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Abstract—We show that, for many noncommutative algebras
A, the hardness of computing the determinant of matrices over A
follows almost immediately from Barrington’s Theorem. Barring-
ton showed how to express a NC1 circuit as a product program
over any non-solvable group. We construct a simple matrix
directly from Barrington’s product program whose determinant
counts the number of solutions to the product program. This gives
a simple proof that computing the determinant over algebras
containing a non-solvable group is #P-hard or ModpP-hard,
depending on the characteristic of the algebra.

To show that computing the determinant is hard over non-
commutative matrix algebras whose group of units is solvable,
we construct new product programs (in the spirit of Barrington)
that can evaluate 3SAT formulas even though the algebra’s group
of units is solvable.

The hardness of noncommutative determinant is already
known; it was recently proven by retooling Valiant’s (rather
complex) reduction of #3SAT to computing the permanent. Our
emphasis here is on obtaining a conceptually simpler proof.

I. INTRODUCTION

The determinant and permanent have tantalizingly similar
formulas:

det(M) =
∑
σ∈Sn

sgn(σ)
∏
i∈[n]

mi,σ(i), per(M) =
∑
σ∈Sn

∏
i∈[n]

mi,σ(i)

But the permanent seems much harder to compute than the
determinant. We have efficient algorithms to compute the de-
terminant over commutative algebras (such as finite fields), but
computing the permanent even of 0/1 matrices is #P-complete
[Val79]. Still, the tantalizing similarity of their formulas begs
the question: to what extent can computing the permanent be
reduced to a determinant computation?

One way to reduce permanent to determinant is to try to
change the signs of M ’s entries so as to cancel the signs of
the permutations. This approach works efficiently sometimes
– most notably, when M is the adjacency matrix of a planar
graph G [TF61], [Kas61], [Kas67], in which case per(M)
counts the number of perfect matchings in G, a counting
problem #P-complete for general graphs.

A different way to reduce permanent to determinant is
to consider the determinant of matrices whose entries come
from a noncommutative (but associative) algebra, such as
2 × 2 matrices over a field, or the quaternion algebra over
a field. In the noncommutative setting, the determinant is

defined precisely as above, with the proviso that we must
compute the products

∏
i∈[n]mi,σ(i) in order from i = 1 to n,

since order of multiplication matters. The standard methods of
computing the determinant break down when the underlying
algebra is noncommutative. Elementary row operations no
longer preserve M ’s determinant up to sign. (Interestingly,
permuting M ’s columns does preserve the determinant up to
sign, but elementary column operations in general do not.)
Commutativity seems so essential to efficient computation of
the determinant that it raises the question: can we show that
computing the determinant over noncommutative commutative
algebras is as hard as computing the permanent?

A. Recent Work on Noncommutative Determinant

Nisan [Nis91] gave the first result on noncommutative
determinant, showing (among other things) that any arithmetic
branching program (ABP) that computes the determinant of a
matrix over the noncommutative free algebra F[x1,1, . . . , xn,n]
must have exponential size. Only recently have there been
results showing the hardness of noncommutative determinant
against models of computation stronger than ABPs.

In 2010, Arvind and Srinivasan [AS10] reduced computing
the permanent to computing the determinant over certain
noncommutative algebras – specifically, where the mi,j’s are
themselves linear-sized matrices. Chien, Harsha, Sinclair and
Srinivasan [CHSS11] extended this result all the way down to
2 × 2 matrices. Specifically, they showed that computing the
determinant when the entries themselves come from M(2,F)
– the matrix algebra of 2×2 matrices over field F – is as hard
as computing the permanent over F. This “almost settled” the
hardness of noncommutative determinant, but left some cases
open, such as the quaternion algebra. Bläser [Blä13] finally
completed the picture, proving that computing the determinant
is hard over (essentially) all noncommutative algebras.

