
Super-Perfect Zero-Knowledge Proofs

Oded Goldreich and Liav Teichner

Department of Computer Science

Weizmann Institute of Science, Rehovot, Israel.

July 10, 2014

Abstract

We initiate a study of super-perfect zero-knowledge proof systems. Loosely speaking, these
are proof systems for which the interaction can be perfectly simulated in strict probabilistic
polynomial-time. In contrast, the standard definition of perfect zero-knowledge only requires
that the interaction can be perfectly simulated by a strict probabilistic polynomial-time that is
allowed to fail with probability at most one half.

We show that two types of perfect zero-knowledge proof systems can be transformed into
super-perfect ones. The first type includes the perfect zero-knowledge interactive proof system
for Graph Isomorphism and other systems of the same form, including perfect zero-knowledge
arguments for NP. The second type refers to perfect non-interactive zero-knowledge proof sys-
tems. We also present a super-perfect non-interactive zero-knowledge proof system for the set
of Blum integers.

Keywords: Zero-Knowledge Interactive Proofs, Computationally-Sound Proofs (Arguments),
Non-Interactive Zero-Knowledge Proofs, Blum integers.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 97 (2014)

Contents

1 Introduction 1

1.1 Our results . 1
1.2 Models of PPT . 3

2 Preliminaries 3

3 From perfect ZK to super-perfect ZK 5

3.1 On super-perfect ZK interactive proofs . 5
3.2 On super-perfect ZK arguments with perfect completeness 6

4 From perfect NIZK to super-perfect NIZK 8

5 A super-perfect NIZK for Blum Integers 9

5.1 Well known facts . 10
5.2 The proof system . 11
5.3 A complete promise problem . 13

6 Open Problems 14

Acknowledgments 14

References 15

i

1 Introduction

A standard exposition of the notion of zero-knowledge proofs may start by presenting the following
oversimplified definition:

An interactive proof system (P, V) for a set S is called zero-knowledge (ZK) if for
every probabilistic polynomial-time strategy V ∗ there exists a (strict) probabilistic
polynomial-time algorithm (called a simulator) A∗ such that A∗(x) is distributed iden-
tically to the output of V ∗ after interacting with P on common input x.

(See, e.g., Definition 9.7 in [9, Sec. 9.2.1] and top page 201 in [10, Sec. 4.3.1].)
However (as stated at the bottom of page 201 in [10, Sec. 4.3.1]), the problem with this over-

simplified definition is that it is not known to be materializable (for sets outside BPP). Indeed, [9,
Def. 9.7] is labeled “oversimplified” and [10, Sec. 4.3.1] avoids presenting it formally. Instead, the
standard definition of perfect zero-knowledge (cf. [10, Def. 4.3.1]) relaxes the above requirement
by allowing the simulator to output a special failure symbol (i.e., ⊥) with probability at most one
half, and requires a perfect simulation conditioned on not failing. We stress that in both cases, the
simulator is required to run in strict polynomial-time.1

In this report, we take the “bold” step of turning the oversimplified definition to an actual
definition, which we call super-perfect zero-knowledge (ZK), and obtaining a few results regarding
this notion. Actually, super-perfect zero-knowledge was considered by Malka [17, Sec. 4.1] (see
further discussion below). The following overview assumes familiarity with the basic definitions
and notations, which are reviewed in Section 2.

1.1 Our results

Our first result presents a sufficient condition for the existence of super-perfect ZK proof systems.
It asserts that any perfect ZK proof system in which all the relevant simulators outputs ⊥ with
probability that may depend on the input but not on the verifier (whose interaction with the prover
is simulated) can be converted into super-perfect ZK proof system. This transformation preserves
the soundness error but not the completeness error; in particular, it does not preserve perfect
completeness. Specifically, we prove

Theorem 1 (from perfect ZK to super-perfect ZK): Suppose that (P, V) is an interactive proof
system for S and there exists a function p : S → [0, 0.5] such that for every probabilistic polynomial-
time strategy V ∗ there exists a probabilistic polynomial-time algorithm A∗ such that for every x ∈ S
it holds that Pr[A∗(x) = ⊥] = p(x) and Pr[A∗(x) = γ|A∗(x) 6= ⊥] = Pr[〈P, V ∗〉(x) = γ], for every
γ ∈ {0, 1}∗. Then, S has a super-perfect zero-knowledge proof system. Furthermore:

• The soundness error is preserved and the increase in the completeness error is exponentially
vanishing;

• black-box simulation is preserved;

• the communication complexities (i.e., number of rounds and length of messages) are preserved;
and

1Note that this definition of perfect zero-knowledge implies that a perfect simulation can be generated in expected

(probabilistic) polynomial-time, but the latter does not imply the former. Also recall that the issue does not arise
for statistical zero-knowledge, since the failure probability can be made exponentially vanishing (by repeated trials),
and then absorbed in the statistical deviation of the simulation. Ditto for computational zero-knowledge.

1

• the new prover strategy can be implemented by a probabilistic polynomial-time oracle machine
that is given oracle access to the original prover strategy.

The same holds for computationally-sound proof systems (a.k.a argument systems).

Theorem 1 is proved by observing that the transformation proposed by Malka [17, Sec. 4.1] applies
whenever all simulators fail with the same probability, and not merely when this probability equals
one half. We stress that it is not even required that this probability (i.e., the function p) be
efficiently computable. As noted by Malka, one notable example of an interactive proof system
that satisfies the foregoing condition (with p = 1/2) is the perfect zero-knowledge proof system
for Graph Isomorphism of Goldreich, Micali, and Wigderson [12]. The condition holds also for
numerous other interactive proofs that have the same form, including the perfect zero-knowledge
arguments for NP of Naor et al. [18] (see also [10, Sec. 4.8.3]). Hence, assuming the existence of
one-way permutations, every set in NP has a super-perfect ZK argument system.

In contrast to the previous transformation, the following one does preserve perfect completeness.
It refers to a certain class of perfect ZK arguments, and yields super-perfect ZK arguments with
perfect completeness, assuming the existence of perfectly binding commitment schemes (which can
be constructed based on any one-way permutation). The class includes the aforementioned proof
system for Graph Isomorphism and the perfect zero-knowledge arguments forNP of Naor et al. [18].
For details see Section 3.2. (We mention that super-perfect ZK arguments (of perfect completeness)
for NP are implicit in the work of Pass and Rosen [19, 20], were they are based on the existence
of claw-free pairs of permutations and established using non-black-box simulators.)2

Another case in which perfect completeness can be preserved is the case of non-interactive
zero-knowledge (NIZK) proof systems. Specifically, we refer to perfect NIZK system in which the
probability that the simulator outputs ⊥ is efficiently computable. (Recall that in setting of NIZK
there is only one simulator.)

