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Abstract

A classical bound in information theory asserts that small L1-distance between probability
distributions implies small difference in Shannon entropy, but the converse need not be true.
We show that if a probability distribution on {0, 1}n has small-bias, then the converse holds for
its weight distribution in the proximity of the binomial distribution. Namely, we argue that if
a probability distribution µ on {0, 1}n is δ-biased, then ‖µ− binn ‖21 ≤ (2 ln 2)(nδ +H(binn)−
H(µ)), where µ is the weight distribution of µ and binn is the binomial distribution on {0, . . . , n}.
The key result behind this bound is a lemma which asserts the non-positivity of all the Fourier
coefficients of the log-binomial function L : {0, 1}n → R given by L(x) = lg binn(|x|). The
original question which motivated the work reported in this paper is the problem of explicitly
constructing a small subset of {0, 1}n which is ε-pseudobinomial in the sense that the weight
distribution of each of its restrictions and translations is ε-close to the binomial distribution. We
study the notion of pseudobinomiality and we conclude that, for spaces with n−Θ(1)-small bias,
the pseudobinomiality error in the L1-sense is equivalent to that in the entropy-difference-sense,
in the n−Θ(1)-error regime. We also study the notion of average case pseudobinomiality, and we
show that for spaces with n−Θ(1)-small bias, the average entropy of the weight distribution of
a random translation of the space is n−Θ(1)-close to the entropy of the binomial distribution.
We discuss resulting questions on the pseudobinomiality of sums of independent small-bias
spaces. Using the above results, we show that the following conjectures are equivalent: (1) For
all independent δ-biased random vectors X,Y ∈ {0, 1}n, the F2-sum X + Y is O((nδ)Θ(1))-
pseudobinomial; (2) For all independent δ-biased random vectors X,Y ∈ {0, 1}n, the entropy
of the weight of the sum H(|X + Y |) ≥ min{H(|X|), H(|Y |)} −O((nδ)Θ(1)).
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1 Introduction

The ultimate goal of pseudorandomness is to construct low complexity PRGs which look random
to all small circuits. Without hardness assumptions [24, 14], asymptotically optimal seed lengths
are not known even for simple models such as depth-2 circuits and log-space computations. Among
the simplest desirable properties of a PRG are the almost k-wise independence property and the
stronger small-bias property [22]. Small-bias probability distributions have various applications
in pseudorandomness (e.g., [27, 20, 10] and the references therein). A probability distribution on
{0, 1}n has small bias if it looks like the uniform distribution to all parity functions on subsets of
the n input variables. More formally, let 0 ≤ δ ≤ 1 and consider the characters {χz}z∈{0,1}n of

the abelian group structure Zn2 on {0, 1}n: χz(x)
def
= (−1)

∑
i xizi . A probability distribution µ on

{0, 1}n is δ-biased if |Eµχz| ≤ δ for each nonzero z ∈ {0, 1}n [22]. Probability distributions with

the δ-bias property and support size
(
n
δ

)Θ(1)
can be explicitly constructed from linear codes [22, 1].

The original question which motivated the work reported in this paper is the problem of ex-
plicitly constructing small subsets S ⊂ {0, 1}n such that for each nonempty subset of indices
I ⊂ {1, . . . , n} and each translation vector u ∈ {0, 1}I , the weight distribution of the translation
(over F2) by u of the restriction of S to {0, 1}I looks like the binomial distribution on {0, . . . , |I|}.
We call S ε-pseudobinomial if the distance from the binomial distribution is at most ε in the
L1-sense, for each I and u.

The ε-pseudobinomiality property is a natural extension of the ε-bias property. The more
general problem of constructing PRGs for combinatorial shapes was studied by Gopalan, Meka,
Reingold and Zuckerman [13]. Without hardness assumptions, it is an open problem to construct
ε-pseudobinomial spaces of size polynomial in n and 1

ε , i.e., of seed length O(log n
ε ).

Nisan generator for log-space computations [23] gives n−c-pseudobinomial spaces of seed length
O(log2 n), for each constant c. The work of Gopalan et al. [13] leads to an ε-pseudobinomial space of
seed length O(log n+log2 1

ε ), which matches the seed length of Nisan generator in the inverse poly-
nomial error regime and improves on it in the subpolynomoial regime. Independently and concur-
rently with the present paper, De [9] constructed a PRG for combinatorial sums, which results in an
ε-pseudobinomial space of seed length O(log3/2 n

ε ). Independently and concurrently also, Gopalan,

Kane and Meka [12] constructed an ε-pseudobinomial space of seed length O(log n
ε logO(1) log n

ε ).
A related problem was studied by Lovett, Reingold, Trevisan and Vadhan [20] and independently

by Meka and Zuckerman [21] who constructed an O(log n) seed-length PRG which fools mod-M
gates, where M = O(1) is a power of a prime. Another related work is by Rabani and Shpilka
[25], who constructed explicit polynomial complexity ε-nets for threshold functions with arbitrary
coefficients.

1.1 Contribution

Motivated by the above question, we present in this paper a systematic study of pseudobinomial
spaces. While we fall short of constructing pseudobinomial spaces of polynomial complexity, we
establish some of their basic properties that contribute to a better understanding of such spaces.

To get started, we ignore translations and restrictions in the definition of pseudobinomiality,
and in general we study the relation between different measures of similarity between the binomial
distribution binn on {0, . . . , n} and the weight distribution µ of a probability distribution µ on
{0, 1}n, assuming that µ has small bias. The similarity between two probability distributions on
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{0, . . . , n} is captured by various measures, some of which are the relative entropy D(.||.), the
L1-distance, and the much weaker notions of distance in entropy. Pinsker’s bound (Lemma 1.1.a)
asserts that relative entropy is in general at least as strong distance L1-distance. Another classical
bound in information theory asserts that small L1-distance between probability distributions implies
small difference in Shannon entropy (Lemma 1.1.b), but the converse need not be true. We show
that if µ has small bias, then the converse holds for its weight distribution in the proximity of
the binomial distribution, hence it is enough to guarantee that the entropy H(µ) of its weight
distribution µ is close the entropy H(binn) of the binomial in order to conclude that µ is close to
binn in the L1-sense. In particular, we show that

D(µ||binn) ≤ nδ +H(binn)−H(µ), (1)

where δ is the bias of µ. Hence, it follows from Pinsker’s bound that

‖µ− binn ‖21 ≤ (2 ln 2)(nδ +H(binn)−H(µ)). (2)

The key result behind (1) is a lemma which asserts the non-positivity of all the Fourier coefficients
of the log-binomial function L : {0, 1}n → R given by

L(x) = lg binn(|x|).

A by-product of (1) is that, unlike arbitrary probability distribution on {0, 1}n, H(µ) cannot be
significantly larger than H(binn) if µ has small bias. Note that H(binn) is approximately half
lg (n+ 1) – the maximum entropy of a probability distribution on {0, . . . , n} [15] (Lemma 1.2).

