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Abstract

Given k collections of 2SAT clauses on the same set of variables V , can we find one assignment
that satisfies a large fraction of clauses from each collection? We consider such simultaneous
constraint satisfaction problems, and design the first nontrivial approximation algorithms in this
context.

Our main result is that for every CSP F , for k ă Õplog
1{4 nq, there is a polynomial time

constant factor Pareto approximation algorithm for k simultaneous Max-F-CSP instances.
Our methods are quite general, and we also use them to give an improved approximation factor
for simultaneous Max-w-SAT (for k ă Õplog

1{3 nq). In contrast, for k “ ωplog nq, no nonzero
approximation factor for k simultaneous Max-F-CSP instances can be achieved in polynomial
time (assuming the Exponential Time Hypothesis).

These problems are a natural meeting point for the theory of constraint satisfaction problems
and multiobjective optimization. We also suggest a number of interesting directions for future
research.
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1 Introduction

The theory of approximation algorithms for constraint satisfaction problems (CSPs) is a very
central and well developed part of modern theoretical computer science. Its study has involved
fundamental theorems, ideas, and problems such as the PCP theorem, linear and semidefinite
programming, randomized rounding, the Unique Games Conjecture, and deep connections between
them [AS98, ALM`98, GW95, Kho02, Rag08, RS09].

In this paper, we initiate the study of simultaneous approximation algorithms for constraint
satisfaction problems. A typical such problem is the simultaneous Max-CUT problem: Given a
collection of k graphs Gi “ pV,Eiq on the same vertex set V , the problem is to find a single cut
(i.e., a partition of V ) so that in every Gi, a large fraction of the edges go across the cut.

More generally, let q be a constant positive integer, and let F be a set of bounded-arity predicates
on rqs-valued variables. Let V be a set of n rqs-valued variables. An F-CSP is a weighted collection
W of constraints on V , where each constraint is an application of a predicate from F to some
variables from V . For an assignment f : V Ñ rqs and a F-CSP instanceW, we let valpf,Wq denote
the total weight of the constraints from W satisfied by f . The Max-F-CSP problem is to find f
which maximizes valpf,Wq. If F is the set of all predicates on rqs of arity w, then Max-F-CSP is
also called Max-w-CSPq.

We now describe the setting for the problem we consider: k-fold simultaneous Max-F-CSP. Let
W1, . . . ,Wk be F-CSPs on V , each with total weight 1. Our high level goal is to find an assignment
f : V Ñ rqs for which valpf,W`q is large for all ` P rks.

These problems fall naturally into the domain of multi-objective optimization: there is a com-
mon search space, and multiple objective functions on that space. Since even optimizing one of
these objective functions could be NP-hard, it is natural to resort to approximation algorithms.
Below, we formulate some of the approximation criteria that we will consider, in decreasing order
of difficulty:

1. Pareto approximation: Suppose pc1, . . . , ckq P r0, 1s
k is such that there is an assignment

f˚ with valpf˚,W`q ě c` for each ` P rks.

An α-Pareto approximation algorithm in this context is an algorithm, which when given
pc1, . . . , ckq as input, finds an assignment f such that valpf,W`q ě α ¨ c`, for each ` P rks.

2. Minimum approximation: This is basically the Pareto approximation problem when c1 “

c2 “ . . . “ ck. Define Opt to be the maximum, over all assignments f˚, of min`Prks valpf˚,W`q.

An α-minimum approximation algorithm in this context is an algorithm which finds an as-
signment f such that min`Prks valpf,W`q ě α ¨Opt.

3. Detecting Positivity: This is a very special case of the above, where the goal is simply to
determine whether there is an assignment f which makes valpf,W`q ą 0 for all ` P rks.

At the surface, this problem appears to be a significant weakening of the the simultaneous
approximation goal.

When k “ 1, minimum approximation and Pareto approximation correspond to the classical
Max-CSP approximation problems (which have received much attention). Our focus in this paper
is on general k. As we will see in the discussions below, the nature of the problem changes quite a
bit for k ą 1. In particular, direct applications of classical techniques like random assignments and
convex programming relaxations fail to give even a constant factor approximation.
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The theory of exact multiobjective optimization has been very well studied, (see eg. [PY00,
Dia11] and the references therein). For several optimization problems such as shortest paths,
minimum spanning trees, matchings, etc, there are polynomial time algorithms that solve the
multiobjective versions exactly. For Max-SAT, simultaneous approximation was studied by Glaßer
et al. [GRW11].

We have two main motivations for studying simultaneous approximations for CSPs. Most im-
portantly, these are very natural algorithmic questions, and capture naturally arising constraints
in a way which more näıve formulations (such as taking linear combinations of the given CSPs)
cannot. Secondly, the study of simultaneous approximation algorithms for CSPs sheds new light on
various aspects of standard approximation algorithms for CSPs. For example, our algorithms are
able to favorably exploit some features of the trivial random-assignment-based 1{2-approximation al-
gorithm for Max-CUT, that are absent in the more sophisticated SDP-based 0.878-approximation
algorithm of Goemans-Williamson [GW95].

1.1 Observations about simultaneous approximation

We now discuss why a direct application of the classical CSP algorithms fails in this setting, and
limitations on the approximation ratios that can be achieved.

We begin with a trivial remark. Finding an α-minimum (or Pareto) approximation to the k-fold
Max-F-CSP is at least as hard as finding an α-approximation the classical Max-F-CSP problem
(i.e., k “ 1). Thus the known limits on polynomial-time approximability extend naturally to our
setting.

Max-1-SAT. The simplest simultaneous CSP is Max-1-SAT. The problem of getting a 1-Pareto or
1-minimum approximation to k-fold simultaneous Max-1-SAT is essentially the NP-hard SUBSET-
SUM problem. There is a simple 2polypk{εq ¨ polypnq-time p1 ´ εq-Pareto approximation algorithm
based on dynamic programming.

It is easy to see that detecting positivity of a k-fold simultaneous Max-1-SAT is exactly the
same problem as detecting satisfiability of a SAT formula with k clauses (a problem studied in the
fixed parameter tractability community. Thus, this problem can be solved in time 2Opkq ¨ polypnq
(see [Mar13]), and under the Exponential Time Hypothesis, one does not expect a polynomial time
algorithm when k “ ωplog nq.

Random Assignments. Let us consider algorithms based on random assignments. A typical
example is Max-CUT. A uniformly random cut in a weighted graph graph cuts 1{2 the total
weight in expectation. This gives a 1{2-approximation to the classical Max-CUT problem.

If the cut value is concentrated around 1{2, with high probability, we would obtain a cut that’s
simultaneously good for all instances. For an unweighted graph1 G with ωp1q edges, a simple
variance calculation shows that a uniformly random cut in the graph cuts a

`

1
2 ´ op1q

˘

fraction of
the edges with high probability. Thus by a union bound, for k “ Op1q simultaneous unweighted
instances G1, . . . , Gk of Max-CUT, a uniformly random cut gives a

`

1
2 ´ op1q

˘

-minimum (and
Pareto) approximation with high probability. However, for weighted graphs, the concentration no
longer holds, and the algorithm fails to give any constant factor approximation.

1We use the term “unweighted” to refer to instances where all the constraints have the same weight. When we
talk about simultaneous approximation for unweighted instances W1, . . . ,Wk of MAX-F-CSP, we mean that in each
instance Wi, all constraints with nonzero weight have the equal weights (but that equal weight can be different for
different i).
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For general CSPs, even for unweighted instances, the total weight satisfied by a random assign-
ment does not necessarily concentrate. In particular, there is no “trivial” random-assignment-based
constant factor approximation algorithm for simultaneous general CSPs.

SDP Algorithms. How do algorithms based on semi-definite programming (SDP) generalize to
the simultaneous setting?

For the usual Max-CUT problem (k “ 1), the celebrated Goemans-Williamson SDP algo-
rithm [GW95] gives a 0.878-approximation. The SDP relaxation generalizes naturally to to the
simultaneous setting; it allows us to find a vector solution which is a simultaneously good cut for
G1, . . . , Gk. Perhaps we apply hyperplane rounding to the SDP solution to obtain a simultaneously
good cut for all Gi? We know that each Gi gets a good cut in expectation, but we need each Gi to
get a good cut with high probability to guarantee a simultaneously good cut.

However, there are cases where the hyperplane rounding fails completely. For weighted in-
stances, the SDP does not have any constant integrality gap. For unweighted instances, for every
fixed k, we find an instance of k-fold simultaneous Max-CUT (with arbitrarily many vertices and
edges) where the SDP relaxation has value 1 ´ Ω

`

1
k2

˘

, while the optimal simultaneous cut has
value only 1{2. Furthermore, applying the hyperplane rounding algorithm to this vector solution
gives (with probability 1) a simultaneous cut value of 0. These integrality gaps are described in
Section C.

Thus the natural extension of SDP based techniques for simultaneous approximation fail quite
spectacularly. A-priori, this failure is quite surprising, since SDPs (and LPs) generalize to the
multiobjective setting seamlessly.

Matching Random Assignments? Given the ease and simplicity of algorithms based on random
assignments for k “ 1, giving algorithms in the simultaneous setting that match their approximation
guarantees is a natural benchmark. Perhaps it is always possible to do as well in the simultaneous
setting as a random assignment for one instance?

Somewhat surprisingly, this is incorrect. For simultaneous Max-Ew-SAT (CNF-SAT where
every clause has exactly w distinct literals), a simple reduction from Max-E3-SAT (with k “ 1)
shows that it is NP-hard to give a p7{8` εq-minimum approximation for k-fold simultaneous Max-
Ew-SAT for large enough constants k.

Proposition 1.1 For all integers w ě 4 and ε ą 0, given k ě 2w´3 instances of Max-Ew-
SAT that are simultaneously satisfiable, it is NP-hard to find a p7{8 ` εq-minimum (or Pareto)
approximation.

On the other hand, a random assignment to a single Max-Ew-SAT instance satisfies a 1 ´ 2´w

fraction of constraints in expectation.
This shows that simultaneous CSPs can have worse approximation factors than that expected

from a random assignment. In particular, it shows that simultaneous CSPs can have worse approx-
imation factors than their classical (k “ 1) counterparts.

1.2 Results

Our results address the approximability of k-fold simultaneous Max-F-CSP for large k. Our main
algorithmic result shows that for every F , and k not too large, k-fold simultaneous Max-F-CSP
has a constant factor Pareto approximation algorithm.
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Theorem 1.2 Let q, w be constants. Then for every ε ą 0, there is a 2Opk
4
{ε2 logpk{εqq ¨ polypnq-time

´

1
qw´1 ´ ε

¯

-Pareto approximation algorithm for k-fold simultaneous Max-w-CSPq.

The dependence on k implies that the algorithm runs in polynomial time up to k “ Õpplog nq1{4q
simultaneous instances 2. The proof of the above Theorem appears in Section 4, and involves a
number of ideas. In order to make the ideas clearer, we first describe the main ideas for approxi-
mating simultaneous Max-2-AND (which easily implies the q “ w “ 2 special case of the above
theorem); this appears in Section 3.

For particular CSPs, our methods allow us to do significantly better, as demonstrated by our
following result for Max-w-SAT.

Theorem 1.3 Let w be a constant. For every ε ą 0, there is a 2Opk
3
{ε2 logpk{εqq ¨ polypnq-time

p3{4´ εq-Pareto approximation algorithm for k-fold Max-w-SAT.

Given a single Max-Ew-SAT instance, a random assignment satisfies a 1 ´ 2´w fraction of
the constraints in expectation. The approximation ratio achieved by the above theorem seems
unimpressive in comparison (even though it is for general Max-w-SAT). However, Proposition 1.1
demonstrates it is NP-hard to do much better.

Remarks

1. As demonstrated by Proposition 1.1, it is sometimes impossible to match the approximation
ratio achieved by a random assignment for k “ 1. By comparison, the approximation ratio
given by Theorem 1.2 is slightly better than that achieved by a random assignment (1{qw).
This is comparable to the best possible approximation ratio for k “ 1, which is w{qw´1 up
to constants [MM12, Cha13]. Our methods also prove that picking the best assignment out

of 2Opk
4
{ε2 logpk{εqq independent and uniformly random assignments achieves a p1{qw ´ εq-Pareto

approximation with high probability.

2. Our method is quite general. For any CSP with a convex relaxation and an associated
rounding algorithm that assigns each variable independently from a distribution with certain
smoothness properties (see Section 3.2), it can be combined with our techniques to achieve
essentially the same approximation ratio for k simultaneous instances.

3. We reiterate that Pareto approximation algorithms achieve a multiplicative approximation for
each instance. One could also consider the problem of achieving simultaneous approximations
with an α-multiplicative and ε-additive error. This problem can be solved by a significantly
simpler algorithm and analysis (but note that this variation does not even imply an algorithm
for detecting positivity).

1.3 Complementary results

1.3.1 Refined hardness results

As we saw earlier, assuming ETH, there is no algorithm for even detecting positivity of k-fold
simultaneous Max-1-SAT for k “ ωplog nq. There are trivial examples of CSPs for which detecting

2The Õp¨q hides polyplog log nq factors.
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positivity (and in fact 1-Pareto approximation) can be solved efficiently: eg. simultaneous CSPs
based on monotone predicates (where no negations of variables are allowed) are maximally satisfied
by the all-1s assignment. Here we prove that for any “nontrivial” collection of Boolean predicates
F , assuming ETH, there is no polynomial time algorithm for detecting positivity for k-fold simul-
taneous Max-F-CSP instances for k “ ωplog nq. In particular, it is hard to obtain any poly-time
constant factor approximation for k “ ωplog nq. This implies a complete dichotomy theorem for
constant factor approximations of k-fold simultaneous Boolean CSPs.

A predicate P : t0, 1uw Ñ tTrue,Falseu is said to be 0-valid/1-valid if the all-0-assignment/all-
1-assignment satisfies P . We call a collection F of predicates 0-valid/1-valid if all predicates in F
are 0-valid/1-valid. Clearly, if F is 0-valid or 1-valid, the simultaneous Max-F-CSP instances can
be solved exactly (by considering the all-0-assignment/all-1-assignment). Our next theorem shows
that detecting positivity of ωplog nq-fold simultaneous Max-F-CSP , for all other F , is hard.

Theorem 1.4 Assume the Exponential Time Hypothesis [IP01, IPZ01]. Let F be a fixed finite set
of Boolean predicates. If F is not 0-valid or 1-valid, then for k “ ωplog nq, detecting positivity of
k-fold simultaneous Max-F-CSP on n variables requires time super-polynomial in n.

Crucially, this hardness result holds even if we require that every predicate in an instance has
all its inputs being distinct variables.

Our proof uses techniques underlying the dichotomy theorems of Schaefer [Sch78] for exact
CSPs, and of Khanna et al. [KSTW01] for Max-CSPs (although our easiness criterion is different
from the easiness criteria in both these papers).

1.3.2 Simultaneous approximations via SDPs

It is a tantalizing possibility that one could use SDPs to improve the LP-based approximation
algorithms that we develop. Especially for constant k, it is not unreasonable to expect that one
could obtain a constant factor Pareto or minimum approximation, for k-fold simultaneous CSPs,
better than what can be achieved by linear programming methods.

In this direction, we show how to use simultaneous SDP relaxations to obtain a polynomial time
p1{2`Ωp1{k2qq-minimum approximation for k-fold simultaneous Max-CUT on unweighted graphs.

Theorem 1.5 For large enough n, there is an algorithm that, given k-fold simultaneous unweighted

Max-CUT instances on n vertices, runs in time 222
Opkq

¨ polypnq, and computes a
`

1
2 ` Ω

`

1
k2

˘˘

-
minimum approximation.

1.4 Our techniques

For the initial part of this discussion, we focus on the q “ w “ 2 case, and only achieve a 1{4 ´ ε
Pareto approximation.

Preliminary Observations First let us analyze the behavior of the uniformly random assign-
ment algorithm. It is easy to compute, for each instance ` P rks, the expected weight of satisfied
constraints in instance `, which will be at least 1

4 of the total weight all constraints in instance `. If
we knew for some reason that in each instance the weight of satisfied constraints was concentrated
around this expected value with high probability, then we could take a union bound over all the
instances and conclude that a random assignment satisfies many constraints in each instance with
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high probability. It turns out that for any instance where the desired concentration does not occur,
there is some variable in that instance which has high degree (i.e., the weight of all constraints
involving that variable is a constant fraction of the total weight of all constraints). Knowing that
there is such a high degree variable seems very useful for our goal of finding a good assignment,
since we can potentially influence the satisfaction of the instance quite a bit by just by changing
this one variable.

This motivates a high-level plan: either proceed by using the absence of influential variables to
argue that a random assignment will succeed, or proceed by trying to set the influential variables.

An attempt The above high-level plan motivates the following high-level algorithm. First we
identify a set S Ď V of “influential” variables. This set of influential variables should be of small
(Oplog nq) size, so that we can try out all assignments to these variables. Next, we take a random
assignment to the remaining variables, g : V zS Ñ t0, 1u. Finally, for each possible assignment
h : S Ñ t0, 1u, we consider the assignment h Y g : V Ñ t0, 1u as a candidate solution for our
simultaneous CSP. We output the assignment, if any, that has valph Y g,W`q ě α ¨ c` for each
` P rks. This concludes the description of the high-level algorithm.

For the analysis, we would start with the ideal assignment f˚ : V Ñ t0, 1u achieving valpf˚,W`q ě

c` for each ` P rks. Consider the step of the algorithm where h is taken to equal h˚
def
“ f˚|S . We

would like to say that for each ` P rks we have:

valph˚ Y g,W`q ě p
1

4
´ εq ¨ valpf˚,W`q,

with high probability, when g : V zS Ñ t0, 1u is chosen uniformly at random. (We could then
conclude the analysis by a union bound.)

A simple calculation shows that Ervalph˚ Y g,W`qs ě
1
4 ¨ valpf˚,W`q, so each instance is well

satisfied in expectation. Our hope is thus that valph˚Yg,W`q is concentrated around its mean with
high probability.

There are two basic issues with this approach3:

1. The first issue is how to define the set S of influential variables. For some special CSPs
(such as Max-CUT and Max-SAT), there is a natural choice which works (to choose a set
of variables with high degree, which is automatically small). But for general CSPs, it could
be the case that variables with exponentially small degree are important contributors to the
ideal assignment f˚.

2. Even if one chooses the set S of influential variables appropriately, the analysis cannot hope to
argue that valph˚Y g,W`q concentrates around its expectation with high probability. Indeed,
it can be the case that for a random assignment g, valph˚ Y g,W`q is not concentrated at all.

A working algorithm: Our actual algorithm and analysis solve these problems by proceeding
in a slightly different way. The first key idea is to find the set of influential variables by iteratively

3 These problems do not arise if we only aim for the weaker “additive-multiplicative” Pareto approximation
guarantee (where one allows for both some additive loss and multiplicative loss in the approximation), and in fact the
above mentioned high-level plan does work. The pure multiplicative approximation guarantee seems to be significantly
more delicate.
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including variables into this set, and simultaneously assigning these variables. This leads to a tree-
like evolution of the set of influential variables. The second key idea is in the analysis: instead
of arguing about the performance of the algorithm when considering the partial assignment h˚ “
f˚|S , we will perform a delicate perturbation of h˚ to obtain an h1 : S Ñ t0, 1u, and show that
valph1Yg,W`q is as large as desired. Intuitively, this perturbation only slightly worsens the satisfied
weight of h˚, while reducing the reliance of the good assignment f˚ on any specialized properties
of f˚|S .

