
Locally Correctable and Testable Codes Approaching the
Singleton Bound

Or Meir∗

August 10, 2014

Abstract

Locally-correctable codes (LCCs) and locally-testable codes (LTCs) are codes that admit
local algorithms for decoding and testing respectively. The local algorithms are randomized
algorithms that make only a small number of queries to their input. LCCs and LTCs are both
interesting in their own right, and have important applications in complexity theory.

It is a well-known question what are the best rate and distance that such LCCs and LTCs
can achieve. When discussing LCCs and LTCs that use a constant number of queries (which
is the most common setting), it is known that LCCs can not achieve a constant rate, and it
is believed that the same is true for LTCs. However, it has recently been discovered that the
situation is radically different when using nβ queries (β > 0): it turns out that there are both
LCCs and LTCs that achieve any constant rate, while using nβ queries.

In this work, we observe that in fact, LCCs and LTCs with nβ queries can, for any rate,
approach the best possible relative distance. More specifically, recall that, by the Singleton
bound, an error-correcting code of rate r can have relative distance of at most 1 − r. We
construct LCCs and LTCs that, for every r > 0 and ε > 0, have rate r and relative distance
1−r−ε, where the alphabet size is a constant that depends on ε. By applying concatenation to
those codes, we obtain binary LCCs and LTCs with nβ queries that achieve the Zyablov bound,
which constitutes the best known parameters for (explicit) binary codes.

1 Introduction

Locally-correctable codes [BFLS91, STV01, KT00] and locally-testable codes [FS95, RS96, GS06]
are codes that admit local algorithms for decoding and testing respectively. More specifically:

• We say that a code C is a locally-correctable code (LCC) if there is an algorithm that, when
given a string z that is close to a codeword c ∈ C, and a coordinate i, computes ci while
making only a small number of queries to z.

• We say that a code C is a locally-testable code (LTC) if there is an algorithm that, when given
a string z, decides whether w is a codeword of C, or far from C, while making only a small
number of queries to z.

The number of queries that are used by the latter algorithms is called the query complexity.
Besides being interesting in their own right, LCCs and LTCs have also played important roles

in different areas of complexity theory, such as hardness amplification and derandomization (e.g.
∗Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100,

Israel. Email: or.meir@weizmann.ac.il

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 107 (2014)

[STV01]), and probabilistically checkable proofs [AS98, ALM+98]. It is therefore a natural and
well-known question to determine what are the best parameters that LCCs and LTCs can achieve.

LCCs and LTCs were originally studied in the setting where the query complexity was either
constant or poly-logarithmic. In those settings, it is believed that LCCs and LTCs must be very
redundant, since every bit of the codeword must contain, in some sense, information about every
other bit of the codeword. Hence, we do not expect such codes to achieve high rate. In particular,
in the setting of constant query complexity, it is known that linear LCCs can not have constant
rate [KT00]1, and that LTCs with certain restrictions can not have constant rate [DK11, BSV12].
On the other hand, the best known LCCs have exponential length2, and the best known LTCs have
quasi-linear length [BS08, Din07, Vid13].

It turns out the picture is completely different when considering query complexity of nβ (for
any constant β > 0). In this setting, it has long been known that LTCs can achieve a constant
rate [PS94, BS06]. More recently, it has been discovered that both LCCs [KSY11, GKS13, HOW13]
and LTCs [Vid11] can achieve rates that are arbitrarily close to 1, where the relative distance is
some small constant that depends on the rate sub-optimally. This discovery was quite surprising,
considering the state of affairs in the setting of constant query complexity, and the general belief
that local correctability and testability require much redundancy.

In this work, we show that LCCs and LTCs with nβ queries can, for any rate, approach the best
possible relative distance. This means that, surprisingly, local correctability and local testability
with nβ queries do not require “paying” anything in terms of rate and relative distance. In other
words, LCCs and LTCs with nβ queries match the best error-correcting codes.

More specifically, recall that, by the Singleton bound [Kom53, Sin64], an error-correcting code
of rate r can have relative distance of at most3 1 − r. Our two main results are the following (we
refer the reader to Section 2 for the required preliminaries).

Theorem 1.1 (LCCs approaching the Singleton bound). For every 0 < r < 1 and β, ε > 0 there
exists a finite field H = F2p such that the following holds: There exists an infinite family of (F2-
linear) codes {Ck}k such that the code Ck : Fk2 → Hn is an LCC with message length k, rate at least
r, relative distance at least 1− r − ε, and query complexity O(kβ).

Theorem 1.2 (Strong LTCs approaching the Singleton bound). For every 0 < r < 1 and β, ε > 0
there exists a finite field H = F2p such that the following holds: There exists an infinite family of
(F2-linear) codes {Ck}k such that the code Ck : Fk2 → Hn is a strong LTC with message length k,
rate at least r, relative distance at least 1− r − ε, and query complexity O(kβ).

By concatenating the codes of Theorems 1.1 and 1.2 with Gilbert-Varshamov codes [Gil52, Var57]
of constant length, we immediately obtain binary LCCs and the LTCs that approach the Zyablov
bound, which represents the best known explicit construction of binary codes. More specifically,
the Zyablov bound [Zya71] provides, for every ε > 0 and any rate 0 < r < 1, binary codes with rate
r, and relative distance

Zε(r)
def
= max

r<R<1

{
(1−R− ε) ·H−1(1− r

R
)
}

where H−1 is the inverse of the binary entropy function in the domain (0, 12). We have the following
results.

1[KT00] prove a lower bound for the related notion of LDCs (locally decodable codes). Since every linear LCC is
also an LDC, their lower bound applies to linear LCCs.

