random subsets of [n] distributed as follows: Let sh and sg be random
numbers from {3n/4 + 1, . . . , n}. Let σ : [n] → [n] be a uniformly random permutation. Set
H = σ([sh]), G = σ({n− sg + 1, . . . , n}). Let I be a uniformly random element of G∩H. Let l be
a random number from [T ], where T < n/2 is a parameter. Let S be a uniformly random subset
of G∩H\{I} of size l. Let RS,G,H,I denote the random variable XG\{I}YH\{I}ASBS . Here we will
choose T = n/4. Lemma 4.1 gives us:

EPS,G,H,I
I(AIBI ; 1W |XIYIRS,G,H,I) ≤ H(1W )/T = O(Pr[W ] · log(1/β))

The other term we want to analyze is from lemma 4.3: EPS,G,H,I
I(RS,G,H,I ;XI |YI ,W ). Here the

analysis slightly deviates from the proof of general games. We use the following property of
unique games: conditioned on W , Xi, Yi, Ai fixes Bi and similarly Xi, Yi, Bi fixes Ai. This is the
only place where we will use the unique game property. It affects the analysis of the following term
in the proof of lemma 4.3 (rest of proof remains the same).
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EPS,G,H,I
I(ASBS ;XI |XG\{I}YH\{I}YI ,W )

= EPS,G,H,I
I(BS ;XI |XG\{I}YH\{I}YI ,W ) + EPS,G,H,I

I(AS ;XI |XG\{I}YH\{I}YI , BS ,W )

= EPS,G,H,I
I(BS ;XI |XG\{I}YH\{I}YI ,W )

≤ EPS,G,H,I
I(Y[n]\H ;XI |XG\{I}YH\{I}YI ,W )

≤ O
(

log(1/Pr[W ])

n

)
≤ O(log(1/β))

The second inequality follows because S ⊂ G\{I} and S ⊂ H\{I}, henceH(AS |XG\{I}YH\{I}YI , BS ,W ) =
0, by the observation about unique games. The rest of the steps are similar to the proofs in the
projection games section. This gives us:

EPS,G,H,I
I(RS,G,H,I ;XI |YI ,W ) ≤ O(log(1/β))

and

EPS,G,H,I
I(RS,G,H,I ;YI |XI ,W ) ≤ O(log(1/β))

from where we can finish the proof similar to the one for general games.

7 Tight lower bound

Theorem 7.1. There is a family of games Gk parametrized by k with val(Gk) = βk → 0 s.t.

val(Gnk ) ≥ βO(n log(1/βk)/ log(sk))
k , where log(sk) is the answer size of the game Gk with log(1/βk)

log(sk) → 0.

We show that different parameters in Feige and Verbitsky’s counterexample [FV02] give a tight
lower matching theorem 3.1. We describe our example below (based on [FV02], we just tweak the
parameters):

• There is a parameter k and another parameter r = k1/3.

• There is a bipartite graph G where each side has kr vertices, the properties needed of this
bipartite graph will be described later.

• Alice and Bob get uniformly distributed (x, y) ∈R [k]× [k].

• Alice needs to output (sa, la) ∈ [k]r × [r] and Bob needs to output (sb, lb) ∈ [k]r × [r]. They
win the game if la = lb, sa(la) = x, sb(lb) = y and there is an edge between sa and sb in G.
The answer length of the game log(s) = 2(r log(k) + log(r)) = Θ(k1/3 log(k)). Lets call this
game Gk.

• The properties we need from the graph G are the following: (1) It has at least k2r/2k1/5

edges. (2) Every k by k vertex induced subgraph of G has at most k2/k1/10 edges.

We’ll prove the existence of such a graph G later. First lets use it to obtain a tight lower bound.
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Lemma 7.2. val(Gnk ) ≥
(

1
2k1/5

)n/r
Proof. Divide the n copies into chunk of size r each. We’ll give a strategy which is independent over
different chunks and wins w.p. ≥ 1

2k1/5
in each chunk and this will prove the lemma. Suppose in a

chunk Alice gets x̄ = x1, . . . , xr and Bob gets ȳ = y1, . . . , yr. Then Alice outputs (x̄, 1), . . . , (x̄, r)
and Bob outputs (ȳ, 1), . . . , (ȳ, r). The players win the all the copies in the chunk if there is an
edge between x̄ and ȳ in G which happens w.p. ≥ 1

2k1/5
, since this is the fraction of edges in the

graph G.

Lemma 7.3. val(Gk) ≤ 1/k1/20

Proof. Fix a strategy f, g for Gk. We define a k by k bipartite graph G′. There is an edge between x
and y if the players win under the strategy f, g on inputs x and y. Note that val(Gk) = # of edges in G′

k2
.