To implement this, the algorithm will maintain a tree of possible evolutions of a set S Ď V and
a partial assignment ρ : S Ñ t0, 1u. In addition, every variable x P S will be labelled by an instance
` P rks. The first stage of the algorithm will grow this tree in several steps. In the beginning, at
the root of the tree, we have S “ H. At every stage, we will either terminate that branch of the
tree, or else increase the size of the set S by 1 (or 2), and consider all 2 (or 4) extensions of ρ to
the newly grown S.

To grow the tree, the algorithm considers a random assignment g : V zS Ñ t0, 1u, and computes,
for each instance i P rks, the expected satisfied weight Egrvalpρ Y g,W`qs and the variance of
the satisfied weight Vargrvalpρ Y g,W`qs. We can thus classify instances as concentrated or non-
concentrated. If more than t variables in S are labelled by instance ` (where t “ Ok,εp1q is some
parameter to be chosen), we call instance ` saturated. If every unsaturated instance is concentrated,
then we are done with this S and ρ, and this branch of the tree gets terminated.

Otherwise, we know that there some unsaturated instance ` which is not concentrated. We
know that this instance ` must have some variable x P V zS which has high active degree (this is
the degree after taking into account the partial assignment ρ). The algorithm now takes two cases:

• Case 1: If this high-active-degree variable x is involved in a high-weight constraint on tx, yu
for some y P V zS, then we include both x, y into the set S, and consider all 4 possible
extensions of ρ to this new S. x, y are both labelled with instance `.

• Case 2: Otherwise, every constraint involving x is low-weight (and in particular there must
be many of them), and in this case we include x into the set S, and consider both possible
extensions of ρ to this new S. x is labelled with instance `.

This concludes the first stage of the algorithm, which created a tree whose leaves contain various
pS, ρq pairs.

For the second stage of the algorithm we visit each leaf pS, ρq. We choose a uniformly random
g : V zS Ñ t0, 1u, and consider for every h : S Ñ t0, 1u, the assignment h Y g : V Ñ t0, 1u. Note
that we go over all assignments to the set S, independent of the partial assignment to S associated
with the leaf.

The analysis: At the end of the evolution, at every leaf of the tree every instance is either highly-
concentrated or saturated. If instance ` is highly-concentrated, we will have the property that the
random assignment to V zS has the right approximation factor for instance `. If the instance ` is
saturated, then we know that there are many variables in S labelled by instance `; and at the time
these variables were brought into S, they had high active degree.

The main part of the analysis is then a delicate perturbation procedure, which starts with the

partial assignment h˚
def
“ f˚|S , and perturbs it to some h1 : S Ñ t0, 1u with a certain robustness

property. Specifically, it ensures that for every saturated instance ` P rks. we have valph1Yg,W`q is
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at least as large as the total weight in instance ` of all constraints not wholly contained within S.
At the same time, the perturbation ensures that for unsaturated instances ` P rks, valph1Yg,W`q is
almost as large as valph˚Y g,W`q. This yields the desired Pareto approximation. The perturbation
procedure modifies the assignment h˚ at a few carefully chosen variables (at most two variables per
saturated instance). After picking the variables for an instance, if the variables were brought into
S by Case 1, we can satisfy the heavy constraint involving them. Otherwise, we use a Lipschitz
concentration bound to argue that a large fraction of the constraints involving the variable and
V zS can be satisfied; this is the second place where we use the randomness in the choice of g.

As we mentioned earlier, this perturbation is necessary! It is not true the assignment h˚ Y g
will give a good Pareto approximation with good probability 4.

Improved approximation, and generalization: To get the claimed p1
2 ´ εq-Pareto approxi-

mation for the q “ w “ 2 case, we replace the uniformly random choice of g : V zS Ñ t0, 1u by
a suitable LP relaxation + randomized rounding strategy. Concretely, at every leaf pS, ρq, we do
the following. First we write an LP relaxation of the residual MAX-2-CSP problem. Then, using
a rounding algorithm of Trevisan (which has some desirable smoothness properties), we choose
g : V zS Ñ t0, 1u by independently rounding each variable. Finally, for all h : S Ñ t0, 1u, we
consider the assignment hY g. The analysis is nearly identical (but crucially uses the smoothness
of the rounding), and the improved approximation comes from the improved approximation factor
of the classical LP relaxation for MAX-2-CSP.

The generalization of this algorithm to general q, w is technical but straightforward. One notable
change is that instead of taking 2 cases each time we grow the tree, we end up taking w cases.
In case j, we have a set of j variables such that the total weight of constraints involving all the j
variables is large, however for every remaining variable z, the weight of contraints involving all the
j variables together with z is small. The analysis of the perturbation is similar.

The algorithm for Max-w-SAT uses the fact that the LP rounding gives a 3{4 approximation
for Max-w-SAT. Moreover, since a Max-w-SAT constraint can be satisfied by perturbing any one
variable, the algorithm does not require a tree of evolutions. It only maintains a set of “influential”
variables, and hence, is simpler.

1.5 Related Work

The theory of exact multiobjective optimization has been very well studied, (see eg. [PY00, Dia11]
and the references therein).

The only directly comparable work for simultaneous approximation algorithms for CSPs we
are aware of is the work of Glaßer et al. [GRW11] 5. They give a 1{2-Pareto approximation for
Max-SAT with a running time of nOpk

2q. For bounded width clauses, our algorithm does better in
both approximation guarantee and running time.

For Max-CUT, there are a few results of a similar flavor. For two graphs, the results of
Angel et al. [ABG06] imply a 0.439-Pareto approximation algorithm (though their actual results
are incomparable to ours). Bollobás and Scott [BS04] asked what is the largest simultaneous cut
in two unweighted graphs with m edges each. Kuhn and Osthus [KO07], using the second moment
method, proved that for k simultaneous unweighted instances, there is a simultaneous cut that cuts

4See Section E for an example
5They also give Pareto approximation results for simultaneous TSP (also see references therein).
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at least m{2´ Op
?
kmq edges in each instance, and give a deterministic algorithm to find it (this

leads to a p1
2 ´ op1qq-Pareto approximation for unweighted instances with sufficiently many edges).

Our main theorem implies the same Pareto approximation factor for simultaneous Max-CUT on
general weighted instances, while for k-fold simultaneous Max-CUT on unweighted instances, our
Theorem 1.5 gives a

`

1
2 ` Ωp 1

k2
q
˘

-minimum approximation algorithm.

1.6 Discussion

We have only made initial progress on what we believe is a large number of interesting problems in
the realm of simultaneous approximation of CSPs. We list here a few of the interesting directions
for further research:

1. When designing SDP-based algorithms for the classical Max-CSP problems, we are usu-
ally only interested in the expected value of the rounded solution. For k-fold simultaneous
Max-F-CSP with k ą 1, we are naturally led to the question of how concentrated the value
of the solution output by the rounding is around its mean.

Decorrelation of SDP rounding arises in recent algorithms [BRS11, RT12, GS11] based on
SDP hierarchies. It would be interesting to see if such ideas could be useful in this context.

Another interesting question of this flavor is whether there are natural conditions under which
the Goemans-Williamson hyperplane rounding gives a good solution for MAXCUT with high
probability.

2. When k “ Op1q, for each F , one can ask the question: what is the best Pareto approximation
factor achievable for k-fold Max-F-CSP in polynomial time? While in Theorem 1.2 we
do not focus on giving improved approximation factors for special F , our methods will give
better approximation factors for any F which has a good LP relaxation that comes equipped
with a sufficiently smooth independent-rounding algorithm.

It would be very interesting if one could employ SDPs for approximating simultaneous
Max-F-CSP . A particularly nice question here: Is there a polynomial time 0.878-Pareto
approximation algorithm for Op1q-fold simultaneous Max-CUT? We do not even know a
p1{2 ` εq-Pareto approximation algorithm (but note that Theorem 1.5 does give this for
Op1q-fold simultaneous unweighted Max-CUT).

3. As demonstrated by hardness result for Max-w-SAT given in Proposition 1.1, even for con-
stant k, the achievable approximation factor can be strictly smaller than its classical coun-
terpart. It would be very interesting to have a systematic theory of hardness reductions for
simultaneous CSPs for k “ Op1q. The usual paradigm for proving hardness of approximation
based on label cover and long codes seems to break down completely for simultaneous CSPs.

1.7 Organization of this paper

We first present the notation required for our algorithms in Section 2. We then describe our
Pareto approximation algorithm for Max-2-AND (which is equivalent to Max-2-CSP2), and its
generalization to Max-w-CSPq in Sections 3 and 4 respectively. We then present our improved
Pareto approximation for Max-w-SAT in Section 5.
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We present the additional results in the appendix. The dichotomy theorem for the hardness
of arbitrary CSPs is presented in Section A, followed by our improved minimum approximation
algorithm for unweighted Max-CUT in Section B, and the SDP integrality gaps in Section C.

2 Notation for the main algorithms

We now define some common notation that will be required for the following sections on algorithms
for Max-2-AND and and for general MAX-F-CSP. For the latter, will stop referring to the set of
predicates F , and simply present an algorithm for the problem Max-w-CSPq: this is the MAX-
F-CSP problem, where F equals the set of all predicates on w variables from the domain rqs. For
Max-2-AND, the alphabet q and arity w are both 2.

Let V be a set of n variables. Each variable will take values from the domain rqs. Let C denote
a set of constraints of interest on V (for example, for studying Max-2-AND, C would be the set
of AND constraints on pairs of literals of variables coming from V ). We use the notation v P C to
denote that the v is one of the variables that the constraint C depends on. Analogously, we denote
T Ď C if C depends on all the variables in T. A weighted MAXCSP instance on V is given by a
weight function W : C Ñ R`, where for C P C, WpCq is the weight of the constraint C. We will
assume that

ř

CPCWpCq “ 1.
A partial assignment ρ is a pair pSρ, hρq, where Sρ Ď V and hρ : Sρ Ñ rqs. (We also call a

function h : S Ñ rqs, a partial assignment, when S is understood from the context). We say a
contraint C P C is active given ρ if C depends on some variable in V zSρ, and there exists full
assignments g0, g1 : V Ñ rqs with gi|Sρ “ hρ, such that C evaluates to False under the assignment
g0 and C evaluates to True under the assignment g1. (colloquially: C’s value is not fixed by ρ). We
denote by Activepρq the set of constraints from C which are active given ρ. For a partial assignment
ρ and C P CzActivepρq, let Cpρq “ 1 if C’s value is fixed to True by ρ, and let Cpρq “ 0 if C’s
value is fixed to False by ρ. For disjoint subsets S1, S2 Ď V and partial assignments f1 : S1 Ñ rqs
and f2 : S2 Ñ rqs, let f “ f1 Y f2 denote the assignment f : S1 Y S2 Ñ rqs with fpxq “ f1pxq if
x P S1, and fpxq “ f2pxq if x P S2. Abusing notation, for a partial assignment ρ and an assignment
g : V zSρ‹ Ñ rqs, we often write ρ Y g instead of hρ Y g. For two constraints C1, C2 P C, we say
C1 „ρ C2 if they share a variable that is contained in V zSρ.

Define the active degree given ρ of a variable v P V zSρ by:

activedegreeρpv,Wq
def
“

ÿ

CPActivepρq,CQv

WpCq.

For a subset T Ď V zSρ of variables, define its active degree given ρ by:

activedegreeρpT,Wq
def
“

ÿ

CPActivepρq,CĚT

WpCq.

Define the active degree of the whole instance W given ρ:

activedegreeρpWq
def
“

ÿ

vPV zSρ

activedegreeρpv,Wq.

For a partial assignment ρ, we define its value on an instance W by:

valpρ,Wq def
“

ÿ

CPCzActivepρq
WpCqCpρq.
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Thus, for a total assignment f : V Ñ rqs extending ρ, we have the equality:

valpf,Wq ´ valpρ,Wq “
ÿ

CPActivepρq

WpCqCpfq.

3 Simultaneous Max-2-AND

In this section, we give our approximation algorithm for simultaneous Max-2-AND. Via a simple
reduction given Section 4.1, this implies the q “ w “ 2 case of our main theorem, Theorem 1.2.

3.1 Random Assignments

We begin by giving a sufficient condition for the value of a Max-2-AND to be highly concentrated
under independent random assignments to the variables.

Let ρ be a partial assignment. Let p : V zSρ Ñ r0, 1s be such that ppvq P r14 ,
3
4 s for each v P V zSρ.

Let g : V zSρ Ñ rqs be a random assignment obtained by sampling gpvq for each v independently
with Ergpvqs “ ppvq. Define the random variable

Y
def
“ valpρY g,Wq ´ valpρ,Wq “

ÿ

CPActivepρq

WpCqCpgq.

The random variable Y measures the contribution of active constraints to valpρY g,Wq. Note that
the two quantities ErY s and VarrY s can be computed efficiently given p. We denote these by
TrueMeanρpp,Wq and TrueVarρpp,Wq. The following lemma proves that either Y is concentrated,
or there exists an active variable that contributes a significant fraction of the total active-degree of
the instance.

Lemma 3.1 Let p, Y be as above.

1. If TrueVarρpp,Wq ă δ0ε
2
0 ¨ TrueMeanρpp,Wq2 then PrrY ă p1´ ε0qErY ss ă δ0.

2. If TrueVarρpp,Wq ě δ0ε
2
0 ¨ TrueMeanρpp,Wq2, then there exists v P V zSρ such that

activedegreeρpv,Wq ě
ε2

0δ0

64
¨ activedegreeρpWq.

The above lemma is a special case of Lemma 4.2 which is proved in Section 4.2, and hence we skip
the proof. The first part is then a simple application of the Chebyshev inequality. For the second
part, we use the assumption that TrueVar is large, to deduce that there exists a constraint C such
that the total weight of constraints that share a variable from V zS with C, i.e.,

ř

C2„SC
WpC2q, is

large. It then follows that at least one variable v P C must have large activedegree given S.

3.2 LP relaxations

Let pc`q`Prks be the given target values for the Pareto approximation problem. Given a partial
assignment ρ, we can write the feasibility linear program for simultaneous Max-2-AND as shown

11



in figure 1, 2. In this LP, for a constraint C, C` (C´) denotes set of variables that appears as a
positive (negative) literal in C.

For ~t, ~z satisfying linear constraints MAX2AND-LP1pρq, let smoothp~tq denote the map p :
V zSρ Ñ r0, 1s with ppvq “ 1

4 `
tv
2 . Note that ppvq P r1{4, 3{4s for all v.

Given ~t, ~z satisfying MAX2AND-LP1, the rounding algorithm from [Tre98] samples each variable
v independently with probabily smoothp~tqpvq. Note that this rounding algorithm is smooth in the
sense that each variable is sampled independently with a probability that is bounded away from 0
and 1. This will be crucial for our algorithm. The following theorem from [Tre98] proves that this
rounding algorithm finds a good integral assignment.

Lemma 3.2 ([Tre98]) Let ρ be a partial assignment.

1. Relaxation: For every g0 : V zSρ Ñ t0, 1u, there exist ~t, ~z satisfying MAX2AND-LP1pρq such
that for every Max-2-AND instance W:

ÿ

CPC
WpCqzC “ valpg0 Y ρ,Wq.

2. Rounding:Suppose ~t, ~z satisfy MAX2AND-LP1pρq. Then for every Max-2-AND instance
W:

valpρ,Wq ` TrueMeanρpsmoothp~tq,Wq ě 1

2
¨
ÿ

CPC
WpCqzC .

Proof: We begin with the first part. For v P Sρ, define tv “ ρpvq.. For v P V zSρ, define
tv “ g0pvq. For C P C, define zC “ 1 if Cpg0Y ρq “ 1, and define zC “ 0 otherwise. It is easy to see
that these ~t, ~z satisfies MAX2AND-LP1pρq, and that for every instance W:

ÿ

CPC
WpCqzC “ valpg0 Y ρ,W q.

Now we consider the second part. Let W be any instance of Max-2-AND. Let p “ smoothp~tq.
Let g : V zSρ Ñ t0, 1u be sampled as follows: independently for each v P V zSρ, gpvq is sampled
from t0, 1u such that Ergpvqs “ ppvq. We have:

valpρ,Wq ` TrueMeanρpsmoothp~tq,Wq “
ÿ

CPCzActivepρq
WpCqCpρq `E

»

–

ÿ

CPActivepρq

WpCqCpρY gq

fi

fl .

(1)

We will now understand the two terms of the right hand side.
For C P CzActivepρq, it is easy to verify that if zC ą 0, we must have Cpρq “ 1. Thus:

ÿ

CPCzActivepρq
WpCqCpρq ě

ÿ

CPCzActivepρq
WpCqzC .

To understand the second term, we have the following claim.

Claim 3.3 For C P Activepρq, ErCpρY gqs ě 1
2 ¨ zC .
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zC ď tv @C P C, v P C`
zC ď 1´ tv @C P C, v P C´

1 ě tv ě 0 @v P V zSρ
tv “ hρpvq @v P Sρ

Figure 1: Linear inequalities MAX2AND-LP1pρq

ř

CPCW`pCq ¨ zC ě c` @` P rks
~t, ~z satisfy MAX2AND-LP1pρq.

Figure 2: Linear inequalities MAX2AND-LP2pρq

Proof: Suppose there are exactly h variables in C which are not in Sρ. We have h ď 2.

ErCpρY gqs “ PrrC is satisfied by ρY gs “

¨

˝

ź

vPC`,vPV zSρ

1

4
`
tv
2

˛

‚¨

¨

˝

ź

vPC´,vPV zSρ

1

4
`

1´ tv
2

˛

‚

ě

ˆ

1

4
`
zC
2

˙h

ě

ˆ

1

4
`
zC
2

˙2

ě
zC
2
.

This claim implies that:

E

»

–

ÿ

CPActivepρq

WpCqCpρY gq

fi

fl ě
1

2

ÿ

CPC
WpCqzC .

Substituting back into Equation (1), we get the Lemma.

3.3 The Algorithm

We now give our Pareto approximation algorithm for Max-2-AND in Figure 3.

Input: k instances of Max-2-ANDW1, . . . ,Wk on the variable set V, ε ą 0 and target objective
values c1, . . . , ck.
Output: An assignment to V

Parameters: δ0 “
1

10pk`1q , ε0 “ ε, γ “
ε20δ0
16 , t “

Q

20k2

γ log k
γ

U

1. Initialize tree T to be an empty quaternary tree (i.e., just 1 root node). Nodes of the tree
will be indexed by strings in pt0, 1u2q˚.

2. With each node ν of the tree, we associate:

(a) A partial assignment ρν .

(b) A special pair of variables T 1
ν , T 2

ν P V zSρν .