Theorem 2 (from perfect NIZK to super-perfect NIZK): Suppose that (P, V) is a non-interactive
proof system for S and there exists a polynomial-time computable function p : S → [0, 0.5] and a
probabilistic polynomial-time algorithm A such that for every x ∈ S it holds that Pr[A(x) = ⊥] =
p(x) and Pr[A(x) = γ|A(x) 6= ⊥] = Pr[(ω,P (x, ω)) = γ], for every γ ∈ {0, 1}∗. Then, S has a
super-perfect non-interactive zero-knowledge proof system. Furthermore:

• The completeness error is preserved and the increase in the soundness error is exponentially
vanishing;

• the proof length is preserved; and

• the new prover algorithm can be implemented by a probabilistic polynomial-time oracle ma-
chine that is given oracle access to the original prover algorithm.

This presumes a (non-standard) model of probabilistic polynomial-time machines that are equip
with a special device that when fed with an integer n, returns an element uniformly distributed in

[n]
def
= {1, ..., n}. (See discussion in Section 1.2.)

(Note that in the standard model, where such a device is not provided, a strict probabilistic
polynomial-time can select a uniformly distributed element in [n] if and only if n is a power of 2.)

2This result holds only in the non-standard model of PPTs, discussed in Section 1.2.

2

While we are not aware of any perfect NIZK systems to which Theorem 2 can be applied,3 we are
able to present a super-perfect NIZK system for a set that is widely believed to be outside of BPP .

Theorem 3 (a super-perfect NIZK for Blum Integers): Let B denote the set of all natural numbers
that are of the form peqd such that p ≡ q ≡ 3 (mod 4) are different odd primes and e ≡ d ≡
1 (mod 2). Then, B has a super-perfect NIZK.

We also use the idea underlying the proof of Theorem 3 for presenting a promise problem that
is complete for the class of promise problems having super-perfect NIZK of perfect completeness.
The yes-instances of this promise problem are circuits that generate uniform distributions and the
no-instances are circuits that generate distributions that cover at most half of the relevant range.
For details, see Section 5.3.

1.2 Models of PPT

As noted above, the standard model of (strict) PPT refers to machines that can only toss fair coins,
and such machines cannot generate a uniform distribution over {1, 2, 3}. In contrast, one may
consider an alternative model in which a PPT machine is equip with a special device that when

fed with an integer n, returns an element uniformly distributed in [n]
def
= {1, ..., n}. Actually, two

such non-standard models (of PPT) are possible:

1. A model in which the PPT machine provides n in binary, which allows the machine to obtain
a uniform distribution over [n] also when n is exponential in the machine’s input length. This
is the model used in Theorem 2.

2. A model in which the PPT machine provides n in unary (i.e., as 1n), which allows the machine
to obtain a uniform distribution over [n] only when n is polynomial in its input length. This
is the model used in our reference to [19, 20], where this ability is used to generate a random
permutation over [n].

Note that the issue does not arise in case the PPT machine is allowed to fail with bounded prob-
ability (as is the case with the PPT simulators underlying the definition of perfect ZK). We note
that standard expositions of perfect ZK simulators seem to refer to the non-standard model of
PPT, but they can be easily converted to the standard model by implementing the said device by
a machine that is allowed to fail with bounded probability.4

2 Preliminaries

In this section, we recall the standard definitions underlying this report. For more details, see [10,
Chap. 4].

For (randomized) interactive strategies A and B, we denote by 〈A,B〉(x) the output of B after
interacting with A on common input x. Since A and B are randomized, 〈A,B〉(x) is a random
variables. We denote by Uℓ a random variable uniformly distributed in {0, 1}ℓ.

We say that a strategy is probabilistic polynomial-time (PPT) if the total time spend when it
interacts with any other strategy on common input x is poly(|x|), where the total time accounts

3We are only aware of the perfect NIZK arguments of Groth et al. [15], but these are in a more liberal model that
allows the common reference string to be distributed according to any efficiently sampleable distribution.

4One can generate the uniform distribution over [n] by selecting at random a uniformly distributed r ∈ [2log
2
⌈n⌉],

outputting r if r ∈ [n], and announcing failure otherwise.

3

for all computations performed at all stages of the interaction (including the final generation of
output). We stress that, throughout this report, PPT mean “strict PPT”; that is, there exists a
polynomial p such that the running time on any ℓ-bit input is always at most p(ℓ), regardless of
the outcome of the coin tosses.

Definition 2.1 (interactive proof systems, following Goldwasser, Micali and Rackoff [14]): Let
ǫc, ǫs : N → [0, 1) such that ǫc(ℓ) and ǫs(ℓ) are computable in poly(ℓ)-time and ǫc(ℓ) + ǫs(ℓ) <
1 − 1/poly(ℓ). Let P and V be interactive strategy such that V is PPT. We say that (P, V) is an
interactive proof system for a set S with completeness error ǫc and soundness error ǫs if the following
two conditions hold.

Completeness: For every x ∈ S, it holds that Pr[〈P, V 〉(x) = 1] ≥ 1− ǫc(|x|).

Soundness: For every x 6∈ S and every interactive P ∗, it holds that Pr[〈P ∗, V 〉(x) = 1] ≤ ǫs(|x|).

If ǫc ≡ 0, then the system has perfect completeness.

When we talk of interactive proof systems without specifying their errors, the reader may think of
any choice (e.g., ǫc = ǫs = 1/3 or ǫc(n) = ǫs(n) = exp(−n)). Recall that interactive proofs with
“average error” that is bounded away from one half (i.e., (ǫc(ℓ)+ ǫs(ℓ))/2 < 0.5−1/poly(ℓ)) can be
converted to ones with negligible error by parallel or sequential composition. Lastly, recall that in
computationally-sound systems (a.k.a argument systems) the soundness condition is required to hold
only with respect to cheating strategies that can be implemented by polynomial-size circuits [7].5

Definition 2.2 (perfect and super-perfect zero-knowledge, following Goldwasser, Micali and Rack-
off [14]): Let (P, V) be an interactive proof system for S.

Super-Perfect ZK: The system (P, V) is super-perfect zero-knowledge if for every probabilistic polynomial-
time strategy V ∗ there exists a (strict) probabilistic polynomial-time algorithm A∗ such that
for every x ∈ S it holds that A∗(x) is distributed identically to 〈P, V ∗〉(x).