Then we study the notion of pseudobinomiality and we conclude from (2) that, for spaces
with n−Θ(1)-small bias, the pseudobinomiality error in the L1-sense is equivalent to that in the
entropy-difference-sense, in the n−Θ(1)-error regime.

The notion of pseudobinomiality in entropy suggests studying the minimum weight entropy
Hmin(µ) of a probability distribution µ on {0, 1}n, which we define as the minimum Shannon
entropy of the weight distribution of a translation of µ. To compare Hmin(µ) to H(binn), we study
the related notion of average weight entropy Havg(µ), which we define as the average entropy of
the weight distribution of a random translation of µ. Thus, Hmin(µ) ≤ Havg(µ). We show that
Havg(µ) ≤ H(binn), where the inequality is strict unless µ is the uniform distribution. Then we
study the notion of average case pseudobinomiality, and we show that for spaces with n−Θ(1)-small
bias, Havg(µ) is n−Θ(1)-close to H(binn).

Finally, we discuss resulting questions on the pseudobinomiality of sums of independent small-
bias spaces. Reingold and Vadhan asked whether the sum of two independent n−O(1)-biased spaces
fools log-space [21]. Since any distribution which fools log-space must be pseudobinomial, a natural
question is whether the sum of any two independent δ-biased spaces is O((δn)Θ(1))-pseudobinomial.
Using the above results, we show that this question is equivalent to the weaker question of whether
for all independent δ-biased random vectors X,Y ∈ {0, 1}n, the entropy of the weight of the sum

H(|X + Y |) ≥ min{H(|X|), H(|Y |)} −O((nδ)Θ(1)).

In the remainder of this introductory section, we summarize in Section 1.2 our results in the
context of the related literature and we outline the underlying proof techniques. Then we give in
Section 1.3 Fourier analysis and information theory preliminaries used in this paper.
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1.2 Paper overview and techniques

1.2.1 Entropy of weight distributions and small-bias

We start by studying the following basic question. Consider a probability distribution µ on {0, 1}n
with small bias. What is the relation between different measures of similarity between the weight
distribution of µ and the binomial distribution on {0, . . . , n}?

We need some preliminary notations and definitions. In what follows n ≥ 1 is an integer. If
x ∈ {0, 1}n, the weight of x, which we denote by |x|, is the number of nonzero coordinates of x. If
µ is a probability distributions on {0, 1}n, we denote the weight distribution of µ by µ. That is, µ

is the probability distribution on [0 : n]
def
= {0, 1, . . . , n} given by µ(w) = µ(x ∈ {0, 1}n : |x| = w).

The uniform distribution on {0, 1}n is denoted by Un and the binomial distribution on [0 : n] is

denoted by binn. Thus, binn(w) =
(nw)
2n for all w ∈ [0 : n], and binn = Un.

If γ1 and γ2 are two probability distributions on a finite set X (we are interested in X = [0 : n]),
the similarity between γ1 and γ2 is captured by various measures, some of which are the relative
entropy, the L1 distance, and the much weaker notions of distance in entropy. The L1 distance is
also called total variation since

‖γ1 − γ2‖1
def
=
∑
w∈X
|γ1(w)− γ2(w)| = 2 max

A⊂X
|γ1(A)− γ2(A)|. (3)

The relative entropy of γ1 with respect to γ2 is given by

D(γ1||γ2)
def
=
∑
w

γ1(w) lg
γ1(w)

γ2(w)
, (4)

where lg = log2 is the base-2 logarithm. The relative entropy is not symmetric but it satisfies the
nonnegativity property D(γ1||γ2) ≥ 0 with equality iff γ1 = γ2. If γ is a probability distributions
on X , the Shannon entropy of γ is defined as

H(γ)
def
= −

∑
w

γ(w) lg γ(w). (5)

We have the following classical bounds.

Lemma 1.1 ([8]). If γ1 and γ2 are two probability distributions on a finite set X , then

(a) (Pinsker’s bound) ‖γ1 − γ2‖21 ≤ (2 ln 2)D(γ1||γ2)

(b) (Entropy-difference bound) If ε = ‖γ1 − γ2‖1 ≤ 1
2 , then |H(γ1)−H(γ2)| ≤ ε lg |X |ε .

The entropy-difference bound asserts that small L1-distance between probability distributions
implies small difference in Shannon entropy, but the converse need not be true.

In our context X = [0 : n]. Thus, for ε = n−c, where c > 0 is constant, we have ε lg |X |ε =
O(n−c lg n). We are interested in probability distributions on [0 : n] which are weight distributions
µ of probability distributions µ on {0, 1}n. We would like to study the conditions under which µ is
close to the binomial distribution binn.

The maximum entropy of a probability distribution on [0 : n] is lg (n+ 1) and it is achieved
by the uniform distribution U[0:n] on [0 : n]. The entropy H(binn) of the binomial distribution is
approximately half the maximum entropy:
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Lemma 1.2 (Entropy of the binomial [15]). The entropy of the binomial distribution is given

by H(binn) = 1
2 lg πen

2 +O( 1
n). Thus, H(binn)

H(U[0:n])
= 1

2 + Θ
(

1
lgn

)
.

It is not hard to see that there are probability distributions µ on {0, 1}n such that |H(binn)−
H(µ)| is as small as zero but ‖ binn−µ‖1 = Θ(1).

In Section 2, we show that if a probability distribution µ on {0, 1}n has small bias, then the
converse of the entropy-difference bound holds for its weight distribution µ in the proximity of
the binomial distribution. In particular, if µ has small bias, then it is enough to guarantee that
H(binn)−H(µ) is small to conclude that ‖µ− binn ‖1 is small.

Theorem (Entropy-difference converse bound). Let µ be a probability distributions on
{0, 1}n. If µ is δ-biased, then

D(µ||binn) ≤ nδ +H(binn)−H(µ).

Hence (by Pinsker’s bound),

‖µ− binn ‖21 ≤ (2 ln 2)(nδ +H(binn)−H(µ)).

Accordingly, it follows from the nonnegativity of relative entropy that if µ is δ-biased, then

H(µ) ≤ H(binn) + nδ. (6)

That is, unlike arbitrary probability distribution on {0, 1}n, H(µ) cannot be significantly higher
than the entropy of the binomial if it has small bias. For an arbitrary µ, the entropy of its weight
distribution can be as large as H(U[0:n]) = lg (n+ 1) ≈ 2H(binn) (e.g., let µ be uniformly supported
by a subset S ⊂ {0, 1}n such that for each w ∈ [0 : n], S contains exactly one string of weight w).

The key behind the entropy-difference converse bound is the following lemma.

Lemma (Negative spectrum lemma). Let L : {0, 1}n → R be log-binomial function given by:

L(x) = lg binn(|x|).

Then the Fourier transform L̂ of L is non-positive: L̂(z) ≤ 0 for each z ∈ {0, 1}n. Moreover,
L̂(z) = 0 if |z| odd, and L̂(z) < 0 if z 6= 0 and |z| even.

