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Abstract

Given a random permutation f : [N ]→ [N ] as a black box and y ∈ [N ], we want to output
x = f−1(y). Supplementary to our input, we are given classical advice in the form of a pre-
computed data structure; this advice can depend on the permutation but not on the input y.
Classically, there is a data structure of size Õ(S) and an algorithm that with the help of the
data structure, given f(x), can invert f in time Õ(T ), for every choice of parameters S, T , such
that S · T ≥ N . We prove a quantum lower bound of T 2 · S = Ω̃(εN) for quantum algorithms
that invert a random permutation f on an ε fraction of inputs, where T is the number of queries
to f and S is the amount of advice. This answers an open question of De et al.

We also give a Ω(
√
N/m) quantum lower bound for the simpler but related Yao’s box

problem, which is the problem of recovering a bit xj , given the ability to query an N -bit string
x at any index except the j-th, and also given m bits of classical advice that depend on x but
not on j.

1 Introduction

In defining notions of security for finite functions, a standard approach to analyzing the complexity
of inverting a fixed function (instead of a family of functions) is to use running-time + program-
length as a measure of complexity. If one wants to invert a random permutation or function
uniformly (that is, given no advice) on all inputs, then the classical lower bound T ≥ N (ignoring
lower-order factors) holds. A quantum computer, however, can achieve T = O(

√
N) (by Grover’s

search algorithm [8]), which is optimal by Ambainis’ result [1, Theorem 6.2]. Furthermore, for
inverting a random permutation with advice, Hellman [9] showed that classically, every one-way
permutation can be inverted in time Õ(

√
N) using a data structure of size Õ(

√
N). The question

that naturally arises is if there is a similar trade-off when one has a quantum algorithm and is
looking at running-time + program-length as a measure of complexity. Hence, our results are
motivated by the following question raised by De et al. [6, pg. 3]: “What is the complexity of
inverting a random permutation [...] with a quantum computation that takes advice?” We show
at least that whatever gain, if any, can be obtained by using long programs is a polynomial gain
and not an exponential gain.

In De et al. [6] (and going back to ideas of Yao [16]) the classical lower bound of S ·T = Ω̃(εN)
is proved by showing that permutations that can be inverted given some advice with few queries
have a small representation given the advice, and hence occur with low probability when picked
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randomly. Here we are able to find such a small representation even for permutations that can be
inverted with few quantum queries.

The common quantum lower bound techniques are the polynomial method (introduced in [2])
and the adversary method (introduced in [1]) - both of which have been successfully applied to many
problems. We will refrain from discussing these techniques in detail, but we only mention them
to point out that the lower bounds we obtain rely on a precursor to the adversary method known
as the hybrid argument (which we describe in §2). We should note that using techniques other
than the commonly used lower bound techniques for advised quantum computations is not new.
Nishimura and Yamakami [10] use what they call the “algorithmic method” to obtain a quantum
lower bound for solving the “multiple-block” ordered search problem (where the algorithm takes
advice). However, their assumption is that the quantum algorithm makes nonadaptive queries, and
in fact, it is not clear how to extend their lower bound argument to the case that the algorithm
makes adaptive queries [15] (which is the case when an algorithm inverts a random permutation
with advice).

Specifically, the results we prove are the following:

Theorem 1 (Yao’s box problem lower bound). Suppose we have N boxes, each of which contains a
Boolean bit. We will label the boxes from 1 to N . Given as input an integer j such that 1 ≤ j ≤ N ,
m bits of classical advice (where the advice can depend on the box contents but not on j), and the
bit pattern of the N boxes as an oracle, any quantum algorithm A will need T = Ω(

√
N/m) queries

(where A is not allowed to query the bit of the j-th box) in order to output the bit of the j-th box
(with error probability at most 1/3).

Theorem 2 (Permutation inversion lower bound, informal). Given a random permutation f : [N ]→
[N ] as an oracle, classical advice α = α(f) of at most S bits, and some y ∈ [N ] as input, we want
to output f−1(y). Any quantum algorithm A satisfies a T 2 · S = Ω̃(εN) trade-off lower bound1

where A makes at most T oracle queries to f , and solves the problem on an ε fraction of inputs.

