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Abstract

We introduce a new hierarchy over monotone set functions, that we refer to as MPH (Max-
imum over Positive Hypergraphs). Levels of the hierarchy correspond to the degree of comple-
mentarity in a given function. The highest level of the hierarchy, MPH-m (where m is the total
number of items) captures all monotone functions. The lowest level, MPH-1, captures all mono-
tone submodular functions, and more generally, the class of functions known as XOS. Every
monotone function that has a positive hypergraph representation of rank k (in the sense defined
by Abraham, Babaioff, Dughmi and Roughgarden [EC 2012]) is in MPH-k. Every monotone
function that has supermodular degree k (in the sense defined by Feige and Izsak [ITCS 2013])
is in MPH-(k+1). In both cases, the converse direction does not hold, even in an approximate
sense. We present additional results that demonstrate the expressiveness power of MPH-k.

One can obtain good approximation ratios for some natural optimization problems, provided
that functions are required to lie in low levels of the MPH hierarchy. We present two such
applications. One shows that the maximum welfare problem can be approximated within a ratio
of k + 1 if all players hold valuation functions in MPH-k. The other is an upper bound of 2k
on the price of anarchy of simultaneous first price auctions.

Being in MPH-k can be shown to involve two requirements – one is monotonicity and the
other is a certain requirement that we refer to as PLE (Positive Lower Envelope). Removing
the monotonicity requirement, one obtains the PLE hierarchy over all non-negative set functions
(whether monotone or not), which can be fertile ground for further research.
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1 Introduction

In a combinatorial auction setting, a set M of m items is to be allocated among a set N of n
buyers. Each buyer i ∈ N has a valuation function that assigns a non-negative real number
vi(S) to every bundle of items S ⊆ M . A well motivated objective is to find a partition of the
items X = (X1, . . . , Xn) among the buyers so as to maximize the social welfare, defined as the
sum of buyers’ valuations from the bundles they obtain SW (X) =

∑
i∈N vi(Xi). The model of

combinatorial auctions is highly applicable to real-world settings such as spectrum auctions and
electronic advertisement markets.

Most of the existing literature on combinatorial auctions has focused on the case where buyer
valuations are complement-free. Roughly speaking, this means that the value for the union of two
bundles of items cannot exceed the sum of the values for each individual bundle. Such valuations do
not capture scenarios where certain items produce more value when acquired in conjunction with
each other (such as a left and right shoe). Complement-free valuations are arguably more well-
behaved than general combinatorial valuations in many aspects. From an algorithmic perspective,
complement-free valuations admit constant-factor polynomial time approximation algorithms [15,
11, 12], while general valuations are hard to approximate even to within a factor that is sub-
polynomial in the number of items [22]. From a game-theoretic perspective, simple auctions, such
as running simultaneously a single-item first-price auction for each item, induce equilibria that
achieve constant factor approximations to the optimal welfare if all valuations are complement-free
[31, 16, 18, 8, 2]. In contrast, if valuations exhibit complements, the worst-case inefficiency grows
with the number of items [18].

While the theory suggests that complementarities degrade the performance of combinatorial
auctions, they arise very naturally in many economic scenarios. A prominent example is the FCC
spectrum auctions, where it is desirable to win licenses for the same band of spectrum in adjacent
geographical regions. The prevalence of complementarities in practice calls for a better theoretical
understanding of the effect of the level of complementarity on the performance of auctions.

To this end, we introduce a new hierarchy of monotone set functions called maximum over
positive hypergraphs (MPH), whose level captures the degree of complementarity. A new hierarchy
is useful if it has a strong expressiveness power on the one hand, and algorithmic and economic
implications on the other. We show that important classes of functions are captured in low levels
of our hierarchy (a detailed exposition is deferred to Section 1.2.). We then present algorithmic
and economic results that illustrate the usefulness of our hierarchy. In particular, we develop an
algorithm that approximates the welfare maximization problem to within a factor of k+1, where k
is the degree of complementarity of the valuations, as captured by our hierarchy. We further show
that an auction that solicits bids on each item separately and allocates each item to the highest
bidder (at a cost equals to her bid) achieves a 2k-approximation to the optimal welfare at any
equilibrium of bidder behavior.

1.1 The Maximum over Positive Hypergraph (MPH) Hierarchy

Given a set M of m items, a set function v : 2M → R+ is normalized if v(∅) = 0 and monotone
if v(T ) ≥ v(S) whenever S ⊆ T ⊆ M .1 A normalized monotone set function is necessarily non-
negative. Throughout the paper we assume that all set functions are normalized and monotone,
unless stated otherwise. In the context of combinatorial auctions, we refer to the set functions as
valuation functions.

1We use R+ for non-negative real numbers. That is, 0 is included.
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A set function v is symmetric if v(S) = v(T ) whenever |S| = |T |. A hypergraph representation of
a set function v : 2M → R+ is a (normalized but not necessarily monotone) set function h : 2M → R
that satisfies v(S) =

∑
T⊆S h(T ). It is easy to verify that any set function v admits a unique

hypergraph representation and vice versa. A set S such that h(S) ̸= 0 is said to be a hyperedge of
h. Pictorially, the hypergraph representation can be thought of as a weighted hypergraph, where
every vertex is associated with an item in M , and the weight of each hyperedge e ⊆ M is h(e).
Then the value of the function for any set S ⊆ M , is the total value of all hyperedges that are
contained in S.

The rank of a hypergraph representation h is the largest cardinality of any hyperedge. Similarly,
the positive rank (respectively, negative rank) of h is the largest cardinality of any hyperedge with
strictly positive (respectively, negative) value. The rank of a set function v is the rank of its
corresponding hypergraph representation, and we refer to a function v with rank r as a hypergraph-
r function. Last, if the hypegraph representation is non-negative, i.e. for any S ⊆ M , h(S) ≥ 0,
then we refer to such a function as a positive hypergraph-r (PH-r) function .

We define a parameterized hierarchy of set functions, with a parameter that corresponds to the
degree of complementarity.

Definition 1.1 (Maximum Over Positive Hypergraph-k (MPH-k) class). A monotone set function
v : 2M → R+ is Maximum over Positive Hypergraph-k (MPH-k) if it can be expressed as a
maximum over a set of PH-k functions. That is, there exist PH-k functions {vℓ}ℓ∈L such that for
every set S ⊆ M ,

v(S) = maxℓ∈L vℓ(S), (1)

where L is an arbitrary index set.

The MPH hierarchy has the following attributes:

1. Completeness. Every monotone set function is contained in some level of the hierarchy (see
below).

2. Usefulness. The hierarchy has implications that relate the level in the hierarchy to the effi-
ciency of solving optimization problems. Specifically, we show implications of our hierarchy to
the approximation guarantee of the algorithmic welfare maximization problem (in Section 3.3)
and the price of anarchy of simultaneous single item auctions (in Section 3.4).

3. Expressiveness. The hierarchy is expressive enough to contain many functions in its lowest
levels (see Section 2).

We conclude this section with some basic properties of the MPH hierarchy (for more properties,
see Section 2). The two extreme cases of MPH-k functions coincide with two important classes of
valuations. Specifically, MPH-1 is the class of functions that can be expressed as the maximum
over a set of additive functions. This is exactly the class of XOS valuations [21], which is a
complement-free valuation class that has been well-studied in the literature. This class contains
all submodular valuations, i.e. valuations that exhibit decreasing marginal returns. On the other
side, MPH-m coincides with the class of all monotone functions,2 and so the hierarchy is complete.
For intermediate values of k, MPH-k is monotone; namely, for every k < k′ it holds that MPH-
k ⊂ MPH-k′. We get the following hierarchy:

Submodular ⊂ XOS = MPH-1 ⊂ · · · ⊂ MPH-m = Monotone (2)

2Simply create a separate PH-|S| function for each set S with a single hyperedge equal to the set S and with
weight f(S). Then, by monotonicity, the maximum of these functions is equal to the initial valuation.
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Figure 1: The left figure depicts a spectrum auction inspired hypergraph valuation with positive
edges and negative hyperedges, which can be expressed as the maximum over the positive graphical
valuations on the right.

A simple example. Consider the example depicted in Figure 1.1, which has an intuitive inter-
pretation in the context of FCC spectrum auctions. Suppose that A, B are two spectrum bands and
that Ai, Bi are auctions representing band A or B at location i. Locations 1 and 2 are neighboring
geographic regions and therefore, a bidder gets a much larger value for getting the same band in
both regions. Therefore, A1 and A2 have a complementary relationship and similarly B1 and B2.
However, each Ai has a substitute relationship with Bi and additionally the pair (A1, A2) has a
substitute relationship with the pair (B1, B2), since a bidder will only utilize one pair of bands. This
valuation can be represented as a hypergraph, as in the left-most diagram in Figure 1.1. Also, as
illustrated in Figure 1.1, this valuation can be represented as a maximum over positive hypergraph
valuations of rank 2.

Fractionally “Subadditive” Characterization of MPH-k. We show that the definition of
MPH-k functions has a natural analogue as an extension of fractionally subadditive functions. See
Appendix A.

1.2 Related Work

Expressiveness. Since the maximum welfare allocation problem isNP-hard to approximate even
with very poor ratio (see for example [22] for the case of single minded bidders – bidders that want
one particular bundle of items), there has been extensive work on classification of monotone set
functions. We distinguish between two types of classifications. One is that of restricted classes of
set functions, and the other is inclusive hierarchies that capture all monotone set functions.

Restricted classes of monotone set functions. Lehmann, Lehmann and Nisan [21] initiated
a systematic classification of set functions without complementarities. The main classes in their
classification (in order of increasing expressiveness) are additive, gross substitutes (a class introduced
by Kelso and Crawford [20]), submodular, XOS (the terminology for this class is taken from earlier
work of Sandholm [28]), and subadditive. Subsequent research showed that the maximum welfare
can be approximated within a ratio somewhat better than 1 − 1/e in the submodular case [15],
1 − 1/e in the XOS case [11] and 2 in the subadditive case [12]. These approximation algorithms
assume demand queries access to the valuation functions, though for the submodular case, if one
is satisfied with a 1− 1/e ratio, then value queries suffice [32]. It follows from the definitions that
MPH-1, the first level of our hierarchy, coincides with the class of XOS functions.

Conitzer, Sandholm, and Santi [9] consider the class of graphical valuations. Namely, every item
has a weight, and every pair of items (edge of the graph) has a weight (positive if the items are
complements, negative if they are substitutes, and 0 if they are independent), and the value of a
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set of items is the sum of weights of items and edges within the set. It will follow (though this is a
nontrivial claim that requires a proof) that this class is contained in MPH-2.

Abraham, Babaioff, Dughmi, and Roughgarden [1] consider the hierarchy of PH-k valuation
functions, as already defined, (which are obviously contained in MPH-k) that allows only comple-
ments but no substitutes. In particular, submodular functions cannot be expressed in this hierarchy,
and moreover, even some supermodular functions cannot be expressed in this hierarchy. It is shown
in [1] that the maximum welfare problem can be approximated within a ratio of k if all valuation
functions are in PH-k. They also discuss mechanisms that are truthful in expectation, but the
approximation ratios achieved by their mechanisms deteriorate with the total number m of items,
even if k remains fixed.

Inclusive hierarchies of monotone set functions. Feige and Izsak [13] introduced a hier-
archy of monotone set functions, parameterized by the so-called supermodular degree. Unlike the
MPH hierarchy whose levels are numbered from 1 to m, the levels of the supermodular degree
hierarchy are numbered from 0 to m− 1, and one should keep this in mind when comparing levels
of these hierarchies. The functions with supermodular degree 0 are the submodular functions. As
shown in [13], there is a greedy algorithm that approximates the welfare maximization problem
within a ratio of k + 2 if the supermodular degree of all valuation functions is at most k. We
show that for every k, functions of supermodular degree k are in MPH-(k + 1). For the other
direction, there are functions in MPH-2 that cannot even be approximated by functions of low
supermodular degree (e.g., functions of supermodular degree

√
m approximate them only within a

ratio of Ω(
√
m)).

The XOS class introduced in [21] is based on “OR” and “XOR” operations previously introduced
in [28], but with the restriction that “OR” operations are applied on single items. Removing this
restriction and allowing operations on bundles, one obtains an XOS hierarchy parameterized by
the size of the largest bundle. (The XOS hierarchy was suggested to us in personal communication
by Noam Nisan.) While XOS-k and MPH-k coincide for k = 1, MPH-k is strictly better than
XOS-k. It can be shown that XOS-k is contained in MPH-k, whereas there are functions in
MPH-2 that cannot even be approximated in XOS-k for any constant k. (The proof uses the
PH-2 function used in Section C).

Welfare approximation The complement-free valuations introduced in [21] have also been stud-
ied in the game-theoretic context of equilibria in simultaneous single-item auctions. It has been
established that the Bayes-Nash and Correlated price of anarchy of this auction format, with a
first-price payment rule, are at most e/(e − 1) in the XOS case [30] and at most 2 in the subad-
ditive case [16]. For the second-price payment rule, these bounds become 2 for XOS [8] and 4 for
subadditive [16]. These results build upon a line of work studying non-truthful item auctions for
complement-free valuations [3, 2, 8, 18, 26].

Equilibrium analysis of non-truthful auctions has been applied to several other settings such
as position auctions [6], bandwidth allocation mechanisms [31], combinatorial auctions with greedy
allocation rules [23], and multi-unit auctions [24]. Recently, Roughgarden [27], Syrgkanis [29] and
Syrgkanis and Tardos [31] proposed general smoothness frameworks for bounding the social welfare
obtained in equilibria of (compositions of) mechanisms.

2 Summary of Results

We obtain results on the expressiveness power of the MPH hierarchy and show applications of it
for approximating social welfare in combinatorial auctions.
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Expressiveness. The first theorem establishes the expressiveness power of MPH. For some
limitations, see Appendix L.