The origin of the log-binomial function in our context is the equation

D(µ||binn) = EUnL− EµL+H(binn)−H(µ),

which holds for any probability distribution µ on {0, 1}n and follows from the definitions of D,H,
and L. The negative spectrum lemma implies that ‖L̂‖1 is small, namely ‖L̂‖1 = −L(0) = n, which
implies the entropy-difference converse bound since |EUnL− EµL| ≤ ‖L̂‖1δ.

The proof of the negative spectrum lemma is in Section 9 and it is analytical in nature. It boils
down to showing that if m ≥ 2 is even and a, b ≥ 0 are integers, then

βm(a, b)
def
=

m∑
w=0

(−1)w
(
m

w

)
lg

(
m+ a+ b

w + a

)
< 0.
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At a high level, we do this by first showing that limc→∞ βm(c, c) = 0 using de Moivre-Laplace
normal approximation of the binomial. Then we argue that βm is strictly increasing in the sense
that βm(a, b) < βm(a+ a′, b+ b′) for each a, b, a′, b′ ≥ 0 such that not both a′ and b′ are zero. We
derive the latter from the inequality

∑
w(−1)w

(
m
w

)
lg (w + i) < 0, for all i ≥ 0 and even m ≥ 2,

which we establish by examining the Taylor series of the logarithm and the moment generating
function gs : {0, 1}m → R given by gs(x) = (−1)|x|es(|x|−m/2).

In Section 2.1 we give two specific applications of the negative spectrum lemma:

• If the Fourier transform of a probability distribution µ is nonnegative, then H(binn)−H(µ) ≤
D(µ||binn). This holds for instance if µ is uniformly supported by a linear code or if it is the
convolution of a probability distribution on {0, 1}n with itself.

• The entropy of the weight distribution of the even weight strings in {0, 1}n is strictly larger
than that of the odd weight strings if n is even.

1.2.2 Pseudobinomiality

We study in Section 3 the notion of pseudobinomiality in the L1-sense and the entropy-sense. We
conclude from the entropy-difference bound and the entropy-difference converse bound that for
spaces with n−Θ(1)-small bias, the two notions are equivalent in the n−Θ(1)-error regime.

Definition (Pseudobinomiality in the L1-sense). A probability distribution µ on {0, 1}n is
called ε-pseudobinomial in the L1-sense if the weight distribution of each translation of a restriction
of µ is ε-close to the binomial distribution in the L1-sense.

That is, for each nonempty set of indices I ⊂ [n] and each translation vector u ∈ {0, 1}I , we
have ‖σuµI − bin|I| ‖1 ≤ ε, where µI is the restriction of µ on {0, 1}I (i.e., µI(y) = {x : xI = y}),
σuµ

I is the translation over F2 of µI by u (i.e., (σuµ
I)(y) = µI(y + u)), σuµI is (as defined above)

the weight distribution of σuµ
I , and bin|I| is the binomial distribution on [0 : |I|].

It is not hard to see that ε-pseudobinomiality in the L1-sense implies ε-bias. It is a natu-
ral extension of the ε-bias property, which is also invariant under translations and preserved by
restrictions.

Similarly, we can define pseudobinomiality in the L∞-sense and the L2-sense. They are both
equivalent to pseudobinomiality in the L1 sense in the n−Θ(1)-error regime. In more classical pseu-
dorandomness terms, ε-pseudobinomiality in the L∞-sense is equivalent to ε-fooling1 all functions
fa,b : {0, 1}n → {0, 1} given by fa,b(x) = 1 iff

∑
i aixi = b, where a ∈ {0,±1}n and b ∈ Z. Thus,

constructing ε-pseudobinomial spaces is a special case of the problem of of constructing PRGs for
combinatorial shapes considered by Gopalan, Meka, Reingold and Zuckerman [13].

A related work is that of Lovett et al. [20] and Meka and Zuckerman [21] who based on the work
of Viola [7, 19, 27], gave an O(log n) seed-length PRG which fools mod-M gates, where M = O(1)
is a power of a prime. The framework of Mod-M gates allows the coefficients {ai}i to take arbitrary
values mod M , but the restriction M = O(1) makes pseudobinomiality more difficult to achieve.
Another related work is by Rabani and Shpilka [25], who constructed explicit polynomial complexity
ε-nets for threshold functions. A threshold function ta,b : {0, 1}n → {0, 1} given by ta,b(x) = 1 iff∑

i aixi ≤ b, where a ∈ Rn and b ∈ R. The result of [25] is an explicit constriction of a subset
S ⊂ {0, 1}n of size polynomial in n and 1

ε such that for all a ∈ Rn and b ∈ R, if EUnta,b > ε,

1A probability distribution µ on {0, 1}n ε-fools a function f : {0, 1}n → {0, 1} if |Eµf − EUnf | ≤ ε.
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then ESta,b 6= 0. In the context of threshold functions, n−Θ(1)-pseudobinomiality is equivalent to
n−Θ(1)−fooling binary threshold functions ta,b corresponding to the case when a ∈ {0,±1}n and
b ∈ Z 2.

We define below pseudobinomiality in the entropy-sense.

Definition (Minium weight entropy). If µ is a probability distribution on {0, 1}n, define the
min-weight entropy of µ:

Hmin(µ) = min
u∈{0,1}n

H(σuµ),

i.e., Hmin(µ) is the minimum Shannon entropy of the weight distribution of a translation of µ.

Definition (Pseudobinomiality in the entropy-sense). A probability distribution µ on {0, 1}n
is called ε-pseudobinomial in the entropy-sense if for each nonempty index subset I ⊂ [n], we have
Hmin(µI) ≥ H(bin|I|)− ε.

It follows from the entropy-difference bound and the entropy-difference converse bound that for
spaces with n−Θ(1)-small bias, pseudobinomiality in the L1-sense is equivalent to pseudobinomiality
in the entropy-sense in the n−Θ(1)-error regime. Namely, let µ be a δ-biased probability distribution
on {0, 1}n and ε > 0. Then:

a) If ε ≤ 1/2 and µ is ε-pseudobinomial in the L1-sense, then it ε lg n+1
ε -pseudobinomial in the

entropy-sense.

b) If µ is ε-pseudobinomial in entropy-sense then it is
√

(2 ln 2)(nδ + ε)-pseudobinomial in the
L1-sense.

Min-weight entropy and average-weight entropy. In Section 4, we elaborate on the notion
of min-weight entropy and we study the related notion of average-weight entropy.

Definition (Average-weight entropy). If µ be a probability distribution on {0, 1}n, define the
average-weight entropy of µ:

Havg(µ)
def
= Eu∼UnH(σuµ) = H(|X + U | | U),

where X ∼ µ and U ∼ Un are independent.

There are distributions µ on {0, 1}n such that the weight distribution µ of µ is the uniform
distribution on [0 : n], and hence H(µ) = lg (n+ 1) ≈ 2H(binn). We note that each probability µ
on {0, 1}n has a translation whose weight distribution has entropy at most H(binn); we show that

Hmin(µ) ≤ Havg(µ) ≤ H(binn),

where the inequalities Havg(µ) ≤ H(binn) and Hmin(µ) ≤ H(binn) are strict unless µ is the uniform
distribution Un on {0, 1}n. That is, Un is the unique maximum min-weight entropy distribution
and the unique maximum average-weight entropy distribution.