The best known upper bounds are the classical ones. For the box problem, this is O(N/m) as
proven by Yao [16]. For inverting a permutation with advice, Hellman [9] showed that there is a
data structure of size Õ(S) and an algorithm that with the help of the data structure, given f(x),
can invert f in time Õ(T ), for every choice of parameters S, T , such that S · T ≥ N . Finally the
lower bounds in the classical case are Ω(N/m) for the box problem, and S · T = Ω̃(εN) for the
problem of permutation inversion [16].

2 Preliminaries

We will be working in the standard black box model of computation (cf. [13, §8]) where the goal is
to compute a Boolean function f : {0, 1}n → {0, 1} given an input x ∈ {0, 1}n. However, x is not
given explicitly, but is instead given as a black box, and we are being charged unit cost for each
query that we make. Note that x here takes the same place as f in the introduction (§1). So an
equivalent view is that f is given as a black box and we are being charged unit cost for each query
that we make to f . The reason why we want to query a black box is that in order to obtain a
lower bound on the number of queries T the quantum algorithm would need to make, we are not

1The notation Ω̃ hides factors polynomial in logN and log 1
ε
.
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exploiting any specific weakness of a particular implementation.
Since the hybrid argument will be the machinery for the lower bounds proven here, we will

discuss this technique in more detail. It is based on the intuition that an adversary runs the
algorithm with one input and, after that, changes the input slightly so that the correct answer
changes but the algorithm does not notice that. It was first introduced by Bennett et al. [3] in
1997 to prove a tight quantum lower bound on search of T = Ω(

√
N) and a (suboptimal) quantum

lower bound of T = Ω( 3
√
N) for inverting a random permutation on all inputs (with no advice). A

clear exposition is given by Vazirani [12], which we will base our discussion on.
More formally, fix a quantum algorithm A. The state of A between successive queries can be

written as
|φ〉 =

∑
c

αc|c〉,

where c runs over the computational basis states. During each query, each basis state c queries a
particular bit position of the input. The main question is: how sensitive is the output of A to the
modification of the input x on a few bit positions (or, in the equivalent view, how sensitive is the
output of A to the modification of the output of f on a few inputs)?

To answer this question, we introduce some definitions. In what follows, we will maintain the
first view that we are querying an input x ∈ {0, 1}n, though all these definitions can be easily
modified in the equivalent view that we are instead querying f . Which view is more satisfactory
is simply a matter of convenience; for instance, in the proof of Theorem 1 in §3.3 we maintain the
first view, and in the proof of Theorem 2 in §4.2 we maintain the second view.

Definition 1. The query magnitude at bit position j of |φ〉 =
∑

c αc|c〉 is defined to be qj(|φ〉) =∑
c∈Cj
|αc|2, where Cj is the set of all computational basis states that query bit position j.

Now, suppose A runs for T steps on an input x ∈ {0, 1}n. Then the run of A on input x can
be described as a sequence of states |φ0〉, . . . , |φT 〉, where |φt〉 is the state of A before the t+ 1st

query.

Definition 2. The total query magnitude at bit position j of A on input x is defined to be:

(1) qj(x) =
T−1∑
t=0

qj(|φt〉).

Let [n] = {1, . . . , n}. By definition, since A makes T queries and each |φt〉 is of unit length,
then

(2)
∑
j∈[n]

qj(x) ≤ T.

Now, if the total query magnitude of bit position j is very small, then A cannot distinguish
whether the input x is modified by flipping its j-th bit:

Lemma 1 (“Swapping lemma”). Let |φx〉 and |φy〉 denote the final states of A on inputs x and y,
respectively. Then:

(3) ‖|φx〉 − |φy〉‖ ≤
√
T

∑
j∈∆(x,y)

qj(x),
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where ∆(x, y) = {j : xj 6= yj}, and ‖|φx〉 − |φy〉‖ denotes the Euclidean distance between the two
vectors.

We will not give a proof of Lemma 1 here (it is stated and proven as Lemma 3.1 of Vazirani
[12, pp. 1764-65]), but will instead apply it in the following sections to prove our main results.

We will also make use of the following well-known fact (first proven by Bernstein and Vazirani
[4, Lemma 3.6, pg. 1421]):

Lemma 2. Let D(ψ) denote the probability distribution that results from a measurement of |ψ〉 in
the computational basis. If ‖|φ〉 − |ψ〉‖ ≤ ε, then ‖D(φ)−D(ψ)‖1 ≤ 4ε.