Theorem 2.1. The MPH hierarchy captures many existing hierarchies, as follows:

1. By definition, MPH-1 is equivalent to the class XOS (defined by Lehmann, Lehmann and
Nisan [21]) and every function that has a positive hypergraph representation of rank k (defined
by Abraham et al. [1], see Section 1.1) is in MPH-k.

2. Every monotone graphical valuation (defined by Conitzer et al. [9]) is in MPH-2. Further-
more, every monotone function with positive rank 2 is MPH-2 (see Sections 3.2 and E.1).

3. Every monotone function that has a hypergraph representation with positive rank k and lam-
inar negative hyperedges (with arbitrary rank) is in MPH-k (See Section E.2).

4. Every monotone function that has supermodular degree k (defined by Feige and Izsak [13]) is
in MPH-(k + 1) (See Section E.3).

We further establish that the converse direction does not hold, even in an approximate sense,
and conclude that the MPH-k hierarchy is strictly more expressive than many existing hierarchies.
Specifically, we show that MPH-1 and MPH-2 contain functions that cannot be approximated by
functions in low levels of other hierarchies. We first state the notion of approximation and then the
proposition, whose proof is deferred to Appendix C.

Definition 2.1. We say that a set function f approximates a set function g within a ratio of ρ ≥ 1
if there are ρ1 and ρ2 such that for every set S ρ1 ≤ f(S)

g(S) ≤ ρ2, and
ρ2
ρ1

≤ ρ.

Proposition 2.2. There are functions in very low levels of the MPH hierarchy that cannot be
approximated well even at relatively high levels of other hierarchies, as follows:

1. There exists a submodular function (i.e., supermodular degree 0, MPH-1) such that

(a) A graphical function cannot approximate it within a ratio better than Ω(m).

(b) A positive hypergraph function cannot approximate it within a ratio better than m.

(c) A hypergraph function of rank k (both negative and positive) cannot approximate it within
a ratio better than Ω(m

k2
), for every k.

2. There exists a PH-2 function (i.e., MPH-2) such that every function of supermodular degree
d cannot approximate it within a ratio better than Ω(m/d).

Applications. With the new hierarchy at hand, we are in a position to revisit fundamental
algorithmic and game-theoretic problems about welfare maximization in combinatorial auctions.
Our results are reassuring: we obtain good approximation ratios for settings with valuations that
lie in low levels of theMPH-k hierarchy. From the algorithmic perspective, we provide a polynomial
time (k + 1)-approximation algorithm for the welfare maximization problem when valuations are
MPH-k (assuming access to demand oracles).

Theorem 2.3. If all agents have MPH-k valuations, then there exists an algorithm that gives
k+1 approximation to the optimal social welfare. This algorithm runs in polynomial time given an
access to demand oracles for the valuations.

Our approximation algorithm first solves the configuration linear program for welfare maxi-
mization introduced by [10]. As is well known, solving this LP can be done in polynomial time
using demand queries. We then round the solution to the LP so as to get an integer solution. Our
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rounding technique is oblivious and does not require access to demand queries. By analyzing the
integrality gap, it is established that our rounding technique is nearly best possible.

The second setting we consider is a simultaneous first-price auction — where each of the m
items is sold via a separate single-item auction. We quantify the welfare loss in this simple auction
when bidders have MPH-k valuations. We find that the price of anarchy is at most 2k.

Theorem 2.4. For simultaneous first price auctions, when bidders have MPH-k valuations, both
the correlated price of anarchy and the Bayes-Nash price of anarchy are at most 2k.

Our proof technique extends the analysis for complement-free valuations in [16] and the smooth-
ness framework introduced in [31] to settings with complementarities. We also establish an almost
matching lower bound (See section G).

Theorem 2.5. There exists an instance of a simultaneous first price auction with single minded
bidders in MPH-k in which the price of anarchy is Ω(k).

Remarks. Most of our expressiveness results showing that a certain function belongs to MPH-k
are established by showing that the function satisfies a certain requirement that we refer to as
the Positive Lower Envelope (PLE) condition. We also observe that, together with monotonicity,
this requirement becomes a sufficient and necessary condition for membership in MPH-k. This
observation motivates the definition of a new hierarchy, referred to as PLE . The class PLE-k
contains MPH-k, but also includes non-monotone functions. While monotonicity is a standard
assumption in the context of combinatorial auctions, PLE can be applicable outside the scope of
combinatorial auctions. We defer to Appendix J, an analysis of the expressiveness of PLE functions
and the observation that our approximation results extend to non-monotone PLE functions.

Extensions. One of the main open problems suggested by this work is the relation between
hypergraph valuations of rank k and MPH-k valuations. We make the following conjecture:

Conjecture 2.6. Every hypergraph function with rank k (positive or negative) is in MPH-O(k2).

We make partial progress toward the proof of this conjecture, by confirming it for the case of
symmetric functions. For non-symmetric, observe that for the case of laminar negative hyperedges,
we show an even stronger statement in item (3) of Theorem 2.1.

Theorem 2.7. Every monotone symmetric hypergraph function with rank k (positive or negative)
is in MPH-O(k2) (See Sections 3.2 and F).

For symmetric functions, we conjecture a more precise bound of
⌈
k
2

⌉ ⌈
k+1
2

⌉
, suggested by a

computer-aided simulation based on a non-trivial LP formulation. For the special cases of symmetric
functions of ranks k = 3 and 4, we show that they are in MPH-4 and MPH-6, respectively, and
that this is tight. We use an LP formulation whose optimal solution is the worst symmetric function
possible for a given rank, and its value corresponds to the level of this worst function in the MPH
hierarchy. We bound the value of this LP, by using LP duality. (see Section K for proofs)

3 Proofs

In this section we include a part of our proofs. Due to space constraints, we defer the other proofs
to the appendix.
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3.1 Positive lower envelope technique

Proving that a particular set function f : 2M → R+ can be expressed as MPH-k requires construct-
ing a set of PH-k valuations that constitutes the index set L over which the maximum is taken. In
what follows we present a canonical way of constructing the set L. The idea is to create a PH-k
function for every subset S of the ground set M . The collection of these PH-k functions, one for
each subset, constitutes a valid MPH-k representation if they adhere to the following condition.

Definition 3.1 (Positive Lower Envelope (PLE)). Let f : 2M → R+ be a monotone set function.
A positive lower envelope (PLE) of f is any positive hypergraph function g such that:

• g(M) = f(M).
• For any S ⊆ M , g(S) ≤ f(S). [No overestimate]

Before presenting the characterization, we need the following definition. A function f : 2M → R+

restricted to a subset S, S ⊆ M , is a function fS : 2S ⊆ R+ with fS(S
′) = f(S′) for every S′ ⊆ S.

Proposition 3.1 (A characterization of MPH). A function f is in MPH-k if and only if it is
monotone and fS admits a lower envelope of rank k for every set S ⊆ M .

3.2 Some proofs of expressiveness

We provide here a sketch of the proof of the second assertion in Theorem 2.1, namely that any
monotone set function of positive rank 2 is in MPH-2

Proof. Let v : 2M → R+ be a monotone set function of positive rank 2 and let Gv be the hypergraph
representation of v, where the vertices of Gv are the items of M . By Proposition 3.1 it suffices to
show that every S ⊆ M has a positive lower envelope of rank 2 (abbreviated as PLE-2). Consider
an arbitrary S ⊆ M . We construct a positive lower envelope for S by induction. Starting with an
empty set of vertices, we iteratively add the vertices of S, one at a time. Let ui ∈ S denote the
vertex added at iteration i, and Si ⊆ S denote the resulting subset. The inductive invariant that we
maintain is that each Si has a PLE-2. The base case of the induction is S1, and there the inductive
hypothesis holds because v is nonnegative. We now prove the inductive step. Namely, we assume
that Si−1 has a PLE-2, and prove the same for Si.

Let Ni (Pi, respectively) denote the set of negative (positive, respectively) hyperedges in Gv

that contain ui and are contained in Si. (As v has positive rank 2, the hyperedges in Pi have rank
at most 2.) Consider an auxiliary bipartite graph H with members of Ni as one set of vertices,
members of Pi as the other set of vertices, and edges between e ∈ Ni and e′ ∈ Pi iff e′ ⊂ e (namely,
the negative hyperedge contains all items of the positive hyperedge). These edges have infinite
capacities. Add two auxiliary vertices, s connected to each member of Ni by an edge of capacity
equal to the (absolute value of the) weight of the corresponding hyperedge in Gv, and t connected
to each member of Pi by an edge of capacity equal to the weight of the corresponding hyperedge in
Gv. We claim that there is a flow F from s to t saturating all edges of s. This follows from the max
flow min cut theorem, together with the facts that v is monotone and all positive hyperedges have
rank at most 2. Given this claim (whose proof appears in Appendix E.1), we add to the PLE-2 of
Si−1 only the the members of Pi (hence positive edges of rank at most 2), but each of them with a
weight reduced by the amount of flow that goes from it to t (according to the saturated flow F ).
The flow F gives us a way of charging every negative hyperedge that is discarded against a reduction
in weight of positive hyperedges contained in it, and this implies (see details in Appendix E.1) that
the result is indeed a PLE-2 for Si.
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Next we provide a sketch of the proof of Theorem 2.7, namely that every monotone symmetric
hypergraph-r function is in MPH-O(r2).

Proof. Let f be a normalized monotone symmetric set function of rank r, and let h be its hypergraph
representation. Consider the following normalized monotone symmetric set function g defined by
its positive hypergraph representation p: p(S) = f(U)/

(
n
R

)
if |S| = R, and p(S) = 0 otherwise, for

R = 3r2. As all four functions f, h, g, p are symmetric, we shall change notation and replace f(S)
by f(|S|). As special cases of this notation, f(U) is replaced by f(n), and f(ϕ) is replaced by f(0).

We claim that g is a lower envelope for f . There are three conditions to check. Two of them
trivially hold, namely, g(0) = f(0) = 0, and g(n) =

(
n
R

)
p(R) = f(n). The remaining condition

requires that g(k) ≤ f(k) for every 1 ≤ k ≤ n − 1. This trivially holds for k < R because in this
case g(k) = 0, whereas f(k) ≥ 0. Hence the main content of our proof is to establish the inequality
g(k) ≤ f(k) for every R ≤ k ≤ n− 1.

The proof proceeds by means of contradiction: suppose there is some f that serves as a negative
example, namely, that for this f there is R ≤ k ≤ n− 1 for which g(k) > f(k). We can show that
if such an example exists then there exists one where k = n − 1 (Details appear in Appendix F).
Thus it suffices to show that g(n − 1) =

(
n−1
R

)
f(n)/

(
n
R

)
= n−R

n f(n) ≤ f(n − 1) for any f that is
hypergraph-r.

We will consider the (not necessarily monotone) degree r polynomial F (x) =
∑r

i=1

(
x
i

)
h(i), that

matches f(x) at integral points {0, . . . , n}. Let M = max0≤x≤n |F (x)| and let 0 ≤ y ≤ n be such
that |F (y)| = M . By Markov’s inequality regarding bounds on derivatives of polynomials [25],

we can show that max0≤x≤n |F ′(x)| ≤ 2r2

n M . If y is an integer then monotonicity of f (and
hence of F on integer points) implies that M = f(n). However, y need not be integer. In that
case i < y < i + 1 for some 0 ≤ i ≤ n − 1. Let m = max[|F (i)|, |F (i + 1)|]. Then M ≤
m + 1

2 maxi≤x≤i+1[|F ′(x)|] ≤ f(n) + r2

n M . As n ≥ R ≥ 3r2 we obtain that M ≤ 3f(n)/2. On the

other hand, f(n− 1) = F (n− 1) ≥ f(n)−max0≤x≤n F
′(x) ≥ f(n)− 2r2

n M ≥ f(n)− 3r2

n f(n). Since
R = 3r2 we have that f(n− 1) ≥ (1− R

n )f(n) = g(n− 1), as desired.

3.3 Algorithmic Welfare Maximization (Proof of Theorem 2.3)

In this section we consider the purely algorithmic problem, ignoring incentive constraints. While
constant factor approximations exist for welfare maximization in the absence of complementarities
(see [10, 12]), it is not hard to see that complementarities can make the welfare problem as hard as
independent set and hence inapproximable to within an almost linear factor. Our hierarchy offers a
linear degradation of the approximation as a function of the degree of complementarity. At a high
level, our algorithm works as follows: define the configuration linear program (LP) (introduced in
[10]) by introducing a variable xi,S for every agent i and subset of items S. Given the valuation
function vi of each agent i, the configuration LP is:

maximize
∑
i,S

xi,S · vi(S) (3)

s.t.
∑
S

xi,S ≤ 1 ∀i ∈ N∑
i,S|j∈S

xi,S ≤ 1 ∀j ∈ M and xi,S ≥ 0 ∀i ∈ N,S ⊆ M

The first set of constraints guarantees that no agent is allocated more than one set and the second
set of constraints guarantees that no item belongs to more than one set. This LP provides an upper

8



bound on the optimal welfare. To find a solution that approximates the optimal welfare, we first
solve this LP (through duality using demand queries3) and then round it (see below).

Rounding the LP. The rounding proceeds in two steps. First each agent i is assigned a tentative
set S′

i according to the probability distribution induced by the variables xi,S . Note that this tentative
allocation has the same expected welfare as the LP. However, it may be infeasible as agents’ sets
might overlap. We must resolve these contentions. Several approaches for doing this when there
are no complementarities were proposed and analyzed in [10, 12]. However, these approaches will
fail badly in our setting, due to the existence of complementarities. Instead, we resolve contention
using the following technique: We generate a uniformly random permutation π over the agents and

then at each step t for 1 ≤ t ≤ n, assign agent i = π(t) items Si = S′
i \ {∪π(t−1)

i′=π(1)Si′}, i.e., those
items in his tentative set that have not already been allocated.

The following proposition shows that this way of contention resolution guarantees a loss of at
most a factor of k + 1, when all agents have MPH-k valuations.