Perfect ZK: The system (P, V) is perfect zero-knowledge if for every probabilistic polynomial-time
strategy V ∗ there exists a (strict) probabilistic polynomial-time algorithm A∗ such that for ev-
ery x ∈ S it holds that Pr[A∗(x) = ⊥] ≤ 1/2 and Pr[A∗(x) = γ|A∗(x) 6= ⊥] = Pr[〈P, V ∗〉(x) =
γ], for every γ ∈ {0, 1}∗.

The same definition applies to argument systems. The honest-verifier version of these definitions
make a requirement only with respect to a strategy Vhon that behaves like V except that it outputs
its entire view of the interaction (i.e., its internal coin tosses as well as the sequence of all messages
received from P).

While Graph Isomorphism (GI) has a perfect ZK proof system [12], it is not even clear whether GI
has a honest-verifier super-perfect ZK proof system. The problem is that the simulator needs to
generate a uniformly distributed permutation of the vertices of a graph, and it is not clear whether
a (strict) PPT can do such a thing. This depends on whether a PPT is only allowed to toss fair
coins or is also allowed to generate uniform distributions over arbitrary domains of feasible size –
see discussion in Section 1.2. Recall that the issue does not arise in case of perfect ZK, since a
machine that is allowed to fail with bounded probability can easily generate such distributions.

5Specifically, for any polynomial p, all sufficiently long x 6∈ S, and any strategy P ∗ that can be implemented by a
circuit of size at most p(|x|), it holds that Pr[〈P ∗, V 〉(x) = 1] ≤ ǫs(|x|).

4

Definition 2.3 (non-interactive zero-knowledge, following Blum, Feldman and Micali [6]): Let
ǫc, ǫs : N → [0, 1) be as in Definition 2.1, and P and V be algorithms such that V is PPT. Let
ρ be a positive polynomial. We say that (P, V) is an non-interactive proof system for a set S with
completeness error ǫc and soundness error ǫs if the following two conditions hold.

Completeness: For every x ∈ S, it holds that

Prω←Uρ(|x|)
[V (x, ω, P (x, ω)) = 1] ≥ 1− ǫc(|x|).

Soundness: For every x 6∈ S and every function P ∗, it holds that

Prω←Uρ(|x|)
[V (x, ω, P ∗(x, ω)) = 1] ≤ ǫs(|x|).

If ǫc ≡ 0, then the system has perfect completeness.

Super-Perfect ZK: The system (P, V) is super-perfect zero-knowledge if there exists a (strict) proba-
bilistic polynomial-time algorithm A such that for every x ∈ S it holds that A(x) is distributed
identically to (ω,P (x, ω)), where ω ← Uρ(|x|).

Perfect ZK: The system (P, V) is perfect zero-knowledge if there exists a (strict) probabilistic polynomial-
time algorithm A such that for every x ∈ S it holds that Pr[A(x) = ⊥] ≤ 1/2 and

Pr[A(x) = γ|A(x) 6= ⊥] = Prω←Uρ(|x|)
[(ω,P (x, ω)) = γ]

for every γ ∈ {0, 1}∗.

Note that in Definition 2.3 the common reference string is uniformly distributed in {0, 1}ρ(|x|).
A popular relaxation, not used here, allows the common reference string to be taken from any
efficiently sampleable distribution.

3 From perfect ZK to super-perfect ZK

In Section 3.1 we prove Theorem 1, which yields super-perfect zero-knowledge proofs of exponen-
tially vanishing completeness error. In Section 3.2 we obtain super-perfect zero-knowledge argu-
ments with perfect completeness, while assuming the existence of perfectly binding commitment
schemes.

3.1 On super-perfect ZK interactive proofs

In the following transformation we assume, without loss of generality, that p(x) < 2−|x| for any
x ∈ S. The transformation amounts to letting the prover perform the original protocol with
probability 1 − p(x), and abort otherwise. Of course, the verifier will reject in case the prover
aborts, and so perfect completeness is lost, but this will allow a super-perfect simulation. Note that
this transformation relies on the hypothesis that all simulators output ⊥ with the same probability.
As stated in the introduction, the transformation is due to Malka [17, Sec. 4.1], although he states
it only for the case of p ≡ 1/2. (For sake of simplicity, we also assume, w.l.o.g., that the original
prover never sends the empty string, denoted λ.)

Construction 3.1 (the transformation): Let (P, V), S and p be as in the hypothesis of Theorem 1,
and suppose that A′ is a simulator for any fixed PPT strategy V ′ (e.g., V ′ may equal V or Vhon).
On common input x, the two parties proceed as follows.

5

• The prover invokes A′(x) and sends the empty message λ if and only if A′(x) = ⊥. In such
a case, the verifier will reject.

• Otherwise, the parties execute (P, V) on the common input x.

For every PPT strategy V ∗, consider the simulator A∗ guaranteed by the hypothesis of Theorem 1.
On input x, the corresponding new simulator (for V ∗) computes γ ← A∗(x), outputs γ if γ 6= ⊥
and V ∗(x, λ) otherwise.

Note that the foregoing protocol preserves the soundness error of V , whereas the completeness error
on input x ∈ S increases by at most p(x) ≤ 2−|x| (i.e., from ǫc(|x|) to p(x) + (1 − p(x)) · ǫc(|x|)).
Indeed, the verifier rejects if the prover got unlucky (i.e., A′(x) yields ⊥), and so a cheating prover
gains nothing by claiming that it got ⊥. The new simulators establishes the super-perfect ZK
feature, and Theorem 1 follows. Noting that in the case of honest-verifier ZK the condition made
in Theorem 1 hold vacuously, we immediate get the following corollary.

Corollary 3.2 (honest-verifier super-perfect ZK): Every set S that has a honest-verifier perfect ZK
proof system has a honest-verifier super-perfect ZK proof system. All additional features asserted
in Theorem 1 hold as well.

More importantly, applying Theorem 1 to the perfect zero-knowledge arguments of Naor et al. [18]
(see also [10, Sec. 4.8.3]), we obtain:

Corollary 3.3 (super-perfect ZK for NP): Assuming the existence of (non-uniformly strong) one-
way permutations, every set in NP has a (black-box) super-perfect ZK argument system.

As stated in the introduction, super-perfect ZK arguments (with perfect completeness) for NP are
implicit in [19] (see [20, Prop. 4.2]), where they are only claimed to be perfect ZK. Their claim
refers to the non-standard model of PPT, is conditioned on a seemingly stronger assumption (i.e.,
the existence of claw-free pairs of permutations), and is established using non-black-box simulators.
Specifically, the perfect ZK feature of their argument system is demonstrated using Barak’s (non-
black-box) simulation technique [3, 4], whereas such a demonstration actually yields a strict PPT
simulator. This is the case because the simulation (constructed according to Barak’s technique)
amounts to executing the same protocol as the honest prover, while using the verifier’s program as
a NP-witness to a composed statement that the honest prover proves by using an NP-witness to
the actual input.

