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Abstract

In this work, we introduce a framework to study the effect of random operations on the combinatorial
list decodability of a code. The operations we consider correspond to row and column operations on
the matrix obtained from the code by stacking the codewords together as columns. This captures many
natural transformations on codes, such as puncturing, folding, and taking subcodes; we show that many
such operations can improve the list-decoding properties of a code. There are two main points to this.
First, our goal is to advance our (combinatorial) understanding of list-decodability, by understanding
what structure (or lack thereof) is necessary to obtain it. Second, we use our more general results to
obtain a few interesting corollaries for list decoding:

1. We show the existence of binary codes that are combinatorially list-decodable from 1/2− ε fraction
of errors with optimal rate Ω(ε2) that can be encoded in linear time.

2. We show that any code with Ω(1) relative distance, when randomly folded, is combinatorially list-
decodable 1 − ε fraction of errors with high probability. This formalizes the intuition for why the
folding operation has been successful in obtaining codes with optimal list decoding parameters;
previously, all arguments used algebraic methods and worked only with specific codes.

3. We show that any code which is list-decodable with suboptimal list sizes has many subcodes which
have near-optimal list sizes, while retaining the error correcting capabilities of the original code.
This generalizes recent results where subspace evasive sets have been used to reduce list sizes of
codes that achieve list decoding capacity.

The first two results follow from the techniques of Wootters (STOC 2013) and Rudra and Wootters
(STOC 2014); one of the main technical contributions of this paper is to demonstrate the generality of
the techniques in those earlier works. The last result follows from a simple direct argument.

∗AR’s research supported in part by NSF CAREER grant CCF-0844796 and NSF grant CCF-1161196. MW’s research
supported in part by a Rackham predoctoral fellowship.
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1 Introduction

The goal of error correcting codes is to enable communication between a sender and receiver over a noisy
channel. For this work, we will think of a code C of block length n and size N over an alphabet Σ as an
n×N matrix over Σ, where each column in the matrix C is called a codeword. The sender and receiver can
use C for communication as follows. Given one of N messages—which we think of as indexing the columns
of C—the sender transmits the corresponding codeword over a noisy channel. The receiver gets a corrupted
version of the transmitted codeword and aims to recover the originally transmitted codeword (and hence
the original message). Two primary quantities of interest are the fraction ρ of errors that the receiver can

correct (the error rate); and the redundancy of the communication, as measured by the rate R :=
log|Σ|N

n of
the code. The central goal is to design codes C so that both R and ρ are large.

A common approach to this goal is to first design a code matrix C0 that is “somewhat good,” and to
modify it to obtain a better code C. Many of these modifications correspond to row or column operations
on the matrix C0: for example, dropping of rows or columns, taking linear combinations of rows or columns,
and combining rows or columns into “mega” rows or columns. In this work, we study the effects of such
row- and column-operations on the list decodability of the code C0.

List decoding. In the list decoding problem [Eli57,Woz58], the receiver is allowed to output a small list of
codewords that includes the transmitted codeword, instead of having to pin down the transmitted codeword
exactly. The remarkable fact about list decoding is that the receiver may correct twice as many adversarial
errors as is possible in the unique decoding problem. Exploiting this fact has led to many applications of
list decoding in complexity theory and in particular, pseudorandomness.1

Perhaps the ultimate goal of list decoding research is to solve the following problem.

Problem 1. For ρ ∈ (0, 1 − 1/q), construct codes with rate 1 −Hq(ρ) that can correct ρ fraction of errors
with linear time encoding and linear time decoding.2 Above, Hq denotes the q-ary entropy, and 1−Hq(ρ) is
known to be the optimal rate.

Even though much progress has been made in algorithmic list decoding, we are far from answering the
problem above in its full generality. If we are happy with polynomial time encoding and decoding (and large
enough alphabet size), then the problem was solved by Guruswami and Rudra [GR08], and improved by
several follow-up results [GW13,Kop12,GX12,GX13,DL12,GK13]. However, even with all of this impressive
work on algorithmic list decoding, the landscape of list-decoding remains largely unexplored. First, while
the above results offer concrete approaches to Problem 1, we do not have a good characterization of which
codes are even combinatorially list-decodable at near-optimal rate. Second, while we have polynomial-time
encoding and decoding, linear-time remains an open problem. In this work, we make some progress in both
of these directions.

New codes from old: random operations. In this paper, we develop a framework to study the effect
of random operations on the list-decodability of a code. Specific instantiations of these operations are a
common approach to Problem 1. For example,

1. In the Folded Reed-Solomon codes mentioned above, one starts with a Reed-Solomon code and modifies
it by applying a folding operation to each codeword. In the matrix terminology, we bunch up rows to
construct “mega” rows.

2. In another example mentioned above [GX13], one starts with a Reed-Solomon code and picks certain
positions in the codeword, and also throws away many codewords—that is, one applies a puncturing
operation the codewords, and then considers a subcode. In matrix terminology, we drop rows and
columns.

1See the survey by Sudan [Sud00] and Guruswami’s thesis [Gur04] for more on these applications.
2One needs to be careful about the machine model when one wants to claim linear runtime. In this paper we consider the

RAM model. For the purposes of this paper, it is fine to consider linear time to mean linear number of Fq operations and the
alphabet size to be be small, say polynomial in 1/ε.
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3. In [Tre03, IJKW10], the direct product operation and the XOR operation are used to enhance the list-
decodability of codes. In matrix terminology, the direct product corresponds to bunching rows and the
XOR operation corresponds to taking inner products of rows.

4. In [GI01,GI03,GI05], the aggregation operation is used to construct efficiently list-decodable codes out
of list-recoverable codes. In matrix terminology, this aggregation again corresponds to bunching rows.

However, in all of these cases, the operations used are very structured; in the final two, the rate of the code
also takes a hit.3 It is natural to ask how generally these operations can be applied. In particular, if we
considered random versions of the operations above, can we achieve the optimal rate/error rate/list size
trade-offs? If so, this provides more insight about why the structured versions work.

Recently the authors showed in [RW14] that the answer is “yes” for puncturing of the rows of the code
matrix: if one starts with any code with large enough distance and randomly punctures the code, then
with high probability the resulting code is nearly optimally combinatorially list-decodable. In this work, we
extend those results to other operations.

1.1 Our contributions and applications

The contributions of this paper are two-fold. First, the goal of this work is to improve our understanding
of (combinatorial) list-decoding. What is it about these structured operations that succeed? How could we
generalize? Of course, this first point may seem a bit philosophical without some actual deliverables. To
that end, we show how to use our framework to address some open problems in list decoding. We outline
some applications of our results below.

In order to state our main results, we pause briefly to set the quantitative stage. There are two main
parameter regimes for list-decoding, and we will focus on both in this paper. In the first regime, corresponding
the the traditional communication scenario, the error rate ρ is some constant 0 < ρ < 1− 1/q. In the second
regime, motivated by applications in complexity theory, the error rate ρ is very large. For q-ary codes, these
applications require correction from a ρ = 1 − 1/q − ε fraction of errors, for small ε > 0. In both settings,
the best possible rate is given by

R∗ = 1−Hq(ρ),

where Hq denotes the q-ary entropy. In the second, large-q, regime, we may expand Hq(1−1/q−ε) to obtain
an expression

R∗(q, ε) := 1−Hq(1− 1/q − ε) = min

{
ε,

qε2

2 log(q)
+Oq(ε

3)

}
.

For complexity applications it is often enough to design a code with rate Ω(R∗(q, ε)) with the same error
correction capability.

1.1.1 Linear time encoding with near optimal rate.

We first consider the special case of Problem 1 that concentrates on the encoding complexity for binary
codes in the high error regime:

Question 1. Do there exist binary codes with rate Ω(ε2) that can be encoded in linear time and are (com-
binatorially) list-decodable from a 1/2− ε fraction of errors?

Despite much progress on related questions, obtaining linear time encoding with (near-)optimal rate is
still open. More precisely, for q-ary codes (for q sufficiently large, depending on ε), Guruswami and Indyk
showed that linear time encoding and decoding with near-optimal rate is possible for unique decoding [GI05].
For list decoding, they prove a similar result for list decoding but the rate is exponentially small in 1/ε [GI03].
This result can be used with code concatenation to give a similar result for binary codes (see Appendix B

3It must be noted that in the work of [Tre03, IJKW10] the main objective was to obtain sub-linear time list decoding and
the suboptimal rate is not crucial for their intended applications.
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for more details) but also suffers from an exponentially small rate. If we allow for super-linear time encoding
in Question 1, then it is known that the answer is yes. Indeed, random linear codes will do the trick [ZP82,
CGV13,Woo13] and have quadratic encoding time; In fact, near-linear time encoding with optimal rate also
follows from known results.4

Our results. We answer Question 1 in the affirmative. To do this, we consider the row-operation on codes
given by taking random XORs of the rows of C0. We show that this operation yields codes with rate Ω(ε2)
that are combinatorially list-decodable from 1/2−ε-fraction of errors, provided the original code has constant
distance and rate. Instantiating this by taking C0 to be Spielman’s code [Spi96], we obtain a linear-time
encodable binary code which is nearly-optimally list-decodable.

1.1.2 The folding operation, and random t-wise direct product.

The result of Guruswami and Rudra [GR08] showed that when the folding operation is applied to Reed-
Solomon codes, then the resulting codes (called folded Reed-Solomon codes) can be list decoded in polynomial
time with optimal rate. The folding operation is defined as follows. We start with a q-ary code C0 of length
n0, and a partition of [n0] into n0/t sets of size t, and we will end up with a qt-ary code C of length n = n0/t.
Given a codeword c0 ∈ C0, we form a new codeword c ∈ C by “bunching” together the symbols in each
partition set and treating them as a single symbol. A formal definition is given in Section 2. For large enough
t, this results in codes that can list decode from 1−ε fraction of errors with optimal rate [GR08,GX12,GX14]
when one starts with Reed-Solomon or more generally certain algebraic-geometric codes. In these cases, the
partition for folding is very simple: just consider t consecutive symbols to form the n/t partition sets.

