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Abstract

We study internal compression of communication protocols to their internal

entropy, which is the entropy of the transcript from the players’ perspective. We

first show that errorless compression to the internal entropy (and hence to the

internal information) is impossible. We then provide two internal compression

schemes with error. One of a protocol of Fiege et al. for finding the first difference

between two strings. The second and main one is an internal compression with

error ε > 0 of a protocol with internal entropy H int and communication com-

plexity C to a protocol with communication at most order (H int/ε)2 log(log(C)).

This immediately implies a similar compression to the internal information of

public coin protocols, which exponentially improves over previously known public

coin compressions in the dependence on C. It further shows that in a recent

protocol of Ganor, Kol and Raz it is impossible to move the private randomness

to be public without an exponential cost. To the best of our knowledge, no such

example was previously known.

1 Introduction

The problem of compressing information and communication is fundamental and use-

ful. The basic scenario, the transmission problem, was studied in Shannon’s seminal

work [21]. In it Alice wishes to transmit to Bob a message u ∈ U with u that is dis-

tributed according to a known distribution µ over U . Shannon proved that the above

transmission can be optimally compressed in the sense that Alice may send u to Bob

using roughly log(1/µ(u)) many bits on average, and conversely if Alice sends fewer
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than log(1/µ(u)) bits on average then information is lost. In the transmission problem,

the information flow is one way, only Alice talks.

How about more complex communication protocols in which both sides are allowed

to talk? The standard model for interactive communication was introduced by Yao [24].

Interactive communication, not surprisingly, allows for more efficient conversations

than one way ones. For example, the following lemma (which we also use later on)

demonstrates the power of interaction (and of public randomness) in handling a variant

of the transmission problem in which only Bob knows the distribution µ over U .

Lemma 1.1. Let U be a finite set, and 0 < ε < 1/2. Assume Alice knows some ua ∈ U
and that Bob knows a distribution µ on U which Alice does not know. Using public

randomness, Alice and Bob can communicate at most 2 log(1/µ(ua))+log(1/ε)+5 bits,

after which Bob outputs ub so that ua = ub with probability at least 1− ε.

This lemma describes a one shot protocol (i.e. for a single instance) that enables

transmission when Bob has some prior knowledge on Alice’s input. A stronger version

of this lemma was proved in [6] and also in [7], but since this lemma is sufficient for us

and its proof is simpler than that of [6, 7] we provide its proof in Section A.3. A related

result for the case when there is also an underlying distribution on Alice’s input is the

Slepian-Wolf theorem [22] which solves an amortized version of this problem. It is also

related to the transmission problem considered by Harsha et al. [15] who studied the

case that Alice knows µ and Bob wishes to sample from it.

Continuing recent works which we survey below, the main question we study is

compression of interactive communication protocols. Compression of protocols, on a

high level, means to simulate a given protocol π by a more efficient protocol σ whose

communication complexity is roughly the information content of π. It was recently

shown to be strongly related to direct sum and product questions in randomized com-

munication complexity [6, 3, 8].

Our results include impossibility of errorless compression, and new internal com-

pression schemes. We also provide an extensive preliminary discussion of concepts and

basic facts related to compression.

1.1 A preliminary discussion

In this section we provide intuitive definitions of important concepts. See Section 2 for

formal definitions.

Computation and simulation. There is a distinction between external computation and

internal computation [3, 8]. A protocol externally computes a function f if an external

2



observer can deduce the value of f from the transcript, and a protocol internally

computes f if the value of f may be privately obtained by Alice and Bob but not

necessarily by an external observer.

It is interesting that for deterministic protocols these two seemingly different notions

coincide, so the strength of internal computation is evident only in randomized or

distributional settings (the proof is given in Section A.1).

Proposition 1.2. Let f : X ×Y → Z. If π is a deterministic protocol that internally

computes f then it also externally computes f .

External and internal computations induce the corresponding types of simulations.

Here we provide an intuitive meaning to the notion of simulation. In Section 2 we

provide formal definitions, and discuss them in more detail. A protocol σ externally

simulates the protocol π if an external observer who has access only to the public data

(i.e. transcript and public randomness) of σ can deduce from it the public data of π.

The protocol σ internally simulates π if each of Alice and Bob can obtain their private

data of π from their private data of σ.

As an example which illustrates the difference between internal and external sim-

ulation, consider the simple case when (x, y) are jointly distributed so that x = y,

Alice knows x, Bob knows y and π is the protocol in which Alice sends x to Bob. In

this case, it is clear that the empty protocol internally simulates π but every external

simulation of π must in general use many bits. This example also demonstrates that

Proposition 1.2 does not hold for promise problems, when the inputs are guaranteed

to come from a non rectangular set.