Suppose f(x) = (sa, la) and g(y) = (sb, lb). There is an edge between x and y iff la = lb, sa(la) = x,
sb(lb) = y and there is an edge between sa and sb in G. Now look at a connected component of G′

and the answer (s, l) corresponding to a vertex v in the connected component. l should be the same
for all vertices in the component, and also it should hold that s(l) = v for all vertices v. Because of
this the answer strings corresponding to vertices on Alice’s side in the component are all distinct
and similarly for Bob’s side. Also # of edges in the component ≤ k2/k1/10 because of the property
of G. Thus G′ has the property that every connected component has at most k2/k1/10 edges. Now

using the following claim, we get that val(Gk) = # of edges in G′

k2
≤ 1/k1/20

Claim 7.4. Let G′ be a k by k bipartite graph with the property that every connected component
has at most δ · k2 edges. Then G′ has at most

√
δ · k2 edges.

Proof. (Of claim) Let c1, . . . , ct be the number of vertices in the components. Then
∑t

i=1 ci = 2k.
In each component, the number of edges ≤ min{c2

i /4, δ · k2}, since in a bipartite graph with c
vertices, number of edges ≤ c2/4. Then number of edges in the graph:

≤
t∑
i=1

min{c2
i /4, δ · k2} ≤

t∑
i=1

√
(c2
i /4) · δ · k2

=
√
δ ·

(
t∑
i=1

ci

)
· k/2 =

√
δ · k2

If val(Gk) = β, lemma 7.2 and 7.3 give

val(Gnk ) ≥ βΘ(n/r) = βΘ(n log(k)/ log(s)) = βΘ(n log(1/β)/ log(s))

Now let us prove that a graph G with required properties exists. We want it to have at least
k2r/2k1/5 edges and every k by k induced subgraph to have at most k2/k1/10 edges. Pick a random
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graph with each edge included w.p. 1/k1/5. Then it has at least k2r/2k1/5 edges w.p. 1 − o(1).
The probability that some k by k induced subgraph has at least k2/k1/10 edges is:

≤
(
kr

k

)2

·
(

k2

k2/k1/10

)
·
(

1

k1/5

)k19/10
≤ k2rk · 2H(1/k1/10)·k2

2k
19/10 log(k)/5

≤ k2k4/3 · 2k19/10 log(k)/8

2k
19/10 log(k)/5

= o(1)

The third inequality follows from the fact that for large enough k, H(1/k1/10) ≤ log(k)

8k1/10
. Since both

the bad events occur w.p. o(1), the required graph exists.

8 Games with value close to 1

We provide an alternate proof for the parallel repetition theorem of Holenstein [Hol07].

Theorem 8.1 ([Hol07]). Let G be a game with val(G) = 1− ε and let log(s) be the answer size of
the game. Then val(Gn) ≤ (1− ε3)Ω(n/ log(s)), if n ≥ log(s)/ε3 and ε <= 1/2.

The proof techniques for the small value regime readily extend to the case when val(G) = 1− ε.
The only difference is that we have to replace our sampling lemma 4.5 with the correlated sampling
lemma of Holenstein [Hol07]. The following variant of the lemma is proven in [Rao08].

Lemma 8.2. Suppose Alice knows a distribution P1 and Bob knows a distribution P2 such that
||P − P1||1 ≤ ε and ||P − P2||1 ≤ ε. Then there is a sampling procedure s.t.

1. Suppose Alice outputs p1 and Bob outputs p2. There exists an event E with Pr[E] ≥ 1−O(ε)
s.t. Pr[p1 = p2|E] = 1.

2. The distribution of p1|E is P .

Let us provide a rough sketch of our proof strategy for the high value case. Suppose W be the

event of winning in all coordinates. We want to show that Pr[W ] ≤ 2−Ω(ε3n/ log(s)). Assume on the
contrary. As in the proof of the small value case, let S,G,H be random subsets of [n] distributed as
follows: Let sh and sg be random numbers from {3n/4 + 1, . . . , n}. Let σ : [n]→ [n] be a uniformly
random permutation. Set H = σ([sh]), G = σ({n − sg + 1, . . . , n}). Let I be a uniformly random
element of G ∩ H. Let l be a random number from [T ], where T < n/2 is a parameter. Let S
be a uniformly random subset of G ∩ H\{I} of size l. Let RS,G,H,I denote the random variable
XG\{I}YH\{I}ASBS . We’ll choose T = ε2n/ log(s) here.

Recall that the proof of lemma 4.7 gives us:

EPS,G,H,I
EPXI,YI ,RS,G,H,I |W

D
(
PAIBI |XI ,YI ,RS,G,H,I ,W ||PAIBI |XI ,YI ,RS,G,H,I

)
≤ H(1W )

T · Pr[W ]

≤ O(ε) +
1− Pr[W ]

T · Pr[W ]
· log

(
1

1− Pr[W ]

)
≤ O(ε) +O(1/T )

≤ O(ε)
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The last inequality is true for n ≥ log(s)/ε3. Similarly following other steps of lemma 4.7, we will
get the following analogue to it: there exists a fixing of s, g, h, i s.t.