3.2 On super-perfect ZK arguments with perfect completeness

Assuming the existence of perfectly binding commitment schemes, we show that certain perfect
ZK proof (or argument) systems can be transformed into super-perfect ZK arguments with perfect
completeness. The transformation refers to perfect ZK proofs (or arguments) that have simulators
that that can actually always output a perfectly random prefix of the interaction that misses only
the last message (from the prover). See Condition 3 below.

Definition 3.4 (an admissible class of perfect ZK protocols): Let (P, V) be an argument system
for S, and let P0 denote the strategy derived from P by having it abort just before sending the last
message. We say that P is admissible if for every probabilistic polynomial-time strategy V ∗ there
exists a (strict) probabilistic polynomial-time algorithm A∗ such that for every x ∈ S the following
three conditions hold.

6

1. Pr[A∗(x) = (1, ·)] = Pr[A∗(x) = (0, ·)] = 1/2;

2. Pr[A∗(x) = (1, γ)|A∗(x) = (1, ·)] = Pr[〈P, V ∗〉(x) = γ], for every γ ∈ {0, 1}∗.

3. Pr[A∗(x) = (0, γ)|A∗(x) = (0, ·)] = Pr[〈P0, V
∗〉(x) = γ], for every γ ∈ {0, 1}∗.

(Indeed, we parse the output of A∗ as a pair of the form (σ, γ) ∈ {0, 1} × {0, 1}∗.)

Note that, in addition to requiring A∗ to output 〈P0, V
∗〉(x) whenever it fails (i.e., Condition 3),

we also required the failure probability to be exactly one half (rather than at most 1/2). The latter
condition can be assumed, without loss of generality, whenever p is efficiently computable, provided
that we adopt the non-standard model of PPT machines discussed in Section 1.2. Under this (non-
standard PPT) convention, both the perfect zero-knowledge proof system for Graph Isomorphism
(of [12]) and the perfect ZK argument for any set in NP of Naor et al. [18] are admissible by
Definition 3.4. (Note that in both cases, the convention is required in order to allow a PPT
machine to uniformly select a permutation of the vertices of a graph.)

In the following transformation, we shall use a perfectly binding commitment scheme, denoted
C. That is, we shall assume that the distributions C(0) and C(1) are computationally indistin-
guishable (by polynomial-size circuits) although they have disjoint supports. Such commitment
schemes can be constructed, assuming the existence of one-way permutations (see [10, Sec. 4.4.1]).
We denote the commitment to value v using coins s by Cs(v).

Construction 3.5 (the transformation): Let (P, V) be an argument system for S such that P is
admissible by Definition 3.4. On common input x, the two parties proceeds as follows.

1. The parties execute (P0, V) on common input x; that is, they invoke the original protocol,
except that the prover does not send its last message, denoted β.

2. The parties performs a standard coin tossing protocol (see [11, Sec. 7.4.3.1]). Specifically, the
verifier sends a commitment c ← C(v) to a random bit v, the prover responds (in the clear)
with a random bit u, and the verifier de-commits to the commitment (i.e., provides (v, s) such
that c = Cs(v)).

3. If the verifier has de-committed improperly (i.e., c 6= Cs(v)), then the prover sends the empty
message, denoted λ. Otherwise, if u = v then the prover sends 0, and otherwise it sends β
(where we assume, w.l.o.g, that β 6∈ {0, λ}).

4. If u = v then the verifier accepts, otherwise (i.e., u 6= v) it acts as V (α, β), where α denotes
the view of V in the interaction with P0 (as conducted in Step 1).

This transformation preserves the completeness error of (P, V), but the computational-soundness
error grows from ǫs(ℓ) to (1+ǫs(ℓ)+µ(ℓ))/2, where µ is a negligible function. Indeed, computational-
soundness is established by observing that the prover can cause the verifier to ignore the transcript
(α, β) only if it guessed correctly the value committed by the verifier (i.e., if u = v). Assuming that
V ∗ always de-commits properly, the super-perfect ZK feature is based on the simulator’s ability to
set u = v whenever it fails to produce a full transcript. In general, we establish the following claim.

Claim 3.6 (super-perfect simulations): The prover strategy described in Construction 3.5 is super-
perfect zero-knowledge.

7

Proof: For every potential PPT strategy V ∗, consider the corresponding strategy V ∗∗ that V ∗

employs when interacting with P0, and let A∗∗ denote the corresponding simulator as guaranteed
by Definition 3.4. The new simulator will act as follows.

1. Invoke M∗∗ on input x, obtaining either a full transcript or a partial transcript, where each
event happens with probability 1/2. Denote the said outcome by (α, β), where β = 0 in the
latter case.6

2. Obtain a commitment c (supposedly to a value v ∈ {0, 1}) from V ∗.

3. Obtain the response of V ∗ to both possible u ∈ {0, 1}.

4. If in both cases V ∗ acted improperly (i.e., did not provide a valid de-commitment to c), then
select u at random in {0, 1}, and output (α, u, λ).

5. If in both cases V ∗ de-committed properly to the value v, then output (α, v, 0) if β = 0 and
α, 1 − v, β) otherwise.

(Here we rely on the perfect binding feature of C, which implies that c cannot be de-committed
properly to both the values 0 and 1.)

6. If V ∗ de-committed properly to the value v only when fed with the value u, then we distinguish
two cases.

Case of β = 0: Output (α, 1 − u, λ).

Case of β 6= 0: Output (α, u, β) if u 6= v and (α, u, 0) otherwise.

It may be more intuitive to restructure the cases in Step 6 as follows:

Case of u = v: Output (α, u, 0) if β 6= 0 and (α, 1 − u, λ) otherwise (i.e., β = 0).

Equivalently, output (α, u, 0) with probability 1/2 and (α, 1 − u, λ) otherwise.

Case of u 6= v: Output (α, u, β) if β 6= 0 and (α, 1 − u, λ) otherwise.

Hence, in both cases, if the verifier de-commits properly to the value v only when the prover sends
the value u, then the simulator produces the same distribution as in the real interaction (since
Pr[β = 0] = 1/2). The same holds also for the cases considered in Steps 4 and 5.

4 From perfect NIZK to super-perfect NIZK

While Construction 3.1 is applicable also in the context of NIZK, where the condition regarding
p holds vacuously (cf. Corollary 3.2), this construction does not preserve perfect completeness
(as claimed in Theorem 2, which we aim to establish here). Our aim here is to preserve perfect
completeness, and this can be done by “transferring” the simulation attempt from the prover (who
cannot be trusted to perform it at random) to the common reference string (which is uniformly
distributed by definition). Relying on the hypothesis that p is efficiently computable, we assume,
without loss of generality, that p(x) < 2−|x| for every x ∈ {0, 1}∗ (and not merely for x ∈ S).
(Again, we assume, w.l.o.g., that the original prover never outputs the empty string λ).