The proof strategy followed by Chien et al. and Bläser
is rather complex; it “works by retooling Valiant’s original
reduction from #3SAT to permanent” [CHSS11]. Valiant’s
reduction has complicated gadgets for variables, clauses,
and XOR. Chien et al. describe their approach as follows:
“when working with M(2,F), what we show is that there
is just enough noncommutative behavior in M(2,F) to make
Valiant’s reduction (or a slight modification of it) go through”
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[CHSS11]. Their use of noncommutativity is subtle, buried in
the modification of Valiant’s reduction. While Chien et al. and
Bläser settle the complexity of noncommutative determinant,
we think that it is useful to have a conceptually simpler proof
that better highlights how noncommutativity makes computing
the determinant hard.

B. Our Results

We give a simple proof that noncommutative determinant
is hard. that covers most noncommutative algebras of in-
terest. For these algebras, we show that the hardness of
noncommutative determinant follows almost immediately from
Barrington’s Theorem [Bar86].

Barrington [Bar86] is often cited for the proposition that
width-5 branching programs (BPs) can efficiently compute
NC1 circuits. But he actually proved a much more general
statement about the computational power of “non-solvable”
non-abelian groups (we will define “non-solvable” later), of
which the alternating group A5 used in his width-5 BP
is merely the smallest example. We build on Barrington’s
Theorem to show that noncommutative determinant is hard
over algebras whose group of units is non-solvable. In our
proof, Barrington does all of the heavy-lifting regarding non-
commutativity, and we use his results as “black box”.

Let us recall briefly what Barrington showed. Let G be a
group. A product program P over G of length n that takes `-bit
inputs consists of two distinct “special” elements a0, a1 ∈ G
and a sequence of instructions 〈inp(i), ai,0, ai,1〉i∈[n], where
inp : [n]→ [`] indicates which input bit is read during a step,
and each ai,b ∈ G. For `-bit input x, the value of P (x) is
simply

∏
i∈[n] ai,xinp(i)

. We say P “computes” a predicate F
if P (x) = aF (x) for all x. Barrington showed that, if G is
a fixed finite non-solvable group, then any circuit of depth
d can be expressed as a product program over G of length
n = cdG, where cG is a constant that depends on G. If F can
be computed by a circuit of logarithmic depth, then there is
a product program that computes it efficiently. Barrington’s
result extends naturally to any algebra (such as a matrix ring)
whose group of units is finite and non-solvable.

For any product program P over an algebra, we describe
a simple product program matrix MP whose determinant is∑
x∈{0,1}` P (x), the sum of the evaluations of the product pro-

gram. This determinant equals #{F (x) = 0}·a0+#{F (x) =
1} · a1, and thus counts the number of satisfying assignments
for F (up to the characteristic of the algebra). The product
program matrix is about as simple as one could imagine. We
put (up to sign) the the elements ai,0 and ai,1 of the product
program into the i-th row. We need to be a little clever how we
allocate these terms to the columns, to ensure that the products
that are counted in the determinant are precisely those that
have the form

∏
i∈[n] ai,xinp(i)

for some x. This simple product
program matrix is our main contribution.

We also consider the case where A’s group of units is
solvable. As a second contribution, we construct new product
programs that are capable of evaluating d-CNFs over non-
commutative algebras whose group of units is solvable (and

conclude that computing the determinant of product program
matrices over noncommutative algebras is hard).

Overall, our results cover all noncommutative algebras
covered by Chien et al. [CHSS11] – in particular, algebras
that contain a matrix subalgebra – but also algebras they did
not cover, like the quaternion algebra. Our results have a
gap: they do not necessarily cover all infinite noncommutative
division algebras. (Noncommutative division algebras always
have a non-solvable group of units, but Barrington’s Theorem
requires the group to be finite.) So, unlike [Blä13], our proof
strategy does not provide the “complete picture”.

But, again, we stress that this result is not new. Our contri-
bution is a comparatively simple proof that may help us better
understand how noncommutativity amplifies computational
hardness.

II. PRELIMINARIES

A. Algebras

Here, we present some essential facts about algebras, fol-
lowing the presentation in [Blä13].