Ex,y∼µiD
(
PRs,g,h,i|Xi=x,Yi=y,W ||PRs,g,h,i|Xi=x,W

)
≤ O(ε2) (24)

Ex,y∼µiD
(
PRs,g,h,i|Xi=x,Yi=y,W ||PRs,g,h,i|Yi=y,W

)
≤ O(ε2) (25)

D
(
PXiYi|W ||PXiYi

)
≤ O(ε2) (26)

EPRs,g,h,i,Xi,Yi|W
D
(
PAiBi|Xi,Yi,Rs,g,h,i,W ||PAiBi|Xi,Yi,Rs,g,h,i

)
≤ O(ε) (27)

Here µi denotes the distribution PXi,Yi|W . Then consider the strategy described in protocol 4 for a
single copy. We will prove that it wins w.p. 1−O(ε) w.r.t. the distribution µ, which will lead to a
contradiction (after scaling ε appropriately).

Inputs : Alice gets x, Bob get y, (x, y) ∼ µ.

1. Let s, g, h, i be as described above.

2. Alice knows the distribution PRs,g,h,i|Xi=x,W and Bob knows the distribution PRs,g,h,i|Yi=y,W .
They use the sampling procedure in lemma 8.2 to sample from PRs,g,h,i|Xi=x,Yi=y,W . Suppose
Alice samples r1 and Bob samples r2.

3. Alice outputs according to the distribution PAi|Xi=x,Rs,g,h,i=r1 and Bob outputs according the
distribution PBi|Yi=y,Rs,g,h,i=r2 .

Protocol 4: Strategy for a single game: high value case

By equation (26) and Pinsker’s inequality, we have that: ||µi − µ||1 ≤ O(ε). Thus it is enough
to say that the strategy in protocol 4 wins w.p. 1−O(ε) w.r.t. µi. Suppose

px,y := ||PRs,g,h,i|Xi=x,Yi=y,W − PRs,g,h,i|Xi=x,W ||1
lx,y := ||PRs,g,h,i|Xi=x,Yi=y,W − PRs,g,h,i|Yi=y,W ||1

Dx,y := EPRs,g,h,i|Xi=x,Yi=y,W
D
(
PAiBi|Xi=x,Yi=y,Rs,g,h,i,W ||PAiBi|Xi=x,Yi=y,Rs,g,h,i

)
By equation (24), Pinsker’s inequality and convexity of the function f(z) = z2, we get Ex,y∼µipx,y ≤
O(ε). Similarly, Ex,y∼µi lx,y ≤ O(ε). Also equation (27) gives us that Ex,y∼µiDx,y ≤ O(ε). Now fix
a particular x, y and look at the probability of winning Q(x, y). The claim is that

Q(x, y) ≥ 1−O(lx,y + px,y +Dx,y) (28)

This is enough to prove that Ex,y∼µiQ(x, y) ≥ 1−O(ε), which is what we need. So let us prove (28).
By lemma 8.2, there exists an event Ex,y s.t. Pr[r1 = r2|Ex,y] = 1, r1|E ∼ PRs,g,h,i|Xi=x,Yi=y,W and
Pr[Ex,y] ≥ 1− O(lx,y + px,y). Let QE(x, y) be the probability of winning conditioned on Ex,y. By
fact 2.16 and convexity of the function f(z) = 2−z, we have that:

QE(x, y) ≥ 2−Dx,y ≥ 1−O(Dx,y)
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Then

Q(x, y) ≥ Pr[Ex,y] ·QE(x, y) ≥ (1−O(lx,y + px,y)) · (1−O(Dx,y)) ≥ 1−O(lx,y + px,y +Dx,y)

This completes the proof sketch.

Remark 8.3. The proofs for unique and projection games for the small value case extend similarly
to the high value case.

Remark 8.4. A remarkable feature of our proof for the high value case (a property that seems
essential in the small value regime) is that we don’t need the players to sample PRs,g,h,i|Xi=x,Yi=y,W

conditioned on an event E of probability 1−O(ε). It would have sufficed for our purposes to samples
from a distribution which is multiplicatively bounded by PRs,g,h,i|Xi=x,Yi=y,W (say by a factor of 2)
conditioned on E. However we don’t know yet how to exploit it and it would be interesting if this
can lead to improvements for parallel repetition for general and free games in the value-close-to-1
regime. Note that an improved proof has to work around the tightness of the bound for unique
and projection games implied by Raz’s counterexample [Raz08].
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