Folding is a special case of t-wise aggregation of symbols. Given a code C0 of length n0, we may form a
new code C0 of length n by choosing n subsets S1, . . . , Sn ⊂ [n0] and aggregating symbols according to these
sets. This operation has also been used to good effect in the list-decoding literature: in [GI01,GI03,GI05], the
sets Si are defined using expander codes, and the original code C0 is chosen to be list-recoverable. This results
in efficiently list-decodable codes, although not of optimal rate. We can also view this t-wise aggregation as
a puncturing of a t-wise direct product (where n =

(
n0

t

)
and all sets of size t are included).

There is a natural intuition for the effectiveness of the folding operation in [GR08, GR09], and for the
t-wise aggregation of symbols in [GI01, GI03, GI05]. In short, making the symbols larger increases the size
of the “smallest corruptable unit,” which in turn decreases the number of error patterns we have to worry
about. (See Section 5.2 for more on this intuition). In some sense, this intuition is the reason that random
codes over large alphabets can tolerate more error than random codes over small alphabets: indeed, an
inspection of the proof that random codes obtain optimal list-decoding parameters shows that this is the
crucial difference. Since a random code over a large alphabet is in fact a folding of a random code over a
small alphabet, the story we told above is at work here.

Despite this nice-sounding intuition—which doesn’t use anything specific about the code—the known
results mentioned above do not use it, and rely crucially on specific properties of the original codes, and on
algorithmic arguments. It is natural to wonder if the intuition above can be made rigorous, and to hold for
any original code C0. In particular,

Question 2. Can the above intuition be made rigorous? Precisely, are there constants δ0, c0 > 0, so that
for any ε > 0, any code with distance at least δ0 and rate at most c0ε admits a t-wise folding (or other
t-wise aggregation of symbols with n = n0/t) for t depending only on ε, such that the resulting code is
combinatorially list-decodable from a 1− ε fraction of errors?

The first question mimics the parameters of folded Reed-Solomon codes; the second part is for the
parameter regime of [GI01, GI03, GI05]. Notice that both the requirements (distance Ω(1) and rate O(ε))
are necessary. Indeed, if the original code does not have distance bounded below by a constant, it is easy to

4For example, Guruswami and Rudra [GR10] showed that folded Reed-Solomon codes—which can be encoded in near-linear
time—concatenated with random inner codes with at most logarithmic block length achieve the optimal rate and fraction of
correctable errors tradeoff.
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come up with codes where the answer to the above question is “no.” The requirement of O(ε) on the rate of
the original code is needed because folding preserves the rate, and the list-decoding capacity theorem implies
that any code that can be list decoded from 1− ε fraction of errors must have rate O(ε).

Our results. We answer Question 2 in the affirmative by considering the operation of random t-wise
aggregation. We show that if n = n0/t (the parameter regime for t-wise folding), the resulting code is
list-decodable from a 1 − ε fraction of errors, as long as t = O(log(1/ε)). Our theory can also handle the
case when n� n0, and obtain near-optimal rate at the same time.

1.1.3 Taking sub-codes.

The result of Guruswami and Rudra [GR08], even though it achieves the optimal tradeoff between rate
and fraction of correctable errors is quite far from achieving the best known combinatorial bounds on the
worst-case list sizes. Starting with the work of Guruswami [Gur11], there has been a flurry of work on using
subspace evasive subsets to drive down the list size needed to achieve the optimal list decodability [GW13,
DL12, GX12, GX13, GK13]. The basic idea in these works is the following: we first show that some code
C0 has optimal rate vs fraction of correctable tradeoff but with a large list size of L0. In particular, this
list lies in an affine subspace of roughly logL0 dimensions. A subspace evasive subset is a subset that has
a small intersection with any low dimension subset. Thus, if we use such a subset to pick a subcode of C0,
then the resulting subcode will retain the good list decodable properties but now with smaller worst-case
lists size. Perhaps the most dramatic application of this idea was used by Guruswami and Xing [GX13] who
show that certain Reed-Solomon codes have (non-trivial) exponential list size and choosing an appropriate
subcode with a subspace evasive subset reduces the list size to a constant.

However, the intuition that using a subcode can reduce the worst-case list size is not specifically tied to
the algebraic properties of the code (i.e, to Reed-Solomon codes and subspace evasive sets). As above, it is
natural to ask if this intuition holds more broadly.

Question 3. Given a code, does there always exist a subcode that has the same list decoding properties as
the original code but with a smaller list size? In particular, is this true for random sub-codes?

Our results. We answer Question 3 by showing that for any code, a random subcode with the rate smaller
only by an additive factor of ε can correct the same fraction of errors as the original code but with a list size
of O(1/ε) as long as the original list size is at most Nε. Guruswami and Xing [GX13] showed that Reed-
Solomon codes defined over (large enough) extension fields with evaluation points coming from a (small
enough) subfield has non-trivial list size of Nε. Thus, our result then implies the random sub-codes of such
Reed-Solomon codes are optimally list decodable.5 We also complement this result by showing that the
tradeoff between the loss in rate and the final list size is the best one can hope for in general. We also use
the positive result to show another result: given that C0 is optimally list decodable up to rate ρ0, its random
subcodes (with the appropriate rate) with high probability are also optimally list decodable for any error
rate ρ > ρ0.

1.1.4 Techniques

Broadly speaking, the operations we consider fall into two categories: row-operations and column-operations
on the matrix C. We use different approaches for the different types of operations.

For row operations (and Questions 1 and 2) we use the machinery of [Woo13, RW14] in a more general
context. In those works, the main motivations were specific families of codes (random linear codes and
Reed-Solomon codes). In this work, we use the technical framework (implicit in) those earlier papers to
answer new questions. Indeed, one of the contributions of the current work is to point out that in fact these

5Guruswami and Xing also prove a similar result (since a random subset can be shown to be subspace evasive) so ours gives
an arguably simpler alternate proof.
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previous arguments apply very generally. For column operations, our results follow from a few simple direct
arguments (although the construction for the lower bound requires a bit of care).

Remark 4. We will specifically handle all row operations on the code matrix mentioned at the beginning of
the introduction. For column operations, we handle only column puncturing (taking random subcodes). For
many operations, this is not actually an omission: some of the column-analogues of the row-operations we
consider are redundant. For example, taking random linear combinations of columns of a linear code has
the same distribution as a random column puncturing. We do not handle bunching up of columns into mega
columns, which would correspond to designing interleaved codes—see Section 2 for a formal definition—and
we leave the solution of this problem as an open question.

1.2 Organization

In Section 2, we set up our formal framework and present an overview of our techniques in Section 3. In
Section 4, we state and prove our results about the list-decodability of codes under a few useful random
operations; these serve to give examples for our framework. They also lay the groundwork for Section 5,
where we return to the three applications we listed above, and resolve Questions 1, 2, and 3. Finally, we
conclude with some open questions.

2 Set-up

In this section, we set notation and definitions, and formalize our notion of row and column operations on
codes. Throughout, we will be interested in codes C of length n and size N over an alphabet Σ. Traditionally,
C ⊂ Σn is a set of codewords. As mentioned above, we will treat C as a matrix in Σn×N , with the codewords
as columns. We will abuse notation slightly by using C to denote both the matrix and the set; which object
we mean will be clear from context. For a prime power q, we will use Fq to denote the finite field with q
elements.

For x, y ∈ Σn, we will use d(x, y) to denote the Hamming distance between x and y, and we will use
agr(x, y) := n − d(x, y) to denote the agreement between x and y. We study the list-decodability of C: we
say that C is (ρ, L)-list-decodable if for all z ∈ Σn, | {c ∈ C : d(c, z) ≤ ρ} | < L. In this work, we will also be
interested in the slightly stronger notion of average-radius list-decodability.

Definition 1. A code C ⊂ Σn is (ρ, L)-average-radius list-decodable if for all sets Λ ⊂ C with |Λ| = L,

max
z

∑
c∈Λ

agr(c, z) ≤ (1− ρ)nL.

Average-radius list-decodability implies list-decodability [GN13,RW14]. Indeed, the mandate of average-
radius list decodability is that, for any L codewords in C, they do not agree too much on average with
their center, z. On the other hand, standard list decodability requires that for any L codewords in C, at
least one does not agree too much with z. As the average is always smaller than the maximum, standard
list-decodability follows from average-radius list-decodability.

We will create new codes C ∈ Σn×N from original codes C0 ∈ Σn0×N0
0 ; notice that we allow the alphabet to

change, as well as the size and block length of the code. We will consider code operations f : Σn0×N0
0 → Σn×N

which act on rows and columns of the matrix C0.
We say that a basic row operation takes a code C0 and produces a row of a new matrix C: that is, it is a

function
r : Σn0×N0

0 → ΣN0 .

Two examples of basic row operations that we will consider in this paper are taking linear combinations of
rows or aggregating rows. That is:
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(a) When Σ = Σ0 = Fq, and for a vector v ∈ Fn0
q , the row operation corresponding to linear combinations

of rows is r
(ip)
v : Fn0×N

q → FNq , given by

r(ip)
v (C0) = vTC0.

(b) Let S ⊂ [n0] be a set of size t, and let Σ = Σt0. Then the row operation corresponding to aggregating

rows is r
(agg)
S : Σn0×N

0 → (Σt0)N , given by

r
(agg)
S (M) =

(
(Mi,1)i∈S , (Mi,2)i∈S , . . . , (Mi,N )i∈S

)
.