6Indeed, by Definition 3.4 the outcome has the form (0, α) with probability 1/2 and (1, α ◦ β) otherwise. Hence,
for simplicity, we slightly modified this format.

8

Construction 4.1 (the transformation): Let (P, V), S, A and p be as in the hypothesis of The-
orem 2; and let ρ denote the length of the common reference string and ρ′ denote the number of
coins used by the simulator A. The new NIZK for inputs of length ℓ is as follows.

Common random string: An (ρ(ℓ) + ρ′(ℓ))-bit string, denoted (ω, r), where r is interpreted as an
integer in {0, ..., 2ρ′(ℓ) − 1}.

Prover (on input x ∈ {0, 1}ℓ): If r < p(x) · 2ρ′(ℓ), then the prover outputs the empty message λ.
Otherwise (i.e., r ≥ p(x) · 2ρ′(ℓ)), the prover outputs P (x, ω).

Verifier (on input x ∈ {0, 1}ℓ and alleged proof y): If r < p(x)·2ρ′(ℓ), then the verifier accepts. Oth-
erwise (i.e., r ≥ p(x) · 2ρ′(ℓ)), the verifier decides according to V (x, ω, y).

The new simulator invokes A(x) obtaining the value v. If v = ⊥, then the simulator selects
uniformly ω ∈ {0, 1}ρ(ℓ) and r ∈ {0, ..., p(x) · 2ρ′(ℓ) − 1}, and outputs ((ω, r), λ). Otherwise (i.e.,
v = (ω, y)), the simulator selects uniformly r ∈ {p(x) · 2ρ′(ℓ), ..., 2ρ′(ℓ) − 1}, and outputs ((ω, r), y).

The completeness error of the new system on input x is upper bounded by (1−p(x))·ǫc(|x|) ≤ ǫc(|x|),
whereas the soundness error is upper bounded by p(|x|)+ (1− p(x)) · ǫs(|x|) ≤ ǫs(|x|)+2−|x|, where
ǫc and ǫs denote the error bounds of (P, V). Note that the distribution of the verifier’s view both
in the actual system and its simulation equals ((ω, r), y) ← ((Uρ(ℓ), Uρ′(ℓ)), Y), where Y = P (x, ω)

if r ≥ p(x) · 2ρ′(ℓ) and Y = λ otherwise.
Recall that the construction of the new simulator relies on the ability to generate uniform

distributions on the sets [p(x) · 2ρ′(ℓ)] and [2ρ′(ℓ) − p(x) · 2ρ′(ℓ)], which is possible in the standard
model only if p(x) = 1/2. This was not the case above, since we started by reducing the simulation
error to p(x) ≤ 2−|x|. However, if we start with p ≡ 1/2, then Construction 4.1 yields the following.7

Corollary 4.2 (super-perfect NIZK in the standard PPT model): Let (P, V), S, A and p be as
in Construction 4.1, and suppose that p ≡ 1/2. Then, S has a super-perfect non-interactive zero-
knowledge proof system, where simulation is in the standard PPT model.

Note that the completeness error of the new system on input x is upper bounded by ǫc(|x|)/2,
whereas the soundness error is upper bounded by (1 + ǫs(|x|))/2, where ǫc and ǫs denote the error
bounds of (P, V). Hence, one may want to apply error-reduction on this NIZK (rather than on the
simulator A provided for (P, V)).

5 A super-perfect NIZK for Blum Integers

We first recall the definition of (generalized) Blum integers.

Definition 5.1 (Blum Integers): A natural number is called a (generalize) Blum Integer if it is of
the form peqd such that p ≡ q ≡ 3 (mod 4) are different odd primes and e ≡ d ≡ 1 (mod 2). The
set of Blum integers is denoted B.

7Indeed, in this case the construction can be simplified. We may use a common reference string of the form
(ω,σ) ∈ {0, 1}ρ(ℓ)+1, have the prover output P (x, ω) if and only if σ = 1, and have the verifier accept if either σ = 0
or V (x,ω, y), where y denotes the alleged proof.

9

The following standard notations will be used extensively. For any natural number n, we let Zn

denote the additive group modulo n, and Z
∗
n denote the corresponding multiplicative group.

We let Qn ⊆ Z
∗
n denote the set of quadratic residues modulo n, and recall the definition of the

Jacobi symbol modulo n, viewed as a function JSn : Z → {−1, 0, 1}, and a basic fact regarding
it: For a prime p, it holds that JSp(r) = 0 if r ≡ 0 (mod p), whereas JSp(r) = 1 if r mod p ∈ Qp

and JSp(r) = −1 otherwise (i.e., r mod p ∈ Zn \ Qp). For composite n = n1n2, it holds that
JSn(r) = JSn1(r) · JSn1(r), yet the Jacobi symbol modulo n can be computed efficiently also when
not given the factorization of n.

Another important set, first utilized in [2], is Sn
def
= {r ∈ {1, ..., ⌊n/2⌋} : JSn(r) = 1} ⊂ Z

∗
n Note

that for n ∈ B it holds that |Sn| = |Z
∗
n|/4 (see proof of Claim 5.5). We consider the following three

functions:

1. The modular squaring function gn : Z→ Qn defined as gn(r) = r2 mod n.

2. The “first half” function hn : Zn → Sn defined as hn(r) = r if r < n/2 and hn(r) = n − r
otherwise.

3. Their composition fn = hn ◦ gn; that is, fn : Z→ Sn such that fn(r) = hn(gn(r)).

Abusing notation, we extend these functions to sets in the obvious manner.

5.1 Well known facts

The following well-known facts will be used in our construction and its analysis. The reader may
consider skipping this subsection. We start by recalling two computational facts.

1. The set of prime powers is in P.

(Justification: Try all possible powers e ∈ [⌈log2 n⌉], and use the primality tester of [1].)

2. The set {(n, r) : r ∈ Sn} is in P.

(Justification: Recall that the Jacobi symbol is efficiently computable.)

We next recall a few elementary facts regarding the foregoing sets and functions.

Claim 5.2 (on the size of Qn and fn(Sn)):

1. Suppose that n =
∏

i∈[k] p
ei

i such that the pi’s are different odd primes. Then, |Qn| = 2−k ·|Z∗n|.