2For example, a constant-degree Reed-Muller code is such an LCC.
3In fact, the relative distance may be slightly larger, i.e., 1− r + 1

n
where n is the block length of the code.

2

Corollary 1.3 (LCCs approaching the Zyablov bound). For every β, r, ε > 0 there exists an infinite
family of linear binary codes {Ck}k, such that the code Ck is an LCC with message length k, rate
at least r, relative distance at least Zε(r), and query complexity O(kβ).

Corollary 1.4 (Strong LTCs approaching the Zyablov bound). For every β, r, ε > 0 there exists
an infinite family of linear binary codes {Ck}k, such that the code Ck is a strong LTC with message
length k, rate at least r, relative distance at least Zε(r), and query complexity O(kβ).

To sum-up, we construct LCCs and LTCs that achieve almost optimal trade-off between rate
and relative distance over non-binary alphabets of constant size, and binary LCCs and LTCs that
achieve the best known trade-off for binary codes.

Previous work. Our constructions are based on a technique of [AL96], who constructed codes
that approach the Singleton bound and can be encoded and decoded from erasures in linear time.

Their construction has two stages: In the first stage, they construct “weak” codes with linear-
time encoding and decoding. In the second stage, they use the latter codes to construct codes that
approach the Singleton bound. The basic idea that underlies their second stage is the following:
the codeword of the “weak” code is broken into blocks of constant size, and each of those blocks is
encoded by Reed-Solomon. The decoding procedure works by decoding each of the blocks separately,
which can corrects the majority of the erasures. Then, the decoding procedure of the “weak” code is
applied to correct the remaining few erasures. Note that both steps can be done in linear time. We
mention that the foregoing description is not complete, and that an additional modification needs
to be made to make this idea work.

Before proceeding, we mention that the technique of [AL96] was used by [GI05] to construct
similar codes that can be decoded from errors (rather than erasures). [GI05] followed the above
scheme of [AL96], and their key step was to replace the codes of the first stage with codes that
can be decoded from errors (but otherwise have the same proeprties). After this replacement was
done, the second stage was more or less the same. A similar idea was used by [GI02, GR08] to
construct capacity-achieving list-decodable codes with constant alphabet, where again the main
step was replacing the codes of the first stage with appropriate codes.

Our observation. The key observation of this paper is that the same scheme works as well for
LCCs and LTCs. Specifically, we replace the codes of the first stage of [AL96] with the LCCs
of [KSY11] (for Theorem 1.1) or with the LTCs of [Vid11] (for Theorem 1.2). Then, we observe
that the second stage of [AL96] works just as before. The reason is that decoding the Reed-Solomon
blocks can be done locally, since those blocks are of constant size.

More generally, we wish to draw attention to the technique of [AL96]. We believe that it should
be viewed as a general scheme for constructing codes that approach the Singleton bound. A “dream
version” of such a scheme could be stated as follows.

Claim 1.5 (”Dream version”). For any property P of codes the following holds. Suppose that for
every constant rW < 1, we can construct a “weak” code W such that:

1. W has the property P.

2. W has rate rW .

3. W has constant relative distance δW > 0 which depends on rW in an arbitrary way.

Then, we can construct a code C that has the property P and approaches the Singleton bound (in
the sense of Theorems 1.1 and 1.2).

3

Unfortunately, the technique of [AL96] does not imply such a clean and powerful claim. For
example, such a claim obviously does not hold for the propery P of “not approaching the Singleton
bound”. Worse yet, we do not have any characterization of the properties P for which the scheme
of [AL96] works. Nevertheless, the scheme of [AL96] does seem to work for many properties P, and
we believe that this is a good “take-home message” from this work.

Organization of this paper. We review the required preliminaries in Section 2, construct our
LCCs in Section 3, and construct our LTCs in 4.

2 Preliminaries

All logarithms in this paper are in base 2. For any n ∈ N we denote [n]
def
= {1 . . . , n}. For any

finite alphabet Σ and any two strings x, y ∈ Σn, the relative Hamming distance (or, simply, relative
distance) between x and y is the fraction of coordinates on which x and y differ, and is denoted by
dist(x, y)

def
= |{xi 6= yi : i ∈ [n]}| /n.

We denote by F2p the finite field of 2p elements. If F and H are finite fields such that H is
an extension of F, then we say that a function f : Fk → Hn is F-linear if for every α, β ∈ F and
x, y ∈ Fk it holds that

f(α · x+ β · y) = α · f(x) + β · f(y).

2.1 Error correcting codes

Let F and H be finite fields such that H is an extension field of F. We say that C : Fk → Hn is
an F-linear code C with message length k and block length n if it is an injective F-linear function.
If F = H, we say that C is a linear code over F, and if F = F2 then we say that C is a binary linear
code. The rate rC of the code C is the ratio k·log|F|

n·log|H| .
We will sometimes identify C with its image C(Fk). Specifically, we will write c ∈ C to indicate

the fact that there exists x ∈ Fk such that c = C(x). In such case, we also say that c is a codeword
of C. We say that C has relative distance δ if for every two distinct codewords c1, c2 ∈ C it holds
that dist(c1, c2) ≥ δ. We will use the notation dist(w,C) to denote the relative distance of a string
w ∈ Hn from C, and say that w is ε-close (respectively, ε-far) from C if dist(w,C) < ε (respectively,
if dist(w,C) ≥ ε).

Reed-Solomon codes. We use the following fact, which states the existence of Reed-Solom codes
and their relevant properties.