(Above, we have replaced C0 with M to ease the number of subscripts).

We will similarly consider basic column operations

c : Σn0×N0
0 → Σn0 ,

which take a code C0 and produce a new column of a matrix C. Analogous to the row operations, we have
the following two examples.

(a) When Σ = Σ0 = Fq, and for a vector w ∈ FN0
q , we can consider

c(ip)
w (C0) = C0w.

(b) Let T ⊂ [N0] be a set of size t, and let Σ = Σt0. Then

c
(agg)
T (M) =

(
(M1,j)j∈T , (M2,j)j∈T , . . . , (Mn,j)j∈T

)
.

The code operations that we will consider in this paper are distributions over a collection of random basic
row operations or collection of random basic column operations:

Definition 2. A random row operation is a distribution D over n-tuples of basic row operations. We treat a
draw f = (r1, . . . , rn) from D as a code operation mapping C0 to C by defining the ith row of C = f(C0) to be
ri(C0). Similarly, a random column operation is a distribution D over N -tuples of basic column operations.

We say a random row (column) operation D has independent symbols (independent codewords resp.)
if the coordinates are independent. We say a random row operation D has symbols drawn independently
without replacement if (r1, . . . , rn) are drawn uniformly at random without replacement from some set R of
basic row operations.

Finally, for a random row operation D and a sample f from D note that the columns of f(C) are in
one-to-one correspondence with the columns of C. Thus, we will overload notation and denote f(c) for c ∈ C
to denote the column in f(C) corresponding to the codeword c ∈ C.

Below, we list several specific random row operations that fit into our framework.

1. Random Sampling: Let Σ = Σ0 be any alphabet, and let D = (Ur)n, where Ur is the uniform distribu-

tion on the n0 basic row operations r
(ip)
ej for j ∈ [n0], where ej is the jth standard basis vector. Thus,

each row of C is a row of C0, chosen independently uniformly with replacement.

2. Random Puncturing: Same as above except r1, . . . , rn are chosen without replacement.

3. Random t-wise XOR: Let Σ0 = Σ = F2 and D = (U⊕,t)n. U⊕,t is the uniform distribution over the(
n0

t

)
basic row operations {

r(ip)
v : v ∈ Fn0

2 has weight t
}
.

That is, to create a new row of C, we choose t positions from C0 and XOR them together.

6



4. Random t-wise aggregation: Let Σ = Σt0, for any alphabet Σ0, and let D = (Ut,dp)
n
, where Ut,dp is the

uniform distribution over the
(
n0

t

)
basic row operations{

r
(agg)
S : S ⊂ [n0], |S| = t

}
.

5. Random t-wise folding: Let Σ = Σt0, for any alphabet Σ0. For each partition π = (S1, . . . , Sn0/t) of
[n0] into sets of size t, consider the row operation fπ = (r1, . . . , rn) where

rj = r
(agg)
Sj

.

Let D be the uniform distribution over fπ for all partitions π.

The following column operations also fit into this framework; in this paper, we consider only the first. We
mention the second operation (random interleaving) in order to parallel the situation with columns. We
leave it as an open problem to study the effect of interleaving.

1. Random sub-code: Let Σ = Σ0 be any alphabet, and let D = (Uc)N , where Uc is the uniform distribution
on the N0 basic column operations {

c(ip)
w : w = ei, i ∈ [N0]

}
.

That is, C is formed from C0 by choosing codewords independently, uniformly, with replacement from
C0.

Notice that if C0 is a linear code over Fq, then this operation is the same if we replace {w = ei : i ∈ [N0]}
with all of Fnq , or with all vectors of a fixed weight, etc. Thus, we do not separately consider random
XOR (or inner products), as we do with columns.

2. Random t-wise interleaving: In this case D =
(
Uct,dp

)n
. Uct,dp is the uniform distribution over the

(
N0

t

)
basic column operations {

c
(agg)
T : T ⊂ [N0], |T | = t

}
.

3 Overview of Our Techniques

Random Row Operations. In addition to answering Questions 1 and 2, one of the contributions of
this work is to exhibit the generality of the techniques developed in [RW14]. As such, our proofs follow
their framework. In that work, there were two steps: the first step was to bound the list-decodability in
expectation (this will be defined more precisely below), and the second step was to bound the deviation
from the expectation. In this work, we use the deviation bounds as a black box, and it remains for us
to bound the expectation. We would also like to mention that we could have answered Questions 1 and
2 by applying the random puncturing results from [Woo13, RW14] as a black box to the XOR and direct
product of the original code. We chose to unpack the proof to illustrate the generality of the proof technique
developed in [Woo13, RW14] (and they also seem necessary to prove the generalization to the operation of
taking random linear combinations of the rows of the code matrix).

The results on random row operations in this paper build on the approaches of [Woo13, RW14]. While
those works are aimed at specific questions (the list-decodability of random linear codes and of Reed-Solomon
codes with random evaluation points), the approach applies more generally. In this paper, we interpret the
lessons of [Woo13,RW14] as follows:

If you take a code over Σ0 that is list-decodable (enough) up to ρ0 = 1 − 1/|Σ0| − ε, and do
some random (enough) stuff to the symbols, you will obtain a new code (possibly over a different
alphabet Σ) which is list-decodable up to ρ = 1−1/|Σ|−O(ε). If the random stuff that you have
done happens to, say, increase the rate, then you have made progress.
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First, our notion of a random row operation D being random enough is the same as D having independent
symbols (or independent symbols without replacement). Now, we will quantify what it means to be “list-
decodable enough” in the setup described above. We introduce a parameter E = E(C0,D), defined as follows:

E(C0,D) := max
Λ⊂C0,|Λ|=L

Ef∼D max
z∈Σn

∑
c∈C0

agr(f(c), z). (1)

The quantity E captures how list-decodable C is in expectation. Indeed, maxz
∑
c∈C0 agr(f(c), z) is the

quantity controlled by average-radius list-decodability (Definition 1). To make a statement about the actual
average-radius list-decodability of C (as opposed to in expectation), we will need to understand E when the
expectation and the maximum are reversed:

Ef∼D max
Λ⊂C0,|Λ|=L

max
z∈Σn

∑
c∈C0

agr(f(c), z).

The work of [Woo13,RW14] shows the following theorem.

Theorem 2. Let C0,D and C be as above, and suppose that D has independent symbols. Fix ε > 0. Then

Ef max
z∈Σn

max
Λ⊂C0,|Λ|=L

∑
c∈Λ

agr(f(c), z) ≤ E + Y +
√
EY ,

where
Y = CL log(N) log5(L)

for an absolute constant C. For |Σ| = 2, we have

Ef max
x∈Σn

max
Λ⊂C0,|Λ|=L

∑
c∈Λ

agr(f(c), z) ≤ E + CL
√
n ln(N).

Theorem 2 makes the intuition above more precise: Any “random enough” operation (that is, an operation
with independent symbols) of a code with good “average-radius list-decodability” (that is, good E(C0,D))
will result in a code which is also list-decodable. In Appendix C, we show that Theorem 2 in fact implies
the same result when “random enough” is taken to be mean that D has symbols drawn independently at
random instead:

Corollary 1. Theorem 2 holds when “independent symbols” is replaced by “symbols drawn independently
without replacement”.

In this work, we answer Questions 1 and 2 by coming up with useful distributions D on functions f and
computing the parameter E . To do this, we will make use of some average-radius Johnson bounds; we record
these in Appendix A.

Random Column Operations. Our result on random subcodes follows from a simple probabilistic
method. The argument for showing that the parameters in this positive result cannot be improved, we
construct a specific code C0. The code C0 consists of various “clusters”, where each cluster is the set of
all vectors that are close to some vector in another code C∗. The code C∗ has the property that it is list
decodable from a large fraction of errors and that for smaller error rate its list size is suitably smaller– the
existence of such a code with exponentially many vectors follows from the standard random coding argu-
ment. This allows the original code C0 to even have good average-radius list decodability. The fact that the
cluster vectors are very close to some codeword in C∗ (as well as the fact that C∗ has large enough distance)
basically then shows that the union bound used to prove the positive result is tight.
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4 General Results

In this section, we state our results about the effects of some particular random operations—XOR, ag-
gregation, and subcodes—on list-decodability. In Section 5, we will revisit these operations and resolve
Questions 1, 2 and 3.

4.1 Random t-wise XOR

In this section, we consider the row-operation of t-wise XOR. We prove the following theorem.

Theorem 3. Let C0 ∈ Fn0×N
2 be a code with distance 0 < δ0 < 1/2. Let D = (U⊕,t)n, as defined in Section 2,

and consider the code operation f ∼ D. Suppose that t = 4 ln(1/ε)δ−1
0 . Then for sufficiently small ε > 0 and

large enough n, with probability 1− o(1), C = f(C0) is (1/2(1−O(ε)), ε−2)-average-radius list decodable and
has rate Ω(ε2).

With the goal of using Theorem 2, we begin by computing the quantity E(C0,D).

Lemma 1. Let C0 ∈ Fn0
2 be a code with distance δ0, and suppose t ≥ 4 ln(1/ε)

δ0
. Then

E(C0,D) ≤ n

2

(
L(1 + ε) +

√
L
)
.

The proof of Lemma 1 follows from an application of an average-radius Johnson bound (see Appendix A
for more on these bounds). The proof is given in Appendix D.1. Given Lemma 1, Theorem 2 implies that
with constant probability,

max
z∈Fn2

max
Λ⊂C,|Λ|=L

1

L

∑
c∈Λ

agr(c, z) ≤ E
L

+ C
√
n ln(N)

≤ n

2

(
1 + ε+

1√
L

)
+ C
√
n lnN.