The notation ‖D(φ)−D(ψ)‖1 denotes the total variation distance2 between the probability
distributions D(φ) and D(ψ). Thus, Lemma 2 states that if two unit-length superpositions are
within Euclidean distance ε then observing the two superpositions gives samples from distributions
whose 1-norm or total variation distance is at most 4ε.

3 Yao’s box problem

3.1 Classical lower bound

In his study of a classical lower bound for inverting a random permutation with advice, Yao [16]
introduced a simpler (but related) problem to analyze, which we will refer to as the “box problem”,
stated as follows:

“Let N,m be positive integers. Consider the following game to by played by A and B. There
are N boxes with lids BOX1,BOX2, . . . ,BOXN each containing a Boolean bit. In the prepro-
cessing stage, Player A will inspect the bits and take notes using an m-bit pad. Afterwards,
Player B will ask Player A a question of the form “What is in BOXi?”. Before answering the
question, Player A is allowed to consult the m-bit pad and take off the lids of an adaptively
chosen sequence of boxes not including BOXi. The puzzle is, what is the minimum number of
boxes A needs to examine in order to find the answer?” [16, pg. 84].

On a classical computer, Yao proves that T ≥ dN/me − 1, which is optimal. In fact, one strategy
that A may adopt is divide-and-conquer. Namely, divide the boxes into m consecutive groups each
containing no more than dN/me members. In the preprocessing stage, A records for each group g
the parity ag of the bits in that group. Then, to answer the query “What is in BOXi?”, A can lift
the lids of all the boxes (except BOXi) in the group k containing BOXi and compute the parity b of
these lids. Clearly, the bit in BOXi is ak⊕ b. Therefore, A never needs to lift more than dN/me−1
lids with this strategy.

3.2 Yao’s advice model

We define the model more precisely, in a similar manner as Yao [16, pg. 85] does. Let {0, 1}N
be the set of all possible 2N bit patterns of the N boxes. Fix our m-bit classical advice string

2For two probability distributions P and Q, their total variation distance is
∑

x |P (x) − Q(x)|. Hence, since
|φ〉 =

∑
c αc|c〉 and |ψ〉 =

∑
c βc|c〉, then ‖D(φ)−D(ψ)‖1 =

∑
c |α

2
c − β2

c |.
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α ∈ {0, 1}m, where 1 ≤ m < N . This induces a partition Dα ⊆ {0, 1}N and N partial Boolean
functions fj,α, where fj,α is the partial Boolean function that computes the bit of the j-th box from
the remaining N − 1 boxes given advice string α. Note that

2N ≤
∑

α∈{0,1}m
|Dα| ≤ 2m · 2N ,

since for any two m-bit advice strings, α′ and α′′, it is not necessarily the case that Dα′ ∩Dα′′ = ∅.
Thus, by a standard averaging argument, there is a partition Dα such that 2N−m ≤ |Dα| ≤ 2N .
For advice strings α such that |Dα| < 2N−m, we can forgo consideration of such advice strings as
they are not “useful”, since 2N−m is already exponentially small in m.

Although Dα is a set consisting of arbitrary strings and so it does not have much structure to
it that we can exploit (in order to get a lower bound using the polynomial or adversary methods),
it turns out that this lower bound on the size of Dα is enough to prove a quantum lower bound
using the hybrid argument, as we will show in §3.3.

3.3 Proof of Theorem 1

First, we prove the following combinatorial lemma:

Lemma 3. Suppose D ⊆ {0, 1}n of size |D| ≥ 2n−m and that we randomly select a set I of m+ 1
indices. Then with probability 1 there are at least two strings x and y in D that differ only in a
subset of the coordinates in I.

Proof. There are only 2n−(m+1) different ways of fixing the coordinates not in I, and since this is
less than the number of elements of D, there must be two or more elements of D that are identical
outside of I. �

The rest of the proof of Theorem 1 follows easily, by using the same techniques as in the proof
of Theorem 3.3 of Vazirani [12]. Fix a j such that 1 ≤ j ≤ N , and let A be the quantum algorithm
that uses the advice string α to compute fj,α given the bit pattern of the N boxes as an oracle. By
Lemma 3, let I be a randomly selected set of m+ 1 indices, and let x and y be two strings in Dα

that differ only in a subset of the coordinates in I (note that since A is not allowed to query the
j-th bit position, then we will set the total query magnitude at the j-th bit position to be 0). Now,
we make the following general observation about total query magnitude: Let z be chosen uniformly
at random among the N − 1 bit positions other than the j-th bit position of the oracle x ∈ {0, 1}N
(which represents the bit pattern of the N boxes). Then for all t ∈ {0, . . . , T − 1}, if we let |φt〉 be
the state of the algorithm A before the t+ 1st query to x, then E[qz(|φt〉)] = 1

N−1 . By linearity of

expectation, we have that E[qz(x)] = T
N−1 .