2 If µ is ε-pseudobinomial in the L1-sense, then it ε/2-fools all binary threshold functions {ta,b}a,b. Conversely, if
µ ε-fools all binary threshold functions {ta,b}a,b, then it is 2ε-pseudobinomial in the L∞-sense, and hence 2(n+ 1)ε-
pseudobinomial in the L1-sense.
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Local pseudobinomiality. We note in Section 5 that small-bias does not imply pseudobinomiality
in the L1-sense or the entropy-sense even if the bias is exponentially small, but it is enough to
guarantee local pseudobinomiality on small subsets of indices.

Average case pseudobinomiality. In Section 6, we study average-case pseudobinomiality. We
show that for spaces with small bias, the weight distribution of a random translation of the space
is close the binomial distribution. First we show that if µ is a δ-biased probability distribution,

Eu∼Un‖σuµ− binn ‖22 ≤ δ2 (7)

Eu∼Un‖σuµ− binn ‖1 ≤ δ
√
n+ 1. (8)

Then we conclude a similar bound for the average-weight entropy:

0 ≤ I(|X + U |;U) = H(binn)−Havg(µ) = O(nδ +
√
nδ lg

1

δ
), (9)

where X ∼ µ and U ∼ Un are independent, and I is the mutual information function. Thus,
small-bias implies the weaker notion of average-case pseudobinomiality.

The key behind the average L2-bound (7) is the following lemma which is inspired by an
argument in the paper of Viola [27].

Lemma (Variance bound). If f : {0, 1}n → C and µ is a δ-biased probability distribution on
{0, 1}n, then

Eu∼Un |Eσuµf − EUnf |2 ≤ δ2(EUn |f |2 − |EUnf |2).

The proof of the variance bound is based on Parseval’s equality. We derive (7) by applying the
variance bound to f = Iw for all w ∈ [0 : n], where Iw : {0, 1}n → {0, 1} is the weight indicator
function given by Iw(x) = 1 iff |x| = w. The average L1-bound (8) follows from (7) via Jensen’s
inequality. The average-weight entropy bound (9) follows from (8), Jensen’s inequality, and the
negative spectrum lemma.

Sum of spaces conjectures. The work of Viola [7, 19, 27] suggests exploring the derandomization
capabilities of small-bias spaces. Reingold and Vadhan asked whether the sum of two independent
n−O(1)-biased spaces fools log-space [21]. Since any distribution which fools log-space must be
pseudobinomial, a natural question is whether the sum of two independent δ-biased spaces is
O((δn)Θ(1))-pseudobinomial. Using the above results, we show in Section 7 that the following are
equivalent:

I) Pseudobinomiality of sum conjecture. For all independent δ-biased random vectors
X,Y ∈ {0, 1}n, the F2-sum X + Y is O((nδ)Θ(1))-pseudobinomial in the L1-sense.

II) Entropy of sum conjecture. For all independent δ-biased random vectors X,Y ∈ {0, 1}n,
the Shannon entropy of the weight of X + Y satisfies H(|X + Y |) ≥ H(binn)−O((nδ)Θ(1)).

III) Entropy of sum conjecture: max version. For all independent δ-biased random vectors
X,Y ∈ {0, 1}n, H(|X + Y |) ≥ max{H(|X|), H(|Y |)} −O((nδ)Θ(1)).

IV) Entropy of sum conjecture: min version. For all independent δ-biased random vectors
X,Y ∈ {0, 1}n, H(|X + Y |) ≥ min{H(|X|), H(|Y |)} −O((nδ)Θ(1)).
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If A and B are real valued random variables (taking values in a finite set for instance), a simple
conditioning argument show that

H(A+B) ≥ max{H(A), H(B)}.

Unfortunately, the picture is more complex in the context of weight distributions and mod-2 sums;
we show that for highly biased X or Y , the entropy H(|X + Y |) can be smaller than H(|X|) and
H(|Y |).

The equivalence between (I) and (II) follows from the equivalence between pseudobinomiality
in the L1-sense and the entropy-sense, the fact that small-bias is preserved by restrictions and is
invariant under translations, and the local pseudobinomiality of small-bias spaces. In (III) and
(IV), we get rid of the binomial distribution using (9), which says that the average-weight entropy
of a small-bias space is a good approximation of the entropy of the binomial distribution. Namely,
to show that (II) follows from (IV), we argue using (9) that there is u ∈ {0, 1}n such that both
H(|X + u|) and H(|Y + u|) are close to H(binn), and hence by (IV) applied to X + u and Y + u,
H(|X + Y |) = H(|(X + u) + (Y + u)|) is close to H(binn). The fact that (III) follows from (II) is
based on (6), which asserts that the entropy of the weight distribution of a probability distribution
on {0, 1}n with small bias cannot significantly exceed H(binn).

Finally, we note that, by conditioning on Y , the above conjectures follow from the following
(possibly stronger) conjecture.

V) Lower sandwiching the weight-entropy function conjecture. For any δ-biased random

vector X ∈ {0, 1}n, the weight-entropy function h : {0, 1}n → R given by h(u)
def
= H(|X + u|)

has a lower sandwiching function g ≤ h such that EUn(h − g) = O((nδ)Θ(1)) and δ‖ĝ‖1 =
O((nδ)Θ(1)).

Dual characterization of pseudobinomiality. In Section 8, we point out the dual characteriza-
tion of the space of functions fooled by pseudobinomiality in terms of tight sandwichability between
sums of translations of symmetric functions {fi}i on subsets of the variables such that the total
L∞-norm

∑
i ‖fi‖∞ is small.

1.3 Perlininaries

1.3.1 Fourier transform preliminaries

The study of boolean functions using harmonic analysis methods dates back to the 70’s (e.g.,
[17, 16, 18]). We summarize below some basic notions used in this paper. Identify the hypercube
{0, 1}n with the group Zn2 . The characters of the abelian group Zn2 are {χz}z∈Zn2 , where χz :

{0, 1}n → {−1, 1} is given by χy(x) = (−1)
∑n
i=1 xiyi . Consider the vector space L({0, 1}n) of

complex3 valued functions on {0, 1}n endowed with the inner product 〈, 〉 associated with the
uniform distribution on {0, 1}n:

〈f, g〉 = EUnfg =
1

2n

∑
x

f(x)g(x),

3Except for Lemma 6.1, all the objects in this paper are over the reals.
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where ¯ is the complex conjugation operator. The characters {χz}z form an orthonormal basis of
L({0, 1}n), i.e., for each z, z′ ∈ {0, 1}n,

〈χz, χz′〉 =

{
1 if z = z′

0 if z 6= z′.

If f ∈ L({0, 1}n), its Fourier transform f̂ ∈ L({0, 1}n) is given by the coefficients of the unique
expansion of f in terms of {χz}z:

f(x) =
∑
z

f̂(z)χz(x) and f̂(z) = 〈f, χz〉 = EUnfχz.