2. For every n ∈ N, it holds that |fn(Sn)| ≤ |Qn|.

Proof: Part 1 holds since r ∈ Z∗n is in Qn if and only if for every i ∈ [k] it holds that r mod pei

i is
in Qp

ei
i

, whereas each s ∈ Qp
ei
i

has exactly two modular square root (which sum-up to pei

i). Part 2

holds since fn(Sn) ⊆ fn(Z∗n) = hn(Qn).

Claim 5.3 (on JSn(−1) and the form of n): Suppose that n =
∏

i∈[k] p
ei

i such that the pi’s are
different odd primes, and let I = {i ∈ [k] : pi ≡ 3 mod 4}. Then, the following three conditions are
equivalent: (1) n ≡ 1 (mod 4); (2) JSn(−1) = 1; and (3)

∑

i∈I ei is even.

10

Proof: Note that n ≡
∏

i∈I 3ei ≡ 3
P

i∈I ei (mod 4), which implies that n ≡ 1 (mod 4) if and
only if

∑

i∈I ei is even. On the other hand, note that JSn(−1) =
∏

i∈[k] JSpi
(−1)ei =

∏

i∈I(−1)ei =

(−1)
P

i∈I ei , since for every odd prime p it holds that JSp(−1) = 1 if and only if p ≡ 1 (mod 4).

Claim 5.4 (on fn for Blum integers): For n ∈ B, the function fn is a permutation over Sn.

Proof: Suppose that n = peqd such that p ≡ q ≡ 3 (mod 4) are distinct odd primes. First note that
if n ∈ B, then gn is a permutation over Qn, because x2 ≡ y2 (mod n) implies that x ≡ ±y (mod pe)
whereas |Qpe∩{r, n−r}| = 1 for every r ∈ Z

∗
n (since JSpe(−1) = −1). Ditto for the situation mod qd.

Next note that hn is a bijection from Qn to Sn, because |Qn ∩ {r, n − r}| ≤ 1 for any r ∈ Z
∗
n. The

claim follows since fn(Qn) = hn(gn(Qn)) = Sn and fn(Sn) = fn(hn(Sn)) = fn(hn(Qn)) = fn(Qn),
where the last equality holds since for every x ∈ Zn it holds that gn(hn(x)) = gn(x).

Claim 5.5 (on the size of Sn): If JSn(−1) = 1, then |Sn| ≥ |Z
∗
n|/4, where equality holds if n is not

of the form 2es2 for some e, s ∈ N.

Proof: If there exists r ∈ Z
∗
n such that JSn(r) = −1, then x 7→ rx is a bijection of {s ∈ Z

∗
n :

JSn(s) = 1} to {s ∈ Z
∗
n : JSn(s) = −1}. Hence, at least half the elements of Z

∗
n have Jacobi symbol

1, and (when JSn(−1) = 1) they are paired such that JSn(s) = 1 if and only if JSn(n − s) = 1.

5.2 The proof system

Recall that there exist (deterministic) polynomial-time algorithms for (1) deciding if a number is a
prime (ditto for a prime power), and (2) deciding whether r ∈ Sn when given n and r. The main
observation underlying the proof system is that when n ∈ B the function fn is a permutation over
Sn, whereas for n 6∈ B it holds that |fn(Sn)| ≤ |Sn|/2 (provided that n ≡ 1 (mod 4) and n is not
a prime power). Hence, the proof system amounts to distinguishing the case fn(Sn) = Sn from
the case |fn(Sn)| = |Sn|/2 by asking the prover to provide a pre-image under fn of a uniformly
distributed ω ∈ Sn (where the case ω 6∈ Sn is treated separately). The super-perfect simulator
can provide such transcripts by uniformly selecting r ∈ Sn, and outputting (fn(r), r), where fn(r)
represents the common reference string (and r be the prover’s message/output).

Construction 5.6 (a non-interactive proof system for B):

Input: A natural number n. Let ℓ = ⌈log2 n⌉.

Common reference string: An ℓ-bit string, denoted ω, interpreted as an integer in Z2ℓ.

Prover: If ω ∈ Sn and there exists r ∈ Sn such that fn(r) = ω, then the prover outputs r (otherwise
it outputs 0).

(Note that for n ∈ B and ω ∈ Sn, there exists a unique r ∈ Sn such that fn(r) = ω.)

Verifier: When receiving an alleged proof r, the verifier proceeds as follows.

1. If n is a prime power or n 6≡ 1 (mod 4), then the verifier halts outputting 0 (indicating
reject).

11

2. The verifier checks if there exists a prime p ∈ {3, ..., ℓ} that divides n and finds the largest
e such that pe divides n. If n/pe is not a prime power, then the verifier rejects. Otherwise,
letting qd be this prime power (i.e., n = peqd), the verifier accepts if p ≡ q ≡ 3 (mod 4),
and rejects otherwise.

3. If ω 6∈ Sn, then the verifier halts outputting 1 (indicating accept).

4. If r ∈ Sn and fn(r) = ω, then the verifier outputs 1. Otherwise, it outputs 0.

Proposition 5.7 (analysis of Construction 5.6): Construction 5.6 constitutes a super-perfect NIZK
for B with perfect completeness and soundness error 16/17.

Proof: Suppose that n = peqd such that p ≡ q ≡ 3 (mod 4) are different odd primes and
e ≡ d ≡ 1 (mod 2). Then, fn is a permutation over Sn (see Claim 5.4), and perfect completeness
holds (since no step of Construction 5.6 may cause rejection). In such a case, the super-perfect
simulation proceeds as follows.

1. Select uniformly r ∈ Z2ℓ .

2. If r ∈ Sn then output (fn(r), r), else output (r, 0).

Note that the simulator’s output is distributed identically to the distribution produced by the
prover. In both distributions of pairs, denoted (x, y), it holds that x is distributed uniformly in
Z2ℓ , whereas y is a function of x (and n) determined as follows: If x /∈ Sn, then y = 0, and otherwise
y ∈ Sn is the unique pre-image of x under fn. Hence, it remains to establish the soundness of the
system.

Turning to the soundness condition, suppose that n 6∈ B. We may assume that n is not a prime
power and that n ≡ 1 (mod 4) (or else Step 1 would have rejected). We may also assume that
n has no prime factor smaller than ℓ (or else Step 2 would have rejected). Now, with probability
n/2ℓ > 1/2, the random string ω is in Zn. Conditioned on this event, we consider the prime
factorization of n =

∏

i∈[k] p
ei

i (where the pi’s are different odd primes), and will show that ω 6∈ Z
∗
n

is unlikely whereas if ω ∈ Z
∗
n then the verifier rejects with probability at least halt.