Information complexities. The most studied measures in the context of protocol com-

pression are information complexities. For every communication protocol π and every

distribution µ on inputs, two versions of information have been defined: The internal

information [1, 3] denoted I intµ (π) and the external one [10] denoted Iextµ (π). The seman-

tic of internal information is the amount of information the communication transcript

reveals to Alice and Bob about the inputs, and the semantic of external information

is the amount of information the communication transcript reveals to an external ob-

server about the inputs. It always holds that the internal information is at most the

external one, which is at most the average communication complexity CCavgµ (π) (see

e.g. [3, 16]).

The following claim shows that information provides a lower bound for errorless

simulations. This generalizes the basic fact that entropy provides a lower bound for

errorless transmission. This claim seems to be known but we could not find an explicit
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reference to it so we provide a proof in Section A.2 (the special case of deterministic

external simulation was proved in [19]).

Claim 1.3. Let π be a general protocol with input distribution µ.

• If σ externally simulates π without error then CCavgµ (σ) ≥ Iextµ (π).

• If σ internally simulates π without error then CCavgµ (σ) ≥ I intµ (π).

In the other direction, [3] provided two different compression schemes for general

protocols. An external compression with error that uses roughly Iextµ (π) log(CC(π))

bits, and an internal compression with error that uses roughly
√
I intµ (π) · CC(π) bits. A

second internal compression with error that uses at most roughly 2I
int
µ (π) bits, regardless

of CC(π), appears in [4]. Later on, [9, 20] showed that the internal compression from

[3] applied to public coin protocols yields a much better compression with only order

I intµ (π) log(CC(π)) bits. We discuss connections of these works to ours below.

Entropy complexities. We consider two additional complexity measures for compres-

sion:

The first one, which was studied in [12], is the external entropyHext
µ (π). Its semantic

is how many bits are required for describing the transcript of π to an external observer.

The second measure we consider is the internal entropy H int
µ (π). Its semantic is the

number of bits required in order to describe the transcript to Alice plus the number of

bits required to describe the transcript to Bob.

Some connections between the information measures and the entropy measures are

provided in the following claim.

Claim 1.4. Let π be a protocol with input distribution µ. Then,

Hext
µ (π) ≥ Iextµ (π) and H int

µ (π) ≥ I intµ (π).

Moreover, if π does not have private randomness then

Hext
µ (π) = Iextµ (π) and H int

µ (π) = I intµ (π).

As mentioned, in the case of one way deterministic protocols, the external entropy

fully captures the compression problem. The above claim combined with Claim 1.3

implies that, more generally, for public coin protocols entropy provides a lower bound

on errorless simulation. Interestingly, the authors of [12] proved that this lower bound
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is essentially tight. They gave an optimal external compression of general protocols

(they did not state it in this language).

Theorem 1.5 ([12]). A protocol π can be externally simulated1 without error by a

protocol σ so that CCavgµ (σ) ≤ O(Hext
µ (π)).

With or without error. Another important distinction is between exact simulation and

simulation with error.

A meaningful example already appears in the transmission problem, when there

is a distribution µ on inputs x and Alice sends a (prefix free) encoding of x to Bob.

Any exact solution to this problem requires expected communication of at least H(µ).

However, if µ is highly concentrated on a point but with probability ε it is uniform on

the remaining elements, an empty protocol simulates µ with error while the entropy

is potentially huge. So entropy and information are not in general lower bounds for

simulation with error, and the lower bounds from Claim 1.3 do not hold for simulation

with error.

In the other direction, we have seen that entropy (or information) provides a lower

bound on errorless simualtion. We shall see below that this lower bound is not tight,

that is, there are protocols with small entropy that can not be efficiently simulated

without error.

1.2 Internal compression

Impossibility of errorless compression. Theorem 1.5 above provides errorless simulation

to external entropy. The main compression question is, however, whether a protocol

can be internally simulated with communication that is close to its internal information.

We now explain why such a simulation is not available if it is required to be errorless,

even for the larger internal entropy.

Theorem 1.6. For every n and δ > 0, there is a one round deterministic protocol π

and input distribution µ so that H int
µ (π) ≤ δ and CC(π) ≤ n but if σ is an errorless

internal simulation of π then CCavgµ (σ) ≥ n− 2.

Our internal compression scheme and the ones from [3, 4] must therefore introduce

errors. The proof of the theorem is given in Section 4.1, and it uses arguments from

[16].

1They only considered deterministic protocols. Their result applies for general protocols since
Hext
µ (π) = H(Tπ|R) ≥ H(Tπ|R,Ra, Rb), and their compression has expected communication order

H(Tπ|R,Ra, Rb) for general protocols.
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Finding the first difference. Before stating our general compression scheme, we demon-

strate its ideas by an internal compression of the finding the first difference problem,

which lies at the heart of the internal compression schemes of [3, 9, 20], and, in a

nutshell, allows the players to correct their mistakes. Feige et al. [13] gave an optimal

randomized protocol for this problem in terms of communication complexity (Viola

[23] proved a corresponding lower bound).