In particular, if C
√
n lnN ≤ εn, then in the favorable case C is (ρ, L− 1)-average-radius list-decodable, for

L = ε−2 and ρ = 1
2 · (1− C

′ε) for some constant C ′.
It remains to verify the rate R of C. Notice that if |C| = N , then we are done, because then the

requirement C
√
n ln(N) ≤ εn reads

R =
log2(N)

n
≤ ε2

C ln(2)
.

Thus, to complete the proof we will argue that f is injective with high probability, and so in the favorable
case |C| = N . Fix c 6= c′ ∈ C0. Then, by the same computations as in the proof of Lemma 1,

P {f(c) = f(c′)} =

(
1

2

(
1 + (1− δ0)t

))n
≤
(

1 + ε2

2

)n
.

Using the fact that we will choose n ≥ C ln(N)/ε2, the right hand side is(
1 + ε2

2

)C ln(N)/ε2

= N
− ln

(
2

1+ε2

)
C/ε2 ≤ N−3

for sufficiently small ε. Thus, by the union bound on the
(
N
2

)
≤ N2 choices for the pairs of distinct codewords

(c, c′), we see that P {|C| < N} ≤ 1/N , which is o(1) as desired. This completes the proof of Theorem 3.

Remark 5 (Random inner products for q > 2). For our application (Question 1), q = 2 is the interesting
case. However, the argument above goes through for q > 2. In this case, we may use the first statement of
Theorem 2, and statements 2 or 3 of Theorem 8 for the average-radius Johnson bound.

9



4.2 Random t-wise aggregation

Theorem 4 below analyzes t-wise aggregation in two parameter regimes. In the first parameter regime, we
address Question 2, and we consider t-wise direct product where n0 = nt. In this case, final code C will have
the same rate as the original code C0, and so in order for C to be list-decodable up to radius 1− ε, the rate
R0 of C0 must be O(ε). Item 1 shows that if this necessary condition is met (with some logarithmic slack),
then C is indeed list-decodable up to 1− ε. In the second parameter regime, we consider what can happen
when the rate R0 of C0 is significantly larger. In this case, we cannot hope to take n as small as n0/t and
hope for list-decodability up to 1 − ε. The second part of Theorem 4 shows that we may take n nearly as
small as the list-decoding capacity theorem allows.

Theorem 4. There are constants Ci, i = 0, . . . , 5, so that the following holds. Suppose q > 1/ε2. Let
C0 ⊂ Fn0

q be a code with distance δ0 ≥ C2 > 0.

1. Suppose t ≥ C0 log(1/ε) ≥ 4 ln(1/ε)/δ0. Suppose that C0 has rate

R0 ≤
C1ε

log(q)t log5(1/ε)
.

Let n = n0/t, and let D= (Ut,dp)
n

be the t-wise aggregation operation of Section 2. Draw f ∼ D, and
let C = f(C0). Then with high probability, C is (1−C3ε, 1/ε)-average-radius list-decodable, and further
the rate R of C satisfies R = R0.

2. Suppose that t ≥ 4 ln(1/ε)/δ0, and suppose that C0 has rate R0 so that

R0 ≤
(
nt

n0

)(
log(1/ε)

log(q)

)
.

Choose n so that

n ≥ log(N) log(1/ε)

ε
.

Let D= (Ut,dp)
n

be the t-wise aggregation operation of Section 2. Draw f ∼ D, and let C = f(C0). Then
with high probability, C is (1− C4ε, 1/ε)-average-radius list-decodable, and the rate R of C is at least

R ≥ C5ε

t log(q) log5(1/ε)
.

The rest of this section is devoted to the proof of Theorem 4. As before, it suffices to control E(C0,D).

Lemma 2. With the set-up above, we have

E(C0,D) ≤ Cn.

Again, the proof of Lemma 2 follows from an average-radius Johnson bound. The proof is given in
Appendix D.1. Then by Theorem 2, recalling that

Y = CL log(N) log5(L),

and N = |C0|, we have with high probability that

Ef max
z∈Σn

max
Λ⊂C0,|Λ|=L

∑
c∈Λ

agr(f(c), z) ≤ E(C0,D) + Y +
√
E(C0,D)Y

≤ O
(
L log(N) log5(L) + n

)
.
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In the favorable case,

Ef max
z∈Σn

max
Λ⊂C,|Λ|=L

1

L

∑
c∈Λ

agr(c, z) ≤ O
(
log(N) log5(L) + n/L

)
= O

(
log(N) log5(1/ε) + nε

)
. (2)

As before, C is (1−Cε,L− 1) average-radius list-decodable, for some constant C, as long as the right hand
side is no more than O(nε). This holds as long as

log(N) log5(1/ε) ≤ nε. (3)

Equation (3) holds for any choice of n. First, we prove item 1 and we focus on the case that n0 = nt;
this mimics the parameter regime the definition of folding (which addresses Question 2). Given n0 = nt, we
can translate (3) into a condition on R0, the rate of C0. We have

R0 =
logq(N)

n0
=

logq(N)

nt
,

and so translating (3) into a requirement on R(C0), we see that as long as

R0 .
ε

log(q)t log5(1/ε)
.

ε

log(q) log6(1/ε)
,

then with high probability C is (1− Cε,L)-list-decodable. Choose n so that this holds. It remains to verify
that the rate R of C is the same as the rate R0 of C0. The (straightforward) proof is deferred to Appendix D.2.

Claim 5. With C0 as above and with n0 = nt, |C| = N with probability at least 1− o(1).

By a union bound, with high probability both the favorable event (2) occurs, and Claim 5 holds. In this
case, C is (1− Cε,L)-list-decodable, and the rate R of C is

R = R0.

Next, we consider Item 2, where we may choose n < n0/t, thus increasing the rate. It remains true that
as long as (3) holds, then C is (1−Cε,L)-list-decodable. Again translating the condition (3) into a condition
on logqt(N)/n, we see that as long as

logqt(N)

n
≤ ε

t log(q) log5(1/ε)
, (4)

then C is (1− Cε,L)-list-decodable. Now we must verify that the left-hand-side of (4) is indeed the rate R
of C, that is, that |C| = N . As before, the proof is straightforward and is deferred to Appendix D.3.

Claim 6. With C0 as above and with n arbitrary, |C| = N with probability at least 1− o(1).

Now, recalling our choice of n in (4), with high probability both (2) occurs and Claim 6 holds. In the
favorable case, C is (1− Cε,L)-list-decodable, as long as the rate R satisfies

R =
logqt(|C|)

n
=

logqt(N)

n
≤ Cε

t log5(1/ε) log(q)
.

This completes the proof of Theorem 4.
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4.3 Random sub-codes

In this section we address the case of random sub-codes. Unlike the previous sections, the machinery
of [RW14,Woo13] does not apply, and so we prove the results in this section directly. We have the following
proposition.

Proposition 1. Let C0 be any (ρ, L0)-list decodable q-ary code. Let C be a random sub-code of C0 with
N = pN0 (as in the definition in Section 2), where

p =
1

qεn · L0
.

With probability 1 − o(1), the random subcode C is
(
ρ, 3

ε

)
-list decodable. Further, the number of distinct

columns n C is at least pN0/2.

The proof of Proposition 1 follows straightforwardly from some Chernoff bounds. We defer the proof to
Appendix E.2.

Remark 6. In Proposition 1, the choice of 3/ε for the final list size was arbitrary in the sense that the 3
can be made arbitrarily close to 1 (assuming ε is small enough).

Proposition 1 only works for the usual notion of list decodability. It is natural to wonder if a similar result
holds for average-radius list decodability. We show that such a result indeed holds (though with slightly
weaker parameters) in Appendix E.

It is also natural to wonder if one can pick a larger value of p—closer to 1/L0 than to 1/(qεnL0)—in
the statement of Proposition 1. In particular, if L0 is polynomial in n, could we pick p = q−o(εn)? In
Appendix E, we show that this is not in general possible. More precisely, we show the following theorem.

Theorem 7. For every ρ > 0, and for every 0 < α < 1−ρ
12 , and for every n sufficiently large, there exists a

code C0 with block length n that is (ρ, n)-average-radius list decodable such that the following holds. Let C be
obtained by picking a random sub-code of C0 of size N = pN0 where p = q−αn/n. Then with high probability
if C is (ρ′, L)-list decodable for any ρ′ ≥ 1/n, then L ≥ Ω(1/α).

5 Applications

Finally, we use the results of Section 4 to resolve Questions 1, 2, and 3.

5.1 Linear time near optimal list decodable codes

First, we answer Question 1, and give linear-time encodable binary codes with the optimal trade-off between
rate and list-decoding radius. Our codes will work as follows. We begin with a linear-time encodable code
with constant rate and constant distance; we will use Spielman’s variant on expander codes [Spi96, Theorem
19]. These codes have rate 1/4, and distance δ0 ≥ 0 (a small positive constant). Notice that a random
puncturing of C0 (as in [Woo13,RW14]) will not work, as C0 does not have good enough distance—however,
a random XOR, as in Section 4.1 will do the trick.

Corollary 2. There is a randomized construction of binary codes C ∈ Fn2 so that the following hold with
probability 1− o(1), for any sufficiently small ε and any sufficiently large n.

1. C is encodable in time O(n ln(1/ε)).

2. C is (ρ, L)-average-radius list-decodable with ρ = 1
2 (1 − Cε) and L = ε−2, where C is an absolute

constant.

3. C has rate Ω(ε2).

12



Indeed, let C0 be as above. Let t = 4 ln(1/ε)δ−1
0 , and choose f ∼ (U⊕,t)n, as in Theorem 3. Let C = f(C0).

Items 2. and 3. follow immediately from Theorem 3, so it remains to verify Item 1 of Theorem 2, that C is
linear-time encodable. Indeed, we have

C(x) = AC0(x),

where A ∈ Fn×n0
2 is a matrix whose rows are binary vectors with at most t nonzeros each. In particular, the

time to multiply by A is nt = O(n ln(1/ε)), as claimed.