We have
̂̂
f = 2nf and

〈f, g〉 = 2n〈f̂ , ĝ〉 =
∑
z

f̂(z)ĝ(z). (10)

A special case of (10) is Parseval’s equality:

EUn |f |2 =
∑
z

|f̂(z)|2 = ‖f̂‖22. (11)

1.3.2 Information theory preliminaries

We summarize below basic information theoretic definitions and notations used in this paper (see
[8] for a general reference). Recall from (4) and (5) the definitions of relative entropy D and
Shannon entropy H. The relative entropy is not symmetric but it satisfies the nonnegativity
property D(γ1||γ2) ≥ 0 with equality iff γ1 = γ2. The entropy is a function of the probability
distribution, but in some cases it is convenient to argue on the random variables. If A is a random

variable taking values in a finite set, its entropy H(A)
def
= H(µA), where µA is the probability

distribution of A. If B is another random variable taking values in a finite set, for each value of b

of B, H(A|B = b)
def
= H(µA|B=b), where µA|B=b is the probability distribution of A given B = b.

The conditional entropy of A given B is H(A|B)
def
= Eb∼µBH(A|B = b). The mutual information

is I(A;B)
def
= H(A)−H(A|B). The joint entropy is H(A,B)

def
= H(µA,B), where µA,B is the joint

probability distributions of A and B. The basic properties of mutual information are:

I(A;B) = I(B;A) = H(A,B)−H(A)−H(B) ≥ 0.

2 Entropy of weight distributions and small-bias

In this section, we elaborate on the material introduced in Section 1.2.1. First we derive the
entropy-difference converse bound from the negative spectrum lemma, then we give two specific
applications of the negative spectrum lemma in Section 2.1. The proof of the negative spectrum
lemma is in Section 9. In Section 2.2, we compare the relative entropy similarity measure to the
L1-norm in the proximity of the binomial distribution.

Definition 2.1 (Log-binomial function). Let L : {0, 1}n → R be given by:

L(x) = lg binn(|x|).
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Lemma 2.2. Let µ be a probability distribution on {0, 1}n, then

H(binn)−H(µ) = (EµL− EUnL) +D(µ||binn)

Proof. Expand

D(µ||binn) =
∑
w

µ(w) lg
µ(w)

binn(w)
= −

∑
w

µ(w) lg binn(w)−H(µ) = −EµL−H(µ).

Thus, H(binn)−H(µ) = EµL+H(binn) +D(µ||binn). The lemma then follows from noting that
H(binn) = −EUnL.

The key behind the entropy-difference converse bound is the following lemma whose proof is in
Section 9.

Lemma 2.3 (Negative spectrum lemma). L̂(z) ≤ 0 for each z ∈ {0, 1}n. Moreover, L̂(z) = 0
if |z| odd, and L̂(z) < 0 if z 6= 0 and |z| even.

Corollary 2.4. ‖L̂‖1 = n.

Proof. The key point is that L̂ ≤ 0 by the negative spectrum lemma, hence

‖L̂‖1 = −
∑
z

L̂(z) = −L(0) = − lg binn(0) = n.

Corollary 2.5. Let µ be a probability distribution on {0, 1}n. If µ is δ-biased, then

|EµL− EUnL| ≤ δn.

Proof. Consider the Fourier expansion of the log-binomial function L: L(x) =
∑

z L̂(z)χz(z). Thus,

EµL− EUnL =
∑

z 6=0 L̂(z)Eµχz(z) since L̂(0) = EUnL. It follows that

|EUnL− EµL| = |
∑
z 6=0

L̂(z)Eµχz| ≤ δ‖L̂‖ 6=0
1 ,

where ‖L̂‖ 6=0
1 =

∑
z 6=0 |L̂(z)| ≤ ‖L̂‖1 = n.

Corollary 2.6 (Entropy-difference converse bound). Let µ be a probability distribution on
{0, 1}n. If µ is δ-biased, then

D(µ||binn) ≤ nδ +H(binn)−H(µ). (12)

Hence
‖µ− binn ‖21 ≤ (2 ln 2)(nδ +H(binn)−H(µ)). (13)

Proof. By Lemma 2.2 and Corollary 2.5:

D(µ||binn) = EUnL− EµL+H(binn)−H(µ) ≤ nδ +H(binn)−H(µ).

Bound (13) follows from Bound (12) and Pinsker’s bound (Part (b) of Theorem 1.1).
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We note below that one consequence of the above is that if µ has small bias, then unlike arbitrary
probability distribution on {0, 1}n, H(µ) cannot be significantly larger than H(binn) if it has small
bias.

Corollary 2.7 (Maximum entropy of the weight distribtions of small-bias spaces). Let
µ be a probability distribution on {0, 1}n. If µ is δ-biased, then H(µ) ≤ H(binn) + nδ.

Proof. The bound follows from Corollary 2.6 since D(µ||binn) ≥ 0.

2.1 Specific applications of the negative spectrum lemma

2.1.1 Entropy of distributions with nonnegative Fourier spectrum

A consequence of negative spectrum lemma is that if the Fourier transform of a probability dis-
tribution µ on {0, 1}n is nonnegative, then H(binn) − H(µ) ≤ D(µ||binn). For instance, if µ is
uniformly supported by a linear code, then its Fourier transform is nonnegative. Another example
of a distribution with nonnegative Fourier transform is the convolution of a probability distribution
on {0, 1}n with itself.

The bound is slightly better than the one resulting from combining Pinsker’s bound and the
entropy-difference bound: H(binn)−H(µ) ≤ β lg (n+1)

β , where β =
√

(2 ln 2)D(µ||binn) under the

assumption that D(µ||binn) ≤ 1
8 ln 2

4.

Corollary 2.8. Let µ be a probability distribution on {0, 1}n whose Fourier transform is nonneg-
ative, i.e., Eµχz ≥ 0 for each z ∈ {0, 1}n. Then H(binn)−H(µ) ≤ D(µ||binn).

Proof. As in Corollary 2.5, consider the Fourier expansion of the log-binomial function L: L(x) =∑
z L̂(z)χz(z). Thus, EµL − EUnL =

∑
z 6=0 L̂(z)Eµχz(z) ≤ 0 since, by Lemma 2.3, L̂ ≤ 0. Hence

the claim follows from Lemma 2.2.

Below are examples of distributions with the nonnegative Fourier transform property:

• Let C ⊂ Fn2 be an F2-linear code, and the let µC be the distributions resulting from choosing
a uniformly random element of C. Thus,

EµCχz =

{
1 if z ∈ C⊥
0 otherwise,

where C⊥ is the dual of C. It follows that H(binn)−H(µC) ≤ D(µC ||binn).