Lemma 1.7 ([13]). There is a public coin protocol that on inputs x, y ∈ {0, 1}n exter-

nally outputs the smallest index i in which x, y differ (or outputs “equal” if x = y) with

probability at least 1 − ε. The communication complexity of this protocol is at most

O(log(n/ε)).

The protocol of Feige et al. externally solves the problem. The following is an

internal protocol for it (the protocol is presented in Section 3).

Lemma 1.8. Let µ be a distribution on (x, y) ∈ {0, 1}n × {0, 1}n, and let ε > 0.

Denote by i = i(x, y) the smallest index in which x, y differ (or i = “equal” if x = y).

Denote H int = H(i|x) + H(i|y). There is a public coin protocol and an event E ⊂
{0, 1}n×{0, 1}n with probability µ(E) < ε so that for all (x, y) 6∈ E, the communication

complexity of the protocol on input (x, y) is at most

O

(
log

(
1

µ(i|x) · µ(i|y)

)
log
(

log(n)H int/ε
))

,

and it internally computes i with probability at least 1− ε. The overall communication

complexity with error ε is at most

O

(
H int

ε
log
(

log(n)H int/ε
))

.

We state the lemma in this form since it hints at the core of its proof. To understand

it better, it may be helpful to observe

H(i|x) +H(i|y) = I(i; y|x) + I(i;x|y) = Eµ log

(
1

µ(i|x) · µ(i|y)

)
.

This protocol gives an improvement over that of [13] when the internal entropy is small.

It highlights the importance of internal computation and may help to understand the

more general compression below. It may also be useful in future internal compression

schemes.

Main compression. We finally state our internal compression scheme (see Section 4.2
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for its description). As mentioned above, such a compression must have positive error,

even for one round protocols.

Theorem 1.9. Let µ be a distribution on X ×Y and let ε > 0. Let π be a protocol with

inputs from µ. Then, there is a public coin protocol σ with communication complexity

CC(σ) ≤ O

((
H int
µ (π)

)2

ε2
· log(log(CC(π)))

)

that internally simulates π with error ε.

As noted earlier, if π is a protocol that uses no private randomness then the internal

entropy of π is equal to the internal information of π. So, for public coin protocols,

Theorem 1.9 gives an internal compression to internal information with an exponential

improvement over [9, 20] in terms of the dependence on CC(π). It, therefore, also

concerns the power of private randomness in saving information, which we now discuss.

Transferring private to public randomness. Every private coin protocol can be simu-

lated by a public coin protocol with the same communication complexity. Conversely,

Newman [18] proved that for communication complexity public randomness may be

efficiently replaced by private one, when dealing with computation of relations (it how-

ever does not yield a communication efficient simulation of public coin protocols by

private coin protocols). In the information complexity context the situation is oppo-

site, every public coin protocol can be simulated by a private coin protocol with the

same information complexity. The authors of [9, 5] showed that for information com-

plexity private randomness may be relatively efficiently simulated by public one. If

this last simulation was efficient enough, to compress general protocol it would suffice

to compress public coin protocols.

Our compression shows limitations on moving private randomness to being public.

A recent work of Ganor, Kol and Raz [14] shows that for every large enough k ∈ N
there is a distribution µ and a private coin protocol π0 with internal information O(k)

so that every protocol that internally simulates π0 with small error must communicate

at least 2k bits. This marks the first known separation between information and com-

munication complexities2. The protocol π0 has communication complexity O(k ·24k) so

that log(log(CC(π0)) = O(k). Together with our compression scheme, this means that

there is no way to simulate π0 using only public randomness without a cost; for exam-

ple, every public coin internal simulation of π0 with optimal communication complexity

2O(k) must have exponentially large internal information, at least 2Ω(k).

2Part of the difficulty in proving such a separation is proving a lower bound for internal computation
(rather than the more standard external computation).
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Discussion of proof. Compression to internal entropy, as mentioned above, must be

done in an internal way. That is, an observer of the conversation (who does not know

the inputs nor the private randomness) should not be able to make much sense of it.

The only two compression schemes with this property that were previously known

are from [2, 4]. The scheme from [4] is not efficient in terms of information complexity

so we do not discuss it in detail here. In the scheme from [2] the players use public

randomness to jointly but privately sample a possible transcript, and they communicate

only to fix errors. Each error fixing costs about log(CC(π)) communication. The main

problem in analyzing their protocol is bounding the number of errors in terms of the

internal information. They are able to do so but the cost is quite high3 and the overall

bound on the number of errors they show is order
√
CC(π)I intµ (π).