5.2 Random Folding

Next, we further discuss Question 2, which asked for a rigorous version of the intuition behind results for
folded Reed-Solomon codes and expander-based symbol aggregation. The intuition is that increasing the
alphabet size effectively reduces the number of error patterns a decoder has to handle, thus making it easier
to list-decode. To make this intuition more clear, consider the following example when q = 2. Consider an
error pattern that corrupts a 1 − 2ε fraction of the odd positions (the rest do not have errors). This error
pattern must be handled by any decoder which can list decode from 1/2− ε fraction of errors. On the other
hand, consider a 2-folding (with partition as above) of the code; now the alphabet size has increased, so we
hope to correct 1− 1/22 − ε = 3/4− ε fraction of errors. However, the earlier error pattern affects a 1− 2ε
of the new, folded symbols. Thus, in the folded scenario, an optimal decoder need not handle this error
pattern, since 1− 2ε > 3/4− ε (for small enough ε).

In Theorem 4, Item 1, we have shown that if C0 is any code with distance bounded away from 0 and with
rate sufficiently small (slightly sublinear in ε), has abundant random t-wise aggregation of symbols which
are list-decodable up to a 1− ε fraction of errors, when n = n0/t and t is large enough (depending only on
ε and q). This is the same parameter regime as folded Reed-Solomon codes (up to logarithmic factors in
the rate), and thus the Theorem answers Question 2 insofar as it lends a rigorous way to interpret t-wise
aggregation in this parameter regime.

Remark 7. While the intuition above applies equally well to folding and more general t-wise symbol ag-
gregation, We note that a random folding and a random symbol aggregation are not the same thing. In
the latter, the symbols of the new code may overlap, while in the former they may not. However, allowing
overlap makes our computations simple; since the goal was to better understand the intuition above, we have
done our analysis for the simpler case of t-wise symbol aggregation. It is an interesting open question to
find a (clean) argument for the folding operation, perhaps along the lines of the argument of Corollary 1 for
puncturing vs. sampling.

5.3 Applications of random sub-codes

Finally, we observe that Proposition 1 immediately answers Question 3 in the affirmative. Indeed, suppose
that C0 is (ρ0, L0)-list-decodable with rate R0. Then Proposition 1 implies that with high probability, for
any sufficiently small ε, a random subcode of rate

R0 −O
(
ε log(q) +

log(L0)

n

)
is (ρ0, 3/ε)-list-decodable. In particular, if we start out with a binary code with constant rate and large but
subexponential list size, the resulting subcode will also have constant rate, and constant list size. Further,
Guruswami and Xing [GX13] showed that for every real R, 0 < ε < 1 − R and prime power q, there is an
integer m > 1 such that Reed-Solomon codes defined over Fqm with the evaluation points being Fq of rate
R can be list decoded from the optimal 1 − R − ε fraction of errors with list size Nε. Thus, Proposition 1
that randoms sub-codes are optimally list decodable (in all the parameters). We remark that this result also
follows from the work of Guruswami and Xing [GX13]: our proof is arguable simpler (though we have not
algorithmic guarantee unlike the results of [GX13]).

Given this, it is natural to ask about the list-decodability of the subcode C when the error radius ρ may
be different than ρ0. It turns out that this also follows from Proposition 1: below, we will use Proposition 1
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to argue that if a code C0 is optimally list decodable for some fixed ρ0 > 0 fraction of errors, then its random
subcodes with high probability are optimally list decodable from ρ fraction of errors for any ρ0 ≤ ρ < 1−1/q.
Towards that end, we will make the following simple observation:

Lemma 3. Let C be (ρ, L)-list decodable q-ary code. Then for every ρ ≤ ρ′ < 1− 1/q, C is also (ρ′, L′)-list
decodable, where

L′ ≤ L · qn(Hq(ρ
′)−Hq(ρ)+o(1)) · 2n.

Proof. Consider a received word y ∈ [q]n such that |C ∩ Bq(y, ρ′n)| = L′. Now we claim that there exists a
z ∈ Bq(y, ρ′n) such that

|Bq(z, ρn) ∩ C| ≥ L′ · (q − 1)ρn

|Bq(y, ρ′n)|
(5)

≥ L′ · q
Hq(ρ)n−o(n)

2n
· 1

qHq(ρ
′n)
. (6)

In the above the second inequality follows from the following facts: volume of q-ary Hamming balls of
radius γn are bounded from above by qHq(γ)n and from below by qHq(γ)n−o(n) (and that

(
n
ρn

)
(q − 1)ρn ≥

qHq(ρ)n−o(n)). (6) along with the fact that C is (ρ, L)-list decodable proves the claimed bound on L′.
To complete the proof we argue (5): we show the existence of z by the probabilistic method:6 pick

z ∈ Bq(y, ρ′n) uniformly at random. Fix a c ∈ C ∩Bq(y, ρ′n). Then

P {c ∈ Bq(z, ρn)} =
|Bq(c, ρn) ∩Bq(y, ρ′n)|

Bq(y, ρ′n)
.

Next we argue that
|Bq(c, ρn) ∩Bq(y, ρ′n)| ≥ (q − 1)ρn. (7)

Note that the above implies that

E [|Bq(z, ρn) ∩ C|] ≥ L′ · (q − 1)ρn

|Bq(y, ρ′n)|
,

which would prove (5). To see why (7) is true, consider any ρn positions where c and y agree on. Note that
if we change all of those values (to any of the (q− 1)ρn possibilities) to obtain c′, then we have d(c′, y) ≤ ρ′n
and d(c′, c) = ρn, which proves (7).

Lemma 3 along with Proposition 1 implies the following.

Corollary 3. Let q ≥ 21/ε. Let C0 be a (ρ, L)-list decodable q-ary code with optimal rate 1 − Hq(ρ) − ε.
Then for any ρ′ ≥ ρ, with probability at least 1− o(1), a random subcode C of C0 of rate 1−Hq(ρ

′)− O(ε)
is (ρ′, O(1/ε))-list decodable.

Remark 8. The bound in Lemma 3 is tight up to the qo(n) · 2n factor. In particular, one cannot have a
bound of L · qγn for any γ < Hq(ρ

′)−Hq(ρ) since that would contradict the list decoding capacity bounds.

6 Open Questions

In this work we have made some (modest) progress on understanding on how random row and column
operations change the list decodability of codes. We believe that our work highlights many interesting open
questions. We list some of our favorites below:

6This part of the proof is similar to the argument used to prove the Elias-Bassalygo bound [GRS14].
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1. Theorem 4 is proved for random t-wise direct product codes. It would be nice to prove the analog
of item 1 in Theorem 4 for random t-wise folding so that we can formally answer Question 2 in the
affirmative.

2. We did not present any results for random t-wise interleaving. Gopalan, Guruswami and Raghavendra
have shown that for any code C0 its t-wise interleaved code C (that is the code that deterministically
applies all possible basic column operations that bunch together the

(
N0

t

)
subsets of columns of size t)

the list decodability does not change by much [GGR11]. In particular, they show that if C0 is (ρ, L)-list
decodable then C is (ρ, LO(1))-list decodable. However, for random t-wise interleaving the list decoding
radius might actually improve.7 We leave open the question of resolving this possibility.

3. Following the result of Guruswami and Xing [GX13], Corollary 3 implies that random sub-codes of
Reed-Solomon codes over Fqm (for large enough m) with evaluation points from the sub-field Fq have
optimal list decodable properties. We believe that we should be able to derive such a result even if we
start from any Reed-Solomon codes or at the very least if one starts off with a randomly punctured
Reed-Solomon codes. Note that even though the results of [RW14] give near optimal list decodability
results of Reed-Solomon codes, their results are logarithmic factors off from the optimal rate bounds.
Can we prove non-trivial exponential bound on the list size for list decoding rate R Reed-Solomon
codes from 1−R− ε fraction of errors? A very special case of this is proved in [GX13], but the general
question is open. Such a statement, along with Proposition 1, would imply that random sub-codes of
Reed-Solomon codes with random evaluation points achieve list decoding capacity.

4. All of our results so far only use either just random row operation or just random column operations. An
open question is to find applications where random row and column operations could be use together to
obtain better results than either on their own. The above point would be such an example, if resolved.
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A Average case, average radius Johnson bounds

The Johnson bound states that any code with good enough distance is list-decodable with polynomial list
sizes, up to a radius that depends on the distance. For this work, we will need some slight variants on the
Johnson bound. We will be interested in average-radius list decoding, rather than the standard definition.
We state three versions of an average-radius Johnson bound below, for different list sizes.

Theorem 8 (Average-radius Johnson bounds). Let C : Fkq → Fnq be any code. Then for all Λ ⊂ Fkq of size
L and for all z ∈ Fnq :

• If q = 2, ∑
x∈Λ

agr(C(x), z) ≤ n

2

L+

√
L2 − 2

∑
x6=y∈Λ

d(C(x), C(y))

 .
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• For all ε ∈ (0, 1),∑
x∈Λ

agr(C(x), z) ≤ nL

q
+
nL

2ε

(
1 + ε2

)(
1− 1

q

)
− n

2Lε

∑
x 6=y∈Λ

d(C(x), C(y)).

• ∑
x∈Λ

agr(C(x), z) ≤ 1

2

n+

√
n2 + 4n2L(L− 1)− 4n2

∑
x6=y∈Λ

d(C(x), C(y))

 .