When we refer to an algebra A, we mean an associative
algebra over a field k, also known as a k-algebra. An algebra
is a vector space over k, equipped with a bilinear mapping
· : A×A→ A, called multiplication. Multiplication is associa-
tive and distributes over addition. The field k is in the center
of A; it commutes with all elements of A, though A itself
maybe noncommutative. We assume A is finite dimensional
as a vector space, and contains an identity element ‘1’.

Some examples of noncommutative algebras over a field
include 2×2 matrices and the quaternion algebra H over the re-
als. H contains elements of the form q = a+bi+cj+dk where
a, b, c, d ∈ R, and multiplication uses field multiplication and
the relations ij = k = −ji, jk = i = −kj, ki = j = −ik.

A left ideal of A is a vector space that is closed under left
multiplication with elements of A. (Right and two-sided ideals
are defined analogously.) An ideal I is called nilpotent if some
finite power of I is 0. The radical of A, denoted Rad(A), is
the sum of all nilpotent left ideals; it is a maximal nilpotent
two-sided ideal that also contains all of the nilpotent right
ideals. A is called semisimple if Rad(A) = {0}. The algebra
A/Rad(A) is always semisimple.
A is called simple if 0 and A are its only two-sided ideals.

An algebra D is called a division algebra if all of its nonzero
elements are invertible. The quaternions H are an example of
a division algebra. An algebra is called local if A/Rad(A) is
a division algebra.

The Wedderburn-Artin Theorem gives a precise characteri-
zation of semisimple algebras.

Theorem 1 (Wedderburn-Artin). Any finite dimensional
semisimple algebra A is isomorphic to a finite direct sum ⊕iAi
of simple algebras. Any finite dimensional simple algebra Ai
is isomorphic to Dni×ni

i , ni ≥ 1, where Di is a division
algebra. The pairs (Di, ni) are uniquely determined by A up
to isomorphism.

We may refer to Dn×n as a matrix algebra when n ≥ 2.



B. Groups

For an algebra A, we denote its group of units (invertible
elements) by A×. Here, we present some essential facts about
groups.

Let G be a group. G is abelian (or commutative) if ab = ba
for all a, b ∈ G; otherwise, G is nonabelian, or noncommuta-
tive. The commutator subgroup of G, denoted by G′ or [G,G],
is the group generated by the set {aba−1b−1 : a, b ∈ G}
of commutators in G. When G is abelian, G′ is trivial. The
commutator of two groups G1, G2, denoted by [G1, G2], is
the group generated by {aba−1b−1 : a ∈ G1, b ∈ G2}.

The lower central series of G is given by
G, [G,G], [[G,G], G], [[[G,G], G], G], . . .. The group G
is called nilpotent if this series reaches the trivial group after
a finite number of steps. Every abelian group is nilpotent, but
the converse is not true.

The derived series G0 = G,G1, G2, . . . of a group is given
by Gi+1 = [Gi, Gi]. G is called solvable if this series reaches
the trivial group after a finite number of steps. Otherwise, if
the series stabilizes at a nontrivial group, G is called non-
solvable. Every nilpotent group is solvable, but the converse
is not true. An example of a group that is solvable but not
nilpotent is S3, the symmetric group on three elements. Its
lower central series stabilizes at [S3, S3] = A3, the alternating
group on three elements, which is abelian (in fact, it is the
cyclic group of order 3).
G is called a perfect group if G = G′. Every non-solvable

group has a perfect subgroup – namely, the subgroup on which
the derived series stabilizes. In some sense, perfect groups –
and especially simple groups, a special case of perfect groups
– are the “most non-abelian” groups.

Many natural groups are non-solvable, or even perfect. For
example, the special linear group SL(n, k) of n× n matrices
over k with determinant 1 is almost always a perfect group
when n ≥ 2; the exceptions are when n = 2 and k equals
F2 or F3. When SL(n, k) is perfect, the general linear group
GL(n, k) is of course non-solvable. The smallest non-solvable
group is A5, the alternating group on five elements.

Another class of non-solvable groups comes from division
algebras.

Theorem 2 ([Hua49], [Hua50]). Let D be a noncommutative
division algebra. Then the group of units of D is non-solvable.

For example, the group of units of the quaternion algebra H
is non-solvable.