We take a different path which starts with the external compression of deterministic

protocols of [12]. The main idea there is that a deterministic protocol induces a distri-

bution on the leaves of the protocol tree, and that there is always a vertex u in the tree

with probability mass roughly 1/2 (Lemma 2.1 below). Both players know u and they

can check if the rectangle4 it defines contains x and y with 2 bits of communication. It

can easily be shown that by doing so they (roughly) learn one bit of information. This

yields an optimal but external compression (an observer knows u as well).

In the internal case, there is no single node that is good for both players. Alice

knows a node va and Bob a node vb, which are in general arbitrary nodes in the protocol

tree. The crux of our protocol is an efficient way for Alice and Bob to learn enough on

va, vb so that they obtain one more bit of information. We show that using Lemma 1.7

one of them, say Alice, can identify a good vertex u to focus on (roughly, u is somewhere

in between va, vb). Using Lemma 1.1 Alice then tries to internally transmit u to Bob. If

this transmission succeeds, they indeed learn one bit of information. It turns out that

even if this transmission fails, they still learn one bit of information. The transmission

is indeed internal in that an external observer does not in general learn u even when

Bob does. The full protocol appears in Section 4.2.

3On a high level this loss occurs for the following reason: If we denote by h(p) the entropy of a
random bit with bias p ∈ [0, 1], then h( 1

2 + δ)− h( 1
2 ) is of order δ2. The second power of δ yields the

square root CC(π) in the analysis. For public coin or deterministic protocols, the authors of [9, 20]
showed how to improve the bound on the number of errors to order Iintµ (π) where the improvement
comes from that h(δ)− h(0) is of order δ.

4The set of inputs that reach u is a rectangle, that is, it is of the form X ′ × Y ′ ⊂ X × Y.
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2 Preliminaries

Logarithms in this text are in base two. We provide the basic definitions needed for

this text. For background and more details on information theory see the book [11]

and on communication complexity see the book [17].

Information theory. The entropy of a random variable X taking values in U is defined

as H(X) =
∑

u∈U Pr[X = u] log(1/Pr[X = u]). The entropy of X conditioned on

Y is defined as H(X|Y ) = H(X, Y ) − H(Y ). The mutual information between X, Y

conditioned on Z is defined as I(X;Y |Z) = H(X|Z)−H(X|Y, Z).

Protocols. A deterministic communication protocol π with inputs from X × Y is a

rooted directed binary tree with the following structure. Edges are directed from root

to leaves. Each internal node in the protocol is owned by either Alice or Bob. For every

x ∈ X , each internal node v owned by Alice is associated with an edge ev,x from v to

one of the children of v. Similarly, for every y ∈ Y , each internal node v owned by Bob

is associated with an edge ev,y. On input x, y, a protocol π is executed by starting at

the root and following the unique path defined by x, y until reaching a leaf. We denote

by Tπ = Tπ(x, y) the leaf reached, which we also call the transcript of π with input

(x, y). The length of a transcript, denoted |Tπ|, is the depth of the corresponding leaf.

In a public coin protocol, Alice and Bob also have access to public randomness r

that they both know. In a private coin protocol, Alice has access to a random string

ra, and Bob has access to a random string rb. A general protocol is a protocol which

uses both public and private coins. Always the four random variables (x, y), r, ra, rb
are assumed independent.

The communication complexity of a deterministic π, denoted by CC(π), is the max-

imum length of a transcript. For general protocols, CC(π) is defined as the maximum

communication complexity over all randomness as well (i.e. over x, y, r, ra, rb), and

CCavgµ (π) is the expected length of a transcript over all randomness.

Computation. A deterministic protocol π externally computes a function f : X ×Y →
Z if there is a map M so that f(x, y) = M(Tπ(x, y)) for all x, y. A deterministic

protocol π internally computes a function f if there are two maps Ma,Mb so that

Ma(x, Tπ(x, y)) = Mb(y, Tπ(x, y)) = f(x, y) for all x, y. In the randomized setting, M

may depends on r, Ma may depend on r, ra, Mb may depend on r, rb, and the equalities

should hold with probability at least 1− ε over the distribution of r, ra, rb for all x, y.

In the distributional setting, the probability is taken over x, y as well.

Simulation. Let π, σ be protocols, let µ be a distribution on the input space X ×Y and

9



let ε ≥ 0. Our goal is defining when σ simulates π with error ε in the distributional

setting5. Namely, probabilities are taken over all randomness of inputs as well as

private and public coins.

The randomness in σ is s, sa, sb, and the randomness in π is r, ra, rb. We say that

σ externally simulates π with error ε if there exists a function M so that, on average,

for fixed (x, y), the distribution pextσ = pextσ (x, y) of M(Tσ, s) is ε close in L1 distance

to the distribution pextπ = pextπ (x, y) of (Tπ, r). That is,

Eµ|pextσ − pextπ |1 ≤ ε.