Proposition 3.2. If all agents have MPH-k valuations, then given a solution to the configuration
LP, the above random permutation rounding algorithm produces (in expectation) an allocation that
approximates the maximum welfare within a ratio no worse than k + 1.

Proof. First, note that the solution is feasible, since every item is allocated at most once. We upper
bound the approximation guarantee. The sum of values of tentative sets preserve, in expectation,
the value of the optimal welfare returned by the configuration LP. Consider an arbitrary agent and
his tentative set T . This set attained its value according to some positive hypergraph H that has
no edges of rank larger than k. Consider an arbitrary edge of H contained in T , and let r ≤ k be
its rank. We claim that its expected contribution (expectation taken over the random choices of
the other agents and the random permutation) towards the final welfare is at least 1/(r + 1) of its
value. The expected number of other agents who compete on items from this edge is at most r (by
summing up the fractional values of sets that contain items from this edge). Given that there are ℓ
other competing agents, the agent gets all items from the edge with probability exactly 1/(ℓ+ 1).
As the expectation of ℓ is at most r, the expectation of 1/(ℓ+1) is at least 1/(r+1) (by convexity)
and hence at least 1/(k+ 1) as the valuation function is MPH-k. The proof follows from linearity
of expectation.

It is known that there is an integrality gap of k − 1 + 1
k for hypergraph matching in k-uniform

hypergraphs (see Chan and Lau [7] and references therein). These instances are special cases of
welfare maximization with MPH-k valuations. Hence, our rounding technique in Proposition 3.2 is
nearly best possible. For completeness, we show this integrality gap for our setting in Appendix M.
Recall also that even for the case of single-minded bidders with sets of size up to k, it is NP-hard
to approximate the welfare maximization problem to a better factor than Ω( ln k

k ).4

3.4 Welfare Maximization at Equilibrium (Proof of Theorem 2.4)

In this section we study welfare guarantees at equilibrium of the simultaneous item auction, when all
agents have MPH-k valuations. In a simultaneous item (first-price) auction, every bidder i ∈ [n]
simultaneously submits a bid bij ≥ 0 for every item j ∈ [m]. We write bi = (bi1, . . . , bim) for
the vector of bids of bidder i, and b = (b1, . . . , bn) for the bid profile of all bidders. Every item is

3For definition of demand queries see Appendix O and for discussion on representation of set functions Appendix B.
4This hardness is obtained by an approximation preserving reduction from k-set packing given in [22], together

with a hardness result of [19].
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allocated to the bidder who submits the highest bid on it (breaking ties arbitrarily), and the winning
bidder pays his bid. We let Xi(b) denote the bundle allocated to bidder i under bid profile b, and we
write X(b) = (X1(b), . . . , Xn(b)) for the allocation vector under bids b. When clear in the context,
we omit b and write X for the allocation. A bidders’s utility is assumed to be quasi-linear; i.e.,
ui(b; vi) = vi(Xi(b))−

∑
j∈Xi(b)

bij . Given a valuation profile v, the welfare of an allocation X is the

sum of the agents’ valuations: SW (X;v) =
∑n

i=1 vi(Xi). We also denote the welfare-maximizing
allocation for values v by X∗(v) (or X∗ in short), and its social welfare by Opt(v).

In this part we assume that the valuations of the players are common knowledge; see end of the
section for incomplete information extensions. A Nash equilibrium is a profile of (possibly random)
bids B = (B1, . . . , Bn), such that no player’s utility can increase by deviating to some other bid.
To quantify the inefficiency that can arise in a simultaneous item auction, we will use the price of
anarchy (PoA) measure, which is the maximum ratio (over all valuation profiles) of the optimal
welfare over the welfare obtained at any Nash equilibrium.

POA = max
v ; B : B is mixed NE

Opt(v)

Eb∼B[SW (X(b))]
. (4)

Bounding the PoA. We provide a proof that the PoA of the auction is at most 4k, when bidders
have MPH-k valuations. Let B be a randomized bid profile that constitutes a Nash equilibrium
under valuations v. For each item j ∈ [m], let Pj = maxj Bij be the price of item j; Pj is a random
variable induced by the bid profile. Consider what would happen if bidder i deviated from B and
instead bid b∗ij = 2k ·E[Pj ] on all the items j ∈ X∗

i and 0 on the other items. By Markov’s inequality

bidder i wins each item j ∈ X∗
i with probability at least 1− 1

2k . Let v
∗
i be the PH-k lower envelope

with respect to set X∗
i (recall bidders have MPH-k valuations). Then, vi(X

∗
i ) = v∗i (X

∗
i ) and, for

any Xi ⊆ X∗
i , vi(Xi) ≥ v∗i (Xi). Since v

∗
i is a PH-k valuation, each hyperedge of v∗i has size at most

k; it then follows byu the union bound that bidder i wins all items in any such hyperedge with
probability at least 1

2 . Therefore, the value that the player derives from this deviation is at least
1
2v

∗
i (X

∗
i ) =

1
2vi(X

∗
i ). Hence, his utility from the deviation is at least 1

2vi(X
∗
i ) − 2k ·

∑
j∈X∗

i
E[Pj ].

By the Nash condition his utility at equilibrium is at least this high.
By summing the above bound over all bidders i, the sum of bidders’ utilities at equilibrium is

at least 1
2Opt(v)− 2k ·

∑
j∈[m] E[Pj ]. Adding the expression for the total utility, we get:

E[SW (B;v)]−
∑
j∈[m]

E[Pj ] =
∑
i

E[ui(B; vi)] ≥
1

2
Opt(v)− 2k ·

∑
j∈[m]

E[Pj ].

Since every player has the option to drop out of the auction, his expected utility must be non-
negative. Therefore, the expected total payment at equilibrium is bounded above by the welfare
at equilibrium. Substituting this in the above inequality gives that 2k · E[SW (B;v)] ≥ 1

2Opt(v),
which establishes an upper bound of 4k on the PoA, as desired.

Extensions. In Appendix H we provide a tighter bound of 2k on the PoA via the smoothness
framework [31]. By using the smoothness framework, this bound immediately extends to Bayesian
settings, where the valuations of the players are unknown but are drawn from commonly known
independent distributions. The bound also extends to outcomes derived from no-regret (learning)
behavior in repeated games.
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A Fractional Covers and MPH Valuations

In this section we show an equivalence between Maximum over Hypergraph Valuations and a gen-
eralization of fractionally subadditive valuations, where fractional covers are defined as covering
every possible subset of size at most k of nodes.

More formally, consider a set S of items and let S|k be all the subsets of S of size at most k.
We say that a collection of sets T ⊆ 2S together with a weight aT for each T ∈ T is a fractional
cover of all the subsets of size at most k (k-fractional cover) of S if ∀s ∈ S|k :

∑
T∈T :T⊇s aT ≥ 1.

A valuation v : 2M → R+ is k-fractionally subadditive if for every S ⊆ M and every k-fractional
cover (aT , T ) of S, we have v(S) ≤

∑
T∈T aT · v(T ).

Theorem A.1. The class of monotone k-fractionally subadditive valuations is equivalent to the
class of MPH-k valuations.

Proof. First it is easy to observe that any MPH-k valuation is k-fractionally subadditive:∑
T∈T

aT · v(T ) =
∑
T∈T

aT ·max
ℓ∈L

∑
s∈T |k

wℓ
s ≥ max

ℓ∈L

∑
T∈T

aT
∑
s∈T |k

wℓ
s = max

ℓ∈L

∑
s∈S|k

wℓ
s

∑
T∈T :T⊇s

aT

≥ max
ℓ∈L

∑
s∈S|k

wℓ
s = v(S)

To show that any monotone k-fractionally subadditive valuation is an MPH-k valuation, we
follow a similar analysis to that carried by Feige [12], as follows. For every set S, we construct a
hypergraph-k valuation associated with the set S, and denote it by ℓ(S). The set of valuations is then

L = ∪S⊆[m]ℓ(S). The hypergraph valuation ℓ(S) is constructed such that: (i) v(S) =
∑

s∈S|k w
ℓ(S)
s ,

and (ii) for any subset T ⊆ S : v(T ) ≥
∑

s∈T |k w
ℓ(S)
s . Monotonicity then implies that for any set S,

v(S) = maxℓ∈L
∑

s∈S|k w
ℓ
s, as desired.

It remains to construct the valuation ℓ(S). To this end, we consider the following linear program
and its dual:

V (S) = min
(aT )T⊆S

∑
T⊆S

aT · v(T ) C(S) = max
(ws)s∈S|k

∑
s∈S|k

ws

∀s ∈ S|k :
∑
T⊇s

aT ≥ 1 ∀T ⊆ S :
∑
s∈T |k

ws ≤ v(T )

∀T ⊆ S : aT ≥ 0 ∀s ∈ S|k : ws ≥ 0

By definition, every feasible solution to the primal program constitutes a fractional cover of every
subset of size at most k of S. Therefore, it follows by k-fractional subadditivity that V (S) ≥ v(S).
Since v(S) can be obtained by setting aS = 1 and aT = 0 for any T ⊂ S, we get that V (S) = v(S).

Duality then implies that C(S) = v(S). Thus if we set (w
ℓ(S)
s )s∈S|k to be the solution to the dual,

then the conditions that need to be hold for ℓ(S) are satisfied by the constraints of the dual and
the duality.

B MPH as a useful representation

An explicit description (as a truth table) of a set function over m items contains 2m − 1 entries.
However, one is typically more interested in those set functions that have implicit descriptions of
size polynomial in m (which by a simple counting argument constitute only a small fraction of
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all possible set functions). A set function may have several different polynomial size descriptions,
that differ wildly in their usefulness. For example, a useful description of a linear function simply
lists the values of all items, whereas a rather useless description is to list m NP-hard optimization
problems, with the intended interpretation that the value of the ith item is equal to the value of
the optimal solution of the ith problem.

Given a description of a set function f , a “minimal” notion of usefulness is that of having the
ability to answer value queries, namely, to have a fast (polynomial time) algorithm that given a
set S as input, returns f(S). Such an algorithm is referred to as a value oracle for f . Ideally,
the value oracle has a polynomial size implementation, say, as a circuit of size polynomial in m.
However, in the context of combinatorial auctions, one may also imagine using exponential size
implementations of value oracles: an agent may hold a representation of his own valuation function
f as a truth table. This representation may be too long to be communicated in its entirety to the
welfare maximization algorithm, but the agent may answer value queries quickly upon request, by
having random access (rather than sequential access) to this table.

Another notion of usefulness that comes up naturally in the context of combinatorial auctions
is that of having the ability to answer demand queries, namely, to have a fast (polynomial time)
algorithm that given a list of item prices pi as input, returns the set S that maximizes f(S)−

∑
i∈S pi.

Such an algorithm is referred to as a demand oracle for f . A demand oracle is at least as difficult
to implement as a value oracle, because value queries can be implemented using demand queries
(see [5]).

It is shown in [14] that even some submodular functions that have a polynomial representation
do not have any polynomial size implementation of demand oracles (not even oracles that answer
demand queries approximately), unless NP has polynomial size circuits. In fact, there are such
functions that do not have any polynomial size implementation of value oracles (unless NP has
polynomial size circuits). Hence not all functions in MPH-1 have useful representations, not even
those functions that have a polynomial representation.

A function f is said to have a polynomial size MPH representation if it can be represented as
a maximum over polynomially many positive hypergraphs, where each hypergraph is of polynomial
size. Interestingly, a polynomial size MPH representation is always a useful representation.

Proposition B.1. Given a polynomial size MPH representation of a set function f , one can
answer demand queries in polynomial time.

Proof. It was observed in [1] that one can solve a demand query on a positive hypergraph val-
uation by the following algorithm: subtract the item prices from the corresponding vertices and
then observe that the resulting graph (which potentially has negative vertex weights) defines a
supermodular function. Supermodular function maximization is equivalent to submodular function
minimization, and is well-known to be solvable in strongly polynomial time. To answer a demand
query on a function with a polynomial size MPH representation, simply solve the demand query
on each hypergraph separately, as proposed above, and then return the maximum.

C Proofs on Limitations of previous hierarchies

In this section we prove Proposition 2.2 by constructing functions that lie in MPH-k for small
values of k, but that are not approximable by functions that are low in alternative hierarchies.
Recall (from Definition 2.1) that a set function f approximates a set function g within a ratio of

ρ ≥ 1 if there are ρ1 and ρ2 such that for every set S, ρ1 ≤ f(S)
g(S) ≤ ρ2, and

ρ2
ρ1

≤ ρ.

We begin by proving the first half of Proposition 2.2. Let f1 be the function such that f1(S) = 1
for every nonempty set S ⊆ M . Note that f1 is submodular. Recall that the hypergraph rank of
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a function f is the cardinality of the largest (nonzero) hyperedge in the hypergraph representation
of f .

Proposition C.1. The hypergraph rank of f1 is |M |. Moreover, for every k (the following result
is nontrivial for k ≤ o(

√
m)), every function of hypergraph rank k approximates f1 within a ratio

no better than Ω
(
m
k2

)
.

Proof. The unique hypergraph representation of f1 sets h(S) = 1 for every odd cardinality set S,
and h(S) = −1 for every nonempty even cardinality set S. Hence its hypergraph rank is |M |.

For the moreover part of the proposition, we only sketch the proof; the missing details can
be found in the proof of Theorem 2.7. Let f be an arbitrary function of hypergraph rank k that
approximates f1 within a ratio of ρ. We may assume without loss of generality that f is a symmetric
function (otherwise we can symmetrize it by averaging all m! functions that are obtained from f by
permuting the items of M). By scaling we may assume that f(S) ≤ 1 for every set S, with equality
for some nonempty S. Then the approximation guarantee is that f(S) ≥ 1/ρ for every nonempty
set S. Expressing the symmetric function f as a degree k polynomial in one variable, the derivative
of this polynomial is bounded by O(k

2

m ) (see details in the proof of Theorem 2.7). As f(0) = 0 this

implies that f(1) ≤ O(k
2

m ). Combining with the the approximation requirement of f(1) ≥ 1/ρ we
obtain that ρ ≥ Ω(m

k2
), as desired.