(c) A special instance Iν P rks.
(d) A collection of integers countν,1, . . . , countν,k.

(e) A trit representing whether the node ν is living, dead, or exhausted.
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3. Initialize the root node ν0 to (1) ρν0 Ð pH,Hq, (2) @` P rks, countν0,` Ð 0, (3) living.

4. While there is a living leaf ν of T, do the following:

(a) Check the feasibility of linear inequalities MAX2AND-LP2pρνq.

i. If there is a feasible solution ~t, ~z, then define pν : V zSρν Ñ r0, 1s as pν “
smoothp~tq.

ii. If not, then declare ν to be dead and return to Step 4.

(b) For each ` P rks, compute TrueVarρν ppν ,W`q and TrueMeanρν ppν ,W`q.

(c) If TrueVarρν ppν ,W`q ě δ0ε
2
0 ¨ TrueMeanρν ppν ,W`q

2, then set flag` Ð True, else set
flag` Ð False.

(d) Choose the smallest ` P rks, such that count` ă t AND flag` “ True (if any):

i. Find x P V zSρν that maximizes activedegreeρν px,W`q. Note that it will satisfy
activedegreeρν px,W`q ě γ ¨ activedegreeρν pW`q.

ii. Among all the active constraints C P C such that x P C and CXSρν “ H, find the
one that maximizes W`pCq. Call this constraint C‹. Let y be the other variable
contained in C‹ (if there is no other variable, set y “ x).
Set T 1

ν Ð x and T 2
ν Ð y. Set Iν Ð `.

iii. Create four children of ν, with labels νb1b2 for each b1, b2 P t0, 1u and set

• ρνb1b2 Ð pSρν Y tT 1
ν , T 2

ν u, h
b1b2q, where hb1b2 extends hρν by hb1b2pT 1

ν q “ b1
and hb1b2pT 2

ν q “ b2.

• @`1 P rks with `1 ‰ `, set countνb1b2,`1 Ð countν,`1 . Set countνb1b2,` Ð countν,``
1.

• Set νb1b2 to be living.

(e) If no such ` exists, declare ν to be exhausted.

5. Now every leaf of T is either exhausted or dead. For each exhausted leaf ν of T :

(a) Let gν : V zSρν Ñ t0, 1u be a random assignment where, for each v P V zSρν , gνpvq is
sampled independently with Ergνpvqs “ pνpvq. Note that Ergνpvqs P r

1
4 ,

3
4 s.

(b) For every assignment h : Sρν Ñ t0, 1u, compute outh,gν Ð min`Prks
valphYgν ,W`q

c`
. If

c` “ 0 for some ` P rks, we interpret valphYgν ,Wlq

c`
as `8.

6. Output the largest outh,gν seen, and the assignment hY gν that produced it.

Figure 3: Algorithm Sim-Max2AND for approximating weighted simultaneous Max-2-AND
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3.4 Analysis

Notice that the depth of the tree T is at most kt, and that for every ν, we have that |Sρν | ď 2kt.
This implies that the running time is at most 2Opktq ¨ polypnq.

Let f‹ : V Ñ t0, 1u be an assignment such that valpf‹,W`q ě c` for each ` P rks. Let ν‹ be the
the unique leaf of the tree T for which ρν‹ is consistent with f‹. (This ν‹ can be found as follows:
start with ν equal to the root. Set ν to equal the unique child of ν for which ρν is consistent with
f‹, and repeat until ν becomes a leaf. This leaf is ν‹). Observe that since f‹ is an assignment such
that valpf‹,W`q ě c` for every ` P rks, by picking g0 “ f‹|V zS‹ in part 1 of Lemma 3.2, we know
that MAX2AND-LP2pρ

‹q is feasible, and hence ν‹ must be an exhausted leaf (and not dead).

Define ρ‹ “ ρν‹ , S
‹ “ Sρ‹ , h

‹ “ hρ‹ , and p‹ “ pν‹ . At the completion of Step 4, if ` P rks
satisfies countν‹,` “ t, we call instance ` a high variance instance. Otherwise we call instance ` a
low variance instance.

3.4.1 Low Variance Instances

First we show that for the leaf ν˚ in Step 5, combining the partial assignment h‹ with a random
assignment gν‹ in step 5pbq is good for any low variance instances with high probability.

Lemma 3.4 Let ` P rks be any low variance instance. For the leaf node ν‹, let gν‹ be the random
assignment sampled in Step 5.(a). of Sim-Max2AND. Then with probability at least 1 ´ δ0, the
assignment f “ h‹ Y gν‹ satisfies:

Pr
gν‹
rvalpf,W`q ě p1{2´ ε{2q ¨ c`s ě 1´ δ0.

Proof: For every low variance instance `, we have that TrueVarρν‹ pp
‹,W`q ă δ0ε

2
0¨TrueMeanρν‹ pp

‹,W`q
2.

Define Y
def
“ valpρ‹ Y gν‹ ,W`q ´ valpρ‹,W`q. By Lemma 3.1, we have PrrY ă p1 ´ ε0qErY ss ă δ0.

Thus, with probability at least 1´ δ0, we have,

valpf,W`q ě valpρ‹,W`q ` p1´ ε0qErY s

“ valpρ‹,W`q ` p1´ ε0q ¨ TrueMeanρ‹psmoothp~tq,W`q

“ p1´ ε0q ¨
`

valpρ‹,W`q ` TrueMeanρ‹psmoothp~tq,W`q
˘

ě
1

2
¨ p1´ ε0q ¨

ÿ

CPC
W`pCq ¨ zC ě

1

2
¨ p1´ ε0q ¨ c` ě

ˆ

1

2
´
ε

2

˙

¨ c`,

where we have used the second part of Lemma 3.2.

Next, we will consider a small perturbation of h‹ which will ensure that the algorithm performs well
on high variance instances too. We will ensure that this perturbation does not affect the success
on the low variance instances.

3.4.2 High variance instances

Fix a high variance instance `. Let ν be an ancestor of ν‹ with Iν “ `. Define:

activedegreeν
def
“ activedegreeρν pT

1
ν ,W`q.
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Let Cν be the set of all constraints C containing T 1
ν which are active given ρν . We call a constraint

C in Cν a backward constraint if C only involves variables from Sρν YtT 1
ν u. Otherwise we call C in

Cν a forward constraint. Let Cbackwardν and Cforwardν denote the sets of these constraints. Finally, we
denote Coutν the set of binary constraints on T 1

ν and a variable from V zS‹.
Define backward degree and forward degree as follows:

backwardν
def
“

ÿ

CPCbackward
ν

W`pCq,

forwardν
def
“

ÿ

CPCforward
ν

W`pCq.

Note that:
activedegreeν “ backwardν ` forwardν .

Now we consider variable T 2
ν . Let heaviestν be the totalW` weight of all the constraints containing

both T 1
ν and T 2

ν . Based on all this, we classify ν into one of three categories:

1. If backwardν ě
1
2 ¨ activedegreeν , then we call ν a typeA node.

2. Otherwise, if heaviestν ě
1

100tk ¨ activedegreeν , then we call ν a typeB node. In this case we
have some W` constraint C containing T 1

ν and T 2
ν with W`pCq ě

1
1600tk ¨ activedegreeν .

3. Otherwise, we call ν a typeC node. In this case, for every v P V zSρν , the total weight of the con-
straints involving v and T 1

ν , i.e., activedegreeρν pT
1
ν Yv,W`q is bounded by 1

100tk ¨activedegreeν .

In particular, every constraint C P Cforwardν must have W`pCq ă
1

100tk ¨ activedegreeν . Since
|S‹| ď 2tk, the total weight of constraints containing T 1

ν and some variable in S‹zSρν is at
most |S‹zSρν | ¨

1
100tk ¨ activedegreeν which is at most 2

100 ¨ activedegreeν . Hence we have:

ÿ

CPCout
ν

W`pCq “ forwardν ´
!

total weight of constraints containing
T 1
ν and some variable in S‹zSρν

)

ě

ˆ

1

2
´

2

100

˙

activedegreeν ą
1

4
¨ activedegreeν .

For nodes ν which are typeC, the variable T 1
ν has a large fraction of its active degree coming from

constraints between T 1
ν and V zS‹.

For a partial assignment g : V zS‹ Ñ t0, 1u, we say that g is Cgood for ν if there exists a setting
of variable T 1

ν that satisfies at least 1
64 ¨activedegreeν weight amongst constraints containing variable

T 1
ν and some other variable in V zS‹. The next lemma shows that for every typeC node ν, with

high probability, the random assignment gν‹ : V zS‹ Ñ t0, 1u is Cgood for ν.

Lemma 3.5 Consider a typeC node ν. Suppose g : V zS‹ Ñ t0, 1u is a partial assignment obtained
by independently sampling gpvq with Ergpvqs P r1{4, 3{4s for each v P V zS‹. Then:

Pr
g
rg is Cgood for νs ě 1´ 2 ¨ e´tk{100.

Proof: Let ` “ Iν .
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For each constraint C P Coutν and each g : t0, 1uV zS
‹

Ñ t0, 1u, define Z
p1q
C pgq, Z

p0q
C pgq P t0, 1u as

follows. Z
p1q
C pgq equals 1 iff C is satisfied by extending the assignment g with T 1

ν Ð 1. Similarly,

Z
p0q
C pgq equals 1 iff C is satisfied by extending the assignment g with T 1

ν Ð 0.
For b “ 0, 1, we define scorepbq : t0, 1uV zS

‹

Ñ R as follows:

scorepbqpgq
def
“

ÿ

CPCout
ν

W`pCq ¨ Z
pbq
C pgq.

In words, scorepbqpgq is the total weight of constraints between T 1
ν and V zS˚ satisfied by setting T 1

ν

to b and setting V zS˚ according to g.
Note that since gpvq is sampled independently for v P V zS‹ with Ergpvqs P r1{4, 3{4s, we have

EgrZ
p1q
C pgq ` Z

p0q
C pgqs ě 1

4 . Thus:

Egrscorep1qpgq ` scorep0qpgqs “
ÿ

CPCout
ν

W`pCqErZ
p1q
C pgqs `

ÿ

CPCout
ν

W`pCqErZ
p0q
C pgqs

ě
1

4

ÿ

CPCout
ν

W`pCq.

So one of Erscorep1qpgqs and Erscorep0qpgqs is at least 1
8

ř

CPCout
ν
W`pCq ě

1
32activedegreeν . Sup-

pose it is Erscorep1qpgqs (the other case is identical). We are going to use McDiarmid’s inequality
to show the concentration of scorep1qpgq around its mean6.

Since ν is typeC, we know that for every vertex v P V zS‹, changing g on just v can change the

value of scorep1qpgq by at most cv
def
“ activedegreeρν pT

1
ν Y v,W`q ď

1
100tk ¨ activedegreeν . Thus by

McDiarmid’s inequality (Lemma D.1),

Pr
g
rg is not Cgood for νs ď Pr

g

„

scorep1qpgq ă
1

64
¨ activedegreeν



ď Pr
g

„

|scorep1qpgq ´Egrscorep1qpgqs| ą
1

64
¨ activedegreeν



ď 2 ¨ exp

˜

´2 ¨ activedegree2
ν

p64q2
ř

vPV zS‹ c
2
v

¸

ď 2 ¨ exp

˜

´2 ¨ activedegree2
ν

p64q2 ¨ pmaxv cvq ¨
ř

vPV zS‹ cv

¸

ď 2 ¨ exp

ˆ

´2 ¨ activedegree2
ν

p64q2 ¨ pmaxv cvq ¨ activedegreeν

˙

ď 2 ¨ exp

˜

´2 ¨ activedegreeν

p64q2 ¨ pactivedegreeν100tk q

¸

ď 2 ¨ exp

ˆ

´200tk

p64q2

˙

ď 2 ¨ exp

ˆ

´tk

100

˙

.

6In this case we could have simply used a Hoeffding-like inequality, but later when we handle larger-width con-
straints we will truly use the added generality of McDiarmid’s inequality.
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For a high variance instance `, let ν`1, . . . , ν
`
t be the sequence of t nodes with Iν “ ` which lie on

the path from the root to ν‹. Set finalwt` “ activedegreeρ‹pW`q (in words: this is the active degree
left over in instance ` after the restriction ρ‹).

Lemma 3.6 For every high variance instance ` P rks and for each i ď rt{2s,

activedegreeν`i
ě γ ¨ p1´ γq´t{2 ¨ finalwt` ě 1600tk ¨ finalwt`.

Proof: Fix a high variance instance ` P rks. Note that bi “ activedegreeρ
ν`
i

pW`q decreases as i

increases. The main observation is that

1. bi`1 ď p1´ γq ¨ bi.

2. activedegreeν`i
ě γbi.

Thus for all ν`i with i P t1, . . . , t{2u, we have activedegreeν`i
ě γ ¨ p1 ´ γq´t{2 ¨ finalwt` and also the

choice of parameters implies for those ν`i activedegreeν`i
is at least 1600tk ¨ finalwt`.

3.4.3 Putting everything together

We now show that when ν is taken to equal ν‹ in Step 5, then with high probability over the choice
of g in Step 5paq there is a setting of h in Step 5pbq such that @` P rks, valphYgν‹ ,W`q ě p

1
2 ´ εq ¨ c`.

Theorem 3.7 Suppose the algorithm Sim-Max2AND is given as inputs ε ą 0, k simultaneous
weighted Max-2-AND instances W1, . . . ,Wk on n variables, and target objective value c1, . . . , ck
with the guarantee that there exists an assignment f‹ such that for each ` P rks, we have valpf‹,W`q ě

c`. Then, the algorithm runs in 2Opk
4
{ε2 logpk{εqq¨polypnq time, and with probability at least 0.9, outputs

an assignment f such that for each ` P rks, we have, valpf,W`q ě
`

1
2 ´ ε

˘

¨ c`.

Proof: Consider the case when ν is taken to equal ν‹ in Step 5. By Lemma 3.4, with probability
at least 1´ kδ0 over the choice random choices of gν‹ , we have that for every low variance instance
` P rks, valph‹ Y gν‹ ,W`q ě p

1
2 ´

ε
2q ¨ c`. By Lemma 3.5 and a union bound, with probability at

least 1´ t
2 ¨ k ¨ 2e

´tk{100 ě 1´ δ0 over the choice of gν‹ , for every high variance instance ` and for
every typeC node ν`i , i P rt{2s, we have that gν‹ is Cgood for ν`i . Thus with probability at least
1´ pk` 1qδ0, both these events occur. Henceforth we assume that both these events occur in Step
5paq of the algorithm.

Our next goal is to show that there exists a partial assignment h : S‹ Ñ t0, 1u such that:

1. For every instance ` P rks, valphY gν‹ ,W`q ě
`

1´ ε
2

˘

¨ valph‹ Y gν‹ ,W`q.

2. Moreover, for every high variance instance ` P rks, valphY gν‹ ,W`q ě
`

1´ ε
2

˘

¨ finalwt`.

Before giving a proof of the existence of such an h, we show that this completes the proof of the
theorem. We claim that when the partial assignment h guaranteed above is considered in the
Step 5pbq in the algorithm, we obtain an assignment with the required approximation guarantees.
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For every low variance instance ` P rks, since we started with valph‹ Y gν‹ ,W`q ě p
1
2 ´

ε
2q ¨ c`,

property 1 above implies that every low variance instance valphY gν‹q ě p
1
2 ´ εq ¨ c`. For every high

variance instance ` P rks, since h‹ “ f‹|S ,

valph‹ Y gν‹ ,W`q ě valpf‹,W`q ´ activedegreeρ‹pW`q ě c` ´ finalwt`.

Combining this with properties 1 and 2 above, we get,

valphY gν‹ ,W`q ě p1´ ε{2q ¨maxtc` ´ finalwt`, finalwt`u ě 1{2 ¨ p1´ ε{2q ¨ c`.

Thus, for all instances ` P rks, we get valphY gν‹q ě p1{2´ εq ¨ c`.
Now, it remains to show the existence of such an h by giving a procedure for constructing h by

perturbing h‹ (Note that this procedure is only part of the analysis). For nodes ν, ν1 in the tree,
let us write ν ă ν 1 if ν is an ancestor of ν 1, and we also say that ν 1 is “deeper” than ν.

Constructing h:

1. Initialize H Ď rks to be the set of high variance instances.

2. Let N0 “ tν
`
i | ` P H, i P rt{2su. Note that N is a chain in the tree (since all the elements of

N are ancestors of ν‹). Since every ν P N is an ancestor of ν‹, we have hρν “ h‹|Sρν .

3. Initialize D “ H, N “ N0, h “ h‹.

4. During the procedure, we will be changing the assignment h, and removing elements from N .
We will always maintain the following two invariants:

• |N | ą t
4 .

• For every ν P N , h|Sρν “ h‹|Sρν .

5. While |D| ‰ |H| do:

(a) Let

B “

#

v P V | D` P rks with
ÿ

CPC,CQv
W`pCq ¨ CphY gν‹q ě

ε

4k
valphY gν‹ ,W`q

+

.

Note that |B| ď 8k2

ε ă t
8 .

(b) Let ν P N be the deepest element of N for which: tT 1
ν , T 2

ν u XB “ H.

Such a ν exists because:

• |N | ą t
4 ą |B|, and

• there are at most |B| nodes ν for which tT 1
ν , T 2

ν u X B ‰ H (since tT 1
ν , T 2

ν u are all
disjoint for distinct ν).

(c) Let ` P H, i P rt{2s be such that ν “ ν`i . Let x “ T 1
ν and y “ T 2

ν . Let ρ “ ρν .
We will now see a way of modifying the values of hpxq and hpyq to guarantee that
valph Y gν‹ ,W`q ě finalwt`. The procedure depends on whether ν is typeA, typeB, or
typeC.
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i. If ν is typeA, then we know that backwardν ě
1
2 ¨ activedegreeν ě 2 ¨ finalwt`.

The second invariant tells us that ρ “ h‹|Sρ “ h|Sρ . Thus we have:

backwardν “
ÿ

CPCbackward
ν

W`pCq

“
ÿ

CĎSρYtxu,CQx,CPActivepρq

W`pCq

“
ÿ

CĎSρYtxu,CQx,CPActiveph|Sρ q

W`pCq.

This implies that we can choose a setting of hpxq P t0, 1u such that the total sum of
weights of those constraints containing x which are satisfied by h is:

ÿ

CĎSρYtxu,CQx,CPActiveph|Sρ q

W`pCqCphq ě
1

2

ÿ

CĎSρYtxu,CQx,CPActiveph|Sρ q

W`pCq

“
1

2
¨ backwardν

ě
1

4
¨ activedegreeν

ě finalwt`, (by Lemma 3.6)

where the 1
2 in the first inequality is because the variable can appear as a positive

literal or a negative literal in those backward constraints. In particular, after making
this change, we have valphY gν‹ ,W`q ě finalwt`.

ii. If ν is typeB, then we know that some constraint C containing x and y hasW`pCq ě
1

1600tk ¨ activedegreeν ě finalwt`. Thus we may choose settings for hpxq, hpyq P t0, 1u
such that Cphq “ 1. Thus, after making this assignment to hpxq and hpyq, we have
valphY g,W`q ě finalwt`.

iii. If ν is typeC, since gν‹ is Cgood for ν, we can choose a setting of hpxq so that
the total weight of satisfied constraints in W` between x and V zS‹ is at least 1

64 ¨

activedegreeν ě finalwt`. After this change, we have valphY gν‹ ,W`q ě finalwt`.