The function M can be thought of as the dictionary translating the language of σ to

the language of π.

We say that σ internally simulates π with error ε if there exist functions Ma,Mb

such that, on average, for fixed (x, y), the distribution pintσ = pintσ (x, y) of the pair

(Ma(x, Tσ, s, sa),Mb(y, Tσ, s, sb))

is ε close to the distribution pintπ = pintπ (x, y) of the pair

((Tπ, r, ra), (Tπ, r, rb)).

That is,

Eµ|pintσ − pintπ |1 ≤ ε.

In the internal case, there are two internal dictionaries, one for Alice and one for Bob.

The simulation we present in the proof of Theorem 1.9 is in fact of a stronger

form. In the beginning of σ, Alice and Bob interpret the public randomness as a pair

s = (r, s′) and their private randomness as sa = (ra, s
′
a) and sb = (rb, s

′
b). They think of

r, ra, rb as the fixed randomness of π, and communicate in order to privately compute

the fixed transcript Tπ = Tπ(x, y, r, ra, rb), with error probability (over the remaining

randomness s′, s′a, s
′
b) of at most ε.

This stronger type of simulation is sometimes too strong to be useful, as the follow-

ing example demonstrates. Consider a protocol in which x, ra are uniform in {0, 1}n,

and Alice just sends x + ra ∈ {0, 1}n to Bob. The transcript of this protocol is just a

random noise, and its external information is indeed zero. It can, indeed, be externally

simulated without error by a protocol with zero communication; interpret s as a uni-

form element in {0, 1}n and set M(∅, s) = (s, ∅)). However, every strong simulation of

5There is also a natural variant of this definition in the randomized setting but it is not relevant
for this text.
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this protocol (as the one in Theorem 1.9 mentioned above) must communicate many

bits. Indeed, the transcript of a strong simulation must reveal the value of x + ra to

Bob, with high probability.

Information and entropy of protocols. For a distribution µ on the inputs, define

I intµ (π) = I(Tπ;X|Y,R,Rb) + I(Tπ;Y |X,R,Ra)

and

Iextµ (π) = I(Tπ;X, Y |R).

Similarly, define

H int
µ (π) = H(Tπ|Y,R,Rb) +H(Tπ|X,R,Ra)

and

Hext
µ (π) = H(Tπ|R).

Balanced nodes in trees. We use the following well known lemma (see e.g. [17]).

Lemma 2.1. Let µ be a probability measure on the leaves of a rooted binary tree. The

distribution µ may be extended to a function on all nodes in the tree by setting µ(v) to

be the µ-probability that a leaf that is a successor of v is chosen. Then, there exists a

node u such that either u is a leaf and µ(u) ≥ 2/3, or 1/3 ≤ µ(u) ≤ 2/3.

3 Finding the first difference

Proof of Lemma 1.8. Denote by E the (event) set of inputs (x, y) so that

µ(i|x) · µ(i|y) < 2−H
int/ε.

By Markov’s inequality,

µ(E) < ε.

For inputs in E , the protocol may fail. For the rest of the proof, fix (x, y) 6∈ E and set

i = i(x, y).

The protocol proceeds in iterations indexed by t ∈ N. For every t, Alice knows a

distribution αt on [n] ∪ {“equal′′} and Bob a distribution βt on [n] ∪ {“equal′′} where

we use the order 1 < 2 < . . . < n < “equal′′. They start with

α0(j) = Pr
µ

[i = j|x] and β0(j) = Pr
µ

[i = j|y]
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for all j. Iteration t starts with Alice knowing αt and Bob knowing βt, and ends with

an update of this distributions to αt+1, βt+1. There are O(H int/ε) iterations, and the

probability of failure in each iteration is O(δ) for δ = cε2/H int for a small constant

c > 0. The union bound implies that the overall error in the part is at most ε.

The goal of every iteration is, given αt, βt, to construct with probability at least

1−O(δ) distributions αt+1, βt+1 so that (if they did not stop)

αt+1(i) ≥ αt(i) , βt+1(i) ≥ βt(i)

and

αt+1(i) · βt+1(i) ≥ 3

2
· αt(i) · βt(i).

This immediately implies that the number of iterations is at most O(H int/ε) since

we conditioned on not E and since αt, βt are always probability distributions so their

maximum value is at most 1.

The protocol uses the following subroutine we call check(j) with error δ. It gets as

input j ∈ [n] ∪ {“equal′′} and with communication O(log(1/δ)) it externally outputs

“yes” if j = i and “no” if j 6= i. This subroutine just uses public randomness6 to check

if x<j = y<j and xj 6= yj for j ∈ [n] or if x = y for j = “equal′′.