C. Branching Programs and Barrington’s Theorem

Branching programs are a space-bounded model of compu-
tation, where at each step the program looks at just one bit of
the input. More formally, a branching program is defined as
follows.

Definition 1 (Branching Program). A branching program (BP)
P of width w ≥ 2 and length n that takes `-bit inputs is
a sequence of instructions 〈inp(i), fi,0, fi,1〉i∈[n] where inp :
[n] → [`] indicates which bit of the input is read during a

step, each fi,b is a transition function from {0, . . . , w − 1}
to {0, . . . , w − 1}, and each fn,b maps into {0, 1}. For x ∈
{0, 1}`, the value of P (x) is fn,xinp(n)

◦ · · · ◦ f1,xinp(1)
(0) ∈

{0, 1}. We say P computes a function F : {0, 1}` → {0, 1}
if P (x) = F (x) for all x.

A product program, defined below, is similar to a branching
program, but without the width constraint and where the
transition function is defined by multiplication over some
algebra or group.

Definition 2 (Product Program). Let A be some algebra or
group with associative multiplication. A product program (PP)
P over A of length n that takes `-bit inputs consists of two
distinct elements a0, a1 ∈ A and a sequence of instructions
〈inp(i), ai,0, ai,1〉i∈[n], where inp : [n] → [`] indicates which
bit of the input is read during a step, and each ai,b is an element
of A. For x ∈ {0, 1}`, the value of P (x) is

∏
i∈[n] ai,xinp(i)

. We
say P computes a function F : {0, 1}` → {0, 1} if P (x) =
aF (x) for all x.

One connection between BPs and PPs is the following.
Let Sw be the permutation group over w elements. If there
is a PP over Sw of length n that computes function F :
{0, 1}` → {0, 1}, then there is a BP of width w and length
n that computes F . (The transition function fi,b is just the
permutation described by ai,b.)

Barrington proved the following.

Theorem 3 (Barrington [Bar86]). Let G be a fixed finite non-
solvable group and let F be a function that can be computed
by a boolean circuit of depth d. Then, there is a PP over G
of length at most cdG that computes F , where cG is a constant
that depends on G. The PP is computable in time linear in its
length.

Corollary 1. For any fixed finite non-solvable group G,
non-uniform NC1 is inside the class of languages efficiently
computable by PPs over G. In particular, since S5 is non-
solvable, non-uniform NC1 is inside the class of languages
efficiently computable by width-5 BPs.

The constant cG in Theorem 3 can be taken to be 4 · wG,
where wG is the the commutator width of a perfect subgroup
of G. A perfect group is generated by its commutators, and the
commutator width is the maximum number of (commutator)
generators needed to express an element of the group. For
simple groups, wG = 1: every element can be expressed as a
commutator [LOST10].

When G is an infinite group – e.g., the group of units
of an algebra over an infinite field (such as C) – there
are complications. Most significantly, it is unclear how to
efficiently construct a PP in general (in time polynomial in
tdG for some constant tG). So, our results for algebras with
non-solvable unit groups G are limited to the case that G has
efficiently implementable PPs, by which we mean G’s to which
Barrington’s Theorem can be straightforwardly extended.

An example of an infinite group with efficiently imple-
mentable PPs is the group SO(3) of rotations in R3. This



group contains the finite polyhedral groups as subgroups –
in particular, the icosahedral group of rotational symmetries
of the regular dodecahedron and regular icosahedron, which
is isomorphic to A5. Once we find a A5 PP for a function, we
can easily generate a corresponding PP over SO(3). Precision
issues cause some headaches, but the PP can still be evaluated
to high precision in time polynomial in its length.