Proof. The proof of the second two statements (for general q) can be found in [RW14]. The statement for

q = 2 follows by the computation below (implicit in [Woo13, CGV13]). Let Φ ∈ (±1)n×2k be the matrix
whose columns are indexed by x ∈ Fk2 , so that Φj,x = (−1)C(x)j . Let ϕj denote the j-th column of Φ. Then

max
z

∑
x∈Λ

agr(C(x), z) =

n∑
j=1

max
b∈{0,1}

∑
x∈Λ

1C(x)j=α

=

n∑
j=1

max
α∈{0,1}

∑
x∈Λ

(−1)α(−1)C(x)j + 1

2

=

n∑
j=1

nL+

n∑
j=1

|〈ϕj ,1Λ〉|


=

1

2
(nL+ ‖Φ1Λ‖1)

≤ 1

2

(
nL+

√
n ‖Φ1Λ‖2

)
,

using Cauchy-Schwarz in the final line. The claim then follows from the definition of Φ and the fact that
the (x, y)-entry of ΦTΦ is given by n(1− 2d(C(x), C(y))) . Indeed, from this, we have

‖Φ1Λ‖22 = 1TΛΦTΦ1Λ = n
∑
x∈Λ

∑
y∈Λ

(1− 2d(C(x), C(y))) ,

and plugging this in above gives the statement.

B Linear time encodable and decodable binary list decodable codes

We will argue the following in this section:

Theorem 9. For every ε > 0, there exists a binary code that can be encoded and list decoded in linear time

from 1/2− ε fraction of errors with rate 2−2O(ε−9)

.

In the rest of the section, we argue why the statement above is true. (We thank Venkat Guruswami for
pointing out the following argument to us.)

We will crucially use the following result that follows from the work of Guruswami and Indyk:

Theorem 10 ( [GI03]). For every γ > 0, there exists a q-ary code that can be encoded and decoded in linear

time from 1− γ fraction of errors for q = 1/γ and with rate 2−2O(−γ3)

.

Ultimately we will use the above theorem with γ = ε3/8 to get out outer code. Our inner code will be
the binary Hadamard code with q = 8/ε3 codewords in it. Since the binary Hadamard code has relative
distance 1/2, Johnson bound implies that it is (1/2 − ε/2, 8/ε2)-list decodable. Our final code will be the
code concatenation of the outer and inner code.
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Note that the rate of the concatenated code is at least 1/q · 2−2O(ε−9)

, which is within the claimed bound
on the rate. The claim on the encoding runtime follows from the fact that the outer code can be encoded in
linear time and the inner code has constant size.

Finally, we look at the list decoding algorithm. The algorithm is simple:

1. Let y = (y1, . . . , yN ) be the received word where each yi is a valid received word for the inner code.

2. For each i ∈ [N ], compute the list of every message whose corresponding Hadamard codeword is within
a relative Hamming distance of 1/2−ε/2 from yi. Set y′i be a random element from this list of messages.

3. Run the list decoding algorithm for the outer code on the intermediate received word (y′1, . . . , y
′
N ).

It is easy to check that the above algorithm runs in linear time since the list decoder for the outer code
runs in linear time and inner code has constant size.

Finally, we argue why the above algorithm works. Consider any codeword that is within 1/2− ε fraction
of the received word. Then by an averaging argument, one can show that for at least ε fraction of the
positions i ∈ [N ], the corresponding value in the outer codeword belong to the list calculated in Step 2
above. Since the list has size 8/ε2, then in expectation the codeword agrees with the intermediate received
word from Step 3 in ε3/8 fraction of positions. This implies that the list decoder from Theorem 10 can
recover the algorithm.8

C With replacement vs. without replacement

In this appendix, we show how to apply Theorem 2 to operations like puncturing and folding, where the
symbols do not quite have full independence. Our first lemma justifies the extension of Theorem 2 to symbols
which are sampled without replacement.

Lemma 4. Suppose that f ∼ D has symbols drawn independently without replacement from SD, as in
Definition 2. Let D′ be the corresponding distribution with replacement: that is, each fj is drawn i.i.d.
uniformly at random from SD. Then

Ef∼D max
z∈Σn

max
Λ⊂C0,|Λ|=L

∑
c∈Λ

agr(f(c), z) ≤ Ef∼D′ max
z∈Σn

max
Λ⊂C0,|Λ|=L

∑
c∈Λ

agr(f(c), z)

For example, suppose f = (f1, . . . , fn) ∼ D is random puncturing, so fj(c) = cij for a random subset
{i1, . . . , in} ⊂ [N ] chosen uniformly without replacement. Then D′ would be the random sampling operation
of [RW14]. That is, fj(c) = cij chosen i.i.d. from [N ]. Thus, Lemma 4 implies that the results of [RW14]
for random sampling imply to random puncturing as well.

To prove Lemma 4, we will need to unpack the results of [RW14] a bit. We introduce the following
definition.

Definition 3. For a set Λ ⊂ C0, and an index j ∈ [n], we define the plurality of the j’th symbol of C0 in Λ
to be

plj(Λ) = max
α∈Σ
|{c ∈ Λ : f(c)j = α}| .

Thus, plj(Λ) is a random variable, over the choice of f ∼ D. Further, we have

max
z∈Σn

∑
c∈Λ

agr(f(c), z) = max
c∈Λ

n∑
j=1

plj(Λ).

8To be fully correct, we need to adjust the constants so that in expectation one has agreement in ε3/4 fraction of location
since then with high probability one would indeed have agreement of at least ε3/8 for all codewords that need to be output.
The latter is fine since it is known that the code from Theorem 10 is actually (1− γ,O(γ−3))-list decodable– so a union bound
would suffice.
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Thus, when f ∼ D′ has independent symbols, the random variables plj(Λ) are independent for different j.
When f ∼ D is independent with replacement, then we have a sum of independent random variables with
replacement. Thus, the following simple lemma will imply Lemma 4.

Lemma 5. Suppose that X1, . . . , Xn are drawn without replacement from a finite set S ⊂ Rd of size N .
Suppose that Y1, . . . , Yn are drawn independently and uniformly at random from S. Then

EX

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
∞

≤ EY

∥∥∥∥∥
n∑
i=1

Yi

∥∥∥∥∥
∞

.

Proof. Consider the following distribution. Draw z1, . . . , zN from a multinomial distribution with n trials
and event probabilities pi = 1/N for i = 1, . . . , N . Let ẑ′i denote the zi sorted in decreasing order: notice that
ẑi = 0 for all i > n. Draw a random permutation π ∼ Sn and definte ẑi = ẑ′π(i). Now we have

∑
i ẑi = n, and

by symmetry, Eẑi = 1. Now draw X1, . . . , Xn and Y1, . . . , Yn from S, as in the lemma statement. Observe
that the distribution of

n∑
i=1

ẑiXi

is the same as the distribution of
n∑
i=1

Yi.

In particular, we have

EX,ẑ

∥∥∥∥∥
n∑
i=1

ẑiXi

∥∥∥∥∥
∞

= EY

∥∥∥∥∥
n∑
i=1

Yi

∥∥∥∥∥
∞

. (8)

On the other hand, we have

EX,ẑ

∥∥∥∥∥
n∑
i=1

ẑiXi

∥∥∥∥∥
∞

≥ EX

∥∥∥∥∥Eẑ
n∑
i=1

ẑiXi

∥∥∥∥∥
∞

= EX

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
∞

, (9)

using the fact that Eẑ ẑi = 1 for all i = 1, . . . , n. Together, (8) and (9) imply that

EX

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
∞

≤ EY

∥∥∥∥∥
n∑
i=1

Yi

∥∥∥∥∥
∞

,

as desired.

Now Lemma 5 implies Lemma 4. Indeed, in Lemma 5, we may take the vectors Yi ∈ Rd for d =
(
N
L

)
to

be given by
(Yj)Λ = plj(Λ).

D Missing Proofs from Section 4

D.1 Controlling the parameter E
In this section, we show how to control the parameter E for random t-wise XOR and for random t-wise
aggregation, using the average-radius Johnson bound, Theorem 8.

Proof of Lemma 1. We will use the average-radius Johnson bound, Theorem 8. Thus, we start by computing
the expected distance between two symbols of the code C ∈ Fn2 obtained from C0 and D. Let c, c′ denote two
distinct codewords in C0. Recall that U⊕,t is the uniform distribution over{

r(ip)
v : v ∈ FN2 has weight t

}
,
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and write f = (r1, . . . , rn). Let vi ∈ FN2 denote the vector picked by the row operation ri; thus, vi ∈ FN2 are
chosen i.i.d. uniformly at random (with replacement). Then

Eδ(f(c), f(c′)) =
1

n

n∑
i=1

P {fi(c) 6= fi(c
′)}

= P {〈vi, c〉 6= 〈vi, c′〉}

=
1

2
P {(c− c′)Suppvi 6= 0}

=
1

2

(
1− (1− δ0)t

)
≤ 1

2

(
1− e−δ0t/2

)
.

In particular, if t = 4 ln(1/ε)
δ0

, then this is 1
2 (1− ε2). Then Theorem 8 implies that

E(C0,Dip(t)) = max
Λ⊂C0

Ef∼Dip(t) max
z∈Fn2

∑
c∈Λ

agr(f(c), z)

≤ max
Λ

Ef max
z∈Fn2

n

2

L+

√
L2 − 2

∑
c 6=c′∈Λ

δ(f(c), f(c′))


≤ max

Λ

n

2

L+

√
L2 − 2

∑
c 6=c′∈Λ

Efδ(f(c), f(c′))


≤ n

2

L+

√
L2 − 2

∑
c 6=c′∈Λ

1

2
(1− ε2)


=
n

2

(
L+

√
L2ε2 + L(1− ε2)

)
≤ n

2

(
L(1 + ε) +

√
L
)
.