For k = 2, Proposition C.1 immediately implies that graphical valuations cannot approximate f1
within a ratio better than Ω(m). Likewise, it is similarly seen that no function in the PH hierarchy
can approximate f1 within a ratio better than m.

We next turn to the second half of Proposition 2.2. Let f2 denote the function with the following
graphical representation: the complete graph in which each vertex has value 0 and each edge has
value 1. Hence f(S) = 0 for |S| ≤ 1 and f(S) =

(|S|
2

)
otherwise. Observe that f2 is a graphical

valuation function (by definition) and that f2 is in PH-2 (again, by definition).

Proposition C.2. Every function of supermodular degree d approximates f2 within a ratio no better
than m

d+1 − 1. In particular, f2 has supermodular degree Ω(m).

Proof. Let f be a function of supermodular degree d. Then, there must exist a set T with |T | ≥ m
d+1

such that f restricted to T is submodular (such a set can be obtained by picking an item, discarding
the at most d items that have supermodular dependence with it, and repeating). Without loss of
generality, normalize f such that f(T ) = f2(T ) =

(|T |
2

)
. Then, by submodularity of f on T , there

is a set T ′ ⊂ T with |T | = 2 such that f(T ′) ≥ 2
|T |f(T ) = |T | − 1. But f2(T

′) = 1, implying that

the approximation ratio ρ is at least |T | − 1 ≥ m
d+1 − 1.

D Positive lower envelope technique

Proof of Proposition 3.1 :

First direction: Monotone, PLE of rank k ⇒ MPH-k: Let f : 2M → R+ be a monotone
set function. For any T ⊆ M , let gT be a positive lower envelope of rank k of f restricted
to T . We argue that {gT }T⊆M is an MPH-k representation of f . Specifically, we show that
for every S ⊆ M , it holds that maxT⊆M gT (S) = f(S). Let S ⊆ M . By the first property of
Definition 3.1, it holds that gS(S) = f(S). Therefore,

max
T⊆M

gT (S) ≥ gS(S) = f(S) (5)
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Additionally, for any T ⊆ M , gT (S) = gT (S∩T ) ≤ f(S∩T ) ≤ f(S), where the equality follows
from the fact that gT is restricted to T ; the first inequality follows from the no-overestimate
property of Definition 3.1 and the last inequality follows from monotonicity of f . Therefore,

max
T⊆M

gT (S) ≤ f(S) (6)

The first direction follows by Equations (5) and (6).

Second direction: MPH-k ⇒ Monotone, PLE of rank k: Let f : 2M → R+ be a function
in MPH-k and let L be an MPH representation of it. We first prove that f is monotone.
Assume towards contradiction that f is not monotone. Then, there exist S′ ⊂ S ⊆ M such
that f(S′) > f(S). Since L is an MPH representation of f , there exists a positive hypergraph
function fh ∈ L such that fh(S

′) = f(S′). This means that fh(S) ≥ f(S′) > f(S), which
implies that maxg∈L g(S) > f(S), deriving a contradiction. The monotonicity of f follows.
We next show that for every set S ⊆ M , fS admits a positive lower envelope of rank k.
Let S ⊆ M . There exists a positive hypergraph function fh ∈ L such that fh(S) = f(S).
Moreover, no set S′ ⊆ S can have value strictly greater than f(S′) according to fh, since if it
does, this will be a lower bound on the value of S′ according to L. Therefore fh is a positive
lower envelope of fS , as desired. The second direction follows.

We conclude the proof of Proposition 3.1.

E Proof of Expressiveness Theorem 2.1

E.1 Graphical Valuations with Negative Hyperedges

We prove the part of Theorem 2.1 dealing with monotone set functions with positive rank 2.

Theorem E.1. Any monotone set function of positive rank 2 is in MPH-2

Proof. Let f be a monotone hypergraph set function with positive rank 2, and let h be its hypergraph
representation. In order to prove the theorem, we invoke the lower envelope technique, given in
Proposition 3.1. Specifically, for every set S, we construct a monotone positive lower envelope wS

of rank 2 with a hypergraph representation gS .
Fix a set S of cardinality r. For every hyperedge e that is not contained in S or such that

h(e) = 0, set gS(e) = 0. The rest of the proof deals with hyperedges e that are contained in S and
such that h(e) ̸= 0.

Let s1, . . . , sr be an arbitrary order of the items in S. We construct gS incrementally, considering
one item at a time. For every j ≤ r, let S<j be the set {s1, . . . , sj−1}. For an item sj and a set
of items T ⊆ S<j , let E+

j (T ) denote the set of positive hyperedges that are created when adding

item sj to the set T ; i.e., E+
j (T ) = {e ∈ S : h(e) > 0, e ⊆ T ∪ {sj}, e ̸⊆ T}. Similarly, let

E−
j (T ) denote the set of negative hyperedges that are created when adding item sj to T ; i.e.,

E−
j (T ) = {e ∈ S : h(e) < 0, e ⊆ T ∪ {sj}, e ̸⊆ T}. Specifically, E+

j (S<j) and E−
j (S<j) are the

respective new positive and negative hyperedges that are created when sj is added to S<j .
The idea is to charge the negative values of the edges in E−

j (S<j) to positive edges in E+
j (S<j)

in such a way that the absolute value of every negative hyperedge is charged completely to positive
edges that are subsets of the negative hyperedge. In particular, for every e ∈ E+

j (S<j), we compute
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a charging ce ≤ h(e), satisfying the following two conditions:∑
e∈E+

j (S<j)

ce =
∑

e∈E−
j (S<j)

|h(e)| (7)

∀T ⊆ S<j :
∑

e∈E+
j (T )

ce ≥
∑

e∈E−
j (T )

|h(e)| (8)

Then, for every e ⊆ S such that h(e) < 0, we set gS(e) = 0, and for every e ⊆ S such that h(e) > 0,
we set gS(e) = h(e)− ce,

In order to prove the theorem, we need to establish two arguments: First, we need to show
that gS , calculated by a charging scheme that satisfies Equations (7) and (8), is a hypergraph
representation of a lower envelope of v with respect to S. Second, we need to argue that there
exists a charging scheme satisfying Equations (7) and (8).

We start with the first argument. Namely, we show that wS , with a hypergraph representation
gS , satisfies the two conditions of Lemma 3.1. We first establish the first property.

v(S) =

r∑
j=1

v(sj | S<j ) =

r∑
j=1

 ∑
e∈E+

j (S<j)

h(e)−
∑

e∈E−
j (S<j)

|h(e)|


=

r∑
j=1

 ∑
e∈E+

j (S<j)

h(e)−
∑

e∈E+
j (S<j)

ce

 =

r∑
j=1

 ∑
e∈E+

j (S<j)

gS(e)


=

r∑
j=1

wS(sj | S<j) = wS(S) ,

where the first and second equalities are by definitions (marginal set function and hypergraph
representation, respectively); the third is by (7); the fourth is by definition of gS(e); the fifth is by
definitions of gS and wS and the last is by definition of marginal set function. We next establish
the no-overestimate property; i.e., for every set T , v(T ) ≥ wS(T ).

v(T ) =
∑
sj∈T

v(sj | S<j ∩ T ) =
∑
sj∈T

 ∑
e∈E+

j (S<j∩T )

h(e)−
∑

e∈E−
j (S<j∩T )

|h(e)|


≥

∑
sj∈T

 ∑
e∈E+

j (S<j∩T )

h(e)−
∑

e∈E+
j (S<j∩T )

ce

 =
∑
sj∈T

 ∑
e∈E+

j (S<j∩T )

gS(e)


=

∑
sj∈T

wS(sj | S<j ∩ T ) = wS(T ) ,

where the inequality is by (8).
We now prove the latter argument; i.e., that a charging scheme satisfying Equations (7) and (8)

exists. We reduce the existence problem to a max-flow min-cut computation on an appropriately
defined graph. For every item sj ∈ S, we associate a flow graph G, with source s, target t, and two
sets of nodes L and R as described next. To avoid confusion between the hypergraph edges and
the edges of the flow graph G, we refer to the edges of G as arcs. For every hyperedge e ∈ E−

j (S<j)
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associate a node e ∈ L, and draw an arc from the source s to node e with capacity |h(e)|. Similarly,
for every hyperedge e ∈ E+

j (S<j) associate a node e ∈ R, and draw an arc from node e to the target
node t with capacity h(e). In addition, for every node v ∈ L, we draw an arc with capacity +∞ to
every node u ∈ R such that eu ⊆ ev, where eu and ev are the hyperedges associated with nodes u
and v, respectively.

We will soon show that the maximum flow of this graph is equal to
∑

e∈E−
j (S<j)

|h(e)| (i.e., all
edges from s to nodes in L are fully saturated). Then, for every node v ∈ R, we let the charging of
the edge e associated with v to be equal to the flow on the edge from v to t in the maximum flow.
We argue that such a charging satisfies Equations (7) and (8). Equation (7) is clearly satisfied, as
the total charging on the positive edges is equal to the total flow, which is the total absolute value
of the negative hyperedges. To establish Equation (8), consider a subset T ⊆ S<j . If a hyperedge
e ∈ E−

j (S<j) is also contained in E−
j (T ), then all of the positive edges that are subsets of e are

contained in E+
j (T ). In addition, by the design of the flow graph, all the negative value of e was

charged to positive edges that are contained in it. Therefore, the total charging associated with the
positive edges E+

j (T ) is at least as much as the total absolute value of the negative edges in E−
j (T ),

establishing Equation (8).
It now remains to establish a flow with value

∑
e∈E−

j (S<j)
|h(e)|. We equivalently establish that

the minimum (s, t)-cut in G equals this value. Clearly, there exists a cut with this value; namely,
the set of the outgoing edges from the source s. It remains to show that every cut has at least this
value. Let (A,B) be an arbitrary (s, t)-cut of G, such that s ∈ A and t ∈ B, and let c(A,B) denote
its value. We show that

c(A,B) ≥
∑

e∈E−
j (S<j)

|h(e)|. (9)

If there exist two nodes v, u such that v ∈ L∩A and u ∈ R∩B, then the cut (A,B) contains an arc
with infinite capacity, so Equation (9) holds. Otherwise, for every node in L∩A, every node u ∈ R
connected to v must be in A too. It follows that the value of the cut can be expressed as follows:

C(A,B) =
∑

e∈E−
j (S<j)∩B

|h(e)|+
∑

e∈E+
j (S<j)∩A

h(e),

and so we need to show that∑
e∈E−

j (S<j)∩B

|h(e)|+
∑

e∈E+
j (S<j)∩A

h(e) ≥
∑

e∈E−
j (S<j)

|h(e)|.

Substituting
∑

e∈E−
j (S<j)

|h(e)| =
∑

e∈E−
j (S<j)∩A |h(e)| +

∑
e∈E−

j (S<j)∩B |h(e)|, it remains to show

that ∑
e∈E+

j (S<j)∩A

h(e) ≥
∑

e∈E−
j (S<j)∩A

|h(e)|.

Let A−
j = ∪e∈E−

j (S<j)∩A (e \ {sj}) be the union of items in the negative hyperedges in A, ex-

cluding sj . Consider the hypothetical case of adding item sj to A−
j . Observe that when adding sj

to A−
j the absolute value of the negative edges created is at least the sum of all the absolute values

of negative hyperedges in A. By the fact that the positive edges are of cardinality at most 2, the
total value of the positive edges created is exactly equal to the union of the positive edges that are
subsets of some of the negative hyperedges in A. Note that the fact that all positive edges are of
cardinality at most 2 is crucial here: if there were positive hyperedges of cardinality greater than
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2, then additional hyperedges could have been created and the argument would break. The latter
union is exactly the set of positive edges in A. Thus we get:

v(sj | A−
j ) ≤

∑
e∈E+

j (S<j)∩A

h(e)−
∑

e∈E−
j (S<j)∩A

|h(e)|. (10)

The monotonicity of v implies that v(sj | S−(A)) ≥ 0, implying that∑
e∈E+

j (S<j)∩A

h(e)−
∑

e∈E−
j (S<j)∩A

|h(e)| ≥ 0,

as required.

E.2 Laminar Negative Hyperedges

We prove the part of Theorem 2.7 dealing with monotone hypergraph functions with laminar neg-
ative hyperedges.

Theorem E.2. Every monotone hypergraph function with positive rank r and laminar negative
hyperedges (with arbitrary rank) is in MPH-r

Proof. Let f : 2M → R+ be a non-negative set function with positive rank r and hypergraph
representation w : 2M → R. For this proof we actually only assume that f is non-negative and
not the stronger assumption that it is monotone. Under solely the non-negativity assumption we
construct a valid positive lower envelope of f of rank k. Then this would directly imply that when
the function is also monotone, then it is in MPH-k. Note that we construct a positive lower
envelope only for f itself, but the proof applies to any restriction of f , as well.

Let E denote the set of hyperedges of w (i.e. S ⊂ M with w(S) ̸= 0). We will denote with
F = (M,E,w) the actual hypergraph on vertices M , hyperedge-set E and hyperedge weights w.
By our assumption the negative hyperedges of F are laminar. We show how to remove the negative
hyperedges of F one by one, without either changing its value for M , increasing its value for
any S ⊆ M or disobeying its non-negativity. Thus at the end of this construction, the positive
hypergraph that will remain will be a valid positive lower envelope of f .