Another example of an infinite group with efficiently imple-
mentable PPs is the quaternion algebra H over the reals. We
recall some more facts about quaternions. The conjugate of a
quaternion q = a+ bi + cj + dk is q̄ = a− bi− cj− dk. The
norm of q is a2+b2+c2+d2 = q · q̄. Norms are multiplicative,
and the quaterions of norm 1 form a subgroup of invertible
quaternions. For quaternions of norm 1, q−1 = q̄. Pure
quaternions have a = 0 and can be interpreted as points in R3.
The map Rotq : R3 → R3 given by p→ q ·p·q̄ maps each pure
quaternion p to another pure quaternion, and in fact induces
a rotation of three-dimensional space. This map gives an onto
homomorphism φ : H→ SO(3), where two quaternions induce
the same rotation if and only if they are R×-multiples of
each other. Given a PP P = (a0, a1, 〈inp(i), ai,0, ai,1〉i∈[n])
over SO(3), we can easily generate one for H by selecting
some p ∈ R3 such that a0 and a1 send p to distinct points,
finding norm-1 quaternions q0, q1, {qi,b} such that φ(q0) = a0,
φ(q1) = a1, φ(qi,b) = ai,b, and then setting the PP on input
x ∈ {0, 1}` to evaluate (

∏
i∈[n] qi,xinp(i)

)·p·(
∏
i∈[n] qi,xinp(i)

)−1.

D. Counting Problems

#3SAT is the canonical #P-complete problem: given a
formula in 3CNF, count the number of satisfying assignments.
Counting the number of 3SAT solutions modulo p is the
canonical ModpP-complete problem.

Let us relate these counting classes to product programs
(from Section II-C). Suppose that we have a product program
P = (a0, a1, 〈inp(i), ai,0, ai,1〉i∈[n]) over algebra A for some
function F : {0, 1}` → {0, 1}. Here is a useful fact.

Fact 1. From the value
∑
x∈{0,1}` P (x), we can compute the

number of satisfying assignments for F , up to the character-
istic of the algebra A.

The reason is that the sum equals N · a1 + (2` − N) · a0 =
N · (a1 − a0) + 2` · a0, where N is the number of satisfying
assignments for F . Since a0 and a1 are distinct, at least one
coefficient of a1 − a0 (viewed as a vector over the field
k) is nonzero, hence invertible, allowing us to recover N
up to the characteristic of the field. Therefore, for product
programs capable of evaluating a 3SAT formula, the value∑
x∈{0,1}` P (x) must be hard to compute.

Theorem 4. Suppose that A is algebra for which there exist
polynomial-length efficiently implementable product programs
for computing 3SAT formulas. Then the problem of computing∑

x∈{0,1}`
P (x) =

∑
x∈{0,1}`

∏
i∈[n]

ai,xinp(i)
(1)

for polynomial-length product programs over A is #P-hard or
ModpP-hard, depending on the characteristic of the algebra A.

From Barrington’s Theorem, we can immediately conclude
the following.

Corollary 2. If A is an algebra whose group of units A× is
non-solvable (and has efficiently implementable PPs), then the
problem of computing the value in Equation 1 is #P-hard or
ModpP-hard, depending on the characteristic of the algebra A.

In Section III, we present a simple matrix whose determinant
is precisely

∑
x∈{0,1}` P (x).

E. Noncommutative Determinant

Definition 3 (Determinant). Let M = (mi,j) be a n×n matrix
over a (possibly noncommutative) algebra A. The determinant
of M is defined by:

detM =
∑
σ∈Sn

sgn(σ) ·
∏
i∈[n]

mi,σ(i).

The above definition, where multiplication is ordered by
rows, is sometimes called the Cayley determinant. If A is
noncommutative, order of multiplication matters, and the
quantity may be different if multiplication were ordered by
columns.

III. A SIMPLE MATRIX WHOSE DETERMINANT COUNTS
SOLUTIONS

A. Intuition

As a warm-up, consider the following matrix, which has
non-zero entries only on two diagonals (with wrap-around).

? ? 0 0 0
0 ? ? 0 0
0 0 ? ? 0
0 0 0 ? ?
? 0 0 0 ?

We could not find a name for such matrices (a “bidiagonal”
matrix has no wraparound), so let us invent a name:

Definition 4 (Barber pole matrix). A matrix M ∈ An×n

over algebra A is a barber pole matrix if n ≥ 2 and M [i, j]
is nonzero only if j = i or j = i + 1 mod n. M is a
block barber pole matrix if it consists of barber pole matrices
M (1), . . . ,M (`) of dimensions n1 + · · · + n` = n positioned
in order (not interleaved) across the diagonal.