Proof of Lemma 2. We wish to control E(C0,D), which we do via the average-radius Johnson bound (The-
orem 8). Because we are interested in the parameter regime where q ≥ 1/ε2, we use the third statement in
Theorem 8. Suppose t ≥ 4 ln(1/ε)/δ0 and set L = 1/ε. For c 6= c′ ∈ C0, we compute

Ef∼Dδ(f(c), f(c′)) =
1

n

n∑
i=1

P {fj(c) 6= fj(c
′)}

= P
{
∃j ∈ Si : cj 6= c′j

}
= 1− (1− δ0)t

≤ 1− ε2,
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using the choice of t in the final line. Thus, by Theorem 8, Item 3,

E(C0,D) = max
Λ⊂C0

Ef∼Ddp(t) max
z∈Fnq

∑
c∈Λ

agr(f(c), z)

≤ max
Λ⊂C0

Ef∼Ddp(t) max
z∈Fnq

1

2

n+

√
n2 + 4n2L(L− 1)− 4n2

∑
c 6=c′∈Λ

δ(f(c), f(c′))


= max

Λ⊂C0

1

2

n+

√
n2 + 4n2L(L− 1)− 4n2

∑
c 6=c′∈Λ

Efδ(f(c), f(c′))


≤ 1

2

n+

√
n2 + 4n2L(L− 1)− 4n2

∑
c6=c′∈Λ

(1− ε2)


=
n

2

(
1 +

√
1 + 4L(L− 1)ε2

)
≤ Cn,

using the choice of L and defining C = (1 +
√

5)/2.

D.2 Proof of Claim 5

Proof. The only way that |C| < N is if two codewords c 6= c′ ∈ C0 collide, that is, if f(c) = f(c′). This is
unlikely: we have

P {f(c) = f(c′)} = (1− δ0)nt ≤ ε2nt.

By a union bound over
(
N
2

)
≤ N2 pairs c 6= c′, we conclude that the probability that |C| < N is at most

P {|C| < N} ≤ N2ε2nt. (10)

If nt = n0, we have

P {|C| < N} ≤ q2n0R0ε2nt =
(
qR0ε

)2n0
.

In particular, when qR0 < 1/ε, this is o(1). By our assumption, R0 < ε, and so this is always true for
sufficiently small ε.

D.3 Proof Claim 6

Proof. As in (10), we have
P {|C| < N} ≤ N2ε2nt.

We may bound the right-hand-side by

N2ε2nt =
(
qR0n0/nεt

)2n

,

and for this to be o(1), it is sufficient for

R0 ≤
(
nt

n0

)(
log(1/ε)

log(q)

)
,

which was our assumption for part 2 of the theorem.
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E Missing details on random sub-codes

E.1 Preliminaries

We collect some known results that we will use. We begin with a form of Chernoff bound that will be useful
for our purposes:

Theorem 11. Let X1, . . . , Xm are random independent binary random variables with bias p. Then

P

{∑
i

Xi > t

}
≤
(pm
t

)t−pm
.

Next, we state a conjecture concerning the tradeoff between list decodability and list size:

Conjecture 12. Any (ρ, L)-list decodable q-ary code has rate at most 1−Hq(ρ)− Ω
(

1
L

)
.

There many reasons to believe that the conjecture above is true. Conjecture 12 is known to be true when
ρ approaches 1 [GV10,Bli05,Bli08,Bli86]. Weaker versions of the conjecture are known to be true.

Theorem 13 ( [GN13,Bli05,Bli08,Bli86]). For constant ρ, any q-ary code that is (ρ, L)- list decodable must
have rate at most 1−Hq(ρ)− Ω

(
1

2L

)
.

Theorem 14 ( [GN13]). For constant ρ, any binary code that is (ρ, L)-average-radius list decodable must
have rate at most 1−H2(ρ)− Ω

(
1
L2

)
.

Finally, the rate bound in Conjecture 12 is achieved by random codes and the bound in Conjecture 12 is
known to be true for most codes [Rud11].

E.2 Proof of Proposition 1

We now give the proof of Proposition 1.

Proof of Proposition 1. Let Σ be the alphabet of size q. Consider any fixed y ∈ Σn, where n is the block
length of C0 (and is assumed to be large enough). Then the list decodability of C0 implies that

|Bq(y, ρn) ∩ C0| ≤ L0, (11)

where Bq(y, r) is the q-ary Hamming ball of radius r centered at y. As in Section 2, write C = f(C0),

where f = (c1, . . . , cN ) ∼ (Uc)N . Now consider the random variable |Bq(y, ρn) ∩ C|, where we are abusing
our chosen notation slightly and treating C as a proper set, even though as a matrix, C may have repeated

columns. This is bounded by the sum of N independent Bernoulli-
(
|Bq(y,ρn)∩C0|

N0

)
variables:

|Bq(y, ρn) ∩ C| ≤
n∑
i=1

1ci(C0)∈Bq(y,ρn),

where again we have inequality rather than equality because of the possibility that ci(C0) = cj(C0) for some
i 6= j. We have

E

[
n∑
i=1

1ci(C0)∈Bq(y,ρn)

]
= N · |Bq(y, ρn) ∩ C0|

N0
≤ q−εn, (12)

where the last inequality follows from (11). Thus, by a Chernoff bound (Theorem 11) along with (12),

P
{
|Bq(y, ρn) ∩ C| > 3

ε

}
≤ P

{
n∑
i=1

1ci(C0)∈Bq(y,ρn) >
3

ε

}
≤
(

ε

3 · qεn

)3/ε−q−εn

≤
(

1

qεn

) 2
ε

= q−2n,
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where the last inequality follows for large enough n. Taking the union bound over the qn choices of y, we
conclude that C is not

(
ρ, 3

ε

)
-list decodable with probability at most q−n, which completes the proof.

The claim on the size of C follows from the following simple argument. Note that |C| < pN0/2 implies
that there exists a subset S ⊂ [N0] of size exactly pN0/2 such that all codewords in C are contained in the
columns of C0 indexed by S. Note that the probability of this happening for a fixed S is given by (p/2)pN0 .
Taking union bound over all choices of S, implies that the probability that |C| < pN0/2 is upper bounded
by (

N0

pN0/2

)
·
(p

2

)pN0

≤
(

2e

p

)pN0/2

·
(p

2

)pN0

=
(ep

2

)pN0/2

,

which is o(1) by our choice of parameters. This completes the proof.

E.3 Upper Bound

Proposition 1 only works for the usual notion of list decodability. It is natural to wonder if a similar result
holds for average-radius list decodability. Next, we show that such a result indeed holds (though with slightly
weaker parameters). Indeed the result follows from the following simple observation:

Proposition 2. Let C be a (ρ, L)-list decodable code. Then for any γ > 0, C is also
(
ρ− γ, Lγ

)
-average-radius

list decodable.

Proof. Define L′ = L/γ and fix an arbitrary Λ ⊂ C such that |Λ| = L′. Define

Λ− = Λ ∩Bq(y, ρn) and Λ+ = Λ \ Λ−.

Note that since C is (ρ, L)-list decodable, we have |Λ−| ≤ L. This implies that∑
c∈Λ−

agr(c, y) ≤ |Λ−| · n ≤ nL ≤ γnL′, (13)

where the last inequality follows from the definition of L′. Further, by the definition of Λ+, we have∑
c∈Λ+

agr(c, y) < (1− ρ)n · |Λ+| ≤ (1− ρ)nL′.

Combining the above with (13) implies that
∑
c∈Λ agr(c, y) < (1−ρ+γ)nL′, which completes the proof.

Since a (ρ, L0)-average-radius list decodable code is also (ρ, L)-list decodable, Propositions 1 and 2 implies
the following:

Corollary 4. Let C0 be an (ρ, L0)-average-radius list decodable q-ary code. If we retain each codeword with
probability 1

qεn·L0
, then the resulting code with high probability is (ρ−ε,O(1/ε2))-average-radius list decodable.

E.4 Lower Bound

It is natural to wonder if one can pick a larger value of p in Proposition 1, and whether the dependence qεn

is necessary. In particular, if L0 is only polynomial in n, could we pick p = q−o(εn)? We will now argue that
this is not possible.

First, we give a short argument, conditional on Conjecture 12. By standard random coding argument,
there exists a q-ary code C1 with rate 1 − Hq(ρ) − 1

n that is (ρ, n)-list decodable. Suppose Proposition 1

holds with p = q−o(εn). If we applied this to the code C1, we would obtain a code that is (ρ,O(1/ε))-list
decodable that has rate at least

1−Hq(ρ)− o(ε),

assuming that ε is constant and n is growing. However, this contradicts Conjecture 12 for L = O(1/ε).
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Next, we argue an unconditional upper bound on p in Proposition 1. In fact, we will prove something
stronger: we will show that one needs p = 2−Ω(εn) even if the the original code C0 has the stronger property
of being (ρ, L0)-average-radius list decodable (and the random subcode can have a weaker list decoding
radius).

Theorem 15 (Theorem 7, repeated). For every ρ > 0, and for every 0 < α < 1−ρ
12 , and for every n

sufficiently large, there exists a code C0 with block length n that is (ρ, n)-average-radius list decodable such
that the following holds. Let C be obtained by picking a random sub-code of C0 of size N = pN0 where
p = q−αn/n. Then with high probability if C is (ρ′, L)-list decodable for any ρ′ ≥ 1/n, then L ≥ Ω(1/α).

In the rest of the subsection, we will prove Theorem 7.

E.4.1 Preliminaries

We will need the following technical result, which follows the standard random coding argument and its
analysis to determine the list decodability of random codes.

Lemma 6. Let q ≥ 21/r be an integer. Then there exists a code C∗ with rate r and block length n such

that for every 2r < γ ≤ 1, where γ is a power of 1/2, C∗ is
(

1− γ,
⌈

1
γ−2r

⌉)
-list decodable. Further, C∗ has

relative distance 1−O(r).