Fact 2.1 (Reed-Solomon Codes [RS60]). For every k, n ∈ N such that n ≥ k, and a finite field F
such that |F| ≥ n, there exists a linear code RSk,n over F with message length k, block length n, rate
r = k/n, and relative distance 1− k−1

n > 1− r.

We mention that Reed-Solomon codes meet the Singleton bound.

Infinite families of codes. An infinite family of codes C = {Ck} is a sequence of codes such that
the code Ck has message length k. The block length n(k), rate R(k) and relative distance δ(k) of
such a family are functions of k such that Ck has block length n(k), rate R(k) and relative distance
δ(k). We say that the family has constant rate (resp., constant relative distance) if R(k) (resp., δ(k))
is a constant that is independent of k.

4

Throughout this paper we will often work with infinite families of codes, and refer to them
simply as “codes”. For example, we will say that a code C has constant rate, and mean that the
family C has constant rate. We will say that a string c is a codeword of C if it is a codeword of one
of the codes Ck, and will say that a string w ∈ Hn is ε-close to C if it is ε-close to one of the codes
Ck.

2.2 Locally-correctable codes

Intuitively, a code is said to be locally correctable [BFLS91, STV01, KT00] if, given a codeword
c ∈ C that has been corrupted by some errors, it is possible decode any coordinate of c by reading
only a small part of the corrupted version of c. Formally, it is defined as follows.

Definition 2.2. Let C = {Ck}k be an infinite family of codes with block length n = n(k) and
relative distance δ = δ(k), and whose codewords belong to Hn(k) for some finite field H. Let
q : N→ N. We say that C is locally correctable with query complexity q(k) if there exists a randomized
algorithm A that satisfies the following requirements:

• Input: A takes as input a message length k ∈ N, and a coordinate i ∈ [n] for n = n(k), and
also gets oracle access to a string z ∈ Hn that is δ(k)

2 -close to a codeword c ∈ Ck.

• Output: A outputs ci with probability at least 2
3 .

• Query complexity: A makes at most q(k) queries to the oracle z.

We say that the algorithm A is a local corrector of C.

Remark 2.3. The common definition of LCCs includes an additional parameter τ ≤ δ
2 , and only

requires that A works when given a string u that is τ -close to C. This definition can be “simulated”
by our definition, by pretending that C has smaller relative distance than it actually has.

2.3 Locally-testable codes

Intuitively, a code is said to be locally testable [FS95, RS96, GS00] if, given a string z ∈ Hn, it is
possible to determine whether z is a codeword of C, or rather far from C, by reading only a small
part of z. There are two variants of LTCs in the literature, “weak” LTCs and “strong” LTCs. Below,
we only give the definition of strong LTCs, since it is simpler and allows us to state a stronger result.

Definition 2.4. Let C = {Ck}k be an infinite family of codes with block length n = n(k), whose
codewords belong to Hn(k) for some finite field H. Let q : N → N. We say that C is (strongly)
locally testable with query complexity q(k) if there exists a randomized algorithm A that satisfies the
following requirements:

• Input: A takes as input a message length k ∈ N, and also gets oracle access to a string
z ∈ Hn(k).

• Completeness: If z is a codeword of Ck, then A accepts with probability 1.

• Soundness: A rejects with probability at least dist(z, Ck)/2.

• Query complexity: A makes at most q(k) non-adaptive queries to the oracle z.

We say that the algorithm A is a local tester of C.

Remark 2.5. The common definition of strong LTCs also includes an additional parameter ρ < 1,
and requires that A rejects with probability ρ · dist(u,Ck). For simplicity, we chose to fix ρ to 1

2 . If
ρ < 1

2 , one can amplify it to 1
2 by executing A multiple times.

5

2.4 Expander graphs

Expander graphs are graphs with certain pseudorandom connectivity properties. Below, we state
the construction and properties that we need. The reader is referred to [HLW06] for a survey. For
a graph G, a vertex s and a set of vertices T , let E(s, T) denote the set of edges that go from s
into T .

Definition 2.6. Let G = (U ∪ V,E) be a bipartite d-regular graph with |U | = |V | = n. We say
that G is an (α, γ)-sampler if the following holds for every T ⊆ V : for at least (1− α) fraction of
the vertices s ∈ U it holds that it holds that∣∣∣∣ |E(s, T)|

d
− |T |

n

∣∣∣∣ ≤ γ.
Theorem 2.7. For every α, γ > 0 there exists a constant d ∈ N and an infinite family of graphs
{Gn}n∈N such that the following holds for each graph G = Gn:

• G = (U ∪ V,E) is a bipartite d-regular graph with |U | = |V | = n.

• G is an (α, γ)-sampler.

Furthermore, there exists an algorithm that on input n outputs Gn in time poly(n).

Proof sketch. We give a brief sketch of the proof, which uses the notions of edge expansion and
second eigenvalue. We do not define these notions because they will not be used in the rest of the
paper. The interested reader is referred to [HLW06]. In addition, we made no effort to optimize the
dependence of d on α and γ.

First, observe that it suffices to prove that there exists a family {G′n}n∈N of graphs such that G′n
is a non-bipartite d-regular graph over n vertices, which has the required sampling property. The
reason is that each such graph G′n can be converted into a bipartite graph Gn with the sampling
property, by taking two copies of the vertex set of G′n and connecting the two copies according to
the edges in G′n.