Let e be a negative hyperedge of minimum rank and let Se ⊆ M be the set of items represented by
vertices contained in e. From non-negativity f(Se) ≥ 0. Therefore, there exist positive hyperedges
E+ containing only vertices representing items of Se with sum of values of at least |w(e)|. We
remove e and total value of |w(e)| from the edges in E+ (arbitrarily, without introducing any new
negative edges). Let F ′ be F after this change and let f ′ be the function F ′ represents. We
show F ′ still represents a non-negative function f ′. Assume towards contradiction this is not the
case. Let S− be a minimal set of vertices representing set of items with negative value by f ′.
From minimality of S− it must be that removing any vertex of S− results in removing at least
one negative hyperegde from the induced subgraph. That is, S− is a collection of negative edges.
Let e−1 , . . . , e

−
l be these negative edges. From laminarity, these negative edges must be disjoint.

Therefore, f ′(S−) =
∑l

1 f
′(items(e−i )) (where items(e−i ) are the items represented by the vertices

contained in e−i ). Since this sum is strictly negative, it must be that the value of at least one of the
addends is negative. So, from minimality of S− it must be that l = 1. That is, S− must contain
the items of exactly one negative edge (which may contain, of course, other negative or positive
edges). But, since f(S−) ≥ 0, it must be that S− contains at least one of the positive edges of
E+ and does not contain e. Therefore, e−1 and e must not be disjoint. This contradicts laminarity
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of negative edges. Therefore, it must be that f ′ is a non-negative function. Moreover, since f is
laminar and since no negative edges have been added, f ′ is laminar as well. Theorem E.2 follows
by an inductive argument by observing that F ′ contains less negative edges than F .

E.3 Supermodular Degree

We prove the part of Theorem 2.1 dealing with the supermodular degree hierarchy.

Theorem E.3. Every function with supermodular degree k is in MPH-(k + 1).

Proof. Let f : 2M → R+ be in SMD-k. Invoking Proposition 3.1, we construct a positive lower
envelope g : 2M → R+ of f that has rank k + 1. We denote by w : 2M → R+ the (positive)
hypergraph representation of g. Note that we construct a positive lower envelope only for f itself,
but the proof applies to any restriction of f , as well.

Consider an arbitrary ordering of the items: M = {1, . . . ,m}. For every item j ∈ M , let ej be
the set of items that contains j and all the items j′ ∈ M such that j′ is supermodularly dependent
with j. By the assumption of the supermodular degree of k: |ej | ≤ k+1. Let S<j = {1, . . . , j − 1}.
For every j, we associate a weight of f(j | S<j) with hyperedge ej (i.e., w(ej) = f(j | S<j)), and
every other hyperedge has a weight of zero. For simplicity of presentation, we will allow for multiple
identical hyperedges. If ej is identical to some other ej′ , then we implicitly assume that the weight
of the hyperedge is the addition of the two weights.

By construction we have that f(M) =
∑m

j=1 f(j | S<j) =
∑m

j=1w(ej) =
∑

e∈Ew
w(e) = g(M),

where Ew is the set of hyperedges of w. Thus, the first property of Definition 3.1 is satisfied. It
remains to show that for every subset T ⊆ M , it holds that f(T ) ≥ g(T ) =

∑
e∈Ew:e⊆T w(e).

Observe that it suffices to consider only sets T that are unions of hyperedges with positive weights.
This is because any vertex that is not contained in some hyperedge ej contributes no value to the
summand on the right hand side. Thus we assume that T = ∪j∈Jej for some index set J ⊆ M . We
need to show that f(T ) ≥

∑
j∈J w(ej). Note that:

f(T ) =
∑
j∈T

f(j | T ∩ S<j) =
∑

j∈T−J

f(j | T ∩ S<j) +
∑
j∈J

f(j | T ∩ S<j) ≥
∑
j∈J

f(j | T ∩ S<j),

where the last inequality follows by monotonicity (which implies that every summand of the first
sum is non-negative).

Now we argue that for every j ∈ J , f(j | T ∩ S<j) ≥ f(j | S<j). To see this observe that for
every j ∈ J , ej ⊆ T , which implies that every item j′ ∈ M that supermodularly depends on j is in
T . Therefore, S<j −T contains only items that do not supermodularly depend on j. Consequently,
adding any element in S<j −T to T ∩S<j can only decrease the marginal contribution of j; that is:

∀j′ ∈ S<j − T, f(j | T ∩ S<j) ≥ f(j | T ∩ S<j + {j′}).

Repeating the above analysis for every item in S<j − T establishes the desired claim. Combining
the above, we get:

f(T ) ≥
∑
j∈J

f(j | T ∩ S<j) ≥
∑
j∈J

f(j | S<j) =
∑
j∈J

w(ej) = g(T ),

as desired.
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F Proof of Symmetric Functions Theorem 2.7

Definition F.1 (Symmetric set function). We say that a set function f : 2M → R+ is symmetric,
if there exists a function f ′ : {0, . . . , |M |} → R+ such that for any S ⊆ M , f ′(|S|) = f(S). For
simplicity, we sometimes refer to f itself as a function getting only the cardinality of a subset and
not a subset.

Observation F.1. The hypergraph representation of any symmetric set function is symmetric, in
the sense it has the same value for any hyperedge of a given rank.

Lemma F.2 (Canonical PLE for symmetric set functions). Let f : {0, . . . ,m} → R+ be a monotone
symmetric set function of rank r. Then, if f has a positive lower envelope of rank R, it must be
that the symmetric set function gf : {0, . . . ,m} → R+ that has hypergraph representation with
positive hyperedges of rank R of value

(
m
R

)
f(m) and no other (non-zero) hyperedges is a positive

lower envelope of f . We refer to gf as the canonical positive lower envelope of rank R of f .

Proof. Let M be a ground set and let g : 2M → R+ be a positive lower envelope of f of rank R. We
consider G = (V,E,w), the hypergraph representation of g. Note that G must have only positive
hyperedges, from the definition of positive lower envelope. We cancel the hyperedges of G of size
less than R as follows. Let e be an hyperedge of G of size less than R. We arbitrarily introduce a
new hyperedge of size R that contains all the vertices of e and has value w(e). When having only
hyperedges of rank R, we just take their average value and assign it to each possible subset of rank
R as its new value. The proof of Lemma F.2 follows by symmetry of f and by uniqueness of g after
being modified.

Lemma F.3. Let r,R ∈ N. If there exists a monotone symmetric set function f : {0, . . . ,m} → R+

of rank r with no positive lower envelope of rank R, then there exists a monotone symmetric set
function f ′ : {0, . . .m′} → R+ of rank r, such that any positive hypergraph set function of rank R
that obeys g(m′) = f ′(m′), must have g(m′ − 1) > f ′(m′ − 1).

Proof. Let f : {0, . . . ,m} → R+ be a monotone symmetric set function of rank r with no positive
lower envelope of rank R, such that m is the smallest possible. Let g be the canonical positive
lower envelope of rank R of f . Then, there exists R ≤ k ≤ m− 1 for which g(k) > f(k). We claim
that since m is the smallest possible, we can just take k = m − 1 for f itself. Suppose otherwise
that g(m − 1) ≤ f(m − 1), and for some other k < m − 1 it holds that g(k) > f(k). Scale g by
multiplying it by f(m− 1)/g(m− 1) and denote it by g′. Then, it holds that g′(m− 1) = f(m− 1)
and g′(k) > f(k). Additionally, g′ is the canonical positive lower envelope of rank R of f defined
on {0, . . . ,m− 1}. Therefore, by Lemma F.2, f defined on {0, . . . ,m− 1} is also a function of rank
r with no positive lower envelope of rank R. Contradiction. The proof of Lemma F.3 follows.

Corollary F.4. Let r ≥ 1. In order to show that any monotone symmetric set function of rank r
has a positive lower envelope of rank R, it is sufficient to show that any monotone symmetric set
function f : {0, . . . ,m} → R+ of rank r obeys f(m− 1) ≥ m−R

m f(m).

Proof. Let f : {0, . . . ,m} → R+ be a monotone symmetric set function of rank r. Let g be the

canonical positive lower envelope of rank R of f . Observe that g(m− 1) =
(
m−1
R

)f(m)

(mR)
= m−R

m f(m).

The proof of Corollary F.4 follows by Lemma F.3.

From Corollary F.4 together with Lemma F.2, we have:
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Corollary F.5. Let r ≥ 1. Any monotone symmetric set function of rank r has a positive lower
envelope of rank R, if and only if any monotone symmetric set function f : {0, . . . ,m} → R+ of
rank r obeys f(m− 1) ≥ m−R

m f(m). Moreover, if a specific function f : {0, . . . ,m} → R+ does not
obey f(m− 1) ≥ m−R

m f(m), it has no positive lower envelope of rank R.

F.1 Upper bound for symmetric hypergraph functions with rank k

In this section we prove Theorem 2.7, which asserts that every monotone symmetric set function of
rank r (positive and negative) is MPH-(3r2).

Proof of Theorem 2.7 : The proof is by the positive lower envelope technique (i.e. Proposi-
tion 3.1). Let f be a monotone symmetric set function of rank r, and let H be its hypergraph
representation. Consider the following monotone symmetric set function g defined by its posi-
tive hypergraph representation G = (VG, EG, wG) that has hyperedges of rank R = 3r2 of value
f(U)/

(
m
R

)
and no other (non-zero) hyperedges.

We claim that g is a lower envelope for f .5 There are three conditions to check. Two of them
trivially hold, namely, g(0) = f(0) = 0, and g(m) =

(
m
R

)
wG(R) = f(m). The remaining condition

requires that g(k) ≤ f(k) for every 1 ≤ k ≤ m − 1. This trivially holds for k < R because in this
case g(k) = 0, whereas f(k) ≥ 0. Hence the main content of our proof is to establish the inequality
g(k) ≤ f(k) for every R ≤ k ≤ m− 1.

Suppose for the sake of contradiction that there is some f that serves as a negative example,
namely, that for this f there is R ≤ k ≤ m − 1 for which g(m) > f(m). By Corollary F.4 it is
sufficient to show that f(m − 1) ≥ m−R

m f(m), in order to derive a contradiction. We now develop
some machinery for this aim.

Proposition F.6. There is some polynomial F of degree at most r such that F (X) = f(x) whenever
x ∈ {0, 1, . . . ,m}.

Proof. The polynomial is F (x) =
∑r

i=1

(
x
i

)
h(i), where h(i) are constants derived from the hyper-

graph representation H, and
(
x
i

)
is the polynomial 1

i!x(x − 1) . . . (x − i + 1). This concludes the
proof of Proposition F.6.

Given that F (x) is a polynomial of degree at most r, we shall use Markov’s inequality regarding
derivatives of polynomials [25].

Theorem F.7 (Markov [25]). Let p be a polynomial of degree d and let p′ denote its derivative.
Then

max
−1≤x≤1

|p′(x)| ≤ d2 max
−1≤x≤1

|p(x)|

By a simple transformation of the range on which the polynomial is defined, Theorem F.7 implies
that for our polynomial F (x) the following holds:

max
0≤x≤m

|F ′(x)| ≤ 2r2

m
max

0≤x≤m
|F (x)| (11)

Let MAX = max0≤x≤m |F (x)| and let 0 ≤ y ≤ m be such that |F (y)| = MAX. If y is an
integer then monotonicity of f (and hence of F on integer points) implies that MAX = f(m).
However, y need not be integer. In that case i < y < i + 1 for some 0 ≤ i ≤ m − 1. Let
max = max{|F (i)|, |F (i+ 1)|}. Then,

MAX ≤ max+
1

2
max

i≤x≤i+1
|F ′(x)| ≤ f(m) +

1

2
max

0≤x≤m
|F ′(x)| ≤ f(m) +

r2

m
MAX

5Proof for any restriction of f to a subset is essentially the same.
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where the last inequality was derived from inequality (11). As m ≥ R = 3r2, we obtain that
MAX ≤ 3f(m)/2.

Now we use inequality (11) to bound f(m− 1) = F (m− 1) from below.

F (m− 1) ≥ f(m)− max
0≤x≤m

F ′(x) ≥ f(m)− 2r2

m
MAX ≥ f(m)− 3r2

m
f(m)

Using R = 3r2 we have that f(m − 1) ≥ (1 − R
m)f(m) = g(m − 1), as desired. This concludes

the proof of Theorem 2.7.

G Proof of PoA Lower Bound Theorem 2.5

Proof. Consider a projective plane of order k. It has k(k− 1) + 1 items, k(k− 1) + 1 bundles, each
bundle contains k items, each item is contained in k bundles, every two bundles intersect in exactly
one item (and for every two items there is exactly one bundle that contains them, a fact not needed
in the proof).

Suppose there are k(k − 1) + 1 players, each desiring a distinct bundle and valuing it at 1. We
argue that the following is a mixed Nash equilibrium for simultaneous first price auction. Each

player selects at random a value x ∈ [0, 1k ] distributed as Pr[x ≤ t] = (kt)
1

(k−1)2 , and bids this value
x on each of the items in his bundle. Fix a player i. We show that, given that other players follow
the Nash strategy, every value of x gives player i expected utility exactly 0. For every item in player
i’s bundle, player i competes with k−1 additional players who play according to the Nash strategy,

and therefore wins this item with probability (kx)
1

(k−1) . Thus, player i wins his entire desired bundle

(of k items) with probability (kx)
k

(k−1) ; this is exactly his expected value. The expected number of

items player i wins is k · (kx)
1

(k−1) , amounting to an expected payment of (kx)
k

(k−1) . It follows that
the expected utility — the probability of getting the bundle minus the expected payments — is 0,
for every value x ∈ [0, 1k ], as claimed.

It remains to show that whenever a player does not bid exactly the same value on all his items,
the expected utility is negative. To see this, fix a player i, two arbitrary items in his bundle, and
his bids on the other (k − 2) items in his bundle (not necessarily equal bids). Suppose that all
other players bid according to the Nash strategy, and let x and y denote player i’s bids on the two
designated items. It suffices to show that x = y in every best response of player i. By the best
response condition, the derivative of player i’s expected utility with respect to x equals 0, and the
same holds with respect to y. The expected utility can be expressed as follows:

αx
1

k−1 y
1

k−1 − β − x(kx)
1

k−1 − y(ky)
1

k−1 ,

where α and β are constants that do not depend on x and y. The derivative of the expected utility
with respect to x is

α

k − 1
y

1
k−1x

2−k
k−1 − k

k − 1
(kx)

1
k−1 .