In all the above 3 cases, we only changed the value of h at the variables x, y. Since
tx, yuXB “ H, we have that for every j P rks, the new value valphY gν‹ ,Wjq is at least
`

1´ ε
2k

˘

times the old value valphY gν‹ ,Wjq.

(d) Set D “ D Y t`u.

(e) Set N “ tν`i | ` P HzD, i ď rt{2s, ν
`
i ă νu.

Observe that |N | decreases in size by at most t
2 ` |B|. Thus, if D ‰ H, we have

|N | ě |N0| ´ |D| ¨
t

2
´ |D||B|

“ |H| ¨
t

2
´ |D| ¨

t

2
´ |D||B|

ě
t

2
´ k|B| ą

t

4

Also observe that we only changed the values of h at the variables T 1
ν and T 2

ν . Thus for
all ν 1 ĺ ν, we still have the property that h|Sρ

ν1
“ h‹|Sρ

ν1
.
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For each high variance instance ` P rks, in the iteration where ` gets added to the set D, the
procedure ensures that at the end of the iteration valphY gν‹ ,W`q ě finalwt`.

Moreover, at each step we reduced the value of each valphYgν‹ ,W`q by at most ε
2k fraction of its

previous value. Thus, at the end of the procedure, for every ` P rks, the value has decreased at most

by a multiplicative factor of
`

1´ ε
2k

˘k
ě

`

1´ ε
2

˘

. Thus, for every ` P rks, we get valphY gν‹ ,W`q ě
`

1´ ε
2

˘

¨ valph‹ Y gν‹ ,W`q, and for every high variance instance ` P rks, we have valphY gν‹ ,W`q ě
`

1´ ε
2

˘

¨ finalwt`. This proves the two properties of h that we set out to prove.

Running time : Running time of the algorithm is 2Opktq ¨ polypnq which is 2Opk
4
{ε2 logpk{ε2qq ¨

polypnq.

4 Simultaneous Max-w-CSPq

In this section, we give our simultaneous approximation algorithm for Max-w-CSPq, and thus
prove Theorem 1.2.

4.1 Reduction to simple constraints

For the problem Max-w-CSPq, C is the set of all possible q-ary constraints on V with arity at most
w, i.e., each constraint is of the form Cf : rqsT Ñ t0, 1u depending only on the values of variables
in an ordered tuple T Ď V with |T | ď w. As a first step (mainly to simplify notation), we give a
simple approximation preserving reduction which replaces C with a smaller set of constraints. We
will then present our main algorithm

Define a w-term to be a contraint C on exactly w variables which has exactly 1 satisfying assign-
ment in rqsw, e.g. px1 “ 1q ^ px2 “ 7q ^ . . .^ pxw “ q´ 3q. An instance of the Max-w-ConjSATq

problem is one where the set of constraints C is the set of all w-terms. We now use the following
lemma from [Tre98] that allows us to reduce a Max-w-CSPq instance to a Max-w-ConjSATq

instance.

Lemma 4.1 ([Tre98]) Given an instance W1 of Max-w-CSPq, we can find a instance W2 of
Max-w-Conj-Satq on the same set of variables, and a constant β ą 0 such that for every assign-
ment f , valpf,W2q “ β ¨ valpf,W1q.

Proof: Given an instance W1 of Max-w-CSPq, consider a constraint C P C with weight W1pCq.
We can assume without loss of generality that the arity of C is exactly w, and it depends on
variables x1, . . . , xw. For each assignment in rqsk that satisfies C, we create a w-Conj-Satq clause
that is satisfied only for that assignment, and give it weight W1pCq. e.g. If C was satisfied by
x1 “ . . . “ xw “ 2, we create the clause px1 “ 2q ^ . . .^ pxw “ 2q with weight W1pCq. It is easy to
see that for every assignment to x1, . . . , xn, the weight of constraints satisfied in the new instance
is the same as the weight of the constraints satisfied in the Max-w-Conj-Satq instance created.
Define β to be the sum of weights of all the constraints in the new instance, then W2 is obtained
by multiplying the weight of all the constraints in the new instance by 1{β (to make sure they sum
up to 1).

Note that the scaling factor β in the lemma above is immaterial since we will give an algorithm
with Pareto approximation guarantee.

We say pv, iq P C if v P C and v “ i is in the satisfying assignment of Cf . By abuse of notation,
we say for a set of variables T, T Ď C if for all v P T, there exists i P rqs, such that pv, iq P C.
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4.2 Random Assignments

In this section, we state and prove a lemma that gives a sufficient condition for the value of
a Max-w-ConjSATq to be highly concentrated under independent random assignments to the
variables. Let Distpqq denote the set of all probability distributions on the set rqs. For a distribution
p P Distpqq and i P q, we use pi to denote the probability i in the distribution p. Let ρ be a partial
assignment. Let p : V zSρ Ñ Distpqq be such that ppvqi ě

1
qw for all v P V zSρ and all i P rqs.

Let g : V zSρ Ñ rqs be a random assignment obtained by sampling gpvq for each v independently
according to the distribution ppvq.

Define the random variable

Y
def
“ valpρY g,Wq ´ valpρ,Wq “

ÿ

CPActivepρq

WpCqCpρY gq.

The random variable Y measures the contribution of active constraints to valpρY g,Wq. Note that
the two quantities ErY s and VarrY s can be computed efficiently given p. We denote these by
TrueMeanρpp,Wq and TrueVarρpp,Wq. The following lemma is a generalization of Lemma 3.1.

Lemma 4.2 Let p, g, Y be as above.

1. If TrueVarρpp,Wq ă δ0ε
2
0 ¨ TrueMeanρpp,Wq2 then PrrY ă p1´ ε0qErY ss ă δ0.

2. If TrueVarρpp,Wq ě δ0ε
2
0 ¨ TrueMeanρpp,Wq2, then there exists v P V zSρ such that

activedegreeρpv,Wq ě
ε2

0δ0

w2pqwqw
¨ activedegreeρpWq.

Proof: Item 1 of the lemma follows immediately from Chebyshev’s inequality. We now prove
Item 2. First note that for every active constraint C given ρ, ErCpρ Y gqs ě 1

pqwqw (this follows

from our hypothesis that ppvqi ě
1
qw for each v P V zSρ and each i P rqs).

We first bound TrueMeanρpp,Wq and TrueVarρpp,Wq in terms of the weights of active con-
straints:

TrueMeanρpp,Wq “ ErY s “ E

»

–

ÿ

CPActivepρq

WpCq ¨ CpρY gq

fi

fl

“
ÿ

CPActivepρq

WpCq ¨ErCpρY gqs ě
ÿ

CPActivepρq

WpCq ¨ 1

pqwqw

“
1

pqwqw

ÿ

CPActivepρq

WpCq

TrueVarρpp,Wq “ VarrY s “ Var

»

–

ÿ

CPActivepρq

WpCq ¨ CpρY gq

fi

fl

“
ÿ

C1,C2PActivepρq

WpC1qWpC2q ¨ pErC1pρY gqC2pρY gqs ´ErC1pρY gqsErC2pρY gqsq
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ď
ÿ

C1„ρC2

WpC1qWpC2q ¨ErC1pρY gqs

“
ÿ

C1PActivepρq

WpC1qErC1pρY gqs ¨
ÿ

C2„ρC1

WpC2q

ď
ÿ

C1PActivepρq

WpC1qErC1pρY gqs ¨ max
CPActivepρq

ÿ

C2„ρC

WpC2q

“ TrueMeanρpp,Wq ¨ max
CPActivepρq

ÿ

C2„ρC

WpC2q.

Hence, if the condition in case 2 is true then it follows that,

max
CPActivepρq

ÿ

C2„ρC

WpC2q ě
TrueVarρpp,Wq

TrueMeanρpp,Wq
ě

δ0ε
2
0

pqwqw
¨

ÿ

CPActivepρq

WpCq.

We now relate these quantities to active degrees.

activedegreeρpWq “
ÿ

vPV zSρ

activedegreeρpv,Wq “
ÿ

vPV zSρ

ÿ

CPActivepρq,CQv

W`pCq

“
ÿ

CPActivepρq

ÿ

vPC,vPV zSρ

W`pCq ď
ÿ

CPActivepρq

w ¨W`pCq

“ w
ÿ

CPActivepρq

W`pCq

This means that there is an active constraint C, such that

ÿ

C2„ρC

WpC2q ě
δ0ε

2
0

pqwqw
¨

1

w
activedegreeρpWq

Since C is an active constraint and |CXV zSρ| ď w, there is some variable v P CXV zSρ, such that

activedegreeρpv,Wq “
ÿ

C2PActivepρq, C2Qv

WpC2q ě
1

w

ÿ

C2„ρC

WpC2q ě
ε2

0δ0

w2pqwqw
¨ activedegreeρpWq.

as required.

4.3 LP relaxations

Our algorithm will use the Linear Programming relaxation for Max-w-ConjSATq from the
work of Trevisan [Tre98] (actually, a simple generalization to q-ary alphabets). The first LP,
ConjSAT-LP1pρq, described in Figure 4, describes the set of all feasible solutions for the relaxation,
consistent with the partial assignment ρ. Given a set of target values pc`q`Prks, the second LP,
ConjSAT-LP2pρq describes the set of feasible solutions to ConjSAT-LP1pρq that achieve the required
objective values.

For ~t, ~z satisfying linear constraints ConjSAT-LP1pρq, let smoothp~tq denote the map p : V zSρ Ñ

Distpqq with ppvqi “
w´1
qw `

tv,i
w . The following theorem from [Tre98] provides an algorithm to round

this feasible solution to obtain a good integral assignment.
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Lemma 4.3 Let ρ be a partial assignment.

1. Relaxation: For every g0 : V zSρ Ñ rqs, there exist ~t, ~z satisfying ConjSAT-LP1pρq such that
for every Max-w-ConjSATq instance W:

ÿ

CPC
WpCqzC “ valpg0 Y ρ,W q.

2. Rounding: Suppose ~t, ~z satisfy ConjSAT-LP1pρq. Then for every Max-w-ConjSATq in-
stance W:

valpρ,Wq ` TrueMeanρpsmoothp~tq,Wq ě 1

qw´1
¨
ÿ

CPC
zCWpCq.

Proof: We begin with the first part. For v P Sρ, i P rqs, define tv,i “ 1 if ρpvq “ i, and define
tv,i “ 0 otherwise. For v P V zSρ, i P rqs, define tv,i “ 1 if g0pvq “ i, and define tv,i “ 0 otherwise.
For C P C, define zC “ 1 if Cpg0 Y ρq “ 1, and define zC “ 0 otherwise. It is easy to see that these
~t, ~z satisfies ConjSAT-LP1pρq, and that for every instance W:

ÿ

CPC
WpCqzC “ valpg0 Y ρ,W q.

Now we consider the second part. Let W be any instance of Max-w-ConjSATq. Let p “
smoothptq. Let g : V zSρ Ñ rqs be sampled as follows: independently for each v P V zSρ, gpvq is
sampled from the distribution ppvq. We need to show that:

ÿ

CRActivepρq

WpCqCpρq `E

»

–

ÿ

CPActivepρq

WpCqCpρY gq

fi

fl ě
1

qw´1
¨
ÿ

CPC
zCWpCq.

It is easy to check that for C R Activepρq, zC ą 0 only if Cpρq “ 1, and thus
ř

CRActivepρqCpρqWpCq ě
ř

CRActivepρq zCWpCq. For C P Activepρq, we have the following claim:

Claim 4.4 For C P Activepρq, ErCpρY gqs ě zC
qw´1 .

Proof: Suppose there are exactly h variables in C which are not in Sρ. Let these variables be
pviq

h
i“1. Let pvi, aiq

h
i“1 be the assignment to these variables that makes C satisfied.

ErCpρY gqs “ PrrC is satisfied by ρY gs ě
h
ź

i“1

ˆ

w ´ 1

qw
`
tvi,ai
w

˙

ě

h
ź

i“1

ˆ

w ´ 1

qw
`
zC
w

˙

“

ˆ

w ´ 1

qw
`
zC
w

˙h

“

ˆ

w ´ 1

qw
`
zC
w

˙w

ě
zC
qw´1

Here the last inequality follows form the observation that the minimum of the function

´

w´1
qw
` z
w

¯w

z
as z varies in r0, 1s, is attained at z “ 1{q.

This completes the proof of the Lemma.
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zC ď tv,i @C P C,@pv, iq P C
1 ě tv,i ě 0 @v P V zSρ, i P rqs
řq
i“1 tv,i “ 1 @v P V

tv,i “ 1 @v P Sρ and i P rqs,
such that hρpvq “ i

Figure 4: Linear inequalities ConjSAT-LP1pρq

ř

CPCW`pCq ¨ zC ě c` @` P rks
~t, ~z satisfy ConjSAT-LP1pρq.

Figure 5: Linear inequalities ConjSAT-LP2pρq

4.4 The Algorithm

We now give our Pareto approximation algorithm for Max-w-CSPq in Figure 7 (which uses the
procedure from Figure 6).

Input: A tree node ν and an instance W`.
Output: A tuple of variables of size at most w.

1. Let v1 P V zSρν be a variable which maximizes the value of activedegreeρν pv1,W`q. Set
D Ð tv1u.

2. While |D| ď w, do the following

(a) If there is a variable v in V zSρν such that

activedegreeρν pD Y v,W`q ě
activedegreeρν pD,W`q

p4qwtkqw
,

set D Ð D Y v.

(b) Otherwise, go to Step 3.

3. Return D as a tuple (in arbitrary order, with v1 as the first element).

Figure 6: TupleSelection for Max-w-ConjSATq
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Input: k instances of Max-w-ConjSATq W1, . . . ,Wk on the variable set V, ε ą 0 and and
target objective values c1, . . . , ck.
Output: An assignment to V

Parameters: δ0 “
1

10pk`1q , ε0 “ ε, γ “
ε20δ0

w2pqwqw
, t “

Q

20w2k2

γ ¨ log
´

10k
γ

¯ U

1. Initialize tree T to be an empty qw-ary tree (i.e., just 1 root node and each node has at
most qw children).

2. We will associate with each node ν of the tree:

(a) A partial assignment ρν .

(b) A special set of variables Tν Ď V zSρν .

(c) A special instance Iν P rks.
(d) A collection of integers countν,1, . . . , countν,k.

(e) A trit representing whether the node ν is living, exhausted or dead.

3. Initialize the root node ν0 to (1) ρν0 “ pH,Hq, (2) have all countν0,` “ 0, (3) living.

4. While there is a living leaf ν of T, do the following:

(a) Check if the LP ConjSAT-LP2pρνq has a feasible solution.

i. If ~t, ~z is a feasible solution, then define pν : V zSρν Ñ Distpqq by p “ smoothp~tq.

ii. If not, then declare ν to be dead and return to Step 4.

(b) For each ` P rks, compute TrueVarρν pp,W`q,TrueMeanρν pp,W`q.

(c) If TrueVarρν pp,W`q ě δ0ε
2
0TrueMeanρν pp,W`q

2, then set flag` “ True, else set flag` “
False.

(d) Choose the smallest ` P rks, such that count` ă t AND flag` “ True (if any):

i. Set Tν Ð TupleSelection(ν,W`). Set Iν “ `.

ii. Create qw
1

children of ν, with labels νb for each b P rqsw
1

and define

´ ρνb “ pSρν Y Tν , hbq, where hb extends hρν by hbpT iν q “ bpiq.

´ For each `1 P rks with `1 ‰ `, initialize countνb,`1 “ countν,`1 . Initialize
countνb,` “ countν,` ` 1.

´ Set νb to be living.

(e) If no such ` exists, declare ν to be exhausted.

5. Now every leaf of T is either exhausted or dead. For each exhausted leaf ν of T :

(a) Sample gν : V zSρν Ñ rqs by independently sampling gνpvq from the distribution pνpvq.

(b) For every assignment h : Sρν Ñ rqs, compute outh,gν Ð min`Prks
valphYgν ,W`q

c`
. If c` “ 0

for some ` P rks, we interpret valphYgν ,Wlq

c`
as `8.

6. Output the largest outh,gν seen, and the assignment hY gν that produced it.

Figure 7: Algorithm Sim-MaxConjSAT for approximating weighted simultaneous
Max-w-ConjSATq
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4.5 Analysis

Notice that the depth of the tree T is at most kt, and that for every ν, we have that |Sρν | ď wkt.
This implies that the running time is at most qOpwktq ¨ polypnq.

Let f‹ : V Ñ rqs be an assignment such that valpf‹,W`q ě c` for each ` P rks. Let ν‹ be the
the unique leaf of the tree T for which ρν‹ is consistent with f‹. (This ν‹ can be found as follows:
start with ν equal to the root. Set ν to equal the unique child of ν for which ρν is consistent with
f‹, and repeat until ν becomes a leaf. This leaf is ν‹). Observe that since f‹ is an assignment such
that valpf‹,W`q ě c` for every ` P rks, by picking g0 “ f‹|V zS‹ in part 1 of Lemma 4.3, we know
that ConjSAT-LP2pρ

‹q is feasible, and hence ν‹ must be an exhausted leaf (and not dead).

Define ρ‹ “ ρν‹ , S
‹ “ Sρ‹ , h

‹ “ hρ‹ and p‹ “ pν‹

At the completion of Step 4, if ` P rks satisfies countν‹,` “ t, we call instance ` a high variance
instance. Otherwise we call instance ` a low variance instance.

4.5.1 Low Variance Instances

First we show that for the leaf ν˚ in Step 5, combining the partial assignment h‹ with a random
assignment gν‹ in Step 5a is good for any low variance instances with high probability.

Lemma 4.5 Let ` P rks be any low variance instance. For the leaf node ν‹, let gν‹ be the random
assignment sampled in Step 5a of Sim-MaxConjSAT. Then with probability at least 1 ´ δ0, the
assignment f “ h‹ Y gν‹ satisfies:

Pr
gν‹
rvalpf,W`q ě p1{q

w´1 ´ ε{2q ¨ c`s ě 1´ δ0.

Proof: For every low variance instance `, we have that TrueVarρν‹ pp
‹,W`q ă δ0ε

2
0¨TrueMeanρν‹ pp

‹,W`q
2.

Define Y
def
“ valpρ‹ Y gν‹ ,W`q ´ valpρ‹,W`q. By Lemma 4.2, we have PrrY ă p1 ´ ε0qErY ss ă δ0.

Thus, with probability at least 1´ δ0, we have,

valpf,W`q ě valpρ‹,W`q ` p1´ ε0qErY s

“ valpρ‹,W`q ` p1´ ε0q ¨ TrueMeanρν‹ psmoothp~tq,W`q

“ p1´ ε0q ¨
`

valpρ‹,W`q ` TrueMeanρν‹ psmoothp~tq,W`q
˘

ě
1

qw´1
¨ p1´ ε0q ¨

ÿ

CPC
W`pCq ¨ zC ě

1

qw´1
¨ p1´ ε0q ¨ c` ě

ˆ

1

qw´1
´
ε

2

˙

¨ c`,

where we have used the second part of Lemma 4.3.