We start constructing the family {G′n}n∈N by constructing a family {G′′n}n∈N of graphs which has
a constant edge expansion. As noted by [Din07], this can be done as follows: Known constructions
of expanders (e.g. [RVW00]) give a graph G′′n with constant edge expansion for every n that is a
power of 2. In order to deal with values of n of the form 2m− k, we construct an expander over 2m

vertices and merge k pairs of vertices. Then, we maintain the regularity by adding self-loops. The
resulting graph has 2m−k vertices, and maintains the edge expansion of the original graph over 2m

vertices.
Next, we note that by the Cheeger inequality for expanders [Dod84, AM85], the family {G′′n}n∈N

has second-largest normalized eigenvalue (in absolute value) that is bounded away from 1. This
gives the sampling property for some fixed choices of α and γ by the expander mixing lemma [AC88].

Finally, in order to improve α and γ to the required level, we raise the graphs in {G′′n}n∈N to
some constant power. We define the family {G′n}n∈N to be the family of the resulting graphs. �

3 LCCs approaching the Singleton bound

In this section, we prove Theorem 1.1, restated next.

Theorem 1.1. For every 0 < r < 1 and β, ε > 0 there exists a finite field H = F2p such that
the following holds: There exists an infinite family of (F2-linear) codes {Ck}k such that the code
Ck : Fk2 → Hn is an LCC with message length k, rate at least r, relative distance at least 1− r − ε,
and query complexity O(kβ).

6

To this end, we use the following construction of LCCs with high rate and kβ queries, which
follows from Theorem 4 of [KSY11]:

Theorem 3.1 ([KSY11]). For every 0 < β, rW < 1 there exists δW > 0 such that the following
holds. Let F be a finite field. There exists an infinite family of codes {Wk}k over F such that Wk

has message length k, rate at least rW , relative distance at least δW , and locally correctable with
with query complexity O(kβ).

The rest of this section is organized as follows. In Section 3.1, we give an overview of the proof of
Theorem 1.1. Then, in Section 3.2, we provide a rigorous construction of the codes of Theorem 1.1
and Corollary 1.3. Finally, in Section 3.3, we prove that those codes are locally correctable.

3.1 Overview

We start with an overview of the construction of the code C = Ck. The following construction is
due to [AL96]. Fix a rate r and a constant ε > 0. Our goal is to construct a code C with rate r
and relative distance 1− r − ε.

Our construction will use two basic ingredients:

• The LCC W = Wk from Theorem 3.1 of rate 1
1+ε/2 and relative distance δW , where δW is

some small constant.

• A Reed-Somon code RS = RSb,d from Fact 2.1, with rate r · (1 + ε
2) and relative distance at

least 1− r − ε
2 .

The idea of the construction is to combine the LCC W and the Reed-Solomon code RS to obtain
a code C that enjoys “the best of the all worlds”: both the local correctability of W and the good
parameters of RS. We do it in two steps: first, we construct a code C ′ which can be corrected from
1−r−ε

2 fraction of random errors. Then, we augment C ′ to obtain a code C that can be corrected
from 1−r−ε

2 fraction of adversarial errors, and hence has relative distance 1− r − ε.
We first describe the construction of C ′. The code C ′ encodes a message x as follows: the code

C ′ first encodes x via W , thus obtaining a codeword w ∈ W . Then, C ′ partitions w into blocks of
constant length b (to be determined later), and encodes each block with the code RS. The resulting
string c′ is defined to be the encoding of x via C ′.

It is easy to see that C ′ has rate r, as required. We claim that if one applies to a codeword c′ ∈ C ′
a noise that corrupts each coordinate with probability 1−r−ε

2 , then the codeword c′ can be recovered
from its corrupted version with high probability. To see it, first observe that with high probability,
almost all the blocks of c′ have at most 1−r−ε/2

2 fraction of corrupted coordinates. Let us call those
blocks “good blocks”, and observe that the good blocks can be corrected by decoding them to the
nearest codeword of RS. Next, observe that if b is a sufficiently large constant, the fraction of “good
blocks” is at least 1− δW /2, and hence we can correct the remaining δW /2 fraction of errors using
the decoding algorithm of W . It follows that C ′ can be corrected from 1−r−ε

2 fraction of random
errors.

Next, we show how to augment C ′ to obtain a code C that is correctable from adversarial
errors. This requires two additional ideas. The first idea to apply a pseudorandom permutation to
the coordinates of C ′. The pseudorandom permutation is determined by the edges of an expander
graph (see Section 2.4). This step is motivated by the hope that, after the adversary decided which
coordinates to corrupt, applying the permutation to the coordinates will make the errors behave
pseudorandomly. This will allow the above analysis for the case of random erros to go through.

7

Of course, on its own, this idea, since the adversary can take in the permutation into account
when it chooses where to place the errors. Here the second idea comes into play: after applying the
permutation to the coordinates of C ′, we will increase the alphabet size of the code, packing each
block of symbols into a new big symbol. The motivation for this step is that increasing the alphabet
size restricts the freedom of the adversary in choosing the pattern of errors. Indeed, we will show
that after the alphabet size is increased, applying permutation to the coordinates of the code makes
the errors behave pseudorandomly. This allows us to prove that the code can be decoded from
1−r−ε

2 errors, as we wanted.

3.2 Construction

Let β, r, ε > 0 be as in Theorem 1.1. Let rW
def
= 1

1+ε/2 , and let δW be the constant relative distance
guaranteed by Theorem 3.1. Let d ∈ N be a constant that is sufficiently large such that

• There exists a family of d-regular
(
1
2 · δW ,

1
4 · ε

)
-samplers {Gn}n, as in Theorem 2.7.

• There exists a Reed-Solomon code RS = RSb,d of rate at least r · (1 + ε/2), relative distance
at least 1− r − 1

2 · ε, and block length d.