The derivative with respect to y is obtained by swapping x and y in the last expression. Equating
both derivatives to 0 and solving the obtained system of equations gives us x = y for every k ̸= 0,
as desired.

Given the above, consider k such independent projective planes (hence there are k2(k − 1) + k
players), each with such a Nash equilibrium. Now add k(k−1)+1 auxiliary players, where auxiliary
player i wants a bundle composed of the ith item of each projective plane. The optimal solution
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is to give each auxiliary player his desired bundle, giving value k(k − 1) + 1. However, given the
equilibrium of the original players, the unique optimal strategy for the auxiliary players is not
to bid at all. Indeed, they are faced with strictly more competition than the Nash players, and
the Nash players have expected utility of 0. (For concreteness, following the same reasoning as
above, a player’s best response is to bid equally on all items in his bundle. For any bid x, he

derives an expected value of (kx)
k2

(k−1)2 , which is strictly smaller than his expected payment, being

(kx)
k

(k−1)2
+1

.) Hence in the Nash solution in each projective plane only one player gets value, giving

a total value of k, and the price of anarchy for this example is k(k−1)+1
k = k − 1 + 1

k .

H Smoothness of the Simultaneous Auction

We now prove Theorem 2.4 in its full generality by showing that the simultaneous first price auction
is actually a Smooth Mechanism as defined in [31]. This implies an efficiency guarantee that extends
to Bayes-Nash equilibria as well as to no-regret learning outcomes. For completeness we first present
the definition and the main implication of smooth mechanisms.

Definition H.1 ([31]). A mechanism M is (λ, µ)-smooth if for any valuation profile v there exists
an action profile a∗i (v) such that for all a ∈ A:∑

i

ui(a
∗
i (v), a−i; vi) ≥ λOpt(v)− µ

∑
i

Pi(a) (12)

Theorem H.1 ([31]). If a mechanism is (λ, µ)-smooth then the Bayes-Nash and the correlated
price of anarchy is at most µ/λ.

We will analyze a generic simultaneous single-item auction where each item j is sold via an
auction with some allocation and payment rule (i.e., not necessarily the first-price auction). We
will show that if each individual single-item auction is a (λ, µ)-smooth mechanism and bidders have
MPH-k valuations then the simultaneous single-item auction is (1− k +min {λ, 1} · k, µ)-smooth.
We can then invoke known results about the smoothness of the first-price auction to complete the
proof of Theorem 2.4.

Theorem H.2. The game defined by running m simultaneous (λ, µ)-smooth single-item auctions
is (1− k +min {λ, 1} · k, µ)-smooth, when players have MPH-k valuations.

Proof. We will first show that if we prove smoothness of the simultaneous auction for hypergraph-k
valuations then this immediately implies smoothness for MPH-k valuations (Lemma H.3). We
will then complete the proof of Theorem H.2 by proving smoothness for the class of hypergraph-k
valuations.

Lemma H.3. If a simultaneous single-item auction game is (λ, µ)-smooth for PH-k valuations
then it is also (λ, µ)-smooth for the class of MPH-k valuations.

Proof. Consider a valuation profile v. Let X∗(v) be the optimal allocation for valuation profile v,
so that X∗

i (v) is the allocation to player i in this optimal allocation. Since vi is MPH-k, we have
vi(X

∗
i (v)) = maxℓ∈L vℓi (X

∗
i (v)). Choose v∗i ∈ argmaxℓ∈L vℓi (X

∗
i (v)), so v∗i is the additive valuation

supporting player i’s value for set X∗
i (v). Then, by definition, vi(X

∗
i (v)) = v∗i (X

∗
i (v)) and for any

set T ⊆ [m], vi(T ) ≥ v∗i (T ).
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Observe that a player’s utility under valuation vi is at least as much as his utility under v∗i :
ui(a; vi) ≥ ui(a; v

∗
i ). Now consider the smoothness deviations a∗i (v

∗) that correspond to valua-
tion profile v∗ = (v∗1, . . . , v

∗
n), which exist by the assumption that the mechanism is smooth for

hypergraph-k valuations. Then we get that for any action profile:∑
i

ui(a
∗
i (v

∗), a−i; vi) ≥
∑
i

ui(a
∗
i (v

∗), a−i; v
∗
i ) ≥ λOpt(v∗)− µ

∑
i

Pi(a)

≥ λSW (X∗(v);v∗)− µ
∑
i

Pi(a) = λOpt(v)− µ
∑
i

Pi(a).

We will now move on to proving smoothness for the class of PH-k valuations. Consider a
PH-k valuation profile v and for each valuation vi : 2

M → R+, let wi : 2
M → R+ be its positive

hypergraph-k representation. Also let X∗
i be the optimal set of items for each player i. Consider

an action profile a = (aj)j∈[m] on each auction j and each player deviating to some strategy

ãi =
(
ãji

)
j∈[m]

. Denote with Pr(S, a) the probability of winning set S under a randomized action

profile a. Also we denote with S|k the collection of subsets of a set S of size at most k. Then by
analyzing the utility of the player and applying the union bound in a generic way, we get

ui(ãi, a−i) =
∑

S∈M |k

wi(S) · Pr(S, (ãi, a−i))−
∑
j∈M

P j
i (ã

j
i , a

j
−i)

≥
∑

S∈X∗
i |k

wi(S) · Pr(S, (ãi, a−i))−
∑
j∈M

P j
i (ã

j
i , a

j
−i)

≥
∑

S∈X∗
i |k

wi(S) ·

1−
∑
j∈S

(1− Pr ({j}, (ãi, a−i))

−
∑
j∈M

P j
i (ã

j
i , a

j
−i)

=
∑

S∈X∗
i |k

wi(S) · (1− |S|) +
∑

S∈X∗
i |k

wi(S)
∑
j∈S

Pr ({j}, (ãi, a−i))−
∑
j∈M

P j
i (ã

j
i , a

j
−i)

=
∑

S∈X∗
i |k

wi(S) · (1− |S|) +
∑
j∈M


 ∑

S∈X∗
i |k:S∋j

wi(S) · 1j∈X∗
i

 · Pr
(
{j}, (ãji , a

j
−i)

)
− P j

i (ã
j
i , a

j
−i)

 .

Consider the second summand in the above expression. For each j, this corresponds to the
utility of player i under a deviation to action ãji , of a single-item auction, in which only player i
has a value of

∑
s∈X∗

i |k:s∋j
ws for the auction and everyone else has a value of 0. Summing up over

all players, this is a sum of deviating utilities for each player, over multiple single-item auctions:

∑
j∈M

∑
i∈P


 ∑

S∈X∗
i |k:S∋j

wi(S) · 1j∈X∗
i

 · Pr
(
{j}, (ãji , a

j
−i)

)
− P j

i (ã
j
i , a

j
−i)

 .

Thus, if we set ãj equal to the smoothness deviation for the above valuation profile, we get that
the latter expression is at least

∑
j∈M

λ ·
∑
i∈P

 ∑
S∈X∗

i |k:S∋j

wi(S) · 1j∈X∗
i

− µ
∑
i∈P

P j
i (a

j)

 = λ
∑
i∈P

∑
S∈X∗

i |k

wi(S) · |S| − µ
∑
i∈P

Pi(a).
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Combining the above we get:∑
i∈P

ui(ãi, a−i) ≥
∑
i∈P

∑
S∈X∗

i |k

wi(S) · (1− |S|) + λ
∑
i∈P

∑
S∈X∗

i |k

wi(S) · |S| − µ
∑
i∈P

Pi(a)

=
∑
i∈P

∑
S∈X∗

i |k

wi(S) · (1− (1− λ)|S|)− µ
∑
i∈P

Pi(a).

If λ < 1 then we use the fact that |S| ≤ k to get the (1− k+λk, µ)-smoothness property, otherwise
we can simply ignore the term (1 − λ)|S| and get the (1, µ)-smoothness property, completing the
proof of Theorem H.2.

We now show how to use Theorem H.2 to prove Theorem 2.4. For the case in which each single-
item auction is a first price auction then we know by [31] that each auction is (β · (1− e−1/β), β)-
smooth for any β. Thus we get that for any β the simultaneous first price auction with MPH-k
valuations is (1 − (1 − β · (1 − e−1/β)) · k, β)-smooth. Substituting β = log( k

k−1), we get a bound

of 1
1−(k−1) log( k

k−1
)
≤ k(2 − e−k) on the price of anarchy, as desired. This establishes the proof of

Theorem 2.4.

I Composition of General Mechanisms

Our analysis can be extended beyond simultaneous single-item auctions to the simultaneous com-
position of general mechanisms, such as position auctions. We consider the mechanism defined by
running m different mechanisms simultaneously. Each mechanism M j has its own feasible set of
allocations X j ⊆ X j

1 × . . .× X j
n, action spaces Aj , allocation function Xj : Aj → X j and payment

function P j : Aj → Rn
+. Each player i has a valuation over allocations in different mechanisms,

given by vi : X 1
i × . . .×Xm

i → R+. We consider the natural generalization of MPH-k valuations:

Definition I.1. A valuation is MPH-k across mechanisms if for any xi ∈ X 1
i × . . .×Xm

i

vi(x
1
i , . . . , x

m
i ) = max

ℓ∈Li

∑
e∈Eℓ

ve,ℓi (xei ) (13)

where Li is some arbitrary index set, Eℓ ⊆ {S ⊆ M : |S| ≤ k}, xei = (xji )j∈e is the vector of

outcomes on the mechanisms in the set e and for all e ∈ Eℓ, v
e,ℓ
i (xei ) ≥ 0.

We show that if each allocation space X j
i is partially ordered and the value functions ve,ℓi (xei )

are monotone coordinate-wise with respect to this partial order, then if each mechanism is (λ, µ)-
smooth for the class of monotone valuations then this implies that the simultaneous composition is
(1− k +min {λ, 1} · k, µ)-smooth.

Theorem I.1. Consider the simultaneous composition of m mechanisms each being (λ, µ)-smooth
for any monotone valuation with respect to some partial order of the allocation space. If players
have MPH-k valuations across mechanisms such that ve,ℓi (·) are monotone coordinate-wise with
respect to each partial order, then the composition is (1− k +min {λ, 1} · k, µ)-smooth

Proof. For simplicity we will consider a PH-k valuation profile v across mechanisms, i.e. for each
player i we have:

vi(x) =
∑
e∈Ei

vei (x
e
i ), (14)
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where Ei ⊆ {S ⊆ M : |S| ≤ k} and xei = (xji )j∈e.

Let x̃i = (x̃ji )j∈[m] be the optimal allocation of each player i. Consider an action profile a =

(aj)j∈M on each auction j and each player deviating to some strategy ãi =
(
ãji

)
j∈[m]

. Then

following an analysis similar to the proof of Theorem H.2 we can obtain the following lower bound
a player’s utility from the deviation:

ui(ãi, a−i) =
∑
e∈Ei

∑
xe
i

vei (x
e
i ) · Pr (Xe

i (ãi, a−i) = xei )−
∑
j∈M

P j
i (ã

j
i , a

j
−i)

≥
∑
e∈Ei

vei (x̃
e
i ) · Pr (Xe

i (ãi, a−i) ≽ x̃ei )−
∑
j∈M

P j
i (ã

j
i , a

j
−i)

≥
∑
e∈Ei

vei (x̃
e
i ) ·

1−
∑
j∈e

(
1− Pr

(
Xj

i (ã
j
i , a

j
−i) ≽ x̃ji

))−
∑
j∈M

P j
i (ã

j
i , a

j
−i)

=
∑
e∈Ei

vei (x̃
e
i ) · (1− |e|) +

∑
e∈Ei

vei (x̃
e
i )
∑
j∈e

Pr
(
Xj

i (ã
j
i , a

j
−i) ≽ x̃ji

)
−

∑
j∈M

P j
i (ã

j
i , a

j
−i)

=
∑
e∈Ei

vei (x̃
e
i ) · (1− |e|) +

∑
j∈M


∑

e∋j
vei (x̃

e
i )

 · Pr
(
Xj

i (ã
j
i , a

j
−i) ≽ x̃ji

)
− P j

i (ã
j
i , a

j
−i)

 .

Summing up over all players we observe that the second summand in the above expression will
correspond to deviating utilities of individual single-item auctions, where each player unilaterally
deviates to ãji and in which every player has a valuation of

∑
e∋j v

e
i (x̃

e
i ) for getting any allocation

xji ≽ x̃ji and 0 otherwise. The latter is a monotone valuation and hence we can set the local deviating
utilities at each mechanism to the smoothness deviations for the latter monotone valuation profiles
and get: ∑

i

ui(ãi, a−i) ≥
∑
i

∑
e∈Ei

vei (x̃
e
i )(1− |e|) + λ

∑
i

∑
e∈Ei

vei (x̃
e
i ) · |e| − µ

∑
i

Pi(a)

=
∑
i

∑
e∈Ei

vei (x̃
e
i ) · (1− (1− λ)|e|)− µ

∑
i

Pi(a).

The remainder of the proof precisely follows the proof of Theorem H.2.

Example: position auctions. An example of such a composition of mechanisms is the compo-
sition of m position auctions. Suppose that each position auction is a first price pay-per-impression
auction. Syrgkanis and Tardos [31] showed that such a mechanism is (1/2, 1)-smooth. We extend
this analysis to show that it is (1− 1

2β , β)-smooth for any β ≥ 1.

Lemma I.2. The first-price pay-per-impression position auction is a (1− 1
2β , β)-smooth mechanism

for any β ≥ 1.