Therefore, by Lemma 1 and a standard averaging argument,

‖|φx〉 − |φy〉‖ ≤
√
T
∑
z∈I

qz(x)

≤

√
T

(
T (m+ 1)

N − 1

)
= T

√
m+ 1

N − 1
.

(4)
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Assume that A errs with probability bounded by 1/3. Thus, ‖D(φx)−D(φy)‖1 ≥ 1/3 by footnote

2. If T < (1/12)
√

N−1
m+1 , by Lemma 2, it would follow that ‖D(φx)−D(φy)‖1 < 1/3, contradicting

the bound on the error probability of A. Therefore, T ≥ (1/12)
√

N−1
m+1 , as desired.

3.4 Quantum upper bound?

The next question that arises is whether we can also obtain a quantum algorithm that solves this
problem in O(

√
N/m) time? At the moment, this is an open question. If we use the same advice

as Yao (namely, the parity of bits in m groups), then it seems likely that we are reduced to solving
parity. However, computing the parity of N bits takes Ω(N) time on a quantum computer, which
Beals et al. [2] prove using the polynomial method.

A reasonable approach is to think that an improvement over the classical running time of
O(N/m) for the box problem would involve changing the advice. However, even this does not seem
viable. Say we change our advice to the number of boxes with a 1 in them. Now, suppose our advice
says that there are a total of r boxes with ones in them. If we are asked to find the value in box i,
we know that the number of ones in the remaining N − 1 boxes is either r or r− 1. To find out the
value of box i, we just have to figure out which case we are in. Let t be the number of boxes with a
1 in them (from the N − 1 remaining boxes). Then in O(

√
N/t) time on a quantum computer we

can estimate t with high probability within a small error, which is optimal (cf. Brassard et al. [5,
Corollary 3]). But in our problem, the only issue is that we want to know exactly what t is (since
a difference between r − 1 or r is crucial). Of course, in Corollary 4 of Brassard et al. [5], we can
get an exact estimate of t with high probability in O(

√
N · t) time, which is also optimal. But if

t ≥ N/2 (which is a good estimate for the number of ones in a random string), we do not get an
asymptotic improvement over the classical run-time of O(N).

4 Inverting a random permutation with advice

4.1 Classical lower bound

The space-time complexity of inverting a random permutation with advice is well-studied in the
classical setting. We are given oracle access to a bijection f : [N ] → [N ], y = f(x) as input, and
a data structure of size S (which will be the advice), and we will output x. For our purposes, it
will be convenient to set N = 2n and identify {0, 1}n with [N ], as De et al. [6, pg. 1] do. In 1980,
Hellman [9] proved that for every choice of parameters S, T such that S · T ≥ N , there is a data
structure of size Õ(S) and an algorithm that with the help of the data structure, given f(x), which
is a permutation, can invert f in time Õ(T ). Specifically, when S = T , every one-way permutation
can be inverted in time Õ(

√
N) using a data structure of size Õ(

√
N) as advice. Yao [16, pg. 86]

proves Hellman’s tradeoff to be optimal. In fact, one can generalize Yao’s arguments to show that
there are permutations for which the amount of advice S and the oracle query complexity T must
satisfy

S · T = Ω̃(εN),

for any classical algorithm that inverts on an ε fraction of inputs [6, §2.3].
To explain Hellman’s construction (for the case S = T ), we suppose for simplicity that f is a

cyclic permutation and N = s2 is a perfect square. Then our advice will be a data structure of pairs
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(xi, xi+1) of
√
N “equally spaced” points x1, . . . , xs, such that xi+1 = f (s)(xi), where the notation

f (s)(xi), means f has been iterated s times. Given an input y to invert, we compute f(y), f(f(y)),
and so on, until for some j we reach a point f (j)(y) in the advice. Then we read the value f (j−s)(y),
and by repeatedly computing f we eventually reach f (−1)(y). This takes O(s) evaluations of f and
lookups in the advice, so both time and advice complexity are approximately O(

√
N). Note that

if the permutation f is not cyclic, we can have a similar construction for each cycle of length less
than s, and if N is not a perfect square, we can round s up to d

√
Ne.