Next, we will consider a small perturbation of h‹ which will ensure that the algorithm performs
well on high variance instances too. We will ensure that this perturbation does not affect the
success on the low variance instances.

4.5.2 High variance instances

Fix a high variance instance `. Let ν be an ancestor of ν‹ with Iν “ `. Let T 1
ν denote the first

element of the tuple Tν . Define:

activedegreeν
def
“ activedegreeρν pT

1
ν ,W`q.
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activedegreeTν
def
“ activedegreeρν pTν ,W`q.

Observation 4.6 For any node ν, in the tree,

activedegreeTν ě
activedegreeν

p4qwtkqw¨p|Tν |´1q
.

Proof: For ν such that |Tν | “ 1, we have, by definition, activedegreeTν “ activedegreeν and the
inequality follows. The lower bound is obvious from the Tuple Selection procedure if |Tν | ą 1.

Let Cν be the set of all constraints C containing all variables in Tν which are active given ρν .
We call a constraint C in Cν a backward constraint if C only involves variables from Sρν Y Tν .

Otherwise we call C in Cν a forward constraint. Let Cbackwardν and Cforwardν denote the sets of these
constraints. Finally, let Coutν denote the set of all constraints from Cν that involve at least one
variable from V zS‹ and none from S‹zSρν .

Define backward degree and forward degree as follows:

backwardν
def
“

ÿ

CPCbackward
ν

W`pCq,

forwardν
def
“

ÿ

CPCforward
ν

W`pCq.

Note that:
activedegreeTν “ backwardν ` forwardν .

Based on the above definitions, we classify ν into one of three categories:

1. If backwardν ě
1
2 ¨ activedegreeTν , then we call ν typeAB.

2. Otherwise, we call ν typeC.

We have the following lemma about typeC nodes.

Lemma 4.7 For every typeC node ν, we have

1. For every v P V zpSρν Y Tνq, activedegreeρν pTν Y tvu,W`q ď
activedegreeTν
p4qwtkqw

.

2.
ř

CPCout
ν
W`pCq ě

1
4 ¨ activedegreeTν .

Proof: If ν is a typeC node, we must have that for every v P V zpSρν Y Tνq,

activedegreeρν pTν Y tvu,W`q ă
activedegreeTν
p4qwtkqw

.

This follows from the description of the TupleSelection procedure, and the observation that
activedegreeνpT,W`q “ 0 for any T Ă V with |T | ą w.
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In particular, since |S‹| ď wtk, the total weight of constraints containing Tν and some variable
in S‹zpSρν Y Tνq is at most

ÿ

vPS‹zpSρνYTνq
activedegreeρν pTν Y tvu,W`q ď

ÿ

vPS‹zpSρνYTνq

activedegreeTν
p4qwtkqw

ď |S‹zpSρν Y Tνq| ¨
activedegreeTν
p4qwtkqw

ď wtk ¨
activedegreeTν
p4qwtkqw

ď
1

4
¨ activedegreeTν .

Thus, we get,

ÿ

CPCout
ν

W`pCq “ forwardν ´
!

total weight of constraints containing
Tν and some variable in S‹zpSρν Y Tνq

)

ě
1

2
¨ activedegreeTν ´

1

4
¨ activedegreeTν “

1

4
¨ activedegreeTν .

This completes the proof of second statement.

For a partial assignment g : V zS‹ Ñ rqs, we say that g is Cgood for ν if there exists a setting
of variables in Tν that satisfies at least 1

8¨pqwqw ¨ activedegreeTν weight amongst constraints in Coutν .
The next lemma allows us to prove that that for every node ν of typeC, with high probability,

the random assignment gν‹ : V zS‹ Ñ rqs, is Cgood for ν.

Lemma 4.8 Let ν be typeC. Suppose g : V zS‹ Ñ rqs is a random assignment obtained by indepen-
dently sampling gpvq for each v P V zS‹ from a distribution such that distribution Prrgpvq “ is ě 1

qw
for each i P rqs. Then:

Pr
g
rg is Cgood for νs ě 1´ 2 ¨ e´tk{8qw.

Proof: Let ` “ Iν .
Consider a constraint C P Coutν . For partial assignments b : Tν Ñ rqs and g : V zS‹ Ñ rqs, define

Cpρν Y bY gq P t0, 1u to be 1 iff C is satisfied by ρν Y bY g. Since C only contains variables from
Sρν Y Tν Y pV zS‹q, we have that Cpρν Y bY gq is well defined.

Define scoreb : rqsV zS
‹

Ñ R by

scorebpgq “
ÿ

CPCout
ν

W`pCq ¨ Cpρν Y bY gq.

In words, scorepbqpgq is the total weight of constraints in Coutν satisfied by setting Sρν according to
ρν , setting Tν to b, and setting V zS˚ according to g.

Note that for all C P Coutν , Egr
ř

b:TνÑrqsCpρν Y bY gqs ě 1

pqwqw´|Tν |
. This follows since C is an

active constraint given ρν , and involves all variables from Tν ; hence there exists an assignment b
to Tν and an assignment for at most w ´ |Tν | variables from constraint C in V zS‹ such that C
is satisfied. Since, g is a smooth distribution, this particular assignment to w ´ |Tν | in V zS‹ is
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sampled with probability at least 1

pqwqw´|Tν |
. Hence, for this particular choice of b, C is satisfied

with probability at least 1

pqwqw´|Tν |
. Thus:

ÿ

b:TνÑrqs
Eg

”

scorebpgq
ı

“
ÿ

b:TνÑrqs
Eg

»

–

ÿ

CPCout
ν

W`pCq ¨ Cpρν Y bY gq

fi

fl

“
ÿ

CPCout
ν

W`pCq ¨Eg

»

–

ÿ

b:TνÑrqs
Cpρν Y bY gq

fi

fl ě
1

pqwqw´|Tν |

ÿ

CPCout
ν

W`pCq.

Thus there exists b : Tν Ñ rqs such that

Egrscorebpgqs ě
1

q|Tν |
¨

1

pqwqw´|Tν |

ÿ

CPCout
ν

W`pCq ě
1

4
¨

1

pqwqw
¨ activedegreeTν ,

where the last inequality follows by Lemma 4.7.
Fix this particular b for which the above inequality holds. We are going to use McDiarmid’s

inequality to show the concentration of scorebpgq around its mean. Since ν is typeC, from Lemma 4.7,
we know that for every vertex v P V zS‹, changing g on just v can change the value of scorebpgq

by at most cv
def
“ activedegreeρν pTν Y tvu,W`q ď

activedegreeTν
p4qwtkqw

. Thus by McDiarmid’s inequality

(Lemma D.1),

Pr
g
rg is not Cgood for νs ď Pr

g

„

scorebpgq ă
1

8 ¨ pqwqw
¨ activedegreeTν



ď Pr
g

„

|scorebpgq ´Egrscorebpgqs| ą
1

8 ¨ pqwqw
¨ activedegreeTν



ď 2 ¨ exp

˜

´2 ¨ activedegree2
Tν

64pqwq2w ¨
ř

vPV zS‹ c
2
v

¸

.

ď 2 ¨ exp

˜

´2 ¨ activedegree2
Tν

64pqwq2w ¨ pmaxv cvq ¨
ř

vPV zS‹ cv

¸

ď 2 ¨ exp

˜

´2 ¨ activedegree2
Tν

64pqwq2w ¨ pmaxv cvq ¨ activedegreeTν

¸

ď 2 ¨ exp

ˆ

´2 ¨ activedegreeTν
64pqwq2w ¨ pmaxv cvq

˙

ď 2 ¨ exp

¨

˝

´2 ¨ activedegreeTν

64pqwq2w ¨ p
activedegreeTν
p4qwtkqw

q

˛

‚

“ 2 ¨ exp

ˆ

´2 ¨ p4qwtkqw

64 ¨ pqwq2w

˙

ď 2 ¨ exp

ˆ

´tk

8qw

˙

.

For a high variance instance `, let ν`1, . . . , ν
`
t be the t nodes with Iν “ ` which lie on the path

from the root to ν‹, numbered in order of their appearance on the path from the root to ν‹. Set
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finalwt` “ activedegreeρ‹pW`q. This is the active degree left over in instance ` after the restriction
ρ‹.

Lemma 4.9 For every high variance instance ` P rks and for each i ď rt{2s,

activedegreeν`i
ě γ ¨ p1´ γq´t{2 ¨ finalwt` ě 100 ¨ pqwqw ¨ p4qwtkqw

2
¨ finalwt`.

We skip the proof of this lemma. The first inequality is identical to the second part of Lemma 5.6,
and the second inequality follows from the choice of t.

4.5.3 Putting everything together

We now show that when ν is taken to equal ν‹ in Step 5, then with high probability over the choice of
gν‹ in Step 5paq there is a setting of h in Step 5pbq such that min`Prks valphYgν‹ ,W`q ě p

1
qw´1´εq¨c`.

Theorem 4.10 Suppose the algorithm Sim-MaxConjSAT is given as inputs ε ą 0, k simultane-
ous weighted Max-w-ConjSATq instances W1, . . . ,Wk on n variables, and target objective value
c1, . . . , ck with the guarantee that there exists an assignment f‹ such that for each ` P rks, we have

valpf‹,W`q ě c`. Then, the algorithm runs in 2Opk
4
{ε2 logpk{εqq ¨ polypnq time, and with probability at

least 0.9, outputs an assignment f such that for each ` P rks, we have, valpf,W`q ě

´

1
qw´1 ´ ε

¯

¨ c`.

Proof: Consider the case when ν is taken to equal ν‹ in Step 5. By Lemma 4.5, with probability
at least 1´kδ0 over the random choices of gν‹ , we have that for every low variance instance ` P rks,
valph‹ Y gν‹ ,W`q ě p

1
qw´1 ´

ε
2q ¨ c`. By Lemma 4.8 and a union bound, with probability at least

1 ´ t
2 ¨ k ¨ 2e´tk{8qw ě 1 ´ δ0 over the choice of gν‹ , for every high variance instance ` and for

every typeC node ν`i , i P rt{2s, we have that gν‹ is Cgood for ν`i . Thus with probability at least
1´ pk` 1qδ0, both these events occur. Henceforth we assume that both these events occur in Step
5paq of the algorithm.

Our next goal is to show that there exists a partial assignment h : S‹ Ñ rqs such that

1. For every instance ` P rks, valphY gν‹ ,W`q ě p1´ ε{2q ¨ valph‹ Y gν‹ ,W`q

2. For every high variance instance ` P rks, valphY gν‹ ,W`q ě p1´ ε{2q ¨ 10 ¨ finalwt`.

Before giving a proof of the existence of such an h, we show that this completes the proof of
the theorem. We claim that when the partial assignment h guaranteed above is considered in the
Step 5pbq in the algorithm, we obtain an assignment with the required approximation guarantees.

For every low variance instance ` P rks, since we started with valph‹Y gν‹ ,W`q ě p
1

qw´1 ´
ε
2q ¨ c`,

property 1 above implies that every low variance instance valphY gν‹q ě p
1

qw´1 ´ εq ¨ c`. For every

high variance instance ` P rks, since h‹ “ f‹|S ,

valph‹ Y gν‹ ,W`q ě valpf‹,W`q ´ activedegreeρ‹pW`q ě c` ´ finalwt`.

Combining this with properties 1 and 2 above, we get,

valphY gν‹ ,W`q ě

´

1´
ε

2

¯

¨maxtc` ´ finalwt`, 10 ¨ finalwt`u ě
10

11

´

1´
ε

2

¯

¨ c`.
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Thus, for all instances ` P rks, we get valphY gν‹ ,W`q ě

´

1
qw´1 ´

ε
2

¯

¨ c`.

Now, it remains to show the existence of such an h by giving a procedure for constructing h by
perturbing h‹ (Note that this procedure is only part of the analysis). For nodes ν, ν1 in the tree,
let us write ν ă ν 1 if ν is an ancestor of ν 1, and we also say that ν 1 is “deeper” than ν.

Constructing h:

1. Initialize H Ď rks to be the set of high variance instances.

2. Let N0 “ tν
`
i | ` P H, i P rt{2su. Note that N is a chain in the tree (since all the elements of

N are ancestors of ν‹). Since every ν P N is an ancestor of ν‹, we have hρν “ h‹|Sρν .

3. Initialize D “ H, N “ N0, h “ h‹.

4. During the procedure, we will be changing the assignment h, and removing elements from N .
We will always maintain the following two invariants:

• |N | ą t
4 .

• For every ν P N , h|Sρν “ h‹|Sρν .

5. While |D| ‰ |H| do:

(a) Let

B “

#

v P V | D` P rks with
ÿ

CPC,CQv
W`pCq ¨ CphY gν‹q ě

ε

2wk
valphY gν‹ ,W`q

+

.

Note that |B| ď 2w2k2

ε ă t
4 .

(b) Let ν P N be the deepest element of N for which: Tν XB “ H.
Such a ν exists because:

• |N | ą t
4 ą |B|, and

• there are at most |B| nodes ν for which Tν X B ‰ H (since Tν are all disjoint for
distinct ν).

(c) Let ` P H and i P rt{2s be such that ν “ ν`i . Let ρ “ ρν . We will now modify the
assignment h for variables in Tν to guarantee that valph Y gν‹ ,W`q ě 10 ¨ finalwt`. The
procedure depends on whether ν is typeAB or typeC.

i. If ν is typeAB, then we know that backwardν ě
1
2 ¨ activedegreeTν .

The second invariant tells us that ρ “ h‹|Sρ “ h|Sρ . Thus we have:

backwardν “
ÿ

CPCbackward
ν

W`pCq

“
ÿ

CĎSρYTν ,CĚTν ,CPActivepρq
W`pCq

“
ÿ

CĎSρYTν ,CĚTν ,CPActiveph|Sρ q
W`pCq.
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This implies that we can modify the assignment h on the variables Tν such that
after the modification, the weights of satisfied backward constraints is:

ÿ

CĎSρYTν ,CĚTν ,CPActiveph|Sρ q
W`pCqCphq ě

1

qw

ÿ

CĎSρYTν ,CĚTν ,CPActiveph|Sρ q
W`pCq

“
1

qw
¨ backwardν

ě
1

2qw
¨ activedegreeTν

ě 10 ¨ finalwt`.

where the 1
qw factor in the first inequality appears because there could be as many

as qw possible assignments to variables in Tν , and the last inequality holds because
of Observation 4.6 and Lemma 4.9. In particular, after making this change, we have
valphY gν‹ ,W`q ě 10 ¨ finalwt`.

ii. If ν is typeC, then we know that g is Cgood for ν. Thus, by the definition of Cgood,
we can choose a setting of Tν so that at least a total of 1

8¨pqwqw ¨ activedegreeTν ě

10 ¨ finalwt` W`-weight constraints between Tν and V zS‹ is satisfied. After this
change, we have valphY gν‹ ,W`q ě 10 ¨ finalwt`.

In both the above cases, we only changed the value of h at the variables Tν . Since
Tν X B “ H, we have that for every j P rks, the new value valph Y gν‹ ,Wjq is at least
`

1´ ε
2k

˘

times the old value valphY gν‹ ,Wjq.

(d) Set D “ D Y t`u.

(e) Set N “ tν`i | ` P HzD, i ď rt{2s, ν
`
i ă νu.

Observe that |N | decreases in size by at most t
2 ` |B|. Thus, if D ‰ H, we have

|N | ě |N0| ´ |D| ¨
t

2
´ |D||B|

“ |H| ¨
t

2
´ |D| ¨

t

2
´ |D||B|

ě
t

2
´ k|B| ą

t

4

Also observe that we only changed the values of h at the variables Tν . Thus for all ν 1 ĺ ν
(i.e ν 1 P Nq, we still have the property that h|Sρ

ν1
“ h‹|Sρ

ν1
.

For each high variance instance ` P rks, in the iteration where ` gets added to the set D, the
procedure ensures that at the end of the iteration valphY gν‹ ,W`q ě 10 ¨ finalwt`.

Moreover, at each step we reduced the value of each valphYgν‹ ,W`q by at most ε
2k fraction of its

previous value. Thus, at the end of the procedure, for every ` P rks, the value has decreased at most

by a multiplicative factor of
`

1´ ε
2k

˘k
ě

`

1´ ε
2

˘

. Thus, for every ` P rks, we get valphY gν‹ ,W`q ě
`

1´ ε
2

˘

¨ valph‹ Y gν‹ ,W`q, and for every high variance instance ` P rks, we have valphY gν‹ ,W`q ě
`

1´ ε
2

˘

¨ 10 ¨ finalwt`. This proves the two properties of h that we set out to prove.

Running time : Running time of the algorithm is 2Opktq ¨ polypnq which is 2Opk
4
{ε2 logpk{ε2qq ¨

polypnq.
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5 Simultaneous Max-w-SAT

In this section, we give our algorithm for simultaneous Max-w-SAT. The algorithm follows the
basic paradigm from Max-2-AND and Max-CSP, but does not require a tree of evolutions (only
a set of influential variables), and uses an LP to boost the Pareto approximation factor to

`

3
4 ´ ε

˘

.

5.1 Preliminaries

Let V be a set of n Boolean variables. Define C to be the set of all possible w-SAT constraints on
the n variable set V . A Max-w-SAT instance is then described by a weight functionW : C Ñ Rě0

(here WpCq denotes the weight of the constraint C). We will assume that
ř

CPCWpCq “ 1.
We say v P C if the variable v appears in the constraint C. For a constraint C, let C` (resp.

C´) denote the set of variables v P V that appear unnegated (resp. negated) in the constraint C.
Let f : V Ñ t0, 1u be an assignment. For a constraint C P C, define Cpfq to be 1 if the

constraint C is satisfied by the assignment f , and define Cpfq “ 0 otherwise. Then, we have the
following expression for valpf,Wq:

valpf,Wq def
“

ÿ

CPC
WpCq ¨ Cpfq.

5.1.1 Active Constraints

Our algorithm will maintain a small set S Ď V of variables, for which we will try all assignments
by brute-force, and then use a randomized rounding procedure for a linear program to obtain an
assignment for V zS. We now introduce some notation for dealing with this.

Let S Ď V . We say a constraint C P C is active given S if at least one of the variables of C is
in V zS. We denote by ActivepSq the set of constraints from C which are active given S. For two
constraints C1, C2 P C, we say C1 „S C2 if they share a variable that is contained in V zS. Note
that if C1 „S C2, then C1, C2 are both in ActivepSq. For two partial assignments f1 : S Ñ t0, 1u
and f2 : V zS Ñ t0, 1u, let f “ f1 Y f2 is an assignment f : V Ñ t0, 1u such that fpxq “ f1pxq if
x P S otherwise fpxq “ f2pxq.

Define the active degree of a variable v P V zS given S by:

activedegreeSpv,Wq
def
“

ÿ

CPActivepSq,CQv

WpCq.