• Let µ be probability distribution on {0, 1}n and consider the convolution µ∗µ of µ with itself,
i.e., (µ∗µ)(a) =

∑
x µ(y)µ(x+a). That is, choose x ∼ µ and y ∼ µ independently and output

their F2-sum x+ y . We have Eµ∗µχz = Ex,y∼µχz(x+ y) = (Eµχz)
2 ≥ 0, for each z ∈ {0, 1}n.

It follows that H(binn)−H(µ ∗ µ) ≤ D(µ ∗ µ||binn).

4 By Pinsker’s bound, ε
def
= ‖ binn−µ‖1 ≤ β

def
=

√
(2 ln 2)D(µ||binn) ≤ 1

2
. Thus, by the entropy-difference bound

H(binn)−H(µ) ≤ ε lg (n+1)
ε
≤ β lg (n+1)

β
since the function x lg n+1

x
is increasing for 0 ≤ x ≤ 1

2
, for all n ≥ 1.
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2.1.2 Entropy of even weight strings

It follows from the negative spectrum lemma that the entropy of the weight distribution of the even
weight strings is strictly larger than that of odd weight strings if n is even.

Corollary 2.9. Let En ∈ {0, 1}n be a uniformly random vector of even weight and On ∈ {0, 1}n a
uniformly random vector of odd weight.

a) If n is odd, then H(|En|) = H(|On|).

b) If n is even, then H(|En|) > H(|On|).

Proof. If n is odd, then |En| and n−|On| are identically distributed, hence H(|En|) = H(n−|On|) =
H(|On|). Assume in what follows that n is even.

We have

H(|On|)−H(|En|) = −
∑
w odd

(
n
w

)
2n−1

lg

(
n
w

)
2n−1

+
∑

w even

(
n
w

)
2n−1

lg

(
n
w

)
2n−1

=
∑
w

(−1)w
(
n
w

)
2n−1

lg

(
n
w

)
2n−1

= 2
∑
w

(−1)w
(
n
w

)
2n

lg

(
n
w

)
2n

(Since
∑

w(−1)w
(
n
w

)
= 0)

= 2L̂(~1),

where ~1 ∈ {0, 1}n is the all ones vector. Hence (b) follows from the negative spectrum lemma for
z = ~1.

2.2 Relative entropy versus L1 in the proximity of the binomial

Pinsker’s bound implies that relative entropy is in general stronger than L1. We note in Corollary
2.10 that for weight distributions µ of probability distributions µ on {0, 1}n, D(µ||binn) is equivalent
to ‖µ− binn ‖1 in the n−Θ(1)-error regime.

Unlike in the entropy-difference converse bound, small-bias is not essential here; the bound in
Part (b) below, which assumes small bias, is only slightly better than Part (a). Parts (c) and (d)
are simple variations of (a) and (b) without the assumption ‖γ1 − γ2‖1 ≤ 1

2 . We will use Part (d)
in Section 6.

Corollary 2.10. Let µ be a probability distribution on {0, 1}n and ε = ‖µ− binn ‖1. Then:

a) D(µ||binn) ≤ nε+ ε lg n+1
ε if ε ≤ 1

2 .

b) D(µ||binn) ≤ nδ + ε lg n+1
ε if ε ≤ 1

2 and µ is δ-biased

c) D(µ||binn) ≤ nε+ 3ε lg n+1
ε if n ≥ 7

d) D(µ||binn) ≤ nδ + 3ε lg n+1
ε if µ is δ-biased and if n ≥ 7.
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Proof. Part (b) follows from combining Corollary 2.6 with the entropy-difference bound (Part (b)
of Theorem 1.1). The bound in Part (d) follows from Corollary 2.6 and Lemma 2.11 below which
is a simple variation of the entropy-difference bound that does not assume ‖γ1 − γ2‖1 ≤ 1

2 . To
establish (a) and (c), note that by Lemma 2.2, we have

D(µ||binn) = EUnL− EµL+H(binn)−H(µ).

Moreover, EUnL− EµL =
∑

w(µ(w)− binn(w)) lg binn(w). Thus, |EUnL− EµL| ≤ ‖µ− binn ‖1 ×
‖L‖∞ = εn. It follows that D(µ||binn) ≤ εn + |H(binn) − H(µ)|. Thus, (a) and (c) follow from
the entropy-difference bound and its variation below.

Lemma 2.11. Let γ1 and γ2 be two probability distributions on a finite set X . If |X | ≥ 8, then

|H(γ1)−H(γ2)| ≤ 3ε lg |X |ε , where ε = ‖γ1 − γ2‖1.

Proof. Let m = |X |. By the entropy-difference bound, |H(γ1) − H(γ2)| ≤ ε lg m
ε if ε ≤ 1

2 . Note
that ‖γ1 − γ2‖1 is at most 2 and |H(γ1)−H(γ2)| is at most lgm. Thus, it is enough to verify that
3ε lg m

ε ≥ lgm for all 1
2 ≤ ε ≤ 2. We have 3ε lg m

ε ≥
3
2 lg m

2 = 3
2 lgm− 3

2 ≥ lgm for m ≥ 8.

Remark 2.12. Recall that the relative entropy is not symmetric. It is worth mentioning that unlike
D(µ||binn), the similarity measure D(binn ||µ) is problematic in our context since if µ(w) = 0 for
some w ∈ [0 : n], then D(binn ||µ) = ∞. This issue can be fixed by small perturbations of µ to
guarantee that for some β > 0, µ(w) > β for all w ∈ [0 : n]. By arguing as Corollary 2.10, it follows
easily from the entropy-difference bound that under this assumption, D(binn ||µ) ≤ ε lg 1

β+ε lg n+1
ε , if

ε = ‖µ−binn ‖1 ≤ 1
2 . Accordingly, for β = 2−Ω(nΘ(1)), we get from Pinsker’s bound that D(binn ||µ)

is equivalent to ‖µ− binn ‖1 in the n−Θ(1)-error regime.

3 Pseudobinomial spaces

In this section we elaborate on the notion of pseudobinomial probability distributions introduced in
Section 1.2.2. We conclude from the entropy-difference bound and the entropy-difference converse
bound that for spaces with n−Θ(1)-small bias, pseudobinomiality in the L1-sense is equivalent to
pseudobinomiality in the entropy-sense in the n−Θ(1)-error regime.

First we elaborate on the notations introduced in Section 1.2.2. If µ is a probability distribution
on {0, 1}n and u ∈ {0, 1}n is a translation vector, define the translation σuµ of µ by u to be the
probability distribution on {0, 1}n given by (σuµ)(x) = µ(x + u). If I ⊂ [n] is nonempty, the
restriction µI of µ on I is the probability distribution on {0, 1}I given by µI(y) = µ(x : xI = y),
for each y ∈ {0, 1}I . We will also use the previously defined notations on {0, 1}n for probability
distributions on {0, 1}I . For instance, bin|I| is the binomial distribution on [0 : |I|], and if u ∈
{0, 1}I , then σuµI is the weight distribution of the translation σuµ

I of the restriction µI of µ.