4.2 Proof of Theorem 2

First, let us specify the problem in more detail. A quantum algorithm A is given oracle access to a
permutation f : [N ]→ [N ], classical advice α = α(f) of at most S ≥ 1 bits, and an input element
y ∈ [N ]. The algorithm makes at most T queries to f . We say that A inverts y ∈ [N ] in f iff it
outputs f−1(y) with probability at least 2/3. We are given that

(5) P
f,y

[A inverts y in f ] ≥ ε,

where a permutation f : [N ] → [N ] and y ∈ [N ] are chosen uniformly at random. In this section,
we prove that, in this case, the inequality

(6) T 2 · S = Ω̃(εN)

holds. The proof is similar to the proof in Section 10 of [6]. We use the quantum algorithm A to
compress permutations, and then apply the following lemma:

Lemma 4 ([6, Fact 10.1]). Let X and Y be finite sets, and R be a finite probability distribution.
Suppose there exist a randomized encoding procedure E : X × R → Y , and a decoding procedure
D : Y ×R→ X such that, for all x ∈ X:

P
r∼R

[D(E(x, r), r) = x] ≥ c,

then |Y | ≥ c|X|.

Proof. The proof is short, and we give it for completeness. By a standard averaging argument,
there is an r such that for at least a c fraction of the x’s, we have D(E(x, r), r) = x. This means
that E(x, r) must attain at least c|X| values, giving the desired inequality. �

Proceeding towards the proof, we may assume that

(7) T 2 ≤ CεN

for some constant C to be defined later, since otherwise the statement (6) is trivial. Next, let
ε′ = ε/2. Eq. (5) implies that there exists a set X of permutations such that X has size at least
ε′N , and

P
y
[A inverts y in f ] ≥ ε′

for all f ∈ X.
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Lemma 5. Let A and X be as defined above. Then there exist a randomized encoding procedure
E : X ×R→ Y , and a decoding procedure D : Y ×R→ X such that, for all f ∈ X:

P
r∼R

[D(E(f, r), r) = f ] ≥ 0.8,

and

log |Y | ≤ logN !− Ω

(
εN

T 2

)
+ S +O(logN).

Proof. First we describe the construction of E(f, r). Fix a permutation f ∈ X. Let I be the set of
elements x ∈ [N ] such that A inverts f(x). By our definition of X,

(8) |I| ≥ ε′N.

Let qz(x) denote the total query magnitude of z ∈ [N ] when the algorithm A is executed with
advice α = α(f), oracle access to f , and input y = f(x).

Randomness of the encoding subroutine is given by a random subset R ⊆ [N ] with each element
of [N ] independently chosen to be in R with probability δ/T 2, where 0 < δ < 1 is some constant
to be specified later.

For each x ∈ I, consider the following two random events:

(9) (A) x ∈ R and (B)
∑

z∈R\{x}

qz(x) ≤ c

T
,

where c is some constant to be specified later. Note that events (A) and (B) are independent, since
event (A) depends on whether x ∈ R and event (B) depends on whether z ∈ R, where z 6= x. We
say that an element x ∈ I is good if it satisfies both (A) and (B). Let G denote the set of good
elements.

Claim 6. With probability at least 0.8 over the choice of R, we have |G| = Ω(εN/T 2).

Proof. Let H = R ∩ I. This is just a binomial distribution. The expected value of |H| is |I|δ/T 2.
By the multiplicative Chernoff bound and (7):

(10) P
R

[
|H| ≥ |I|δ

2T 2

]
≥ 1− exp

(
− |I|δ

8T 2

)
≥ 1− exp

(
− δ

16C

)
≥ 0.9,

if C is small enough. Next, by linearity of expectation and by (2),

E
R

 ∑
z∈R\{x}

qz(x)

 =
∑

z∈[N ]\{x}

δ

T 2
qz(x) ≤ δ

T 2
T =

δ

T
.