First, recall that |Z∗n| =
∏

i∈[k]((pi − 1) · pei−1
i). Hence

|Zn \ Z
∗
n|

|Zn|
= 1−

∏

i∈[k]

pi − 1

pi

≤ 1−

(

1−
1

ℓ

)k

which is smaller than any constant (since k ≤ logℓ n = o(ℓ) and 1− (1 − ℓ−1)k < k/ℓ). Hence, we
turn to the case that ω ∈ Z

∗
n. Using the fact that |Sn| ≥ |Z

∗
n|/4 (see Claims 5.3 and 5.5), we infer

that ω ∈ Sn (and the verifier executes Step 4) with probability at least 0.5 · 0.99 · 0.25 > 2/17.
Recalling that |fn(Sn)| ≤ 2−k · |Z∗n| (see Claim 5.2) while |Sn| = |Z

∗
n|/4, we infer that if k ≥ 3,

then Step 4 rejects with probability at least half. We are left with the case of k = 2, which means
that n = peqd 6∈ B such that p and q are different odd primes (and e, d ≥ 1). Hence, w.l.o.g.,
p ≡ 1 (mod 4). We shall show that in this case |fn(Sn)| ≤ |Sn|/2, by showing that for each r ∈ Sn

there exists s ∈ Sn such that s 6= r and fn(s) = fn(r).
For any r ∈ Sn, let r1 = r mod pe and r2 = r mod qe. Consider the unique s ∈ Z

∗
n such that

s ≡ −r1 (mod pe) and s ≡ r2 (mod qd). Then, s 6= r and s 6= n − r, whereas s2 ≡ r2 (mod n)
(which implies fn(s) = fn(r)). On the other hand, JSn(n − s) = JSn(s) = JSpe(−r1) · JSqd(r2) =

12

JSpe(r1) ·JSqd(r2) = JSn(r) = 1, where we use JSn(−1) = 1, JSp(−1) = 1 and r ∈ Sn. Hence, either
s or n− s is in Sn, and it follows that |f−1

n (fn(r)) ∩ Sn| ≥ 2, which implies |fn(Sn)| ≤ |Sn|/2.
Let us recap. If n 6∈ B, then the verifier reject with probability at least Prω[ω ∈ Sn] ·Prω[ω 6∈

f(Sn)|ω ∈ Sn] ≥ (2/17) · 0.5 = 1/17. The proposition follows.

5.3 A complete promise problem

Following Sahai and Vadhan [21], who identified promise problems that are complete for the class of
promise problems that has statistical zero-knowledge proof systems, analogous results were obtained
for statistical NIZK proof systems (see [13]) and perfect NIZK proof systems (see [17]). Following
Malka [17, Sec. 2], we identify a very natural promise problem that is complete for super-perfect
NIZK proof systems with perfect completeness. The promise problem is defined next.

Definition 5.8 (the promise problem (Uyes, Uno)):

• The set Uyes consists of all circuits C : {0, 1}ℓ → {0, 1}m such that C(Uℓ) is distributed
identically to Um.

• The set Uno consists of all circuits C : {0, 1}ℓ → {0, 1}m such that the support of C(Uℓ) has
size at most 2m−1.

We assume that the circuits are given in a such format that it is easy to determine the number
of bits in their inputs and in their outputs. We comment that the promise problem considered by
Malka [17, Def. 2.2] is related but different (i.e., it required that for a yes-instance C it holds that
C(Uℓ)[m−1] ≡ Um−1 and Pr[C(Uℓ)m = 1] ≥ 2/3, whereas for a no-instance Pr[C(Uℓ)m = 1] ≤ 1/3).

The definition of super-perfect NIZK proof systems extend naturally to promise problem (cf. [22]).
Loosely speaking, a promise problem (Πyes,Πno) is a pair of non-intersecting sets, and the soundness
condition refers only to inputs in Πno (rather than to inputs in {0, 1}∗ \ Πyes). (The completeness
and zero-knowledge conditions refer to all inputs in Πyes.)

Theorem 5.9 ((Uyes, Uno) is complete for SPNIZK1): Let SPNIZK1 denote the class of promise
problems having a super-perfect NIZK proof system of perfect completeness. Then, (Uyes, Uno) is in
SPNIZK1 and every problem in SPNIZK1 is Karp-reducible to (Uyes, Uno).

Proof: The idea underlying the proof of Theorem 3 can be used to present a super-perfect NIZK
proof system of perfect completeness for (Uyes, Uno). Specifically, on input a circuit C : {0, 1}ℓ →
{0, 1}m and common reference string ω ∈ {0, 1}m, the prover outputs a uniformly distributed string
r ∈ C−1(ω), and the verifier accepts if and only if C(r) = ω. Perfect completeness and soundness
error of 1/2 are immediate by the definition of (Uyes, Uno), whereas super-perfect ZK is demonstrated
by a simulator that uniformly selects r ∈ {0, 1}ℓ and outputs (C(r), r), where C(r) represents the
simulated common reference string and r represents the simulated proof output by the prover on
input C (and common reference string C(r)).

Assuming that (Πyes,Πno) ∈ SPNIZK1, we show a Karp-reduction of (Πyes,Πno) to (Uyes, Uno).
Let (P, V) be the non-interactive proof systems of (Πyes,Πno), let A be the corresponding simulation,
and let ℓ = ℓ(|x|) denote the number of coin tosses used by A on input x (and m denote the length
of the common reference string). (For sake of simplicity, we assume, without loss of generality, that
V is deterministic and that the soundness error of (P, V) is at most 1/3, where the probability is
taken over all possible choices of the common reference string.) Now, on input x, the reduction
produces the following circuit Cx : {0, 1}ℓ → {0, 1}m.

13

1. The circuit Cx takes its input r, invokes A on input x and coins r, and obtains the out-
come (ω, y), where ω represents the simulated common reference string and y represents the
simulated proof output by P on input x (and common reference string ω).

2. The circuit Cx outputs ω if V (x, ω, y) = 1 and 0m otherwise.

Observe that if x ∈ Πyes then Cx(Uℓ) ≡ Um, whereas if x ∈ Πno then the support of Cx(Uℓ) contains
at most (2m/3) + 1 strings. The claim follows.

6 Open Problems

We start with a well-known open problem (see, e.g., [22, Chap. 8]). All these problems refer to ZK
proof systems (rather than to ZK argument systems).

Open Problem 6.1 (perfect ZK versus statistical ZK): Let SZK be the class of sets having sta-
tistical (a.k.a almost-perfect) zero-knowledge interactive proof system. Prove or disprove, under
reasonable assumptions, the conjecture by which not all sets in SZK have perfect zero-knowledge
interactive proof systems. Ditto for having a perfect zero-knowledge proof system with perfect com-
pleteness.