Iteration t is performed as follows:

1. If αt(j) > 1/3 for some j then they check(j) with error δ. If the answer is “yes”

then they stop and output j. If the answer is “no” then they update αt, βt to

αt+1, βt+1 by conditioning on the event ([n] ∪ “equal′′) \ {j} and continue to the

next iteration.

2. If βt(j) > 1/3 for some j then they check(j) with error δ. If the answer is “yes”

then they stop and output j. If the answer is “no” then they update αt, βt to

αt+1, βt+1 by conditioning on the event ([n] ∪ “equal′′) \ {j} and continue to the

next iteration.

3. Let da be the maximum integer so that αt({1, 2, . . . , da− 1}) < 2/3 and let db be

the maximum integer so that βt({1, 2, . . . , db−1}) < 2/3. Alice knows da and Bob

db. Using the protocol from Lemma 1.7, with communication O(log(log(n)/δ))

they find7 d that is between da, db with error δ.

4. They check using public randomness with error δ if x<d = y<d.

6For examples, using the standard randomized protocol for equality [17].
7Thinking of da, db as binary strings of length order log(n), to find d it suffices to find the first

index in which da, db differ.
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If the answer is “yes” then they update αt, βt to αt+1, βt+1 by conditioning on the

event {d, d+ 1, . . . , n} ∪ {“equal′′} and continue to the next iteration.

If the answer is “no” then they update αt, βt to αt+1, βt+1 by conditioning on the

event {1, 2, . . . , d− 1} and continue to the next iteration.

We analyse the correctness step by step assuming that no error occurred (we have

already bounded the probability of error):

1. If they output j then indeed the output is correct. Otherwise, j 6= i which means

that

αt+1(i) =
αt(i)

1− αt(j)
>
αt(i)

2/3

and βt+1(i) ≥ βt(i).

2. As in previous case.

3. If they reached here then αt(j), βt(j) ≤ 1/3 for all j. They find d that is between

da, db. Assume without loss of generality that da ≤ db. The proof in the other

case is similar.

4. If x<d = y<d then i ≥ d ≥ da. This implies that βt+1(i) ≥ βt(i). By choice,

αt({d, d+ 1, . . . , n}) = αt(d) + 1− αt({1, . . . , d}) ≤
1

3
+

1

3
≤ 2

3
,

which implies αt+1(i) ≥ 3αt(i)/2.

If x<d 6= y<d then i < d ≤ db. This implies that αt+1(i) ≥ αt(i). By choice,

βt({1, 2, . . . , d− 1}) ≤ 2

3
,

which implies βt+1(i) ≥ 3βt(i)/2.

4 Internal compression

4.1 No errorless internal compression

Proof of Theorem 1.6. The inputs to π are (x, y) ∈ {0, 1}n × {0, 1}n, and in it Alice

just sends x to Bob bit by bit.
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The input distribution µ is defined as follows. Let γ > 0 be small enough (to be

determined). With probability 1 − γ, the input (x, y) is chosen uniformly from the

set {(z, z)} ⊂ {0, 1}n × {0, 1}n, and with the remaining probability γ, it is chosen

uniformly from {0, 1}n × {0, 1}n.

Clearly, CC(π) ≤ n and if γ is small enough then

H int
µ (π) = H(X|Y ) ≤ δ.

Now, let σ be a errorless internal simulation of π. So, there is a map Mb so that

Mb(Tσ(x, y), y, s, sb) = x for all x, y, s, sb. That is, at the end of σ, Bob knows x. Let τ

be the protocol obtained from σ by that Bob sends an additional bit indicating whether

x = y or not. So CCavgµ (τ) ≤ CCavgµ (σ)+1, and τ is a protocol that externally computes

the equality function with zero error over µ. Using arguments from [16], we prove

Iextµ (τ) ≥ (1− γ)n.

This finishes the proof since CCavgµ (τ) ≥ Iextµ (τ) and (1 − γ)n ≥ n − 1 for γ small

enough.

We may assume that τ is a private coin protocol (as external information is defined

as an average over the public randomness). Let t be a possible transcript of τ , and

denote by J(t) the set of all inputs (x, y) so that Pr[Tτ (x, y) = t] > 0. Since τ has zero

error and µ has full support, J(t) ⊂ X × Y is a monochromatic rectangle. Therefore,

if (z, z) ∈ J(t) for z ∈ {0, 1}n then J(t) = {(z, z)}.

Let E be indicator random variable of the event {(z, z)}. Think of J = J(Tτ ) as

a random variable (over the randomness in τ). Conditioned on the event E = 1, the

random variable J is basically uniform over {0, 1}n so H (J |E = 1) = n. It follows that

I (J ;X, Y |E = 1) = H (J |E = 1)−H (J |X, Y,E = 1) = n− 0.