Proof. Consider a bid profile b and let j∗i be the optimal position of player i and let π(j) be the
player that gets slot j under bid profile b. Suppose that each player deviates to bidding a random

bid b′i, uniformly in [0,
vij∗

i
β ] and let f(t) denote the density function of the random bid. If the

random bid t of a player is bπ(j∗i ) < t then player i wins his optimal slot or a higher slot and hence
his value is at least vij∗i by monotonicity of the valuation.
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Thus a player’s utility from this deviation is at least:

ui(b
′
i, b−i) ≥

∫ vij∗
i

β

bπ(j∗
i
)

vij∗i f(t)dt−
vij∗i
2β

=

∫ vij∗
i

β

bπ(j∗
i
)

β · dt−
vij∗i
2β

=

(
1− 1

2β

)
vij∗i − β · bπ(j∗i )

Summing over all players we get the (1− 1
2β , β)-smoothness property.

Combined with Theorem I.1, we get that for any MPH-k valuation across position auctions the
simultaneous position auction mechanism is (1− k

2β , β)-smooth, yielding a price of anarchy bound
of 2k for β = k.

J Non-Monotone Valuations

As we saw in Section 3, positive lower envelopes are a useful tool for showing that a monotone
function admits a MPH-k representation. Observe that while MPH-k contains only monotone
functions, even a non-monotone function can admit a positive lower envelope for any restriction
to a subset. This observation motivates the following hierarchy of (not necessarily monotone) set
functions.

Definition J.1 (Positive Lower Envelope k (PLE-k) class). Let f : 2M → R+ be a set function. f
is in PLE-k if any restriction of it to a subset of its ground set admits a positive lower envelope of
rank k.

While monotonicity is a very natural assumption in the context of combinatorial auctions,
hierarchies of non-monotone functions can have potential applications in more general contexts
such as set function minimization and maximization.

In Propositions 3.1 and 3.1 we showed that PLE-k is equivalent to MPH-k for monotone
functions. Thus MPH-k is exactly the monotone part of the PLE-k class. Moreover, we point
out that both our algorithmic approximation result (Theorem 2.3) and our price of anarchy result
(Theorem 2.4) apply more generally to the class of PLE-k functions, and in particular do not require
monotonicity (assuming that players are able to drop out of an auction and receive no items).

With respect to expressiveness, exploring the expressive power of the PLE hierarchy is an
interesting space for future research. In particular, one might explore the connection between PLE-
k and the class of functions with a given positive and/or negative hypergraph rank. To this end,
we show some results on this connection. We first observe that a strong positive result similar to
Theorem 2.7, cannot possibly hold for non-monotone non-symmetric set functions. That is, for any
constant k, there exist a non-negative set function of rank 2 that is not PLE-k.

This is not the case for non-negative functions with positive rank 1 and arbitrary negative rank,
which can be shown to be in PLE-1.

Theorem J.1. Let k ∈ N. There exists a non-negative set function fk : 2M → R+ of rank 2 that
has no positive lower envelope of rank k.

Proof. Given k, we have the following hypergraph representing fk. We set some m ≥ k+3 to be the
number of items in the ground set M of f . We set a special item j ∈ M . Let vj be its corresponding

vertex in the hypergraph representation. We set the value of the singleton hyperedge vj to be
(
k+1
2

)
and the value of any other singleton hyperedge to be 0. We set the value of any rank 2 edge to
be 1 if it does not contain vj and −k otherwise. There are no other hyperegdes, so the set function
represented by this representation is indeed of rank 2. We show that fk is non-negative. It is trivial
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that the value of any subset of items not containing j is non-negative. Let S be a subset of items
such that j ∈ S and let l = |S| − 1. Then, fk(S) =

(
l
2

)
− lk +

(
k+1
2

)
. Clearly, for l = k and for

l = k+ 1, it equals 0, and for any other integer it is strictly greater than 0. Therefore, fk is indeed
non-negative and it has value 0 for any subset containing j and exactly other k (or k + 1) distinct
items. Assume towards a contradiction that fk has a positive lower envelope of rank k. Let gk be
such a positive lower envelope. Then, gk must be monotone, since its hypergraph representation
contains only hyperedges of non-negative value. Therefore, it has value 0 for any subset of up to
size k + 1, since any such subset is either of value 0 by fk (in case it contains j) or contained in
a subset of value 0 by fk (in case it does not contain j). Therefore and since the rank of gk is
assumed to be at most k, any hyperedge in its hypergraph representation must be of value 0. But,
since m ≥ k+3, we have fk(M) > 0. contradiction. Therefore, fk does not have any positive lower
envelope of rank up to k, as desired.

Moreover, the proof of Theorem E.2 extends to non-negative functions in PLE-k. That is, any
non-negative function with positive rank k and arbitrary negative rank is in PLE-k, if negative
hyperedges are laminar.

Theorem J.2. There is a positive lower envelope of rank 1 for any non-negative set function of
positive rank 1.

Proof. Let f : 2M → R+ be a non-negative set function of positive rank 1 and let E be the
largest value dividing all images of f . We refer to each value E as “unit of value”. Let Gf be the
hypergraph representation of f . We show how to discard all the negative hyperedges of Gf . We
build the following bipartite graph H(V,W,E). For each unit of value of every vertex of Gf , we
have a vertex in V . For each unit of value of every negative hyperedge, we have a vertex in W .
For simplicity, we refer sometimes to vertices in H as units of value. Let v ∈ V and w ∈ W . We
have an edge (v, w) if and only if the hyperedge in Gf that corresponds to the unit of value of w
contains the vertex that corresponds to the unit of value of v. We show that there exists a matching
in H that saturates W . Such a matching will enable us to remove all the negative hyperedges of
Gf by reducing also the value of vertices of Gf that their corresponding vertices participate in the
matching in H. Assume towards a contradiction that there is no matching in H that saturates W .
Then, by Hall’s theorem, there exists W ′ ⊆ W such that |W ′| > |NH(W ′)|, where NH(W ′) are the
neighbours of W ′ in H. Note that by definition of H, NH(W ′) contains either zero or all units of
value of any single vertex of Gf . Therefore, we can add to W ′ all units of value of any hyperedge of
H that at least one unit of value of it is already containted in W ′, without increasing |NH(W ′)|. Let
W ′′ be the resulting subset. Clearly, |W ′′| > |NH(W ′′)|. Moreover W ′′ contains for any vertex of Gf

either zero or all units of values of it. Additionally, as before, NH(W ′′) contains for any hyperedge
of Gf either zero or all units of values of it. Therefore, for the set S ⊆ M that contains exactly the
items that corresponds to the vertices of Gf contained in hyperedges corresponding to the vertices
of W ′′, it must be that f(S) < 0.6 Contradiction. Therefore, there is a matching saturating W in
H. Note that if we discard all the negative hyperedges and also decrease the value of each of the
vertices according to the number of units of value of it participating in the matching, we will never
increase the value of any subset of M by f . Moreover, we will not change f(M). Therefore, we can
discard all the negative hyperedges and then return as a hypergraph representation of a positive

6Note that all the positive hyperedges induced by S are indeed represented appropriately in the matching, since
we have positive rank 1. If we had positive rank strictly greater than 1, it might have been that a positive hyperedge
will be induced by S and not by the matching. This would have happened if e.g. part of its vertices were contained
in one negative hyperedge participating in the matching and all the rest in another, but there was no single negative
hyperedge containing all its vertices.
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lower envelope of f all the positive vertices that survived, with the value of them that survived.
This concludes the proof of Theorem J.2.

K Tight bounds for symmetric set functions with ranks 3 and 4

K.1 Any monotone symmetric set function of rank 3 is MPH-4

We show the following theorem and then show its tightness.

Theorem K.1. Let f : 2M → R+ be a monotone symmetric set function of rank 3. Then, there
exists a positive lower envelope of f of rank 4 for any restriction of it to a subset of M . That is,
any monotone symmetric set function of rank 3 is in MPH-4.

Proof. For simplicity of presentation, we prove Theorem K.1 only for f itself, and not for any
restriction of it to a subset. The proof for any restriction is essentially the same. Let m = |M |.
Assume towards a contradiction that there is a monotone symmetric set function f of rank 3 with
no positive lower envelope of rank 4. We scale f to have f(m) = m. Then, by Corollary F.4, we
may assume without loss of generality that f(m− 1) < m− 4.

We consider the following linear program.

Linear Program K.1.
Minimize

(
m−1
1

)
x1 +

(
m−1
2

)
x2 +

(
m−1
3

)
x3

Subject to:

Monotonicity: ∀t∈{0,1,...m−1} : x1 +
(
t
1

)
x2 +

(
t
2

)
x3 ≥ 0.

Scaling: mx1 +
(
m
2

)
x2 +

(
m
3

)
x3 = m

Let f∗ be an optimum of Linear Program K.1. Then, it must be that f∗(m − 1) < n − 4. We
consider the dual of Linear Program K.1:

Linear Program K.2.
Maximize n · z
Subject to:

1.
∑m−1

t=0 yt +
(
m
1

)
z =

(
m−1
1

)
2.

∑m−1
t=0

(
t
1

)
yt +

(
m
2

)
z =

(
m−1
2

)
3.

∑m−1
t=0

(
t
2

)
yt +

(
m
3

)
z =

(
m−1
3

)
4. ∀tyt ≥ 0

Since f∗(m − 1) < m − 4 and from duality theorem, it must be that any feasible solution of
Linear Program K.2 is of value strictly less that m − 4. We show a feasible solution to Linear
Program K.2 of value m− 4 and derive a contradiction. Specifically, we prove that for any m > 3,
there is a feasible solution for Linear Program K.2 with z = m−4

m . That is, we show that the
following equation system has a solution with non-negative variables yt for t ∈ {0, . . . ,m − 1}, for
any m: 

∑m−1
t=0 yt = 3∑m−1
t=0 t · yt = m− 1∑m−1
t=0

(
t
2

)
yt +

(
m
3

)
z =

(
m−1
3

) (15)
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We consider the following separate cases with solutions concluded with the aid of a computer7

to solve Linear Program K.2 for various values of m:

m mod 3 = 1: The solution we consider is the following:

yt =


2(m−1)
m+2 t = m−4

3

1 t = m−1
3

6
m+2 t = 2m−1

3

0 otherwise

We need to show that:
ym−4

3
+ ym−1

3
+ y2m−1

3
= 3

m−4
3 ym−4

3
+ m−1

3 ym−1
3

+ 2m−1
3 y2m−1

3
= m− 1

(m−4)(m−7)
18 ym−4

3
+ (m−1)(m−4)

18 ym−1
3

+ (2m−2)(2m−5)
18 y2m−1

3
= (m−1)(m−2)

6

When substituting the rest of our considered solution, we get the following: For the first equation
we get 2m−2+6

m+2 + 1 = 3, which is obviously true.
For the second one we get

2(m− 1)(m− 4)

3(m+ 2)
+

m− 1

3
+

12(m− 1)

3(m+ 2)
= m− 1 .

By multiplying both sides by 3(m+ 2)/(m− 1) we get 2(m− 4) +m+ 2 + 12 = 3m+ 6, which is
obviously true.

For the third one we get

2(m− 1)(m− 4)(m− 7)

18(m+ 2)
+

(m− 1)(m− 4)

18
+

6(2m− 2)(2m− 5)

18(m+ 2)
=

(m− 1)(m− 2)

6
.

By multiplying both sides by 18(m+2)/(m−1), we get 2(m−4)(m−7)+(m−4)(m+2)+12(2m−5) =
3(m+ 2)(m− 2), which is true by simple calculations.

n mod 3 = 2: The solution we consider is the following:

yt =


1 t = m−5

3
2(m−5)
m−2 t = m−2

3
6

m−2 t = 2m−2
3

0 otherwise

Correctness follows by substitution at Equation System (15) and simple calculations.

m mod 3 = 0: The solution we consider is the following:

yt =


3m−23
m−3 t = m−3

3
8
m t = m−6

3
6(m+4)
m(m−3) t = 2m−3

3

0 otherwise

7We used Microsoft .NET together with Gurobi ([17]) and IBM CPLEX and also Wolfram Mathematica.
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Correctness follows by substitution at Equation System (15) and simple calculations. This
concludes the proof of Theorem K.1.

Theorem K.1 is tight by the following theorem.

Theorem K.2. There exists a monotone symmetric set function of rank 3 that has no positive
lower envelope of rank 3.

Proof. Let f : {0, . . . ,m} → R+ be a set function with the following hypergraph representation.
Hyperedges of rank 1 have value 1; Hyperedges of rank 2 have value -1; Hyperedges of rank 3 have
value 1; That is, f(x) = x−

(
x
2

)
+
(
x
3

)
. It is clear this function is symmetric and that it has rank 3.

We show monotonicity. From simple calculations, f(1) = f(2) = f(3) = 1. The marginal value for
adding the xth item to at least 2 items is:

f(x)−f(x−1) = 1−(x−1)+

(
x− 1

2

)
=

(
x− 1

2

)
−x+2 =

1

2
(x−1)(x−2)−x+2 =

1

2
x2−2

1

2
x+3 .

This is greater than 0 for any x > 3, as desired.
We show inexistence of positive lower envelope of rank 3. By Corollary F.5 it is sufficient to

show that f(m− 1) < m−3
m f(m). We show it is true for n = 6:

f(m) = f(6) = 6−
(
6

2

)
+

(
6

3

)
= 11 .

f(m− 1) = f(5) = 5−
(
5

2

)
+

(
5

3

)
= 5 .

Therefore,
m− 3

m
f(m) =

1

2
· 11 = 5.5 > 5 = f(m− 1) ,

as desired. This concludes the proof of Theorem K.2.

K.2 Any monotone symmetric set function of rank 4 is MPH-6

We show the following theorem and then show its tightness.

Theorem K.3. Let f : 2M → R+ be a monotone symmetric set function of rank 4. Then, there
exists a positive lower envelope of f of rank 6 for any restriction of it to a subset of M . That is,
any monotone symmetric set function of rank 4 is in MPH-6.