Definition 3.1 (Pseudobinomiality in the Lp-sense). Let ε > 0 and consider the Lp-norm,
where p = 1, 2 or ∞. A probability distribution µ on {0, 1}n is called ε-pseudobinomial in the
Lp-sense if for each nonempty set of indices I ⊂ [n] and each translation vector u ∈ {0, 1}I , we

have ‖σuµI − bin|I| ‖p ≤ ε. That is, the weight distribution of each translation of a restriction of µ
is ε-close to the binomial distribution in the Lp-sense.

A subset S ⊂ {0, 1}n is called ε-pseudobinomial in the Lp-sense if the probability distribution
µS on {0, 1}n resulting from choosing a uniformly random element of S is ε-pseudobinomial in the
Lp-sense.
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Pseudobinomiality in the L1-sense, L2-sense, and L∞-sense are equivalent in the ε = n−Θ(1)

regime. Namely, with the Lp pseudobinomiality error of µ defined as εp(µ)
def
= minI,u ‖σuµI −

bin|I| ‖p, we have

ε∞(µ) ≤ ε2(µ) ≤ ε1(µ) ≤
√

(n+ 1)ε2(µ) ≤ (n+ 1)ε∞(µ).

We focus mostly in what follows on the L1-sense. Recall the total variation equation (3):

‖σuµI − bin|I| ‖1 = 2 max
A⊂I
|σuµI(A)− bin|I|(A)|.

Thus, µ is ε-pseudobinomial in L1-sense iff 2|σuµI(A)− bin|I|(A)| ≤ ε, for all nonempty I ⊂ [n], all

A ⊂ I and u ∈ {0, 1}I .

Lemma 3.2. If a probability distribution µ on {0, 1}n is ε-pseudobinomial in L1-sense, then it is
ε-biased.

Proof. Consider any nonzero z ∈ {0, 1}n, let I be the support of z, and let EI the set of even
numbers in [0 : |I|]. Thus, |Eµχz| = 2|µI(EI) − bin|I|(EI))|. The lemma follows from the total
variation equation.

Compared to ε-bias, ε-pseudobinomiality in the L1-sense extends the requirement 2|σuµI(A)−
bin|I|(A)| ≤ ε from A = EI to all the subsets A ⊂ [0 : |I|] (note that |σuµI(EI) − bin|I|(EI)| =

|µI(EI)− bin|I|(EI)|, for all u ∈ {0, 1}I , since EI + u is either EI or its complement). In this sense,
ε-pseudobinomiality in the L1-sense is a natural extension of the ε-bias property, which is also
invariant under translations and preserved by restrictions.

Problem 3.3. Given n and ε, explicitly construct a poly(n, 1
ε )-size subset S ⊂ {0, 1}n such that S

is ε-pseudobinomial in the L1-sense.

For convenience, we repeat below the following two definitions introduced in Section 1.2.2.

Definition 3.4 (Minimum weight entropy). If µ is a probability distribution on {0, 1}n, define
the min-weight entropy of µ:

Hmin(µ) = min
u∈{0,1}n

H(σuµ),

i.e., Hmin(µ) is the minimum Shannon entropy of the weight distribution of a translation of µ.

Definition 3.5 (Pseudobinomiality in the entropy-sense). A probability distribution µ on
{0, 1}n is called ε-pseudobinomial in the entropy-sense if for each nonempty index subset I ⊂ [n],
we have Hmin(µI) ≥ H(bin|I|)− ε.

Using the entropy-difference bound and the entropy-difference converse bound, we obtain the
following equivalence.

Corollary 3.6 (Pseudobinomiality: L1 and entropy equivalence). let µ be a δ-biased prob-
ability distribution µ on {0, 1}n and ε > 0. Then:

a) If ε ≤ 1/2 and µ is ε-pseudobinomial in the L1-sense, then it ε lg n+1
ε -pseudobinomial in the

entropy-sense.
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b) If µ is ε-pseudobinomial in entropy-sense then it is
√

(2 ln 2)(nδ + ε)-pseudobinomial in the
L1-sense.

Proof. Part (a) follows from the Difference in entropy Bound (Lemma 1.1). Part (b) follows from
the Difference in entropy Converse Bound (Theorem 2.6) and the fact that δ-bias is preserved by
restrictions and invariant under translations.

Question 3.7. Does small-bias follow from pseudobinomiality in entropy? We know from Lemma
3.2 that ε-pseudobinomiality in the L1-sense implies ε-bias. Does ε-pseudobinomiality in the entropy-
sense imply δ-bias, where δ is small (e.g., δ = (εn)c, for some absolute constant c > 0)?

4 Min-weight entropy, average-weight entropy, and the binomial
entropy

In this section, we elaborate on the notion of min-weight entropy and we study the related notion
of average-weight entropy. There are distributions µ on {0, 1}n such that the weight distribution
µ of µ is the uniform distribution on [0 : n], and hence H(µ) = lg (n+ 1) ≈ 2H(binn). We note
below that each probability µ on {0, 1}n has a translation whose weight distribution has entropy
at most H(binn), and hence Hmin(µ) ≤ H(binn). To do so, we need the notion of average-weight
entropy which we obtain by replacing the min with an average and we can interpret in terms of
conditional entropy.

Definition 4.1 (Average-weight entropy). If µ is a probability distribution on {0, 1}n, define
the average-weight entropy of µ:

Havg(µ) = Eu∼UnH(σuµ),

i.e., Havg(µ) is the average Shannon entropy of the weight distribution of a random translation of
µ. In terms of conditional entropy, we have the following equivalent definition. Let X ∈ {0, 1}n
a random vector generated according to µ, and let U ∈ {0, 1}n be a uniformly distributed random
vector independent from X. Then

Havg(µ) = H(|X + U | | U).

By definition, Hmin(µ) ≤ Havg(µ). On the other hand, H(binn) − Havg(µ) is the mutual
information between the weight |X + U | of X + U and U :

H(binn)−Havg(µ) = H(|X + U |)−H(|X + U | | U) = I(|X + U |;U) ≥ 0.

It follows that Hmin(µ) ≤ Havg(µ) ≤ H(binn). We argue below that the inequality Havg(µ) ≤
H(binn) is strict unless µ is the uniform distribution. To do so, we need the following lemma which
we will use also in Section 6.

Lemma 4.2. Let µ be a probability distribution on {0, 1}n, then

H(binn)− Eu∼UnH(σuµ) = Eu∼UnD(σuµ||binn). (14)
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Proof. By Lemma 2.2, for each u ∈ {0, 1}n, we have H(binn) − H(σuµ) = e(u) + D(σuµ||binn),
where e(u) = EσuµL− EUnL. The Lemma follows from the fact that the average EUne = 0:

Eu∼Une(u) = Eu∼UnEx∼µL(x+ u)− EUnL = Ex∼µEu∼UnL(x+ u)− EUnL = 0.

Lemma 4.3. If Havg(µ) = H(binn), then µ is the uniform distribution Un on {0, 1}n.