Finally,

Iextµ (τ) = I(Tτ ;X, Y )

≥ I(J ;X, Y ) (information processing inequality)

= I(J ;X, Y,E) (X, Y determine E)

= I(J ;E) + Pr[E = 1] · I (J ;X, Y |E = 1)

+ Pr[E = 0] · I (J ;XY |E = 0) (the chain rule)

≥ (1− γ)n.

14



4.2 An internal compression with error

Proof of Theorem 1.9. Let x, y be the inputs to π, let r be the public randomness, and

let ra, rb be the private randomness. The first observation is that

H int = H int
µ (π) = Ex,y,r,ra,rb log

(
1

µ(Tπ|x, r, ra) · µ(Tπ|y, r, rb)

)
,

where here Tπ = Tπ(x, y, r, ra, rb) . Denote by E the event (i.e. set of (x, y, r, ra, rb))

that

µ(Tπ|x, r, ra) · µ(Tπ|y, r, rb) < 2−2Hint/ε.

By Markov’s inequality,

Pr(E) < ε/2.

When E occurs, the protocol σ may fail, but since it is a rare event it does not really

matter. For the rest of the proof, fix (x, y, r, ra, rb) 6∈ E and set Tπ = Tπ(x, y, r, ra, rb).

The protocol σ proceeds in iterations indexed by t ∈ N. The starting point of every

iteration is a distribution αt on leaves of π that Alice knows and a distribution βt on

the leaves of π that Bob knows. These distributions reflect the current perspective of

the players after the communication so far. The first distributions are

α0(v) = Pr[v|x, r, ra] and β0(v) = Pr[v|y, r, rb]

for all leaves v of the protocol tree (the probability in α0 for example is over Bob’s

randomness). The goal of every iteration is to construct with probability at least 1− δ
distributions αt+1, βt+1 so that

αt+1(Tπ) ≥ αt(Tπ) , βt+1(Tπ) ≥ βt(Tπ)

and

αt+1(Tπ) · βt+1(Tπ) ≥ 3

2
· αt(Tπ) · βt(Tπ).

The number of iterations is set to be at most

O(log(22Hint/ε)) = O(H int/ε),
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and the communication complexity of each iteration is at most

O

(
log

(
log(CC(π))

δ

)
+
H int

ε
+ log(1/δ)

)
.

Thus, setting δ smaller than cε2/H int for some small constant c > 0, the union bound

implies the overall bound on the error.

Here is how iteration t is performed:

1. Alice finds a vertex va promised by Lemma 2.1 with αt, and Bob finds vb promised

by Lemma 2.1 with βt. Denote da = depth(va) and db = depth(vb).

2. Using the protocol from Lemma 1.7, with communication O(log(log(CC(π))/δ))

they find8 d that is between da, db with error δ/2.

3. If da ≥ db, they do the following: Let u be the ancestor of va at depth d and let

U be the set of nodes of depth d of π . Using the protocol from Lemma 1.1 Alice

sends u to Bob. They use this protocol with error parameter δ/2, where Alice’s

input is u and Bob’s input is the distribution βt induced on U .

If this stage takes more than O((H int/ε) + log(1/δ)) bits, then they abort.

At the end of this stage, either Bob thinks9 he knows u as well or they have

aborted.

• If Bob thinks he knows u there are two options:

If u is a leaf then they stop and the players internally output u.

Otherwise, they set αt+1 = αt and βt+1 to be the distribution βt conditioned

on passing through u.

• Otherwise, they aborted and they set βt+1 = βt and αt+1 to be the distri-

bution αt conditioned on not passing through u.

4. When da < db, they exchange roles.

We now analyse the performance in iteration t. For this, we assume that no error

occurred. That is, that the protocols from Lemmas 1.7 and 1.1 gave the desired result

(this happens with probability at least 1 − δ). The analysis follows the outline of the

protocol:

8Think of da, db as binary strings of length roughly log(CC).
9There is some small probability that Bob holds some u′ 6= u but he still thinks he knows u.
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1. Lemma 2.1 says that there are always such nodes va, vb.

2. They find d that is between da, db.

3. We distinguish between two cases:

Bob thinks he knows u: This means that βt(u) > 0 and so (y, rb) is in the

rectangle defined by u. Thus, ((x, ra), (y, rb)) is in the rectangle defined by

u, which implies that Tπ is a successor of u.

If u is a leaf then indeed Tπ = u.

Otherwise, there are two cases:

The first is when vb is an ancestor of u. In this case, vb is not a leaf,

βt(vb) ≥ βt(u) and

βt+1(Tπ) =
βt+1(Tπ)

βt(u)
≥ βt+1(Tπ)

βt(vb)
≥ βt+1(Tπ)

2/3
.