We choose the latter code RSb,d to be over a finite field F that is an extension field of F2. Let H
be an extension of F of dimension d, so |H| = |F|d. We show how to construct a family of F-linear
locally-correctable codes

{
Ck : Fk → Hn(k)

}
k
.

Remark 3.2. Recall that Theorem 1.1 requires us to construct codes C whose messages are taken
from Fk2 rather than Fk. However, every message in Fk can be interpreted as a message in Fk′

(for some k′ = O(k)), by “unpacking” each symbol in F into bits. Note that when the codes are
reinterpreted in this way, they are F2-linear.

Fix a message length k ∈ N. We explain how to construct a code C = Ck in the family. We use
the following ingredients:

• The Reed-Solomon code RSb,d from above, over the field F, with message length b and block
length d.

• A code W = Wk from Theorem 3.1, where W : Fk → FnW is a code over F with rate rW and
relative distance δW , and is locally correctable with query complexity O(kβ). For simplicity,
we assume that b divides nW , so nW = n · b for some n ∈ N.

• A d-regular
(
1
2 · δW ,

1
4 · ε

)
-sampler G = Gn = (U ∪ V,E) with |U | = |V | = n, as in Theo-

rem 2.7 above.

The code C encodes a message x ∈ Fk as follows:

• C first encodes x via the code W . This step yields a codeword w ∈W of length nW .

• Next, C partitions the string w into n blocks of length b, and encodes each block via the
code RSb,d. Let us denote the resulting string by c′ ∈ Fn·d and the resulting codewords of
RSb,d by B1, . . . , Bn ∈ Fd.

• Now, C applies a “pseudorandom” permutation to the coordinates of c′ as follows: Let U =
{u1, . . . , un} and V = {v1, . . . , vn} be the left and right vertices of G respectively. For each
i ∈ [n] and j ∈ [d], we write the j-th symbol of Bi on the j-th edge of ui. Then, we construct
new blocks S1, . . . , Sn ∈ Fd, by setting the j-th symbol of B′i to be the symbol written on the
j-th edge of vi.

8

• Finally, we define a string c ∈ Hn as follows: the i-th coordinate ci is the block Si ∈ Fd,
reinterpreted as a symbol of H. We choose c to be the encoding of x via the code C.

This concludes the definition of the code C. It is not hard to see that C is F-linear. The rate of C
is

k · log |F|
n · log |H|

=
k · log |F|
n · d · log |F|

=
k

n · d

=
k

n · b
· b
d

=
k

nW
· b
d

= rW · r ·
(

1 +
ε

3

)
= r,

where the last equality follows from the definition of rW . In the next section, we prove that C
is locally correctable, and that the local correction algorithm can correct up to 1−r−ε

2 fraction of
errors. This will imply that C has the required relative distance 1− r − ε.

3.3 Local correctability

In this section, we complete the proof of Theorem 1.1, by proving that the family {Ck}k is locally
correctable from 1−r−ε

2 fraction of errors using O(kβ) queries. To this end, we describe a local cor-
rector A. The algortihm A is based on the following algorithm A0, which locally decodes coordinates
of Wk from a corrupted codeword of Ck.

Lemma 3.3. There exists an algorithm A0 that satisfies the following requirements:

• Input: A0 takes as input a message length k ∈ N, a coordinate i ∈ [nW], and also gets oracle
access to a string z ∈ Hn that is

(
1−r−ε

2

)
-close to a codeword c ∈ Ck.

• Output: Let wc be the codeword of Wk from which c was generated. Then, A0 outputs wci
with probability at least 1− 1

3·b·d .

• Query complexity: A makes at most O(kβ) queries to the oracle z.

Before proving Lemma 3.3, we show how to construct the algorithm A given the algorithm A0.
Suppose that the algorithm A is given oracle access to a string z that is

(
1−r−ε

2

)
-close to a codeword

c ∈ Ck, and a coordinate i ∈ [n]. The algorithm is required to decode ci. Let wc ∈ FnW be the
codeword ofW from which c was generated, and let Bc

1, . . . , B
c
n and Sc1, . . . , Scn be the corresponding

blocks.
In order to decode ci, the algorithm A should decode each of the symbols in the block Sci ∈ Fd.

Let Bc
j1
, . . . , Bc

jd
be the neighbors of Sci in the graph Gn. Each symbol of the block Sci belongs to

one of the blocks Bc
j1
, . . . , Bc

jd
, and therefore it suffices to retrieve the latter blocks. Now, each block

Bc
jh

is the encoding via RSb,d of b symbols of wc. The algorithm A invokes the algorithm A0 to
decode each of those b symbols of wc, for each of the blocks Bc

j1
, . . . , Bc

jd
. By the union bound, the

algorithm A0 decodes all those b·d symbols of wc correctly with probability at least 1− 1
3·b·d ·b·d = 2

3 .
Whenever that happens, the algorithm A retrieves the blocks Bc

j1
, . . . , Bc

jd
, and therefore computes

9

the block Sci correctly. This concludes the construction of the algorithm A. Note that the query
complexity of A is larger than that of A0 by a factor of at most b · d, and hence it is at most O(kβ).
It remains to prove Lemma 3.3.

Proof of Lemma 3.3. Let AW be the local corrector of the code W . By amplificiation, we may
assume that AW errs with probability at most 1

3·b·d . Suppose that the algorithm A is invoked on a
string z ∈ Hn and a coordinate i ∈ [nW]. The algorithm A0 invokes the algorithm AW to retrieve
the coordinate i, and emulates AW in the natural way: Recall that AW expects to be given access to
a corrupted codeword of W , and makes queries to it. Whenever AW makes a query to a coordinate
q ∈ [nW], the algorithm A0 performs the follows steps.