We then define the active degree of the whole instance W given S:

activedegreeSpWq
def
“

ÿ

vPV zS

activedegreeSpv,Wq.

For a partial assignment h : S Ñ t0, 1u, we define

valph,Wq def
“

ÿ

CPC
CRActivepSq

WpCq ¨ Cphq.

Thus, for an assignment g : V zS Ñ t0, 1u, to the remaining set of variables, we have the equality:

valphY g,Wq ´ valph,Wq “
ÿ

CPActivepSq

WpCq ¨ CphY gq.
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5.1.2 LP Rounding

Let h : S Ñ t0, 1u be a partial assignment. We will use the Linear Program MAXwSAT-LP1phq
to complete the assignment to V zS. For Max-2-SAT, Goemans and Williamson [GW93] showed,
via a rounding procedure, that this LP can be used to give a 3{4 approximation. However, as in
Max-2-AND, we will be using the rounding procedure due to Trevisan [Tre98] that also gives a
3{4 approximation for Max-w-SAT, because of its smoothness properties.

Let ~t, ~z be a feasible solution to the LP MAXwSAT-LP1phq. Let smoothp~tq denote the map
p : V zS Ñ r0, 1s given by: ppvq “ 1

4 `
tv
2 . Note that ppvq P r1{4, 3{4s for all v.

Theorem 5.1 Let h : S Ñ t0, 1u be a partial assignment.

1. For every g0 : V zS Ñ t0, 1u, there exist ~t, ~z satisfying MAXwSAT-LP1phq such that for every
Max-w-SAT instance W:

ÿ

CPC
WpCqzC “ valpg0 Y h,Wq.

2. Suppose ~t, ~z satisfy MAXwSAT-LP1phq. Let p “ smoothp~tq. Then for every Max-w-SAT
instance W:

E
g
rvalphY g,Wqs ě 3

4
¨
ÿ

CPC
WpCqzC ,

where g : V zS Ñ t0, 1u is such that each gpvq is sampled independently with Ergpvqs “ ppvq.

Proof: The first part is identical to the first part of Lemma 3.2. For the second part. Let W be
any instance of Max-w-SAT. Let g : V zS Ñ t0, 1u be sampled as follows: independently for each
v P V zS, gpvq is sampled from t0, 1u such that Ergpvqs “ ppvq. We need to show that

E
g
rvalphY g,Wqs “

ÿ

CPCzActivepSq
WpCqCphq `E

»

–

ÿ

CPActivepSq

WpCqCpρY gq

fi

fl

ě
3

4
¨

ÿ

CPCzActivepSq
WpCqzC `

3

4
¨

ÿ

CPActivepSq

WpCqzC

For C P CzActivepSq, it is easy to verify that if zC ą 0, we must have Cphq “ 1. For C P ActivepSq
the following claim gives us the required inequality:

Claim 5.2 For C P ActivepSq, ErCphY gqs ě 3
4 ¨ zC .

Proof: The claim is true if C is satisfied by h. Consider a clause C which contains l active
variables but not satisfied by partial assignment h. Under the smooth rounding, we have

ErCphY gqs “ PrrC is satisfied by hY gs “ 1´

¨

˝

ź

vPC`,vPV zS

3

4
´
tv
2

˛

‚¨

¨

˝

ź

vPC´,vPV zS

3

4
´

1´ tv
2

˛

‚

ě 1´

˜

3

4
´

ř

vPC`,vPV zS tv `
ř

vPC´,vPV zSp1´ tvq

2l

¸l

ě 1´

ˆ

3

4
´
zC
2l

˙l

ě
3

4
¨ zC ,
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where first inequality follows from AM-GM inequality. For any integer l ě 1, the last inequality

follows by noting that for a function fpxq “ 1´
`

3
4 ´

x
2l

˘l
´ 3

4 ¨ x, fp0q ě 0, fp1q ě 0 along with the
fact the the function has no local minima in p0, 1q.

5.2 Random Assignments

We now give a sufficient condition for the value of a Max-w-SAT instance to be highly concentrated
under a sufficiently smooth independent random assignment to the variables of V zS (This smooth
distribution will come from the rounding algorithm for the LP). When the condition does not hold,
we will get a variable of high active degree.

Let S Ď V , and let h : S Ñ t0, 1u be an arbitrary partial assignment to S. Let p : V zS Ñ r0, 1s
be such that ppvq P r1{4, 3{4s for each v P V zS. Consider the random assignment g : V zS Ñ t0, 1u,
where for each v P V zS, gpvq P t0, 1u is sampled independently with Ergpvqs “ ppvq. Define the
random variable

Y
def
“ valphY g,Wq ´ valph,Wq “

ÿ

CPActivepSq

WpCq ¨ CphY gq.

The random variable Y measures the contribution of active constraints to the instance W.
We now define two quantities depending only on S (and importantly, not on h), which will be

useful in controlling the expectation and variance of Y . The first quantity is an upper bound on
VarrY s:

Uvar
def
“

ÿ

C1„SC2

WpC1qWpC2q.

The second quantity is a lower bound on ErY s:

Lmean
def
“

1

4
¨

ÿ

CPActivepSq

WpCq.

Lemma 5.3 Let S Ď V be a subset of variables and h : S Ñ t0, 1u be an arbitrary partial assign-
ment to S. Let p, Y,Uvar, Lmean be as above.

1. If Uvar ď δ0ε
2
0 ¨ Lmean2, then PrrY ă p1´ ε0qErY ss ă δ0.

2. If Uvar ě δ0ε
2
0 ¨ Lmean2, then there exists v P V zS such that

activedegreeSpv,Wq ě
1

16w2
ε2

0δ0 ¨ activedegreeSpWq.

The crux of the proof is that independent of the assignment h : S Ñ t0, 1u, ErY s ě Lmean
and VarpY q ď Uvar (this crucially requires that the rounding is independent and smooth, i.e.,
ppvq P r1{4, 3{4s for all v; this is why we end up using Trevisan’s rounding procedure in Theorem 5.1).
The first part is then a simple application of the Chebyshev inequality. For the second part, we use
the assumption that Uvar is large, to deduce that there exists a constraint C such that the total
weight of constraints that share a variable from V zS with C, i.e.,

ř

C2„SC
WpC2q, is large. It then

follows that at least one variable v P C must have large activedegree given S.
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Proof: We first prove that VarpY q ď Uvar. Recall that the indicator variable CphY gq denotes
whether a constraint C is satisfied by the assignment hY g, and note that:

Y “
ÿ

CPActivepSq

WpCq ¨ CphY gq.

Thus, the variance of Y is given by

VarpY q “
ÿ

C1,C2PActivepSq

WpC1qWpC2q ¨ pErC1phY gqC2phY gqs ´ErC1phY gqsErC2phY gqsq

ď
ÿ

C1„SC2

WpC1qWpC2q “ Uvar,

where the inequality holds because ErC1phY gqC2phY gqs ´ErC1phY gqsErC2phY gqs ď 1 for all
C1, C2, and ErC1ph Y gqC2ph Y gqs ´ ErC1ph Y gqsErC2ph Y gqs “ 0 unless C1 „S C2 because the
rounding is performed independently for all the variables.

Moreover, since ppvq P r1{4, 3{4s for all v, we get that ErCphYgqs ě 1{4 for all C P ActivepSq. Thus,
we have ErY s ě Lmean. Given this, the first part of the lemma easily follows from Chebyshev’s
inequality:

PrrY ă p1´ ε0qErY ss ď
VarpY q

ε2
0pErY sq

2
ď

Uvar

ε2
0Lmean2 ď δ0.

For the second part of the lemma, we have:

δ0ε
2
0Lmean2 ă Uvar “

ÿ

C1„SC2

WpC1qWpC2q

ď
ÿ

C1PActivepSq

WpC1q
ÿ

C2„SC1

WpC2q

ď

¨

˝

ÿ

C1PActivepSq

WpC1q

˛

‚¨ max
CPActivepSq

ÿ

C2„SC

WpC2q

“ 4 ¨ Lmean ¨ max
CPActivepSq

ÿ

C2„SC

WpC2q .

Thus, there exists a constraint C P ActivepSq such that:

ÿ

C2„SC

WpC2q ě
1

4
¨ δ0ε

2
0 ¨ Lmean ě

1

16w
δ0ε

2
0 ¨ activedegreeSpWq, (2)

where we used the fact that Lmean “ 1
4 ¨ p

ř

CPActivepSqWpCqq ě
1

4w ¨ activedegreeSpWq, since we are
counting the weight of a constraint at most w times in the expression activedegreeSpWq. Finally,
the LHS of equation (2) is at most

ř

uPCXpV zSq activedegreeSpu,Wq. Thus, there is some u P V zS
with:

activedegreeSpu,Wq ě
1

16w2
δ0ε

2
0 ¨ activedegreeSpWq.
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Input: k instances of Max-w-SAT W1, . . . ,Wk on the variable set V, target objective values
c1, . . . , ck, and ε ą 0.
Output: An assignment to V.

Parameters: δ0 “
1

10k , ε0 “
ε
2 , γ “

ε20δ0
16w2 , t “ 2k

γ ¨ log
´

11
γ

¯

.

1. Initialize S ÐH.

2. For each instance ` P rks, initialize count` Ð 0 and flag` Ð True.

3. Repeat the following until for every ` P rks, either flag` “ False or count` “ t:

(a) For each ` P rks, compute Uvar` “
ř

C1„SC2
W`pC1qW`pC2q.

(b) For each ` P rks, compute Lmean` “
1
4

ř

CPActivepSqW`pCq.

(c) For each ` P rks, if Uvar` ě δ0ε
2
0 ¨Lmean2

` , then set flag` “ True, else set flag` “ False.

(d) Choose any ` P rks, such that count` ă t AND flag` “ True (if any):

i. Find a variable v P V such that activedegreeSpv,W`q ě γ ¨ activedegreeSpW`q.

ii. Set S Ð S Y tvu. We say that v was brought into S because of instance `.

iii. Set count` Ð count` ` 1.

4. For each partial assignment h0 : S Ñ t0, 1u:

(a) If there is a feasible solution ~t, ~z to the LP in Figure 10, set p “ smoothp~tq. If not,
return to Step 4. and proceed to the next h0.

(b) Define g : V zS Ñ t0, 1u by independently sampling gpvq P t0, 1u with Ergpvqs “ ppvq,
for each v P V zS.

(c) For each h : S Ñ t0, 1u, compute outh,g “ min`Prks
valphYg,W`q

c`
. If c` “ 0 for some

` P rks, we interpret valphYg,W`q

c`
as `8.

5. Output the largest outh,g seen, and the assignment hY g.

Figure 8: Algorithm Sim-MaxwSAT for approximating weighted simultaneous Max-w-SAT

ř

vPC` tv `
ř

vPC´p1´ tvq ě zC @C P C
1 ě zC ě 0 @C P C
1 ě tv ě 0 @v P V zS

tv “ h0pvq @v P S

Figure 9: Linear program MAXwSAT-LP1ph0q, for a given partial assignment h0 : S Ñ t0, 1u

ř

CPCW`pCq ¨ zC ě c` @` P rks
~t, ~z satisfy MAXwSAT-LP1ph0q.

Figure 10: Linear program MAXwSAT-LP2ph0q for a given partial assignment h0 : S Ñ t0, 1u
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5.3 Algorithm for Simultaneous Max-w-SAT

In Figure 8, we give our algorithm for simultaneous Max-w-SAT. The input to the algorithm
consists of an integer k ě 1, ε ą 0, and k instances of Max-w-SAT, specified by weight functions
W1, . . . ,Wk, and target objective values c1, . . . , c`.

5.4 Analysis of Algorithm Sim-MaxwSAT

It is easy to see that the algorithm always terminates in polynomial time. Part 2 of Lemma 5.3
implies that that Step 3.(d)i always succeeds in finding a variable v. Next, we note that Step 3.
always terminates. Indeed, whenever we find an instance ` P rks in Step 3.d such that count` ă t and
flag` “ True, we increment count`. This can happen only tk times before the condition count` ă t
fails for all ` P rks. Thus the loop must terminate within tk iterations.

Let S‹ denote the final set S that we get at the end of Step 3. of Sim-MaxwSAT. To analyze
the approximation guarantee of the algorithm, we classify instances according to how many vertices
were brought into S‹ because of them.

Definition 5.4 (Low and high variance instances) At the completion of Step 3.d in Algo-
rithm Sim-MaxwSAT, if ` P rks satisfies count` “ t, we call instance ` a high variance instance.
Otherwise we call instance ` a low variance instance.

At a high level, the analysis will go as follows: First we analyze what happens when we give
the optimal assignment to S‹ in Step 4. For low variance instances, the fraction of the constraints
staisfied by the LP rounding will concentrate around its expectation, and will give the desired
approximation. For every high variance instance, we will see that many of its “heavy-weight”
vertices were brought into S‹, and we will use this to argue that we can satisfy a large fraction of
the constraints from these high variance instances by suitably perturbing the optimal assignment
to S‹ to these “heavy-weight” vertices. It is crucial that this perturbation is carried out without
significantly affecting the value of the low variance instances.

Let f‹ : V Ñ t0, 1u be an assignment such that valpf‹,W`q ě c` for each `. Let h‹ “ f‹|S‹ .
Claim 1 from Theorem 5.1 implies that MAXwSAT-LP2ph

‹q has a feasible solution. For low variance
instances, by combining Theorem 5.1 and Lemma 5.3, we show that valph‹ Y g,W`q is at least
p3{4´ ε{2q ¨ c` with high probability.

Lemma 5.5 Let ` P rks be any low variance instance. Let ~t, ~z be a feasible solution to MAXwSAT-LP2ph
‹q.

Let p “ smoothp~tq. Let g : V zS‹ Ñ t0, 1u be such that each gpvq is sampled independently with
Ergpvqs “ ppvq. Then the assignment h‹ Y g satisfies:

Pr
g
rvalph‹ Y g,W`q ě p3{4´ ε{2q ¨ c`s ě 1´ δ0.

Proof: Since ` is a low variance instance, flag` “ False when the algorithm terminates. Thus
Uvar` ă δ0ε

2
0 ¨ Lmean2

` . Let g : V Ñ t0, 1u be the random assignment picked in Step 4.b. Define the
random variable

Y`
def
“ valph‹ Y g,W`q ´ valph‹,W`q.

By Lemma 5.3, we know that with probability at least 1´δ0, we have Y` ě p1´ε0qErY`s. Thus,
with probability at least 1´ δ0, we have,

valph‹ Y g,W`q “ valph‹,W`q ` Y` ě valph‹,W`q ` p1´ ε0qErY`s
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ě p1´ ε0q ¨Ervalph‹,W`q ` Y`s “ p1´ ε0q ¨Ervalph‹ Y g,W`qs

ě 3{4 ¨ p1´ ε0q ¨
ÿ

CPC
W`pCqzC ě p3{4´ ε{2q ¨ c`,

where the last two inequalities follow from Claim 2 in Theorem 5.1 and the constraints in MAXwSAT-LP2

respectively.

Now we analyze the high variance instances. We prove the following lemma that proves that at
the end of the algorithm, the activedegree of high variance instances is small, and is dominated by
the activedegree of any variable that was included in S “early on”.

Lemma 5.6 For all high variance instances ` P rks, we have

1. activedegreeS‹pW`q ď wp1´ γqt.

2. For each of the first t{2 variables that were brought inside S‹ because of instance `, the total
weight of constraints incident on each of that variable and totally contained inside S‹ is at
least 10 ¨ activedegreeS‹pW`q.

The crucial observation is that when a variable u is brought into S because of an instance `, the
activedegree of u is at least a γ fraction of the total activedegree of instance `. Thus, the activedegree
of instance ` goes down by a multiplicative factor of p1´γq. This immediately implies the first part
of the lemma. For the second part, we use the fact that t is large, and hence the activedegree of
early vertices must be much larger than the final activedegree of instance `.

Proof: Consider any high variance instance ` P rks. Initially, when S “ H, we have activedegreeHpW`q ď

w since the weight of every constraint is counted at most w times, once for each of the 2 active
variables of the constraint, and

ř

CPCW`pCq “ 1. For every v, note that activedegreeS2
pv,W`q ď

activedegreeS1
pv,W`q whenever S1 Ď S2.

Let u be one of the variables that ends up in S‹ because of instance `. Let Su denote the set S Ď
S‹ just before u was brought into S‹. When u is added to Su, we know that activedegreeSupu,W`q ě

γ¨activedegreeSupW`q.Hence, activedegreeSuYtuupW`q ď activedegreeSupW`q´activedegreeSupu,W`q ď

p1´γq¨activedegreeSupW`q. Since t variables were brought into S‹ because of instance `, and initially
activedegreeHpW`q ď w, we get activedegreeS‹pW`q ď wp1´ γqt.

Now, let u be one of the first t{2 variables that ends up in S‹ because of instance `. Since at least
t{2 variables are brought into S‹ because of instance `, after u, as above, we get activedegreeS‹pW`q ď

p1´γqt{2 ¨activedegreeSupW`q. Combining with activedegreeSupu,W`q ě γ ¨activedegreeSupW`q, we get

activedegreeSupu,W`q ě γp1´γq´t{2activedegreeS‹pW`q, which is at least 11 ¨activedegreeS‹pW`q, by
the choice of parameters. Since any constraint incident on a vertex in V zS‹ contributes its weight
to activedegreeS‹pW`q, the total weight of constraints incident on u and totally contained inside S‹

is at least 10 ¨ activedegreeS‹pW`q as required.

We now describe a procedure Perturb (see Figure 11) which takes h‹ : S‹ Ñ t0, 1u and
g : V zS‹ Ñ t0, 1u, and produces a new h : S‹ Ñ t0, 1u such that for all (low variance as well
as high variance) instances ` P rks, valph Y g,W`q is not much smaller than valph‹ Y g,W`q, and
furthermore, for all high variance instances ` P rks, valphY g,W`q is large. The procedure works by
picking a special variable in S‹ for every high variance instance and perturbing the assignment of
h‹ to these special variables. The crucial feature used in the perturbation procedure, which holds
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Input: h‹ : S‹ Ñ t0, 1u and g : V zS‹ Ñ t0, 1u
Output: A perturbed assignment h : S‹ Ñ t0, 1u.

1. Initialize hÐ h‹.

2. For ` “ 1, . . . , k, if instance ` is a high variance instance case (i.e., count` “ t), we pick a
special variable v` P S

‹ associated to this instance as follows:

(a) Let B “ tv P V | D` P rks with
ř

CPC,CQvW`pCq ¨CphYgq ě
ε

2k ¨valphYg,W`qu. Since

the weight of each constraint is counted at most w times, we know that |B| ď 2wk2

ε .

(b) Let U be the set consisting of the first t{2 variables brought into S‹ because of instance
`.

(c) Since t{2 ą |B| ` k, there exists some u P U such that u R B Y tv1, . . . , v`´1u. We
define v` to be u.

(d) By Lemma 5.6, the total W` weight of constraints that are incident on v` and only
containing variables from S‹ is at least 10¨activedegreeS‹pW`q. We update h by setting
hpv`q to be that value from t0, 1u such that at least half of the W` weight of these
constraints is satisfied.