The second is when vb is not an ancestor of u. In this case, βt(u) ≤ 1 −
βt(vb) ≤ 2/3 and

βt+1(Tπ) =
βt(Tπ)

βt(u)
≥ βt(Tπ)

2/3
.

Bob does not think he knows u: Since we assumed E does not occur, if u is

an ancestor of Tπ then

βt(u) ≥ βt(Tπ) ≥ β0(Tπ) ≥ 2−2Hint/ε.

Since they aborted (we ignore possibility of error), this means that u is not

an ancestor of Tπ. Since u is an ancestor of va, αt(u) ≥ αt(va) ≥ 1/3. Thus,

by choice,

αt+1(Tπ) =
αt(Tπ)

1− αt(u)
≥ αt(Tπ)

1− αt(va)
≥ αt(Tπ)

2/3
.

4. When da < db, the proof is similar.
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A Appendix

A.1 Internal deterministic computation is also external

Proof of Proposition 1.2. There are maps Ma,Mb so that for all x, y,

Ma(x, Tπ(x, y)) = Mb(y, Tπ(x, y)) = f(x, y).

Fix some rectangle ρ = {(x, y) : Tπ(x, y) = Tπ(x0, y0)}. For every (x, y) ∈ ρ, we

know Ma(x, ρ) = f(x, y) = f(x, y0), and similarly Mb(y0, ρ) = f(x, y0) = f(x0, y0).

Therefore, f is constant on ρ and we can define M(ρ) = f(x0, y0).

A.2 Information lower bounds errorless simulation

Proof of Claim 1.3. The external case: Let σ be a protocol that externally simulated

π without error. By definition of simulation, there exists a function M so that for all

(x, y) so that µ(x, y) > 0, it holds that pσ = pπ, where pσ is the distribution of M(Tσ, s)

and pπ is that of (Tπ, r). Thus,

CCavgµ (σ) ≥ Iextµ (σ) (see e.g. [16])

= I(Tσ;X, Y |S)

= I(Tσ, S;X, Y ) (S is independent of (X, Y ))

≥ I(M(Tσ, S);X, Y ) (data processing inequality)

= I(Tπ, R;X, Y ) (errorless simulation)

= I(Tπ;X, Y |R) (R is independent of (X, Y ))

= Iextµ (π).

The internal case: similarly to the external case,

CCavgµ (σ) ≥ Iextµ (σ)

≥ I intµ (σ)

= I(Tσ, S, Sb;X|Y ) + I(Tσ, S, Sa;Y |X)

≥ I(Mb(Tσ, Y, S, Sb);X|Y ) + I(Ma(Tσ, X, S, Sa);Y |X)

= I(Tπ, R,Rb;X|Y ) + I(Tπ, R,Ra;Y |X)

= I intµ (π).
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A.3 Transmission

Proof of Lemma 1.1. They interpret the public randomness as boolean random hash

functions on U . The protocol proceeds in iterations indexed by t ∈ N. In iteration

t = 0, the following is performed:

1. Alice sends k = dlog(1/ε)e+ 2 hash values of ua to Bob.

2. Bob computes the set

S0 = {u ∈ U : µ(u) ∈ (1/2, 1]}.

He compares every element of S0 to the k hash values he received. He deletes

every s ∈ S0 that does not agree with at least one of these k hash values. Denote

by S ′0 the set S0 after this deletion.

If S ′0 is empty, he sends a “0” to Alice.

If S ′0 is not empty, he sets ub as an arbitrary element S ′0, and sends “1” to Alice,

and they stop.

For every t = 1, 2, . . ., the following is performed (until they stop):

1. Alice sends 2 new hash values of ua to Bob.

2. Bob computes the set

St = {u ∈ U : µ(u) ∈ (2−t−1, 2t]}.

He compares every element of St to the k+ 2t hash values he received so far. He

deletes every s ∈ St that does not agree with at least one of these hash values.

Denote by S ′t the set St after this deletion.

If S ′t is empty, he sends a “0” to Alice.

If S ′t is not empty, he sets ub as an arbitrary element in S ′t, and sends “1” to

Alice, and they stop.

We now analyse the protocol. Let t0 be so that ua ∈ St0 . First, the protocol stops

after at most t0 ≤ log(1/µ(ua)) + 1 iterations, because ua agrees with all hash values

sent. Second, for every t, by the union bound,

Pr[S ′t 6= {ua} ∩ St] ≤ 2−(k+2t)2t+1 ≤ 2− log(1/ε)−t−1 =
ε

2t+1
.
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Thus, by the union bound, the probability that either there is some t < t0 for which

S ′t 6= ∅ or S ′t0 6= {ua} is at most
∑∞

t=0 ε/2
t+1 ≤ ε.
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