Hence, by Markov’s inequality,

(11) P
R

 ∑
z∈R\{x}

qz(x) ≥ c

T

 ≤ T

c
· δ
T

=
δ

c
.
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Let J denote the subset of x ∈ I that satisfy (A) from (9) and do not satisfy (B). As events (A)
and (B) are independent, the probability that x ∈ I satisfies x ∈ J is at most δ2/(cT 2). Hence, by
Markov’s inequality,

(12) P
R

[
|J | ≤ 10|I|δ2

cT 2

]
≥ 0.9.

From (10) and (12), we get that, with probability at least 0.8,

|G| = |H| − |J | ≥ |I|δ
2T 2
− 10|I|δ2

cT 2
≥ ε′N

T 2

(
δ

2
− 10δ2

c

)
= Ω

(
εN

T 2

)
,

if δ is a small enough positive constant. �

We now describe an encoding assuming |G| = Ω(εN/T 2). We assume that the encoding pro-
cedure fails if |G| is smaller, hence, its success probability is 0.8. Before proceeding, note that if
we want to encode a set Q ⊆ [N ] containing k elements, it takes log

(
N
k

)
bits to specify it since for

each of the
(
N
k

)
subsets of [N ] of size k we can assign a binary string to them, thereby specifying

Q. Similarly, for any permutation g on N − u elements (where 0 ≤ u ≤ N − 1), we can specify it
using log(N − u)! bits. Our encoding contains the following information:

• The advice string α;

• The cardinality of the set G of good elements;

• The set f(R), encoded using log
(
N
|R|
)

bits;

• The values of f restricted to f : [N ] \R→ [N ] \ f(R), encoded using log(N − |R|)! bits;3

• The set f(G) of images of good elements of R, encoded using log
(|R|
|G|
)

bits;

• The values of f restricted to f : R \G→ f(R \G), encoded using log(|R| − |G|)! bits.4

The decoding procedure is as follows. It initializes an empty table to store the values of f ,
and it fills up the mapping from [N ] \R to [N ] \ f(R). It can be done, as the decoding procedure
knows both R (as the randomness of the encoder), f(R) and the mapping (the latter two from
the encoding). Next, it inverts all y ∈ f(G) in the way we are about to describe. In particular, it
determines the set G. After that, it decodes the mapping from R \G to f(R \G).

Thus, it suffices to describe how to invert y ∈ f(G). Let x = f−1(y). The decoder wants to
find x. Consider the oracle h given by

h(z) =

{
f(z), if z ∈ [N ] \R;

y, if z ∈ R.

3That is, this part of the encoding is a permutation g : [N − |R|]→ [N − |R|], with the meaning that if g(i) = j,
then f maps the i-th element of the set [N ] \ R to the j-th element of the set [N ] \ f(R). Note that knowledge of
the sets R and f(R) is needed to decode this part of the encoding. This will not be a problem because the decoder
knows R, which is part of the common random string, and is given f(R).

4Similar remarks hold as made in the previous footnote. The decoder needs to know the sets R \G and f(R \G)
to decode this part of the encoding. Although we have not explicitly specified the set G, the decoder will reconstruct
G from the encoding, as described in the decoding procedure.
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The decoder has enough information to simulate oracle h. Also, h(z) = f(z) for all z ∈ ([N ] \R)∪
{x}. Now let Af (y) denote A with advice α, oracle access to f , and input y; and let Ah(y) denote
A with advice α, oracle access to h, and input y. Let |φf 〉 and |φh〉 denote that final states of Af (y)
and Ah(y), respectively. Then by Lemma 1 and the definition of a good element,

‖|φf 〉 − |φh〉‖ ≤
√
T
∑

z∈R\{x}
qz(x) ≤

√
T · c

T
=
√
c.

As x ∈ I, measuring |φf 〉 gives x with probability at least 2/3. If c is small enough, measuring |φh〉
gives x with probability strictly greater than 1/2. Thus, the decoding procedure can determine x
with certainty by deterministically simulating the quantum procedure Ah(y).

Finally, the length of our encoding is

S + log

(
N !

(N − |R|)!|R|!
· (N − |R|)! · |R|!

(|R| − |G|)!|G|!
· (R− |G|)!

)
+O(logN)

= S + logN !− log |G|! +O(logN). �

From Lemmas 4 and 5, we get that

log

(
εN !