3. Return the assignment h.

Figure 11: Procedure Perturb for perturbing the optimal assignment

for Max-w-SAT (but not for Max-2-AND), is that it is possible to satisfy a constraint by just
changing one of the variables it depends on. The partial assignment h is what we will be using
to argue that Step 4. of the algorithm produces a good Pareto approximation. More formally, we
have the following Lemma.

Lemma 5.7 For the assignment h obtained from Procedure Perturb (see Figure 11), for each
` P rks, valph Y g,W`q ě p1 ´ ε{2q ¨ valph‹ Y g,W`q. Furthermore, for each high variance instance
W`, valphY g,W`q ě 4 ¨ activedegreeS‹pW`q.

Proof: Consider the special variable v` that we choose for high variance instance ` P rks. Since
v` R B, the constraints incident on v` only contribute at most a ε{2k fraction of the objective value
in each instance. Thus, changing the assignment v` can reduce the value of any instance by at most
a ε

2k fraction of their current objective value. Also, we pick different special variables for each high
variance instance. Hence, the total effect of these perturbations on any instance is that it reduces
the objective value (given by h‹Y g) by at most 1´ p1´ ε

2k q
k ď ε

2 fraction. Hence for all instances
` P rks, valphY g,W`q ě p1´ ε{2q ¨ valph‹ Y g,W`q.

For a high variance instance ` P rks, since v` P U, the variable v` must be one of the first t{2

variables brought into S‹ because of `. Hence, by Lemma 5.6 the total weight of constraints that are
incident on v` and entirely contained inside S‹ is at least 10 ¨activedegreeS‹pW`q. Hence, there is an
assignment to v` that satisfies at least at least half the weight of these Max-w-SAT constraints7

7This is not true if they are Max-2-AND constraints.
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in `. At the end of the iteration, when we pick an assignment to v`, we have valph Y g,W`q ě

5¨activedegreeS‹pW`q. Since the later perturbations do not affect value of this instance by more than
ε{2 fraction, we get that for the final assignment h, valphYg,W`q ě p1´ε{2q¨5 ¨activedegreeS‹pW`q ě

4 ¨ activedegreeS‹pW`q.

Given all this, we now show that with high probability the algorithm finds an assignment that
satisfies, for each ` P rks, at least p3{4 ´ εq ¨ c` weight from instance W`. The following theorem
immediately implies Theorem 1.3.

Theorem 5.8 Let w be a constant. Suppose we’re given ε P p0, 2{5s, k simultaneous Max-w-SAT
instances W1, . . . ,W` on n variables, and target objective value c1, . . . , ck with the guarantee that
there exists an assignment f‹ such that for each ` P rks, we have valpf‹,W`q ě c`. Then, the

algorithm Sim-MaxwSAT runs in time 2Opk
3
{ε2 logpk{ε2qq ¨ polypnq, and with probability at least 0.9,

outputs an assignment f such that for each ` P rks, we have, valpf,W`q ě p3{4´ εq ¨ c`.

Proof: Consider the iteration of Step 4. of the algorithm when h0 is taken to equal h‹. Then, by
Part 1 of Theorem 5.1, the LP in Step 4.a will be feasible (this uses the fact that valpf‹,W`q ě c`
for each `).

By Lemma 5.5 and a union bound, with probability at least 1´ kδ0 ą 0.9, over the choice of g,
we have that for every low variance instance ` P rks, valph‹Y g,W`q ě p3{4´ ε{2q ¨ c`. Henceforth we
assume that the assignment g sampled in Step 4.b of the algorithm is such that this event occurs.
Let h be the output of the procedure Perturb given in Figure 11 for the input h‹ and g. By
Lemma 5.7, h satisfies

1. For every instance ` P rks, valphY g,W`q ě p1´ ε{2q ¨ valph‹ Y g,W`q.

2. For every high variance instance ` P rks, valphY g,W`q ě 4 ¨ activedegreeS‹pW`q.

We now show that the desired Pareto approximation behavior is achieved when h is considered as
the partial assignment in Step 4.c of the algorithm. We analyze the guarantee for low and high
variance instances separately.

For any low variance instance ` P rks, from property 1 above, we have valphYg,W`q ě p1´ ε{2q ¨

valph‹Yg,W`q. Since we know that valph‹Yg,W`q ě p3{4´ε{2q¨c`, we have valphYg,W`q ě p3{4´εq¨c`.
For every high variance instance ` P rks, since h‹ “ f‹|S‹ , for any g we must have,

valph‹ Y g,W`q ě valpf‹,W`q ´ activedegreeS‹pW`q ě c` ´ activedegreeS‹pW`q.

Combining this with properties 1 and 2 above, we get,

valphY g,W`q ě p1´ ε{2q ¨maxtc` ´ activedegreeS‹pW`q, 4 ¨ activedegreeS‹pW`qu

ě p3{4´ εq ¨ c`.

Thus, for all instances ` P rks, we get valph Y gq ě p3{4´ εq ¨ c`. Since we are taking the best
assignment hY g at the end of the algorithm Sim-MaxwSAT, the theorem follows.

Running time : Running time of the algorithm is 2Opktq ¨ polypnq which is 2Opk
3
{ε2 logpk{ε2qq ¨

polypnq.
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A Hardness results for large k

In this section, we prove our hardness results for simultaneous CSPs. Recall the theorem that we
are trying to show.

Theorem A.1 (restated) Assume the Exponential Time Hypothesis. Let F be a fixed finite set
of Boolean predicates. If F is not 0-valid or 1-valid, then for k “ ωplog nq, then detecting positivity
of k-fold simultaneous MAX-F-CSPs on n variables requires time superpolynomial in n.

The main notion that we will use for our hardness reductions is the notion of a “simultaneous-
implementation”.

Definition A.2 (Simultaneous-Implementation) Let tx1, . . . , xwu be a collection of variables
(called primary variables). Let P : t0, 1uw Ñ tTrue,Falseu be a predicate. Let ty1, . . . , ytu be
another collection of variables (called auxiliary variables).

Let C1, . . . , Ck be sets of constraints on tx1, . . . , xw, y1, . . . , ytu, where for each i P rks, Ci consists
of various applications of predicates to tuples of distinct variables from tx1, . . . , xw, y1, . . . , ytu. We
say that C1, . . . , Ck simultaneously-implements P if for every assignment to x1, . . . , xw, we have,

• If P px1, . . . , xwq “ True, then there exists a setting of the variables y1, . . . , yt such that each
collection C1, . . . , Ck has at least one satisfied constraint.

• If P px1, . . . , xwq “ False, then for every setting of the variables y1, . . . , yt, at least one of the
collections C1, . . . , Ck has no satisfied constraints.

We say that a collection of predicates F simultaneously-implements P if there is a simultaneous-
implementation of P where for each collection Ci (i P rks), every constraint in Ci is an application
of some predicate from F .

The utility of simultaneous-implementation lies in the following lemma.

Lemma A.3 Let P be a predicate. Suppose checking satisfiability of CSPs on n variables with
m constraints, where each constraint is an application of the predicate P , requires time T pn,mq,
with T pn,mq “ ωpm ` nq. Suppose F simultaneously-implements P . Then detecting positivity of
Opmq-fold simultaneous MAX-F-CSP on Opm` nq variables requires time ΩpT pn,mqq.

Proof: Suppose we have a P -CSP instance Φ with m constraints on n variables. For each of the
constraints C P Φ, we simultaneously-implement C using the original set of variables as primary
variables, and new auxiliary variables for each constraint. Thus, for every C P Φ, we obtain k
MAX-F-CSP instances CC1 , . . . , CCk , for some constant k. The collection of instances tCCi uCPΦ,iPrks
constitute the Opmq-simultaneous MAX-F-CSP instance on Opm` nq variables.

If Φ is satisfiable, we know that there exists an assignment to the original variables such that each
C P Φ is satisfied. Hence, by the simultaneously-implements property, there exists as assignment to
all the auxiliary variables such that each CCi has at least one satisfied constraint. If Φ is unsatisfiable,
for any assignment to the primary variables, at least one constraint C must be unsatisfied. Hence,
by the simultaneously-implements property, for any assignment to the auxiliary variables, there is
an i P rks such that CCi has no satisfied constraints. Thus, our simultaneous MAX-F-CSP instance
has a non-zero objective value iff Φ is satisfiable. Since this reduction requires only Opm`nq time,
suppose we require T 1 time for detecting positivity of a Opmq-simultaneous MAX-F-CSP instance
on Opm ` nq variables, we must have T 1 ` Opm ` nq ě T pm,nq, giving T 1 “ ΩpT pm,nqq since
T pm,nq “ ωpm` nq.
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The simultaneous-implementations we construct will be based on a related notion of implemen-
tation arising in approximation preserving reductions. We recall this definition below.

Definition A.4 (Implementation) Let x1, . . . , xw be a collection of variables (called primary
variables). Let P : t0, 1uw Ñ tTrue,Falseu be a predicate.

Let y1, . . . , yt be another collection of variables (called auxiliary variables). Let C1, . . . , Cd be
constraints on tx1, . . . , xw, y1, . . . , ytu, where for each i P rds, the variables feeding into Ci are all
distinct.

We say that C1, . . . , Cd e-implements P if for every assignment to x1, . . . , xw we have,

• If P px1, . . . , xwq “ True, then there exists a setting of the variables y1, . . . , yt such that at
least e of the constraints C1, . . . , Cd evaluate to True.

• If P px1, . . . , xwq “ False, then for every setting of the variables y1, . . . , yt, at most e ´ 1 of
the constraints C1, . . . , Cd evaluate to True.

We say that a collection of predicates F implements P if there is some e and an e-implementation
of C where all the constraints C1, . . . , Cd come from F .

We will be using following predicates in our proofs.

• Id,Neg : These are the unary predicates defined as Idpxq “ x and Negpxq “ x̄.

• NAE: w-ary NAE predicate on variables x1, . . . , xw is defined as NAEpx1, . . . , xwq “ False iff
all the xi’s are equal.

• Equality : Equality is a binary predicate given as Equalitypx, yq “ True iff x equals y.

We will use the following Lemmas from [KSTW01].

Lemma A.5 ([KSTW01]) Let f be a predicate which is not 0-valid, and which is closed under
complementation. Then tfu implements XORpx, yq.

Lemma A.6 ([KSTW01]) Let f be a predicate not closed under complementation, and let g be
a predicate that is not 0-valid. Then tf, gu implements Id, and tf, gu implements Neg.

We will now prove lemmas that will capture the property of simultaneous implementation which
will be used in proving Theorem A.1.

Lemma A.7 If tfu simultaneously-implements predicate XOR on two variables, then tfu also
simultaneously-implements the predicate NAE on three variables.

Proof: Consider an NAE constraint NAEpx, y, zq. Let A1, . . . ,Ad be the simultaneous imple-
mentation of constraint XORpx, yq, using predicate f and a set of auxiliary variables y1, . . . , yt for
some t. Similarly, let B1, . . . ,Bd and C1, . . . , Cd be the simultaneous implementation of constraint
XORpy, zq and XORpx, zq respectively using f and on a same set of auxiliary variables y1, . . . , yt,
constructed by replacing the variables px, yq in tA1, . . . ,Adu with py, zq and px, zq respectively. We
construct sets of constraints D1, . . . ,Dd as follows: for each i P rds, Di consists of all constraints
from Ai,Bi, and Ci. We now show that tD1, . . . ,Ddu simultaneously-implement NAEpx, y, zq.

First, notice that NAEpx, y, zq is False iff all constraints XORpx, yq, XORpy, zq and XORpx, zq
are False. Consider the case when NAEpx, y, zq is False. Since we are using same set of auxiliary
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variables and the implementation is symmetric, for every setting of variables y1, . . . , yt, there exists
a fixed i P rds such that each of Ai,Bi and Ci has no satisfied constraints. And hence, instance Di
has no satisfied constraints. If NAEpx, y, zq is True then at least one of XORpx, yq, XORpy, zq or
XORpx, zq must be True. Without loss of generality, we assume that XORpx, yq is True. Thus,
there exists a setting of variables y1, . . . , yt such that each of A1, . . . ,Ad, has at least one satisfied
constraint, and hence each of D1, . . . ,Dd too has at least one such constraint.

Lemma A.8 Let f be a predicate not closed under complementation, not 0-valid and not 1-valid.
f can simultaneously-implement Equality.

Proof: Consider an equality constraint Equalitypx, yq, our aim is to simultaneously-implement
this constraint using predicate f.

Since f satisfies the properties of Lemma A.6, we can implement Idpxq and Idpyq using f. Let
XT

1 , . . . , X
T
d1

be an e1-implementation of Idpxq using f and some set of auxiliary variables A1 for

some e1 ă d1. Similarly, let Y T
1 , . . . , Y

T
d1

be an e1-implementation of Idpyq using f and a set of
auxiliary variables A2.

We can also implement Negpxq and Negpyq using f. Let XF
1 , . . . , X

F
d2

be an e2-implementation

of Negpxq using f and a set of auxiliary variables B1 for some e2 ă d2. Similarly, let Y F
1 , . . . , Y

F
d1

be an e2-implementation of Negpyq using f and a set of auxiliary variables B2.
We now describe the construction of the simultaneous-implementation. The implementation

uses all auxiliary variables in A1, A2, B1, and B2. Each instance in the simultaneous-implementation
is labeled by a tuple pM,N, a, bq where M Ď rd1s with |M | “ d1 ´ e1 ` 1, N Ď rd2s with |N | “
d2 ´ e2 ` 1, and pa, bq P tpT, F q, pF, T qu. An instance corresponding to a tuple pM,N, a, bq has
following set of constraints in f :

tXa
m, Y

b
m|m PM,n P Nu

We will now prove the simultaneous-implementation property of the above created instance. Con-
sider the case when x “ y “ True (other case being similar). We know that in this case, there
exists a setting of auxiliary variables A1 used in the implementation of Idpxq which satisfies at least
e1 constraints out of XT

1 , . . . , X
T
d1
. Similarly, there exists a setting of auxiliary variables A2 used

in the implementation of Idpyq which satisfies at least e1 constraints out of Y T
1 , . . . , Y

T
d1
. Fix this

setting of auxiliary variables in A1, A2, and any arbitrary setting for auxiliary variables in B1 and
B2. Thus, the instance labeled by tuple the pM,N, a, bq either contains d1´ e1`1 constraints from
XT

1 , . . . , X
T
d1

if a “ T, or else, it contains d1´ e1` 1 constraints from Y T
1 , . . . , Y

T
d1

. In any case, the
property of e1-implementation implies that at least one constraint is satisfied for this instance.

Now we need to show that if x ‰ y, then for any setting of auxiliary variables, there exists an
instance which has no satisfied constraints. Consider the case when x “ True and y “ False
(other case being similar). Consider any fixed assignment to the auxiliary variables in A1, A2, B1,
and B2. We know that for this fixed assignment to the auxiliary variables in B1, there exists a
subset N Ď rd2s of size at least d2´ e2` 1, such that all constraints in tXF

j |j P Nu are unsatisfied.
Similarly, for this fixed assignment to variables in A2, there exists a subset M Ď rd1s of size at least
d1´e1`1 such that all constraints in tY T

i |i PMu are unsatisfied. Thus, the instance corresponding
to tuple pM,N,F, T q has no satisfied constraints.

We now prove Theorem A.1.
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Proof: We take cases on whether F contains some f which is closed under complementation.

Case 1: Suppose there exists some f P F which is closed under complementation. In this case,
it is enough to show that f simultaneously-implements XOR. To see this, assume that we can
simultaneously-implement XOR using f . Hence, by Lemma A.7, we can simultaneously-implement
the predicate NAE on three variables using f . We start with an NAE-3-SAT instance φ, on n
variables with m constraints. For each constraint C P φ, we create a set of Op1q many instances
which simultaneously-implement C. The final simultaneous instance is the collection of all instances
that we get with each simultaneous-implementation of constraints in φ.

In the completeness case, when φ is satisfiable, then by the property of simultaneous-implementation,
we have that there exists a setting of auxiliary variables, from each implementation of NAE con-
straints, such that each instance has at least one constraint satisfied. And hence, the value of the
final simultaneous instance is non zero.

In the soundness case, for any assignment to the variables x1, . . . , xn there exists a constraint
(say C) which is not satisfied. Hence one of the instance from the simultaneous implementation of
this constraint has value zero no matter how we set the auxiliary variables. And hence, the whole
simultaneous instance has value zero in this case.

To prove the theorem in this case, it remains to show that we can simultaneously-implement
XORpx, yq using f. Since f is closed under complementation, we can e-implement XOR using f
(for some e) by Lemma A.5. Let C1, . . . , Cd be the set of f -constraints that we get from this
e-implementation, e ă d. The collection of instances contains one instance for every subset J Ď rds
of size d´ e` 1. The instance labeled by J Ď rds contains all constraints from the set tCj |j P Ju.

Hence, there
`

d
e´1

˘

instances in the collection. Note that we used the same set of auxiliary variables
in this simultaneous-implementation. We now show that this collection of instances simultaneously-
implements XORpx, yq. To see this, consider the case when XORpx, yq is True. Thus. there is an
assignment to the auxiliary variables that satisfies at least e constraints out of C1, . . . , Cd. Hence,
for this particular assignment, the instance labeled by J, where J Ă rds is any subset of size d´e`1,
has at least one satisfied constraint. When XORpx, yq is False, then for any assignment to the
auxiliary variables, there is some J Ď rds of size d ´ e ` 1 such that no constraints in the set
tCj |j P Ju are satisfied. Hence, for this assignment, the instance labeled with J has no satisfied
constraints. This shows that f simultaneously-implements predicate XOR on two variables.

Combining the two arguments above, we get that tfu simultaneously-implements 3-NAE. Since
3-NAE has a linear time gadget reduction from 3-SAT [Sch78], and the ETH implies that 3-SAT on
s variables and Opsq clauses requires time 2Ωpsq [IP01, IPZ01], we get that checking satisfiability of a
3-NAE instance with ωplog nq constraints on ωplog nq variables requires time super-polynomial in n.
Thus, using Lemma A.3 implies that detecting positivity of an ωplog nq-simultaneous MAX-f -CSP
requires time superpolynomial in n.

Case 2: Suppose that for all f P F , f is not closed under complementation. Let f P F be any
predicate of arity r. Since, f is not closed under complementation, there exist α, β P t0, 1ur that
satisfy αi ‘ βi “ 1 for all i P rrs, and fpαq “ 0, fpβq “ 1. We can reduce a 3-SAT instance with
n variables and m “ polypnq clauses to m simultaneous instances over n variables involving the
predicate f. For every clause C of the form x _ y _ z, we create an instance with 3 equal weight
constraints tfpα‘px, . . . , xqq, fpα‘py, . . . , yqq, fpα‘pz, . . . , zqqu, where ‘ denotes bitwise-xor, or
equivalently, we negate the variable in the i-th position iff αi “ 1.