Recall that any set in SZK has a statistical zero-knowledge proof system with perfect completeness
(via the transformation to public-coin systems and the use of Lautemann’s technique [16]; see [22,
Chap. 5] and [8], resp.). This is not know to be the case for perfect zero-knowledge. In particular,
it is even not know whether all sets in BPP have perfect zero-knowledge proof systems with perfect
completeness. (Indeed, all sets in coRP do have perfect zero-knowledge proof systems with perfect
completeness, in which the prover remains silent.)

Open Problem 6.2 (super-perfect ZK versus perfect ZK): Let PZK be the class of sets having
perfect zero-knowledge interactive proof system. Prove or disprove, under reasonable assumptions,
the conjecture by which not all sets in PZK have super-perfect zero-knowledge interactive proof
systems. Ditto for zero-knowledge proof system with perfect completeness, where the question may
refer both to the standard and non-standard models of PPT machines.

Recall that the difference between the standard and non-standard models of PPT machines arises
only with respect to super-perfect ZK. Indeed, one may ask the following

Open Problem 6.3 (super-perfect ZK: models of PPT): Let S be a set having a super-perfect zero-
knowledge interactive proof systems with perfect completeness under one of the two non-standard
models of PPT machines. Does S necessarily has a super-perfect zero-knowledge interactive proof
systems with perfect completeness under the standard model of PPT machines. Ditto for zero-
knowledge proof system with non-perfect completeness.

It is tempting to think that the question regarding non-perfect completeness can be resolved by
applying Theorem 1, but this presumes that all simulators use their distribution generating device
in the same manner (i.e., with the same n’s and for the same number of times).8 The same questions
arise with respect to NIZK.

Open Problem 6.4 (super-perfect NIZK versus perfect and statistical NIZK): Address the non-
interactive zero-knowledge analogues of Problems 6.1 and 6.2. Ditto for the perfect completeness
version of Problem 6.3.

8This presumption holds trivially when referring either to the honest-verifier version or to the NIZK version.

14

Acknowledgments

We are grateful to Alon Rosen and Amit Sahai for useful discussions. This research was partially
supported by the Minerva Foundation with funds from the Federal German Ministry for Education
and Research.

References

[1] M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Annals of Mathematics,
Vol. 160 (2), pages 781–793, 2004.

[2] W. Alexi, B. Chor, O. Goldreich and C.P. Schnorr. RSA/Rabin Functions: Certain Parts
are As Hard As the Whole. SIAM Journal on Computing, Vol. 17, April 1988, pages
194–209.

[3] B. Barak. How to Go Beyond the Black-Box Simulation Barrier. In 42nd IEEE Symposium
on Foundations of Computer Science, pages 106–115, 2001.

[4] B. Barak. Non-Black-Box Techniques in Crypptography. PhD Thesis, Weizmann Institute
of Science, 2004.

[5] M. Blum, A. De Santis, S. Micali, and G. Persiano. Non-Interactive Zero-Knowledge
Proof Systems. SIAM Journal on Computing, Vol. 20, No. 6, pages 1084–1118, 1991.
(Considered the journal version of [6].)

[6] M. Blum, P. Feldman and S. Micali. Non-Interactive Zero-Knowledge and its Applications.
In 20th ACM Symposium on the Theory of Computing, pages 103–112, 1988. See [5].

[7] G. Brassard, D. Chaum and C. Crépeau. Minimum Disclosure Proofs of Knowledge.
Journal of Computer and System Science, Vol. 37, No. 2, pages 156–189, 1988. Preliminary
version by Brassard and Crépeau in 27th FOCS, 1986.

[8] M. Fürer, O. Goldreich, Y. Mansour, M. Sipser, and S. Zachos. On Completeness and
Soundness in Interactive Proof Systems. Advances in Computing Research: a research
annual, Vol. 5 (Randomness and Computation, S. Micali, ed.), pages 429–442, 1989.

[9] O. Goldreich. Computational Complexity: A Conceptual Perspective. Cambridge Univer-
sity Press, 2008.

[10] O. Goldreich. Foundation of Cryptography: Basic Tools. Cambridge University Press,
2001.

[11] O. Goldreich. Foundation of Cryptography: Basic Applications. Cambridge University
Press, 2004.

[12] O. Goldreich, S. Micali and A. Wigderson. Proofs that Yield Nothing but their Validity
or All Languages in NP Have Zero-Knowledge Proof Systems. Journal of the ACM, Vol.
38, No. 3, pages 691–729, 1991. Preliminary version in 27th FOCS, 1986.

[13] O. Goldreich, A. Sahai, and S.P. Vadhan. Can Statistical Zero Knowledge Be Made Non-
interactive? or On the Relationship of SZK and NISZK. In Crypto99, pages 467–484,
1999.

15

[14] S. Goldwasser, S. Micali and C. Rackoff. The Knowledge Complexity of Interactive Proof
Systems. SIAM Journal on Computing, Vol. 18, pages 186–208, 1989. Preliminary version
in 17th STOC, 1985. Earlier versions date to 1982.

[15] J. Groth, R. Ostrovsky, and A. Sahai. Perfect Non-interactive Zero Knowledge for NP. In
25th Eurocrypt, Springer Lecture Notes in Computer Science (Vol. 4004), pages 339–358,
2006.

[16] C. Lautemann. BPP and the Polynomial Hierarchy. Information Processing Letters,
Vol. 17, pages 215–217, 1983.

[17] L. Malka. How to Achieve Perfect Simulation and A Complete Problem for Non-interactive
Perfect Zero-Knowledge. In 5th TCC, Springer Lecture Notes in Computer Science
(Vol. 4948), pages 89–106, 2008.

[18] M. Naor, R. Ostrovsky, R. Venkatesan and M. Yung. Zero-Knowledge Arguments for NP
can be Based on General Assumptions. Journal of Cryptology, Vol. 11, pages 87–108,
1998. Preliminary version in Crypto92.

[19] R. Pass and A. Rosen. New and improved constructions of non-malleable cryptographic
protocols. SIAM Journal on Computing, Vol. 38 (2), pages 702–752, 2008.

[20] R. Pass and A. Rosen. Concurrent Non-Malleable Commitments. SIAM Journal on
Computing, Vol. 37 (6), pages 1891–1925, 2008.

[21] A. Sahai and S. Vadhan. A Complete Promise Problem for Statistical Zero-Knowledge.
Journal of the ACM, Vol. 50 (2), pages 196–249, 2003. Preliminary version in 38th FOCS,
1997.

[22] S. Vadhan. A Study of Statistical Zero-Knowledge Proofs. PhD Thesis, Department of
Mathematics, MIT, 1999.
See http://people.seas.harvard.edu/∼salil/research/phdthesis.pdf

16

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