1. A0 finds the block Bl to which the coordinate q belongs. Formally, l def= dq/be.

2. A0 finds the neighbors of the vertex ul in G. Let us denote those vertices by vj1 , . . . , vjd .

3. A0 queries the coordinates j1, . . . jd, thus obtaining the blocks Sj1 , . . . , Sjd .

4. A0 reconstructs the block Bl by reversing the permutation of G on Sj1 , . . . , Sjd .

5. A0 decodes Bl to the nearest codeword of RSb,d.

6. A0 retrieves the value of the q-th coordinate of w from the latter codeword of RSb,d, and feeds
it to AW as an answer to its query.

When the algorithm AW finishes running, the algorithm A0 finishes and outputs the output of AW .
It is not hard to see that the query complexity of A0 is at most d times the query complexity of AW ,
and hence it is O(kβ). It remains to show that A0 succeeds in decoding from 1−r−ε

2 fraction of
errors.

Let z ∈ Hn be a string that is
(
1−r−ε

2

)
-close to a codeword c ∈ C. Let wc ∈ FnW be the codeword

of W from which c was generated, and let Bc
1, . . . , B

c
n and Sc1, . . . , Scn be the corresponding blocks.

We also use the following definitions:

1. Let Sz1 , . . . , Szn ∈ Fd be the blocks that correspond to the symbols of z.

2. Let Bz
1 , . . . , B

z
n be the blocks that are obtained from Sz1 , . . . , S

z
n by reversing the permutation.

3. Let wz ∈ FnW be the string that is obtained by decoding each block Bz
l to the nearest codeword

of RSb,d, and extracting the coordinates of w from the resulting codewords.

It is easy to see that A0 emulates the action of AW on wz. Therefore, if we prove that wz is (δW /2)-
close to wc, we will be done. In order to do so, it suffices to prove that for at least

(
1− δW

2

)
fraction

of the blocks Bz
l , it holds that B

c
l is the codeword of RSb,d that is closest to Bz

l .
To this end, let j1, . . . , jt be the coordinates on which z and c differ. In other words, for every

h ∈ [t] it holds that Szjh 6= Scjh . By assumption, t ≤
(
1−r−ε

2

)
· n. Next, observe that since Gn is a(

1
2 · δW ,

1
4 · ε

)
-sampler, it holds that for at least

(
1− δW

2

)
fraction of the vertices ul of G, it holds

that ul has at most (
1− r − ε

2
+
ε

4

)
· d =

(1− r − ε/2)

2
· d

neighbors among j1, . . . , jt. Now, for each such vertex ul, it holds that the block Bz
l is

(
1−r−ε/2

2

)
-

close to the block Bc
l . Since the code RSb,d has relative distance 1 − r − ε/2, this implies that Bc

l

is the codeword of RSb,d that is closest to Bz
l , as required. �

10

Obtaining the Zyablov bound. As noted in the introduction, the codes that we constructed
in this section can be concatenated with binary Gilbert-Varshamov codes, thus obtaining binary
codes that achieve the Zyablov bound. We do not provide the details, since such constructions are
standard in coding theory. Nevertheless, there is one subtle point that deserves attention: in order
to decode the concatenated codes, we combine the local decoder A described above with the GMD
decoder [Jr.66]. However, in order for the GMD decoder to work, the local corrector A needs to deal
with both errors and erasures. While the algorithm A described above deals only with errors, it is
not hard to modify it to deal with erasures as well. We refer the reader to [GI05] for an example of
a similar construction.

4 LTCs approaching the Singleton bound

In this section, we prove Theorem 1.2, restated next.

Theorem 1.2. For every 0 < r < 1 and β, ε > 0 there exists a finite field H = F2p such that
the following holds: There exists an infinite family of (F2-linear) codes {Ck}k such that the code
Ck : Fk2 → Hn is a strong LTC with message length k, rate at least r, relative distance at least
1− r − ε, and query complexity O(kβ).

To this end, we use the following result, which follows from Theorem 3.1 of [Vid11].

Theorem 4.1 ([Vid11]). For every 0 < β, rW < 1 there exists δW > 0 such that the following
holds. Let F be a finite field. There exists an infinite family of codes {Wk}k over F such that Wk

has message length k, rate at least rW , relative distance at least δW , and locally testable with with
query complexity O(kβ).

Our construction of the LTCs {Ck}k is the same as the construction of the LCCs of Section 3,
with the only difference is that we use the LTCs of Theorem 4.1 instead of the LCCs of Theorem 3.1.
Our LTCs have the required rate due to the same considerations as before. In order to show that
our LTCs have the required relative distance, we use the same analysis of Section 3.3 to show that
the codes can be corrected from 1−r−ε

2 fraction of errors, though here the correction is done by an
algorithm that is not necessarily local or efficient.

It remains to show that those codes are locally testable. To this end, we describe a local tester A.
In what follows, we use the notation of Section 3.2. Let AW be the local tester of W = Wk.

When given oracle access to a purported codeword z ∈ Hn, the local tester A emulates the action
of AW in the natural way: Recall that AW expects to be given access to a purported codeword ofW ,
and makes queries to it. Whenever AW makes a query to a coordinate q ∈ [nW], the algorithm A
performs the follows steps.