(In the real world, the stripes on a barber pole typically
go instead from top-right to bottom-left, but barbers are
accustomed to looking at the world through a mirror...)

Over commutative rings, the determinant of a barber pole
matrix has a very simple form:

det(M) =
∏
i

mi,i + (−1)n−1
∏
i

mi,i+1 (2)

where i+ 1 is taken modulo n. The entries from the different
“stripes” of the barber pole do not mix; rather, each product in
the determinant summation is “consistent”, taking entries from
only one stripe. Equation 2 holds for noncommutative algebras
as well, for noncommutative determinant as in Definition 3.



The (noncommutative) determinant of a block barber pole
matrix is also fairly simple. For simplicity, suppose all block
sizes nk are odd, so that we don’t need to deal with (−1)nk−1.
Let inp(i) ∈ [`] denote the index of the block that the i-th row
belongs to, and conversely let Ck ⊂ [n] denote the subset of
rows belonging to the k-th block. Then,

det(M) =
∏
k∈[`]

(∏
i∈Ck

mi,i +
∏
i∈Ck

mi,i+1

)
(3)

=
∑

x∈{0,1}`

∏
i∈[n]

mi,i+xinp(i)
(4)

where i+ 1 wraps in the inp(i)-th block. Note that the deter-
minant of a block barber pole matrix is efficiently computable
even in the noncommutative setting.

Consider what happens when we replace mi,i+xinp(i)
no-

tationally with ai,xinp(i)
. Then, the expression in Equation 4

looks exactly like the expression in Equation 1 that we want
to compute! The only difference is that, in the products in
Equation 4, the bits of x are used in order because the rows
of the blocks are not interleaved, while in general a product
program will not read the bits of x in order.

But now, suppose that we just permute the rows to conform
to the order of our product program, and redefine inp(i) to be
the function used by our product program. Then, we obtain a
matrix whose determinant (up to sign) corresponds precisely
to the expression in Equation 1, which allows us to derive the
number of solutions to a product program over A. To correct
the sign, we can apply the same permutation to the columns.

Interestingly, the transition from an easy determinant (of
the block barber pole matrix) to a hard one (for the product
program matrix) is easy to identity. It occurs precisely when
we permute the rows of the matrix, an operation that fails
to preserve determinant (up to sign) in the noncommutative
setting.

B. Formal Details

Let P = (a0, a1, 〈inp(i), ai,0, ai,1〉) be a product program
over A of length n that takes `-bit inputs. For k ∈ [`], let Ck =
{i ∈ [n] : inp(i) = k}, with elements denoted ik,1, . . . , ik,|Ck|.
Assume |Ck| ≥ 2 for all k. (If necessary, we can easily modify
P to meet this condition by inserting “dummy” elements.) Let
π0 be the identity permutation: π0(i) = i for all i ∈ [n]. Let
π1 be the “shift right” permutation, given by π1(ik,t) = ik,t+1

where t+ 1 is computed modulo |Ck|, that “cycles” elements
within each Ck. Let MP be the following product program
matrix for P :

MP [i, j] =


(−1)|Ck|−1 · ai,1 if i = ik,1, j = ik,2 for some k
ai,b otherwise if j = πb(i)

0 otherwise

Clearly, the product program matrix is well-defined and effi-
ciently computable from the product program. Now, we prove
that MP has a determinant equal to the expression in Equation
1.

Theorem 5. The (noncommutative) determinant of the prod-
uct program matrix MP for P as described above is∑
x∈{0,1}`

∏
i∈[n] ai,xinp(i)

.

Proof: The (noncommutative) determinant of MP is∑
σ∈Sn

sgn(σ) ·
∏
i∈[n]MP [i, σ(i)]. We call σ a “consistent”

permutation if there exists x ∈ {0, 1}` such that σ(i) =
πxinp(i)

(i) for all i. We denote by σx the consistent permutation
associated to x.