It is straightforward to see that the original 3-SAT formula is satisfiable if and only if there is
an assignment to the variables that simultaneously satisfies a non zero fraction of the constraints
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in each of the instances.
In the above reduction, we must be able to apply the predicate to several copies of the same

variable. In order to remove this restriction, we replace each instance with a collection C of instances
as follows: Consider an instance tfpα ‘ px, . . . , xqq, fpα ‘ py, . . . , yqq, fpα ‘ pz, . . . , zqqu. We add
to our collection C, an instance tfpα‘ pa1, . . . , arqq, fpα‘ pb1, . . . , brqq, fpα‘ pc1, . . . , crqqu, where
ai, bi and ci for all i P rrs, are the fresh set of variables. Using Lemma A.8, we can simultaneously-
implement each constraint of the form x “ ai, y “ bi and z “ ci using f . We add all the instances
obtained from the simultaneous-implementations to the collection C. Notice that, we have replaced
each original instance with only Op1q many instances. Hence, we have Opmq many instances in our
final construction. Thus, as in the first case, assuming ETH we deduce that detecting positivity of
an ωplog nq-simultaneous MAX-f -CSP requires time super-polynomial in n.

A.1 Hardness for Simultaneous Max-w-SAT

Proposition A.9 (Proposition 1.1 restated) For all integers w ě 4 and ε ą 0, given k ě 2w´3

simultaneous instances of Max-Ew-SAT that are simultaneously satisfiable, it is NP-hard to find
a p7{8` εq-minimium approximation.

Proof: We know that given a satisfiable Max-E3-SAT instance, it is NP-hard to find an
assignment that satisfies a p7{8`εq fraction of the constraints [H̊as01]. We reduce a single Max-E3-
SAT instance to the given problem as follows : Let Φ be an instance of Max-E3-SAT with clauses
tCiu

m
i“1 on variable set tx1, . . . , xnu. Given w ě 4, let tz1, . . . , zw´3u be a fresh set of variables. For

every, a P t0, 1uw´3, we construct a Max-Ew-SAT instance with clauses tCi __
w
j“1pzj ‘ ajqu

m
i“1,

where zj ‘ 0 “ zj and zj ‘ 1 “ z̄j . It is straightforward to see that for any assignment, its value on
Φ is the same as the minimum of its value on the Max-Ew-SAT instances, immediately implying
the result.

B Algorithm for Unweighted Max-CUT

For simultaneous unweighted Max-CUT instances, we can use the Goemans-Williamson SDP to
obtain a slightly better approximation. The algorithm, UnweightedMC, is described in Figure 12.

Let V be the set of vertices. Our input consists of an integer k ě 1, and k unweighted instances
of Max-CUT, specified by indicator functionsW1, . . . ,Wk of edge set. Let m` denotes the number
of edges in graph ` P rks. We consider these graphs as weighted graphs with all non-zero edge
weights as 1

m`
so that the total weight of edges of in a graph is 1. For a given subset S of vertices,

we say an edge is active if at least one of its endpoints is in V zS.

B.1 Analysis of Sim-UnweightedMC

For analysing the algorithm Sim-UnweightedMC, we need the following lemma that is proven by
combining SDP rounding for 2-SAT from [CMM06] with a Markov argument. A proof is included
in Section C for completeness.

Lemma B.1 For k simultaneous instances of any MAX-2-CSP such that there exists an assign-
ment which satisfies a 1´ ε weight of the constraints in each of the instances, there is an efficient
algorithm that, for n large enough, given an optimal partial assignment h to a subset of variables,
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Input: k unweighted instances of Max-CUT W1, . . . ,Wk on the vertex set V .
Output: A cut of V.

1. Set ε
def
“ 1

1600¨c20k
2 , t “

100k
ε2
, S “ H, D “ H (c0 is the constant from Lemma B.1).

2. If every graph has more than t edges, then go to Step 4..

3. Repeat until there is no ` P rkszD such that the instanceW` has less than t3
|D|

active edges
given S.

(a) Let ` P rks be an instance with the least number of edges active edges given S.

(b) Add all the endpoints of the edge set of instance W` into set S.

(c) D Ð D Y `

4. For each partial assignment h : S Ñ t0, 1u (If S “ H then do the following steps without
considering partial assignment h)

(a) Run the SDP algorithm for instances in rks given by Lemma B.1 with h as a partial
assignment. Let h1 be the assignment returned by the algorithm. (Note h1|S “ h)

(b) Define g : V zS Ñ t0, 1u by independently sampling gpvq P t0, 1u with Ergpvqs “ 1{2,
for each v P V zS. In this case the cut is given by an assignment hY g.

(c) Let outh be the better of the two solutions (h1 and hY g).

5. Output the largest outh seen.

Figure 12: Algorithm Sim-UnweightedMC for approximating unweighted simultaneous
Max-CUT

returns a full assignment which is consistent with h and simultaneously satisfies at least 1´ c0k
?
ε

(for an absoute constant c0) fraction of the constraints in each instance with probability 0.9.

Let S‹, D‹ denote the set S and D that we get at the end of step 3 of the algorithm Sim-
UnweightedMC. Let f‹ : V Ñ t0, 1u denote the optimal assignment and let h‹ “ f‹|S

‹.

Theorem B.2 For large enough n, given k simultaneous unweighted Max-CUT instances on n
vertices, the algorithm Sim-UnweightedMC returns computes a

`

1
2 ` Ω

`

1
k2

˘˘

-minimum approx-

imate solution with probability at least 0.9. The running time is 222
Opkq

¨ polypnq.

Proof: We will analyze the approximation guarantee of the algorithm when the optimal partial
assignment h‹ to the variables S‹ is picked for h in Step 4. of the algorithm. Note that Step 4.a
and 4.b maintain the assignment to the set S‹ given in Step 4. Hence, for all instances ` P D‹, we
essentially get the optimal cut value valpf‹,W`q. We will analyze the effect of rounding done in
Step 4.a and 4.b on instances in rkszD‹ for a partial assignment h‹ to S‹. Since we are taking the
best of the two roundings, it is enough to show the claimed guarantee for at least one of these two
steps.

Let Opt be the value of optimal solution for a given set of instances rks. We consider two cases
depending on the value of this optimal solution.
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1. Opt ě p1 ´ εq: In this case, we show that the cut returned in Step 4.a is good with high
probability.

Since the Opt is at least p1 ´ εq, and h‹ is an optimal partial assignment, we can apply
Lemma B.1 such that with probability at least 0.9 we get a cut of value at least p1´ 10c0k ¨

?
εq for

all graphs ` P rkszD‹, for some constant c0. In this case, the approximation guarantee is at least :

p1´ 10c0k ¨
?
εq ě

3

4
.

2. Opt ă p1 ´ εq: In this case, we show that the cut returned in Step 4.b gives the claimed
approximation guarantee with high probability.

Fix a graph ` P rkszD‹, if any. Let m` be the number of edges in this graph. We know that

m` ě t3
|D‹|

and also |S‹| ď 4t3
|D‹|´1

. Let Y` be a random variable defined as

Y`
def
“ valph‹ Y g,W`q,

that specifies the fraction of total edges that are cut by assignment h‹ Y g where g is a random
partition g of a vertex set V zS‹. The number of edges of graph ` that are not active given S‹ is at
most 1{2 ¨ |S‹|2. If |D‹| “ 0, we know that all the edges in graph ` are active. Otherwise, using the
bounds on m` and |S‹|, we get that at least a p1´ 1{tq fraction of the total edges are active given
S‹. This implies that for uniformly random partition g,

EgrY`s ě
1

2

ÿ

CPC
CPActivepS‹q

W`pCq ě 1{2p1´ 1{tq.

We now analyze the variance of a random variable Y` under uniformly random assignment g :
V zS‹ Ñ t0, 1u.

VargrY`s “
ÿ

C1,C2PActivepS‹q

WpC1qWpC2q ¨ pErC1ph
‹ Y gqC2ph

‹ Y gqs ´ErC1ph
‹ Y gqsErC2ph

‹ Y gqsq.

The term in the above summation is zero unless we have either C1 “ C2 (in which case we know
ErC1ph

‹ Y gqC2ph
‹ Y gqs ´ErC1ph

‹ Y gqsErC2ph
‹ Y gqs “ 1{4) or when the edges C1 and C2 have a

common endpoint in V zS‹ and the other endpoint in S‹ (in this case ErC1ph
‹ Y gqC2ph

‹ Y gqs ´
ErC1ph

‹ Y gqsErC2ph
‹ Y gqs ď 1{4). For v P V zS‹, let κv be the set of edges whose one endpoint is

v and other endpoint in S‹. Thus,

VargrY`s ď
1

4

ÿ

CPActivepS‹q

WpCq2 ` 1

4

ÿ

vPV zS‹

ÿ

C1,C2Pκv

WpC1qWpC2q

“
1

4m`
`

1

4

1

m2
`

ÿ

vPV zS‹

|κv|
2

ď
1

4m`
` max
vPV zS‹

|κv| ¨
1

4

1

m2
`

ÿ

vPV zS‹

|κv|

ď
1

4m`
` |S‹| ¨

1

4

1

m2
`

¨m`
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ď
1

4m`
`

1

4

|S‹|

m`

ď
1

4t3|D
‹|
`

1

4

|S‹|

t3|D
‹|
ď

1

2t
.

Hence, by Chebyshev’s Inequality, we have

Pr

„

Y` ă
1

2
¨ p1´ ε0 ´ 1{tq



ď
4 VargrY`s

ε2
0

ď
4 ¨ 1{2t

ε2
0

ď
2

ε2
0t
.

By a union bound, with probability at least 1´ 2k
ε20¨t

, we get a simultaneous cut of value at least

1
2 ¨ p1´ ε0 ´ 1{tq for all ` P rkszD‹. If we take ε0 “

?
20k?
t

, then with probability at least 0.9 we get a

cut of value at least 1
2 ¨ p1´ ε0 ´ 1{tq for all ` P rkszD‹. In this case, the approximation guarantee

is at least
1
2 ¨ p1´ ε0 ´ 1{tq
´

1´ 1
p40c0kq2

¯ “

ˆ

1

2
` Ω

ˆ

1

k2

˙˙

.

C Semidefinite Programs for Simultaneous Instances

In this section, we study Semidefinite Programming (SDP) relaxations for simultaneous MAX-2-
CSP instances.

C.1 Integrality gaps for Simultaneous Max-CUT SDP

In this section, we show the integrality gaps associated with the natural SDP of minimum approx-
imation problem for k-fold simultaneous Max-CUT.

Suppose we have k simultaneous Max-CUT instances on the set of vertices V “ tx1, . . . , xnu,
specified by the associated weight functions W1, . . . ,Wk. As before, let C denotes the set of all
possible edges on V. We assume that for each ` P rks,

ř

CPCW`pCq “ 1. Following Goemans and
Williamson [GW95], the semi-definite programming relaxation for such an instance is described in
Figure 13. We now prove the following claims about integrality gap for the above SDP.

maximize t

s.t.
ÿ

CPC
C“pxi,xjq

1

2
¨W`pCq ¨ p1´ xvi, vjyq ě t @` P rks

‖vi‖2 “ 1 for i “ 1, . . . , n

Figure 13: Semidefinite Program (SDP) for minimum approximation Simultaneous Max-CUT

Claim C.1 For weighted instances, the SDP for minimum approximation of simultaneous Max-CUT
does not have any constant integrality gap.
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Proof: Consider 3 simultaneous instances such that all but a tiny fraction of the weight of
instance i is on edge i of a 3-cycle. Clearly, no cut can simultaneously cut all the three edges in the
three cycle, and hence the optimum is tiny. However, for the simultaneous SDP, a vector solution
that assigns to the three vertices of the cycle three vectors such that xvi, vjy “ ´1{2 for i ‰ j gives
a constant objective value for all three instances.

Claim C.2 For every fixed k, there exists k-instances of Max-CUT where the SDP relaxation
has value 1´Ω

`

1
k2

˘

, while the maximum simultaneous cut has value only 1
2 . Moreover, the random

hyperplane rounding for a good vector solution for this instance, returns a simultaneous cut of value
0.

Proof: Let k be odd. We define k graphs on kn vertices. Partition the vertex set into
S0, S1, ..., Sk´1, each of size n. Graph Gi has only edges px, yq such that x P Si ans y P Spi`1q mod k,
each of weight 1{n2. The optimal cut must contain exactly half the number of vertices from each
partition, giving a simultaneous cut value of 1{2. Whereas, the following SDP vectors achieve a
simultaneous objective of

`

1´Op 1
k2
q
˘

: For all vertices in Si, we assign the vector
`

cos i
kπ, sin

i
kπ

˘

.
It is straightforward to see that applying the hyperplane rounding algorithm to this vector solution
gives (with probability 1) a simultaneous cut value of 0.

C.2 SDP for Simultaneous Max-CSP

For Max-CSP, we will be interested in the regime where the optimum assignment satisfies at least
a p1´ εq fraction of the constraints in each of the instances.

Given a MAX-2-CSP instance, we use the standard reduction to transform it into a MAX-2-
SAT instance: We reduce each constraint of the 2-CSP instance with a set of at most 4 2-SAT
constraints such that for any fixed assignment, the 2-CSP constraint is satisfied iff all the 2-SAT
constraints are satisfied, and if the 2-CSP constraint is not satisfied, then at least one of the 2-SAT
constraint is not satisfied. e.g. We replace x1^x2 with x1_x2,Ďx1_x2, and x1_Ďx2. Similarly, we
replace x1 ‰ x2 with x1_x2 and Ďx1_Ďx2. We distribute the weight of the 2-CSP constraint equally
amongst the 2-SAT constraints.

Given k simultaneous MAX-2-CSP instances, we apply the above reduction to each of the
instances to obtain k simultaneous Max-2-SAT instances. The above transformation guarantees
the following:

• Completeness If there was an assignment of variables that simultaneously satisfied all the
constraints in each of the MAX-2-CSP instances, then the same assignment satisfies all the
constraints in each of the Max-2-SAT instances.

• Soundness If no assignment of variables simultaneously satisfied more than p1´ εq weighted
fraction of the constraints in each of the MAX-2-CSP instances, then no assignment simul-
taneously satisfies more than p1 ´ ε{4q weighted fraction of the constraints in each of the
MAX-2-SAT instances.

From now on, we will assume that we have k simultaneous Max-2-SAT instances on the set of
variables tx1, . . . , xnu, specified by the associated weight functionsW1, . . . ,Wk. As before C denotes
the set of all possible 2-SAT constraints on V. We assume that for each ` P rks,

ř

CPCW`pCq “ 1.
Following Charikar et al. [CMM06], the semi-definite programming relaxation for such an instance
is described in Figure 14.
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For convenience, we replace each negation sxi with a new variable x´i, that is equal to Ďx1 by
definition. For each variable xi P V, the SDP relaxation will have a vector vi. We define v´i “ ´vi.
We will also have a unit vector v0 that is intended to represent the value 1. For a subset S of
variables and a partial assignment h : S Ñ t0, 1u, we write the following SDP for the simultaneous
Max-2-SAT optimization problem:

maximize t

s.t.
ÿ

CPC
C“xi_xj

W`pCq ¨

ˆ

‖v0‖2 ´
1

4
xvi ´ v0, vj ´ v0y

˙

ě t @` P rks

xvi ´ v0, vj ´ v0y ě 0 @ constraints xi _ xj
‖vi‖2 “ 1 for i “ ´n, . . . , n

vi “ ´v´i for i “ 1, . . . , n
vi “ v0 @i P S s.t. hpiq “ 1
vj “ ´v0 @j P S s.t. hpjq “ 0

Figure 14: Semidefinite Program (SDP) with a partial assignment h : S Ñ t0, 1u for Simultaneous
Max-2-SAT

We first observe that for an optimal partial assignment h, the optimum of the above SDP is at
least the optimum of the simultaneous maximization problem, by picking the solution vi “ v0 if xi “

True, and vi “ ´v0 otherwise. For this vector solution, we have 1{4¨

´

‖v0‖2 ´ xvi ´ v0, vj ´ v0y

¯

“ 1

if the constraint x1_x2 is satisfied by the assignment, and 0 otherwise. Since
ř

CPCW`pCq “ 1 for
all `, the optimum of the SDP lies between 0 and 1.

Note that the rounding algorithm defined in [CMM06] does not depend on the structure of
the vectors in the SDP solution. Thus, the following theorem that was proved without a partial
assignment in [CMM06] also applies to above SDP.

Theorem C.3 Given a single Max-2-SAT instance (k “ 1), there is an efficient randomized
rounding algorithm such that, if the optimum of the above SDP is 1 ´ ε, for n large enough, it
returns an assignment such that the weight of the constraints satisfied is at least 1 ´ Op

?
εq in

expectation.

Now, using Markov’s inequality, we can prove the following corollary.

Corollary C.4 For k simultaneous instances of Max-2-SAT, there is an efficient randomized
rounding algorithm such that if the optimum of the above SDP is 1 ´ ε, for n large enough, it
returns an assignment that simultaneously satisfies at least 1´Opk

?
εq fraction of the constraints

in each instance with probability 0.9.

Proof: We use the rounding algorithm given by Theorem C.3 to round a solution to the SDP for
the k simultaneous instances that achieves an objective value of 1´ ε. Observe that this solution is
also a solution for the SDP for each of the instances by itself with the same objective value. Thus,
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by Theorem C.3, for each of the instances, we are guaranteed to find an assignment such that the
weight of the constraints satisfied is at least 1´ c0ε in expectation, for some constant c ą 0. Since,
for any instance, the maximum weight an assignment can satisfy is at most 1, with probability
at least 1 ´ 1{10¨k for each instance, we get an assignment such that the weight of the constraints
satisfied is at least 1´ 10ck ¨

?
ε. Thus, applying a union bound, with probability at least 1´ 1{10,

we obtain an assignment such that the weight of the satisfied constraints in all the k instances is
at least 1´ 10ck ¨

?
ε.

Combining the above corollary with the reduction from any MAX-2-CSP to MAX-2-SAT, and
the completeness of the SDP, we get a proof of Lemma B.1.

D Concentration inequalities

Lemma D.1 (McDiarmid’s Inequality) Let X1, X2, ¨ ¨ ¨ , Xm be independent random variables,
with Xi taking values in a set Ai for each i. Let score :

ś

Ai Ñ R be a function which satisfies:

|scorepxq ´ scorepx1q| ď αi

whenever the vector x and x1 differ only in the i-th co-ordinate. Then for any t ą 0

Prr|scorepX1, X2, ¨ ¨ ¨ , Xmq ´ErscorepX1, X2, ¨ ¨ ¨ , Xmqs| ě ts ď 2 exp

ˆ

´2t2
ř

i α
2
i

˙

E The need for perturbing Opt

We construct 2 simultaneous instances of Max-1-SAT. Suppose the algorithm will picks at most
r influential variables. Construct the two instances on r ` 1 variables, with the weights of the
variables decreasing geometrically, say, with ratio 1{3. The first instance requires all of them to be
True, where as the second instance requires all of them to be False. Under a reasonable definition
of “influential variables”, the only variable left behind should the vertex with the least weight. We
consider the Pareto optimal solution that assigns True to all but the last variable. If we pick the
optimal assignment for the influential variables, and then randomly assign the rest of the variables,
with probability 1{2, we get zero on the second instance.
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