1. A finds the block Bl to which the coordinate q belongs. Formally, l def= dq/be.

2. A finds the neighbors of the vertex ul in G. Let us denote those vertices by vj1 , . . . , vjd .

3. A queries the coordinates j1, . . . jd, and retreives the blocks Sj1 , . . . , Sjd .

4. A reconstructs the block Bl by reversing the permutation of G on Sj1 , . . . , Sjd .

5. If Bl is not a codeword of RSb,d, the local tester A rejects.

6. Otherwise, A retrieves the value of the q-th coordinate of w from Bl, and feeds it to AW as
an answer to its query.

11

If AW finishes running, then A accepts if and only if AW accepts. It is easy to see that the query
complexity of A is at most d times the query complexity of AW , and hence it is O(kβ). It is also
not hard to see that if z is a legal codeword of C, then A accepts with probability 1.

It remains to show that A rejects with probability dist(z, C)/2. To this end, it suffices to prove
that A rejects with probability at least η ·dist(z, C) for some constant η > 0, since η can be amplified
to 1

2 by repetition. We use the following definitions:

1. Let S1, . . . , Sn ∈ Fd be the blocks that correspond to the symbols of z.

2. Let B1, . . . , Bn be the blocks that are obtained from S1, . . . , Sn by reversing the permutation.,

3. Let wz ∈ (F ∪ {?})nW be the string that is obtained by from the blocks B1, . . . , Bn : for each
block Bl that is a legal codeword of RSb,d, we extract from Bl the corresponding coordinates
of wz in the natural way. For each block Bl that is not a legal codeword of RSb,d, we set the
corresponding coordinates of wz to be “?”.

We would like to lower bound the probability that A rejects z in terms of the probability that AW
rejects wz. However, there is a small technical problem: AW is defined as acting on strings in FnW ,
and not on strings in (F ∪ {?})nW . To deal with this technicality, we define an algorithm A′W that,
when given access to a string y ∈ (F ∪ {?})nW , emulates AW on y, but rejects whenever a query is
anwered with “?”. We use the following proposition, whose proof we defer to Section 4.1.

Proposition 4.2. A′W rejects a string y ∈ (F ∪ {?})nW with probability at least

1

4
·min {dist(y,W), δW } .

Now, it is not had to see that when A is invoked on z, it emulates the action of A′W on wz. To
finish the proof, note that

dist(wz,W) ≥ 1

b · d
· dist(z, C),

since every coordinate of C is generated from at most b · d coordinates of W . It thus follows that A
rejects z with probability at least

1

4
·min {dist(wz,W), δW } ≥ min

{
1

4 · b · d
· dist(z, C),

1

4
· δW

}
.

We conclude the proof by setting η = min
{

1
4·b·d ,

1
4 · δW

}
.

4.1 Proof of Proposition 4.2

We use the following result.

Claim 4.3. Let I ⊆ [nW] be a set of coordinates. The algorithm AW queries I with probability at
least

1

2
·min

{
|I|
n
,
1

2
· δW

}
.

Note that this claim only makes sense since we assumed that AW makes non-adaptive queries (we
assumed it in Definition 2.4). Without this assumption, the probability that AW queries I would
have depended on the string that AW gets oracle access to.

12

Proof. It suffices to prove that for every I ⊆ [nW] such that |I|n ≤
1
2 · δW , the algorithm AW

queries I with probability at least 1
2 ·
|I|
n . Let I be such a set, and let s ∈ FnW be an arbitrary string

that contains non-zero values inside I, and contains 0 everywhere outside I. Clearly,

dist(s,W) =
|I|
n
,

and therefore AW rejects s with probability at least 1
2 ·
|I|
n . On the other hand, AW can only reject s

if it queries I, since otherwise it can not distinguish between s and the all-zeroes codeword. It
follows that AW queries I with probability at least 1

2 ·
|I|
n , as required. �

We turn to proving Proposition 4.2. Let

E
def
= {i : yi =?}

be the set of erasures in y. We consider two cases:

• E is “large”: Suppose that |E|n ≥
1
2 · dist(y,W). In this case, it holds by Claim 4.3 that AW

queries E with probability at least

1

4
·min {dist(y,W), δW } .

Since A′W rejects y whenever AW queries E, the proposition follows.

• E is “small”: Suppose that |E|n ≤
1
2 · dist(y,W). Let y0 ∈ FnW be an arbitrary string that

agrees with y outside E. Clearly,

dist(y,W) ≤ dist(y0,W) +
|E|
nW

,

so dist(y0,W) ≥ 1
2 · dist(y,W). Let E denote the event that AW queries E. We have that

Pr
[
A′W rejects y

]
= Pr [E] · Pr

[
A′W rejects y|E

]
+ Pr

[
¬E ′
]
· Pr

[
A′W rejects y|¬E

]
= Pr [E] · 1 + Pr [¬E] · Pr [AW rejects y0|¬E]

≥ Pr [E] · Pr [AW rejects y0|E] + Pr [¬E] · Pr [AW rejects y0|¬E]

= Pr [AW rejects y0]

≥ 1

2
· dist(y0,W)

≥ 1

4
· dist(y,W),

as required.

This concludes the proof.

Acknowledgement. I would like to thank Irit Dinur, Tali Kaufman, Swastik Kopparty and
Shubanghi Saraf for useful discussions and ideas. In particular, I would like to thank Swastik
and Shubanghi for encouraging me to write this result. I would also like to thank Oded Goldreich
and Irit Dinur for helpful comments on an early draft of this work, which improved its presentation.

13

References

[AC88] Noga Alon and Fan R. K. Chung. Explicit construction of linear sized tolerant networks.
Discrete Mathematics, 72(1-3):15–19, 1988.