Suppose
∏
i∈[n]MP [i, σ(i)] is nonzero, but σ is not consis-

tent. Since the product is nonzero, σ(i) ∈ {π0(i), π1(i)} for
all i. But since it is inconsistent, there exists k ∈ [`] such that
σ is inconsistent over Ck – i.e., σ equals neither π0 nor π1
when restricted to Ck. For this k, there must exist some t such
that σ(ik,t) = π1(ik,t) = ik,t+1 and σ(ik,t+1) = π0(ik,t+1) =
ik,t+1, contradicting the fact that σ is a permutation. We can
therefore restrict the summation to consistent permutations:
det(MP ) =

∑
x∈{0,1}` sgn(σx) ·

∏
i∈[n]MP [i, σx(i)].

The sign of σ0` is 1, and the sign of σx is
(−1)

∑
xk(|Ck|−1), since it takes |Ck| − 1 transpositions to

“shift right” |Ck| elements. On the other hand, we have∏
i∈[n]MP [i, σx(i)] = (−1)

∑
xk(|Ck|−1) ·

∏
i∈[n] ai,xinp(i). So,

sgn(σx) ·
∏
i∈[n]MP [i, σx(i)] equals

∏
i∈[n] ai,xinp(i), complet-

ing the proof.

Corollary 3. If A is an algebra whose group of units A× is
non-solvable (and has efficiently implementable PPs), then the
problem of computing the determinant of the product program
matrix MP over A is is #P-hard or ModpP-hard, depending
on the characteristic of the algebra A.

Proof: By Corollary 2 and Theorem 5.

IV. NONCOMMUTATIVE ALGEBRAS WITH SOLVABLE
GROUP OF UNITS

Here, we use product programs matrices to show that
computing the determinant is hard over all noncommutative
algebras A that have a solvable group of units. First, we
show that all such algebras contain a matrix algebra. Then,
we build new product programs that can evaluate d-CNF
formulas over any matrix algebra A. All of the PPs here are
efficiently implementable: we show precisely how to construct
them using 2× 2 matrices with entries in {−1, 0, 1}. Our PPs
make essential use of non-invertible elements in A. Finally, we
invoke Theorems 4 and 5 to prove that computing the product
program matrix MP over A is hard.

To begin, note that given an algebra A, we can restrict
our attention to the algebra A/Rad(A), the semisimple part
of A. The Wedderburn-Artin Theorem (Theorem 1) says that
A/Rad(A) decomposes as ⊕Ai where Ai is isomorphic to
Dni×ni
i and the Di’s are division algebras. If A/Rad(A) is

noncommutative and has a solvable group of units, then for
some i it must hold that Dni×ni

i is noncommutative and has
a solvable group of units. The following lemma says this can
only happen if ni ≥ 2, when when Dni×ni

i is a matrix algebra.

Lemma 1. Let D be a division algebra. Suppose Dn×n is
noncommutative and its unit group is solvable. Then n ≥ 2.



Proof: Assume D is a noncommutative division algebra.
Then, D has a non-solvable group of units [Hua49], [Hua50].
This implies that the unit group of Dn×n is also non-solvable,
since it contains D as a subalgebra.

So, D must be commutative. But since Dn×n is noncom-
mutative, we must have n ≥ 2.

Now we state our main results for this Section.

Theorem 6. For any division algebra D and any constant d,
one can construct a product program of length k(2d+2d−1−2)
for d-CNF with k clauses over the algebra D2×2.

From Theorem 1, Theorem 4, Theorem 5, Lemma 1 and
Theorem 6, we obtain the following corollary.

Corollary 4. Let A be a noncommutative algebra with a
solvable group of units. Then, for any constant d, one can
construct a product program over A of length poly(k) for a
d-CNF with k clauses. If p is the characteristic of A, then
computing the determinant over A is #P-hard if p = 0 and
ModpP-hard otherwise.

Before we prove Theorem 6, we need a couple of lemmas.

Lemma 2. For any division algebra D, the group of units
of D2×2 contains a subgroup isomorphic to S3. In particular,
D2×2 contains the matrices

r =
0 −1
1 −1

, s =
0 1
1 0

,

that generate a group isomorphic to S3.