Proof. For simplicity of presentation, we prove Theorem K.3 only for f itself, and not for any
restriction of it to a subset. The proof for any restriction is essentially the same. Let m = |M |.
Assume towards a contradiction that there is a monotone symmetric set function f of rank 4 with
no positive lower envelope of rank 6. We scale f to have f(m) = m. Then, by Corollary F.4, we
may assume without loss of generality that f(m− 1) < m− 6.

We consider the following linear program (similarly to the case of rank 3).

Linear Program K.3.
Minimize

(
m−1
1

)
x1 +

(
m−1
2

)
x2 +

(
m−1
3

)
x3 +

(
m−1
4

)
x4

Subject to:

Monotonicity: ∀t∈{0,1,...m−1} : x1 +
(
t
1

)
x2 +

(
t
2

)
x3 +

(
t
3

)
x4 ≥ 0.
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Scaling: mx1 +
(
m
2

)
x2 +

(
m
3

)
x3 +

(
m
4

)
x4 = m

Let f∗ be an optimum of Linear Program K.3. Then, it must be that f∗(m− 1) < m− 6. We
consider the dual of Linear Program K.3:

Linear Program K.4.
Maximize m · z
Subject to:

1.
∑m−1

t=0 yt +
(
m
1

)
z =

(
m−1
1

)
2.

∑m−1
t=0

(
t
1

)
yt +

(
m
2

)
z =

(
m−1
2

)
3.

∑m−1
t=0

(
t
2

)
yt +

(
m
3

)
z =

(
m−1
3

)
4.

∑m−1
t=0

(
t
3

)
yt +

(
m
4

)
z =

(
m−1
4

)
5. ∀tyt ≥ 0

Since f∗(m − 1) < n − 6 and from duality theorem, it must be that any feasible solution of
Linear Program K.2 is of value strictly less that m − 4. We show a feasible solution to Linear
Program K.2 of value m− 6 and derive a contradiction. Specifically, we prove that for any n > 4,
there is a feasible solution for Linear Program K.4 with z > m−6

m
8.

We consider separately even and odd values of m, with solutions concluded with the aid of a
computer9 to solve Linear Program K.2 for various values of m:

n is even:

yt =


1 t = 0
2m−2
m+2 t = m

2 − 1
2m−2
m+2 t = m

2

0 otherwise

z =
m− 1−

∑
t yt

m
=

m− 4

m+ 2

We show that for any even m this solution is feasible and that z > m−6
m . We start with showing

feasibility. For the first equation
∑m−1

t=0 yt +
(
m
1

)
z =

(
m−1
1

)
it is trivial it is satisfied, by the value

chosen for z. For the second equation
∑m−1

t=0

(
t
1

)
yt +

(
m
2

)
z =

(
m−1
2

)
we have

m−1∑
t=0

t · yt = 0 · 1 + m

2
− 1 · 2m− 2

m+ 2
+

m

2
· 2m− 2

m+ 2
= (m− 1) · 2m− 2

m+ 2
=

2(m− 1)2

m+ 2

and (
m

2

)
z =

(1/2) ·m(m− 1)(m− 4)

m+ 2
.

8Of course, z ≥ m−6
m

would also be enough.
9We used Microsoft .NET together with Gurobi ([17]) and IBM CPLEX and also Wolfram Mathematica.
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Therefore,

m−1∑
t=0

(
t

1

)
yt +

(
m

2

)
z =

2(m− 1)2 + (1/2) ·m(m− 1)(m− 4)

m+ 2
=

(m− 1) ·
1
2 · (m2 − 4)

m+ 2
=

(m− 1)
1
2(m− 2)(m+ 2)

m+ 2
=

(
m− 1

2

)
as desired. For the third equation

∑m−1
t=0

(
t
2

)
yt +

(
m
3

)
z =

(
m−1
3

)
we have

m−1∑
t=0

(
t

2

)
yt =

(m
2 − 1

2

)
· 2m− 2

m+ 2
+

(m
2

2

)
· 2m− 2

m+ 2
=

(m− 2)2(m− 1)

2(m+ 2)

and (
m

3

)
z =

m(m− 1)(m− 2)(m− 4)

6(m+ 2)
.

Therefore,

m−1∑
t=0

(
t

2

)
yt +

(
m

3

)
z =

3(n− 1)(n− 2)2 +m(m− 1)(m− 2)(m− 4)

6(m+ 2)
=

(m− 1)(m− 2)(3(m− 2) +m(m− 4))

6(m+ 2)
=

(m− 1)(m− 2)(m+ 2)(m− 3)

6(m+ 2)
=

(
m− 1

3

)
as desired. For the fourth equation

∑m−1
t=0

(
t
3

)
yt +

(
m
4

)
z =

(
m−1
4

)
we have

m−1∑
t=0

(
t

3

)
yt =

(m
2 − 1

3

)
· 2m− 2

m+ 2
+

(m
2

3

)
· 2m− 2

m+ 2
=

(m− 1)(m− 2)(m− 3)(m− 4)

12(m+ 2)

and (
m

4

)
z =

m(m− 1)(m− 2)(m− 3)(m− 4)

24(m+ 2)
,

which immediately gives the desired.
In order to show that z > m−6

m we show that
∑

t yt < 5. Since z =
∑

t yt = 1 + 2(2m−2)
m+2 , it is

enough to show that 2(2m−2)
n+m < 4, which is obviously true.

m is odd:

yt =


1 t = 0
4(m−2)
m+1 t = m−1

2

0 otherwise

z =
(m− 2)(m− 3)

m(m+ 1)
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We show that for any odd m this solution is feasible and that z > m−6
m . We start with showing

feasibility. For the first equation
∑n−1

t=0 yt +
(
n
1

)
z =

(
n−1
1

)
we have

m−1∑
t=0

yt +

(
m

1

)
z = 1 +

4(m− 2)

m+ 1
+

(m− 2)(m− 3)

m+ 1
= 1 +

(m− 2)(m+ 1)

m+ 1
=

(
m− 1

1

)
as desired. For the second equation

∑n−1
t=0

(
t
1

)
yt +

(
n
2

)
z =

(
n−1
2

)
we have

m−1∑
t=0

t·yt+
(
m

2

)
z =

4(m− 1)(m− 2)

2(m+ 1)
+
(m− 1)(m− 2)(m− 3)

2(m+ 1)
=

(m− 1)(m− 2)(m+ 1)

2(m+ 1)
=

(
m− 1

2

)
as desired. For the third equation

∑m−1
t=0

(
t
2

)
yt +

(
m
3

)
z =

(
m−1
3

)
we have

m−1∑
t=0

(
t

2

)
yt +

(
m

3

)
z =

3(m− 1)(m− 2)(m− 3)

6(m+ 1)
+

(m− 1)(m− 2)2(m− 3)

6(m+ 1)
=

(m− 1)(m− 2)(m− 3)(m+ 1)

6(m+ 1)
=

(
m− 1

3

)
as desired. For the fourth equation

∑m−1
t=0

(
t
3

)
yt +

(
m
4

)
z =

(
m−1
4

)
we have

m−1∑
t=0

(
t

3

)
yt +

(
m

4

)
z =

2(m− 1)(m− 2)(m− 3)(m− 5)

24(m+ 1)
+

(m− 1)(m− 2)2(m− 3)2

24(m+ 1)
=

(m− 1)(m− 2)(m− 3)(m2 − 3m− 4)

24(m+ 1)
=

(m− 1)(m− 2)(m− 3)(m− 4)(m+ 1)

24(m+ 1)
=

(
m− 1

4

)
as desired.

We show z > m−6
m .

z − m− 6

m
=

(m− 2)(m− 3)

m(m+ 1)
− m− 6

m
=

(m− 2)(m− 3)− (m− 6)(m+ 1)

m(m+ 1)
=

12

m(m+ 1)
> 0

where the second and third equalities follow from m > 0.
This concludes the proof of Theorem K.3.

Theorem K.4. There exists a monotone symmetric set function of rank 4 that has no positive
lower envelope of rank 5.

Proof. Let f : {0, . . . ,m} → R+ be a set function with the following hypergraph representation.
Hyperedges of rank 1 have value 0; Hyperedges of rank 2 have value 10; Hyperedges of rank 3
have value -8; Hyperedges of rank 4 have value 3. That is, f(x) = 10

(
x
2

)
− 8

(
x
3

)
+ 3

(
x
4

)
. It is clear

this function is symmetric and that it has rank 4. This function is monotone, since from simple
calculation the marginal value is non-negative for any integer (actually it is positive for any m > 7).
We show inexistence of positive lower envelope of rank 5. By Corollary F.5 it is sufficient to show
that f(m− 1) < m−5

m f(m). We show it is true for m = 12:

f(m) = f(12) = 385

f(m− 1) = f(11) = 220

m− 5

m
f(m) =

7

12
· 385 =

2695

12
≈ 224.583 > 220 = f(m− 1) ,

as desired. This concludes the proof of Theorem K.4.
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L Limitations of MPH
Despite the advantages of the MPH hierarchy, it has a few limitations. First, even a function in
the lowest level of the hierarchy may need an exponential number of hypergraphs in its support.

Proposition L.1. Every MPH representation (regardless of rank) of the submodular function
f(S) = min[|S|, n/2] (which is in MPH-1) requires exponentially many hypergraphs.

Proof. Consider two different sets S and T with |S| = |T | = m/2. Let h be an arbitrary supermod-
ular function (hence any positive hypergraph qualifies here) satisfying h(Q) ≤ f(Q) for every set
Q. We claim that either h(S) ̸= f(S) or h(T ) ̸= f(T ). This proves that at least

(
m

m/2

)
hypergraphs

are needed.
To prove the claim observe that f(S ∩ T ) < m/2 and f(S ∪ T ) = m/2. Suppose for the sake

of contradiction that h(S) = h(T ) = m/2. Then by supermodularity h(S ∩ T ) + h(S ∪ T ) ≥ m,
implying that either h(S ∩ T ) > f(S ∩ T ) or h(S ∪ T ) > f(S ∪ T ), a contradiction.

Second, there are complement-free functions that can only be represented in level m/2 of the
MPH hierarchy.

Proposition L.2. There exists a subadditive function that cannot be represented by an MPH-k
function for any k < m/2, when m is even.

Proof. For a ground set of even size m, consider the function f that gives value 1 for every subset
except for the set of all m items, for which the value is 2. This function is clearly subadditive.
Additionally, for any rank k < m/2, it follows by the “moreover” part of Corollary F.5 and by
straightforward calculations that f does not have a positive lower envelope of rank k. Finally,
the canonical positive lower envelope of rank m/2 of f (see Lemma F.2) is a legal positive lower
envelope of it.

M Integrality gap of LP 3

Proposition M.1. Let k ∈ N be such than k − 1 is a power of prime. There exists an instance of
the welfare maximization problem with PH-k valuations and integrality gap k − 1 + 1

k for Linear
Program (3). Note that such an instance is in particular MPH-k.

Proof. Let FPPk−1 be the finite projective plane of order k−1 (it is known to exist, since k−1 is a
power of prime). We set the following hypergraph H = (V,E). For each point in FPPk−1, we have
a vertex in V , and for each line, we have a hyperedge in E, containing the vertices representing the
points that are on this line. The following follows from the definitions of finite projective planes:

• |V | = |E| = (k − 1)2 + (k − 1) + 1 = (k − 1)k + 1.

• Any two hyperedges in E have a vertex in common.

• Any hyperedge in E contains exactly k vertices (i.e. the hyperedges in E are all of rank k).

• Any vertex in V is contained in exactly k hyperedges.

Our instance of the welfare maximization problem has (k − 1)2 + k agents. Each agent i has one
distinct preferred hyperedge ei ∈ E. The valuation function vi of agent i has value 1 for any subset
containing all the items represented by vertices in ei and 0 otherwise. It is trivial that vi is in
PH-k. Furthermore, the agents are single minded. An optimal integral solution of this instance is
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an allocation of all the items represented by vertices in ei to agent i, for some arbitrary i. This
solution has value of 1. However, there exists a better fractional solution. Any agent i gets a
fraction of 1

k of all the items represented by vertices in ei. It is easy to verify that this is a feasible
fractional solution with value ((k − 1)k + 1)/k = k − 1 + 1

k , as desired.

N Complement-Free Valuations

For completeness, we present the hierarchy of complement-free valuations (see for example [21, 12]).
Let M be a ground set and let f : 2M → R+ be a set function.

Definition N.1 (Additive function). We say that f is additive or linear if for every subset S′ ⊆ M
of items, we have f(S′) =

∑
j∈S′

f({j}).

Definition N.2 (Submodular function). We say that f is submodular if for every S′′ ⊆ S′ ⊆ M
and x ∈ M \ S′, f(x | S′) ≤ f(x | S′′).

Definition N.3 (XOS). We say that f is in XOS if for some l ∈ N there exist additive set functions
f1, · · · fl such that for every S′ ⊆ M , we have f(S′) = max1≤i≤l fi(S

′).

Definition N.4 (Fractionally subadditive function). We say that f is fractionally subadditive if
for every subset S′ ⊆ M , subsets Ti ⊆ S′ and every coefficients 0 < αi ≤ 1 such that for every
x ∈ S′,

∑
i:x∈Ti

αi ≥ 1, it holds that f(S′) ≤
∑

i αif(Ti).

Definition N.5 (Subadditive function). We say that f is subadditive or complement free if for
every S1, S2 ⊆ M , f(S1 ∪ S2) ≤ f(S1) + f(S2).

Note that Additive ⊆ Submodular ⊆ XOS = Fractionally subadditive ⊆ Subadditive.

O Types of queries

We recall the definitions of basic types of queries for set functions. Let M be a ground set and let
f : 2M → R+ be a set function.

Definition O.1 (Value queries). Value queries are the following:
Input: A subset S′ ⊆ M .
Output: f(S′).

Definition O.2 (Demand queries). Demand queries are the following:
Input: A cost function c : M → R+.
Output: A subset S′ ⊆ M maximizing f(S′)−

∑
j∈S′ c(j).

Note that demand queries are strictly stronger than value queries (see [4]).
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