Proof. Fix a γ with conditions as in the lemma statement. Let C∗ be a random code of rate r; by standard
arguments, this distance of this code is 1 − O(r) with high probability [GRS14]. Further, the standard
random coding argument (see, for example, [GRS14]) implies that C∗ is (1− γ, L) list decodable except with
probability at most

qn · qrn(L+1) ·
(
qHq(1−γ)n

qn

)L+1

.

Rearranging, we can bound the expression above by

q−n(L+1)(1−Hq(1−γ)−r− 1
L+1 )

≤ q−n(L+1)(1−(1−γ+r)−r− 1
L+1 ) (14)

= q−n(L+1)(γ−2r− 1
L+1 )

≤ q−Ω(n/L) (15)

In the above, (14) follows from the following sequence of relations (that holds for any 0 ≤ ρ ≤ 1− 1/q):

Hq(ρ) = ρ logq(q − 1) +
H2(ρ)

log q
≤ ρ+ r,

where the inequality uses the fact that q ≥ 21/r. (15) uses the fact that the choice of L =
⌈

1
γ−2r

⌉
implies

that γ − 2r − 1
L+1 > 0.

Finally, since the bound in (15) holds for any fixed γ and that there are O(log(1/r)) possible values of γ,
the probability that the randomly chosen C∗ does not have the required property is o(1), which completes
the proof.

E.4.2 The Construction

We now present the code C0. Choose β > 0 to be the smallest number such that 1− ρ− β is a power of 1/2.
We will construct C0 from C∗ as given by Lemma 6 with rate r = (1− ρ− β)/6. (Note that by our choice of
β, this implies that r ≥ (1 − ρ)/12 and hence, α < r.) The construction goes as follows. For every c ∈ C∗,
let N(c) be any β·n

8 log(1/(1−ρ−β)) − 1 distinct vectors with Hamming distance 1 from c. Then define

C0 = ∪c∈C∗N(c).
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Having constructed C0, we argue next that it has good average-radius list-decodability.

Lemma 7. C0 is (ρ, n)-average-radius list decodable.

Proof. Recall that 1 − ρ − β is a power of 1/2. Fix an arbitrary z and Λ ⊂ C0 with |Λ| = n. We want to
show that ∑

c∈Λ

agr(z, c) < (1− ρ)n2. (16)

Define
B = Bq(z, (ρ+ β)n).

We will break up the left-hand-side of (16) into two parts, and handle Λ \ B and Λ∩B separately. First, we
have ∑

c∈Λ\B

agr(z, c) < (1− ρ− β)n · |Λ| = (1− ρ− β)n2. (17)

Next, we bound
∑
c∈Λ∩B agr(z, c). We break this sum up even further, and decompose B into the annuli

Ai := Bq(z, (1− 2−i−1)n) \Bq(z, (1− 2−i)n)

for 0 ≤ i < log
(

1
1−ρ−β

)
. Fix an 0 ≤ i < log

(
1

1−ρ−β

)
and for notational convenience define γ = 2−i−1.

(This will agree with the use of γ in the statement of Lemma 6). Now consider Λ∩Ai, and consider the set

S := {c ∈ C∗ : N(c) ∩ (Λ ∩ Ai) 6= ∅}

of “centers” in C∗ whose “clusters” N(c) appear in this set. We make the following two observations:

Claim 16. S ⊂ C∗ ∩Bq(z, (1− γ/2)n).

Proof. Since all vectors in N(c) are at Hamming distance 1 from a c ∈ C∗ (and n is assumed to be large
enough), we have that c ∈ S implies that c ∈ Ai−1 ∪Ai ∪Ai+1. It is easy to see that the union of the three
annuli is contained in Bq(z, (1− γ/2)n), which completes the proof.

The following follows from the construction:

Claim 17.

|Λ ∩ Ai| ≤ |S| ·
β · n

8 log(1/(1− ρ− β))
.

Thus, using the list-decodability of C∗ guaranteed by Lemma 6 and Claim 16, we have that |S| ≤
⌈

1
γ−2r

⌉
.

(Note that we can apply Lemma 6 since by our choice of parameters we have γ ≥ 1− ρ− β, which in turn
implies that γ/2 ≥ (1− ρ− β)/2 = 3r > 2r as required.) Further, this with Claim 17 implies that

|Λ ∩ Ai| ≤
⌈

1

γ − 2r

⌉
· β · n

8 log(1/(1− ρ− β))
≤
(

2

γ − 2r

)
· β · n

8 log(1− ρ− β)
. (18)

Now, we may bound ∑
c∈Λ∩Ai

agr(z, c) ≤ |Λ ∩ Ai| · 2γn (19)

≤
(

1

γ − 2r

)
· β · n

4 log(1/(1− ρ− β))
· 2γn (20)

=

(
γ

γ − 2r

)
· β · n2

2 log(1/(1− ρ− β))

≤ βn2

log(1/(1− ρ− β))
. (21)
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In the above, (19) follows from the fact that Ai lies outside of Bq(z, (1− 2γ)n). (20) follows from (18) while
(21) follows from the fact that 2r ≤ (1 − ρ − β)/2 ≤ γ/2. Finally, summing everything up and using (17)
and (21), we bound

∑
c∈Λ∩B

agr(c, z) ≤ (1− ρ− β)n2 +

log(1−ρ−β)∑
i=1

βn2

− log(1− ρ− β)
= (1− ρ)n2.

This establishes (16).

Random subcodes of C0 are typically not list-decodable. Fix α > 0, and let C be a random subcode
of C0 of size pN0, for p = q−αn/n as in the statement of the theorem. We finally argue that C0 has many
sub-codes that have terrible list decodability, thus proving Theorem 7. For any z ∈ C∗ and let Λ(z) be an
arbitrary subset of N(z) such that |Λ(z)| = D/α, where we will fix D later. Further, order the “centers” in
C∗ as z1, z2, . . . . Then the following is the main technical lemma:

Claim 18. For any k ≤ qrn

3 , we have

P
{

Λ(zk+1) ⊂ C|C ∩
(
∪ki=1N(zi)

)}
≥
( p

2e

)D
α ≥ q−2Dn.

Once we establish Claim 18, we are done. Indeed, we have

P
{
∀i ≤ qrn

3
,Λ(zi) 6⊂ C

}
=

qrn/3∏
k=0

P
{

Λ(zk+1) 6⊂ C | C ∩
(
∪ki=1Λ(zi)

)}
≤
(
1− q−2Dn

)qrn/3
.

Thus, the probability that there is some i with Λ(zi) ⊂ C is at least

1− (1− q−2Dn)q
rn/3 ≥ 1− e−q

(r−2D)n/3 ≥ 1− o(1), (22)

where the last inequality follows if we pick D = r/3. In particular, C has list sizes at least |Λ(zi)|, even at
distance ρ = 1/n, which is the radius of Λ(zi).

We conclude by proving Claim 18. For notational convenience, define C(k)
0 = ∪ki=1N(zi); thus, C(k)

0 is

the code C0 after the first k clusters N(zi) have been added. Let Mk = |C ∩ C(k)
0 |. Note that Mk is random

variable. For k > 0, let Nk = |C(k)
0 | = k · |N(z1)| = β·nk

8 log(1/(1−ρ−β)) . (The fact that for k > 0, Nk = k|N(z1)|
follows because the sets N(zi) are all disjoint, which itself follows from the distance of the code and the fact
that all the clusters are of the same size).

The main observation is that conditioned on C∩C(k)
0 , the distribution on C is the same as the distribution

where pN0 −Mk codewords are picked uniformly at random, with replacement, from C0 \ C(k)
0 . Again, this

follows because the clusters N(zi) are disjoint. Call this distribution µ. For all k, we have Mk < Mqrn/3. A
Chernoff bound implies that this latter is small:

P
{
Mqrn/3 ≥ pN0/2

}
≤ exp (−Ω(pN0)) .

We will absorb this failure probability into the calculation in (22), and assume from now on that Mk < pN0/2
for all k. Now, the probability we need to bound to prove Claim 18 is

P
{

Λ(zk+1) ⊂ C|C ∩ C(k)
}

= Pµ {∀v ∈ Λ(zk+1), v ∈ C} ≥ Pµ {∀v ∈ Λ(zk+1), v ∈ C exactly once } .

Let D′ = D/α. Then the right hand side above, the probability that each of the vectors in Λ(zk+1) is picked
exactly once in C under µ, is given by(

pN0 −Mk

D′

)(
1− D′

N0 −Nk

)pN0−Mk−D′ (D′)!

(N0 −Nk)D′
≥
(
pN0/2

D′

)(
1− 2D′

N0

)pN0−D′ (D′)!

(N0/2)D′
,
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where the inequality follows from the fact that pN0 ≥ pN0 −Mk > pN0/2 and that for all k,

N0 −Nk ≥ N0 −Nqrn/3 ≥ 2N0/3 > N0/2,

where the second inequality follows from the fact that all the clusters N(zi) have the same size. Now it

suffices to bound the last expression from below by
(
p
2e

)D′
. And indeed, we have(

pN0/2

D′

)(
1− D′

N0/2

)pN0−D′ (D′)!

(N0/2)D′
≥
(
pN0

2D′

)D′
·
(

1− 2D′

N0

)pN0

·
(

2D′

eN0

)D′

=
(p
e

)D′
·

((
1− 2D′

N0

)N0/(2D
′)
)2pD′

≥
( p

42pe

)D′
≥
( p

2e

)D′
.

In the above the second inequality follows for N0 ≥ 4D′ and the final inequality follows for p ≤ 1/4 both of
which are valid assumptions for our choices for p and N0. Finally, we have

( p
2e

)D
α ≥

(
1

2enqαn

)D
α

≥
(

1

q2αn

)D
α

= q−2Dn,

for large enough n, which completes the claim.
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