[AL96] Noga Alon and Michael Luby. A linear time erasure-resilient code with nearly optimal
recovery. IEEE Transactions on Information Theory, 42(6):1732–1736, 1996.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof
verification and intractability of approximation problems. Journal of ACM, 45(3):501–
555, 1998. Preliminary version in FOCS 1992.

[AM85] N. Alon and V. D. Milman. λ1, lsoperimetric inequalities for graphs, and superconcen-
trators. JOURNAL OF COMBINATORIAL THEORY, Series B, 38(1):73–88, 1985.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checkable proofs: A new characterization
of NP. Journal of ACM volume, 45(1):70–122, 1998. Preliminary version in FOCS 1992.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computa-
tions in polylogarithmic time. In STOC, pages 21–31, 1991.

[BS06] Eli Ben-Sasson and Madhu Sudan. Robust locally testable codes and products of codes.
Random Struct. Algorithms, 28(4):387–402, 2006. Preliminary version in APPROX-
RANDOM 2004.

[BS08] Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity. SIAM
J. Comput., 38(2):551–607, 2008. Preliminary version in STOC 2005.

[BSV12] Eli Ben-Sasson and Michael Viderman. Towards lower bounds on locally testable codes
via density arguments. Computational Complexity, 21(2):267–309, 2012.

[Din07] Irit Dinur. The PCP theorem by gap amplification. Journal of ACM, 54(3):241–250,
2007. Preliminary version in STOC 2006.

[DK11] Irit Dinur and Tali Kaufman. Dense locally testable codes cannot have constant rate
and distance. In APPROX-RANDOM, pages 507–518, 2011.

[Dod84] Jozef Dodziuk. Difference equations, isoperimetric inequality and transience of certain
random walks. 284(2):787–794, 1984.

[FS95] Katalin Friedl and Madhu Sudan. Some improvements to total degree tests. In ISTCS,
pages 190–198, 1995.

[GI02] Venkatesan Guruswami and Piotr Indyk. Near-optimal linear-time codes for unique
decoding and new list-decodable codes over smaller alphabets. In STOC, pages 812–
821, 2002.

[GI05] Venkatesan Guruswami and Piotr Indyk. Linear-time encodable/decodable codes with
near-optimal rate. IEEE Transactions on Information Theory, 51(10):3393–3400, 2005.

[Gil52] Edgar N. Gilbert. A comparision of signalling alphabets. Bell System Technical Journal,
31:504–522, 1952.

14

[GKS13] Alan Guo, Swastik Kopparty, and Madhu Sudan. New affine-invariant codes from lifting.
In ITCS, pages 529–540, 2013.

[GR08] Venkatesan Guruswami and Atri Rudra. Explicit codes achieving list decoding capacity:
Error-correction with optimal redundancy. IEEE Transactions on Information Theory,
54(1):135–150, 2008.

[GS00] Oded Goldreich and Shmuel Safra. A combinatorial consistency lemma with application
to proving the PCP theorem. SIAM J. Comput., 29(4):1132–1154, 2000.

[GS06] Oded Goldreich and Madhu Sudan. Locally testable codes and PCPs of almost linear
length. Journal of ACM, 53(4):558–655, 2006. Preliminary version in FOCS 2002, pages
13-22.

[HLW06] Shlomo Hoory, Nati Linial, and Avi Wigderson. Expander graphs and their applications.
Bulletin of AMS, 43(4):439–561, 2006.

[HOW13] Brett Hemenway, Rafail Ostrovsky, and Mary Wootters. Local correctability of expander
codes. In ICALP (1), pages 540–551, 2013.

[Jr.66] G. David Forney Jr. Generalized minimum distance decoding. IEEE Transactions on
Information Theory, 12(2):125–131, 1966.

[Kom53] Y Komamiya. Application of logical mathematics to information theory. In Proc. 3rd
Japan. Nat. Cong. Appl. Math, 1953.

[KSY11] Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin. High-rate codes with
sublinear-time decoding. In STOC, pages 167–176, 2011.

[KT00] Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for
error-correcting codes. In STOC, pages 80–86, 2000.

[PS94] Alexander Polishchuk and Daniel A. Spielman. Nearly-linear size holographic proofs. In
STOC, pages 194–203, 1994.

[RS60] Irving S. Reed and Gustave Solomon. Polynomial codes over certain finite fields. SIAM
Journal of the Society for Industrial and Applied Mathematics, 8(2):300–304, 1960.

[RS96] Ronitt Rubinfeld and Madhu Sudan. Robust characterization of polynomials with ap-
plications to program testing. SIAM Journal of Computing, 25(2):252–271, 1996.

[RVW00] Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph
product, and new constant-degree expanders and extractors. In FOCS, pages 3–13, 2000.
Full version can be retrieved as ECCC TR01-018.

[Sin64] Richard C. Singleton. Maximum distance q -nary codes. IEEE Transactions on Infor-
mation Theory, 10(2):116–118, 1964.

[STV01] Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom generators without
the xor lemma. J. Comput. Syst. Sci., 62(2):236–266, 2001.

[Var57] R. R. Varshamov. Estimate of the number of signals in error correcting codes. Doklady
Akadamii Nauk, 117:739–741, 1957.

15

[Vid11] Michael Viderman. A combination of testability and decodability by tensor products.
Electronic Colloquium on Computational Complexity (ECCC), 18:87, 2011.

[Vid13] Michael Viderman. Strong ltcs with inverse poly-log rate and constant soundness. Elec-
tronic Colloquium on Computational Complexity (ECCC), 20:22, 2013.

[Zya71] Victor V. Zyablov. An estimate on the complexity of constructing binary linear cascade
codes. Problems of Information Transmission, 7(1):3–10, 1971.

16

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