4

)
≤ logN !− Ω

(
εN

T 2

)
+ S +O(logN),

which easily implies that T 2 · S = Ω̃(εN).

4.3 Quantum upper bound?

Having established the lower bound in Theorem 2, the question then arises: can we provide a
quantum algorithm such that for every choice of parameters S, T such that T 2 · S = N , there is a
data structure of size Õ(S) and an algorithm that with the help of the data structure, given f(x)
for any x ∈ [N ], can invert f , which is a permutation, in time Õ(T )?

Unlike in the box problem where we could change the advice to be different than Yao’s advice of
parity, it seems unlikely that any classical advice other than iterates of f would be useful for solving
this problem. Moreover, the bottleneck seems to be the speed at which one can iterate f . However,
by the results of Ozhigov [11] and Farhi et al. [7, pg. 5444], we have that function iteration cannot
be sped up by a quantum computer (namely, in order to compute f (s)(x) we cannot do better than
O(s) applications of f).

It might be possible to obtain a speedup by using Grover’s algorithm to find a starting point
for the function iteration. For the sake of simplicity, suppose f is a cyclic permutation. Given a
y ∈ [N ] that we want to invert, one idea would be to have the advice be N0.5−ε “equally spaced”
points so that each interval between the given points is of size N0.5+ε, for some fixed ε > 0.

Then the problem of inverting y essentially reduces to the problem of finding the closest advice
point to y. Now, if we are able to find some y′ that lies halfway between the two advice points that
y lies in between of, then we can recurse on an interval that is half as long to find the preimage
of y. To find this intermediate point y′, we can employ randomness. If we pick N0.5−ε random
points, then on average, one of these points will lie in the interval that y is in. Now, if it was an
efficiently computable property that this point lies halfway between the two advice points that y
lies in between of, then we could find the right point among the randomly chosen points in time
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O
(√

N0.5−ε
)

using Grover’s algorithm.

However, checking that this property holds seems to inevitably involve iterating f , making
it unlikely that it is efficiently computable. But suppose even that this property is efficiently
computable, then the running time grows linearly with the number of iterations of f one needs to
perform, but only in the square root of the number of points. As a result, if we pick k < N points
at random, then it seems that we would still need around N/k iterations, so the running time would
be approximately O(

√
k · (N/k)) = O(N/

√
k), which will always be worse than O

(
N0.5

)
.

5 Conclusions and further work

We originally proved the result of Theorem 1 in order to shed light on how to eventually prove
Theorem 2. We turned to the hybrid method, as it was enough to prove Theorem 1. Moreover, it
turned out to also be an applicable lower bound technique to proving Theorem 2. Now, the advice
we considered here was classical, as that was the same advice used by De et al. [6] and seemed most
intuitive to reason about. However, advice given to a quantum algorithm can also be a quantum
state. The difficulty here is we cannot copy quantum advice (due to the “no cloning” theorem of
Wootters and Zurek [14]). Therefore, we cannot adapt our current proof for permutation inversion
given in §4.2 directly because in Lemma 5 we have to get the elements of G repeatedly with the
same piece of advice.

Another direction would be to prove or disprove the optimality of the lower bounds obtained in
either Theorem 1 or Theorem 2. On the lower bounds side, perhaps our results can be improved
by some variant of the standard lower bound techniques (since as discussed in §1, the techniques of
Nishimura and Yamakami [10] cannot be directly applied to the problem of permutation inversion).

The best technique might be the adversary method (as this improves on the hybrid method).
However, the adversary method is difficult to apply since, even in the simpler case of the box
problem, the set Dα is arbitrary, so constructing a binary relation R on the sets of inputs on which
fj,α differs, as required to apply the adversary argument by Theorem 6.1 of [1], is not obvious.

Another line of attack would be to show that either the box problem reduces to solving parity,
or that inverting a random permutation with advice reduces to solving function iteration, both
of which are difficult for quantum computers. This would provide strong evidence for quantum
computers not being able to solve either of these problems better than in the classical case. On the
algorithms side, it would be interesting to see if one can improve the quantum upper bound for the
box and permutation inversion problems with classical advice. If there is a quantum speedup, most
likely it will be a novel algorithm, since simply using Grover’s search algorithm [8] as a subroutine
(or with randomness) does not seem to help. We suspect that with classical advice one cannot do
better than the classical upper bounds (given the discussions in §3.4 and §4.3).
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