Proof: (Lemma 2) Clearly D2×2 contains the matrices r
and s (though −1 will equal 1 if the algebra has characteristic
2). The element r has order 3 and s has order 2, and they
do not commute, regardless of what D is. The group they
generate has order at least 6 by Lagrange’s Theorem. Using
the relation rs = sr2 and r2s = sr (together with the relations
r3 = 1 = s2), we can re-express any word over r and s as
risj with i ∈ {0, 1, 2}, j ∈ {0, 1}, and so the group has order
exactly 6. S3 is the only non-abelian group of order 6.

Lemma 3. One can construct a product program of length
2d + 2d−1 − 2 over the group S3 that computes a disjunction
of d literals. Furthermore, in the product program, we can have
a0 = r (the element of order 3 from Lemma 2) and a1 = 1.

Remark 1. Lemma 3 can be generalized beyond S3 to obtain
product programs for a disjunction of d literals over any group
that is not nilpotent. Since we do not need this fact here, we
omit the proof.

Proof: (Lemma 3) For d = 1, the lemma holds for a
product program of length 1 with a1,0 = a0 and a1,1 = a1.
Assume the lemma is true for d − 1, and let Pd−1 be the
associated product program. Let b0 = s (the element of order
2 from Lemma 2) and b1 = 1. For x ∈ {0, 1}d, let x′ denote
the first d−1 bits of x. Our product program Pd for d literals
computes

Pd(x) = bxd
· Pd−1(x′) · bxd

· Pd−1(x′)−1.

(We avoid writing out Pd formally.) If any bit in x is a 1, then
either Pd−1(x′) = 1 or bxd

= 1, in which case Pd(x) = 1.
If all bits in x are 0, then Pd−1(x′) = r and bxd

= s, and
Pd(x) = srsr−1 = r. The length of Pd is twice the length of
Pd−1 plus 2, putting the length at 2d + 2d−1 − 2.

At this point, we have constructed a product program over
any matrix algebra for a disjunction of d literals, where
the product program outputs the identity matrix I if the
disjunction is satisfied, and the matrix r otherwise. Now, we
need to compute a conjunction over the disjunctions. Roughly
speaking, we accomplish this by picking a singular 2 × 2
matrix t such that t · I has the vector e1 = (1, 0)T as
an eigenvector with eigenvalue 1, while t · r has e1 as an
eigenvector with eigenvalue 0. Our product program for d-
CNF computes a product that still has e1 as an eigenvector,
where the eigenvalues “multiply through” – in particular, the
eigenvalue is 0 precisely when a (t · r) term is included in the
product, which happens precisely when one of the disjunctions
is not satisfied.

Proof: (Theorem 6) By Lemma 2, for any division algebra
D, the algebra D2×2 contains a subgroup isomorphic to S3,
generated by matrices r and s as defined above. By Lemma
3, there is a product program Pclause over S3 that correctly
evaluates a disjunction of d literals, in the sense that for all
x ∈ {0, 1}d, Pclause(x) = aOR(x), where a0 = r and a1 = I .
We now construct a product program P over D2×2 for d-CNF
with k clauses, using the product program Pclause over D2×2

for a disjunction of d literals. For input x to P , let xc be the d
literals of x that are used in the c-th clause. Let t ∈ D2×2 be
the matrix with 1 in the upper-left corner and zeros elsewhere.
Our product program P computes:

P (x) =

∏
c∈[k]

t · Pclause(xc)

 · t
If all disjunctions are satisfied, then P (x) = (t · I)k · t = t.

Suppose one of the disjunctions is unsatisfied. Then the
expression above contains a term t · a0, which is a matrix
with zeros everywhere but the upper-right corner. Regardless
of whether or not the other disjunctions are satisfied, the
expression above before the final t is always a matrix with
zeros everywhere but the upper-right corner. Multiplication
with the final t results in an all-zero matrix.

To recap, P (x) = 0 when x does not satisfy the d-CNF, and
P (x) = t otherwise. The length of P is k times the length of
Pclause. (The t’s are folded into neighboring terms.)
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