Proof. If Havg(µ) = H(binn), then the LHS of (14) is zero. Since D(σuµ||binn) ≥ 0, we must
have D(σuµ||binn) = 0, i.e., σuµ = binn, for each u. It follows that for each symmetric function
s : {0, 1}n → R (i.e., s(x) depends only on |x|) and for each translation vector u ∈ {0, 1}n, we have
Eµσus = EUnσus, where σus is the translation of s by u given by (σus)(x) = s(x+u). In particular
this is true for the symmetric function s : {0, 1}n → {0, 1} given by s(x) = 1 iff x = 0. Since the
R-span of {σus}u is the set of all functions {0, 1}n → R, we get that µ = Un.

In summary, we have the following.

Corollary 4.4 (Min-weight entropy, avg-weight-entropy, and the binomial entropy). Let
µ be a probability distribution on {0, 1}n. Then:

a) Hmin(µ) ≤ Havg(µ) ≤ H(binn), where the inequalities Havg(µ) ≤ H(binn) and Hmin(µ) ≤
H(binn) are strict unless µ is the uniform distribution Un on {0, 1}n. That is, Un is the
unique maximum min-weight entropy distribution and the unique maximum average-weight
entropy distribution.

b) If X ∈ {0, 1}n is a random vector generated according to µ, and U ∈ {0, 1}n is uniformly
distributed random vector independent from X. Then

0 ≤ I(|X + U |;U) = H(binn)−Havg(µ) = Eu∼UnD(σuµ||binn).

We will argue in Section 6 that if µ has small bias, then Eu∼UnD(σuµ||binn) is small. Namely,
if µ is δ-biased, then Eu∼UnD(σuµ||binn) = O(nδ +

√
nδ lg 1

δ ). It follows that small bias is enough
to guarantee that the average-weight entropy is close to that of the binomial (see Corollary 6.4).

A final remark, is that it is possible that Hmin(µ) = Havg(µ) for µ 6= Un. For instance, if the
support of µ contains only one vector, or two vectors whose hamming distance is odd.

5 Local pseudobinomiality

We note in this section that small-bias does not imply pseudobinomiality in the L1-sense or the
entropy-sense even if the bias is exponentially small, but it is enough to guarantee local pseudobi-
nomiality on small subsets of indices.

Let S3 = {x ∈ {0, 1}n : |x| = 0 (mod 3)}, and consider the distribution µS3 resulting from
choosing a uniformly random element of S. Then µS3 is 2−Ω(n)-biased (see [10]), but ‖µS3 −
binn ‖∞ = Θ( 1√

n
) and ‖µS3 − binn ‖1 = Θ(1) (this follows easily from de Moivre-Laplace normal

approximation of the binomial (see Theorem 9.4)). Hence, by the entropy-difference converse bound
(Corollary 2.6), H(binn)−H(µS3) ≥ 1

2 ln 2‖µS3 − binn ‖21 − nδ = Θ(1).
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Similarly k-wise independence does not imply small-pseudobinomiality unless k = n. For in-
stance, let S2 be the set even weight vectors, then µS2 is (n − 1)-wise independent, but ‖µS2 −
binn ‖∞ = Θ( 1√

n
) and ‖µS2 − binn ‖1 = Θ(1).

However, we can can guarantee proximity to the binomial distribution for small subsets of
indices I ⊂ [n]. In particular, if |I| = O(log n), then sufficiently small δ = n−Θ(1) is enough.

Lemma 5.1 (Local pseudobinomiality). Let k ≥ 1 and µ be a δ-biased probability distribution
µ on {0, 1}n. Then for each nonempty set of indices I ⊂ [n] of size |I| ≤ k, and each translation
vector u ∈ {0, 1}I , we have ‖σuµI − bin|I| ‖1 ≤ 2δ2k/2.

The proof of the lemma follows from a standard argument known as Vazirani XOR Lemma [26]
(see also [22]), which we include below for completeness.

Proof. By the total variation expression (3),

‖σuµI − bin|I| ‖1 = 2 max
A⊂[0:|I|]

|σuµI(A)− bin|I|(A)|.

Let f : {0, 1}I → {0, 1} be given by f(x) = 1 iff |x+ u| ∈ A. Thus,

|σuµI(A)− bin|I|(A)| = |Eµf − EUnf | ≤ δ‖f̂‖1 ≤ δ
√

2|I|‖f̂‖2 ≤ δ2k/2,

where the last equality follows from Parseval’s equality ‖f̂‖22 = EUnf
2 = EUnf ≤ 1 since f is 0/1

valued.

6 Average case pseudobinomiality

In this section, we show that if µ is a δ-biased probability distribution, then Eu∼Un‖σuµ−binn ‖1 ≤
δ
√
n+ 1, i.e., the average L1-distance between the binomial distribution and the weight distribution

of the translation of µ by a random vector in {0, 1}n is most δ
√
n+ 1. Thus, if the bias is small,

almost all translation of µ have weight distributions close to the binomial distribution. In this sense,
small-bias implies average case pseudobinomiality. We conclude a similar bound for average-weight
entropy: if µ be a δ-biased, then Havg(µ) = H(binn)−O(nδ +

√
nδ lg 1

δ ).
The following Lemma is inspired by the paper of Viola [27] (the argument used to establish

Lemma 3 in [27]) and it follows from Parseval’s equality.

Lemma 6.1 (Variance bound). If f : {0, 1}n → C and µ is a δ-biased probability distribution
on {0, 1}n, then

Eu∼Un |Eσuµf − EUnf |2 ≤ δ2(EUn |f |2 − |EUnf |2).

Proof. Define ∆ : {0, 1}n → R by ∆(u) = Eσuµf − EUnf . Consider the Fourier expansion of f :

f =
∑

z f̂(z)χz. Thus,

∆(u) = Ey∼µ
∑
z

f̂(z)χz(y + u)− EUnf =
∑
z

χz(u)f̂(z)Eµχz − EUnf =
∑
z 6=0

χz(u)f̂(z)Eµχz

since χ0 = 1 and f̂(0) = EUnf . Hence ∆̂(0) = 0 and ∆̂(z) = f̂(z)Eµχz for each z 6= 0. It follows
from Parseval’s Equality (11) that

Eu∼Un |∆̂(z)|2 =
∑
z 6=0

|f̂(z)|2(Eµχz)
2 ≤ δ2

∑
z 6=0

|f̂(z)|2 = δ2(EUn |f |2 − |EUnf |2)
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since f̂(0) = EUnf and EUn |f |2 =
∑

z |f̂(z)|2, by Parseval’s equality.

Corollary 6.2 (Average case pseudobinomiality). Let µ be a δ-biased probability distribution
on {0, 1}n, then

a) Eu∼Un‖σuµ− binn ‖22 ≤ δ2

b) Eu∼Un‖σuµ− binn ‖1 ≤ δ
√
n+ 1

c) Eu∼UnD(σuµ||binn) = O(nδ +
√
nδ lg 1

δ ).

Proof. If w ∈ [0 : n], define the indicator function Iw : {0, 1}n → {0, 1} by Iw(x) = 1 iff |x| = w.
Thus, binn(w) = EUnIw and σuµ(w) = EσuµIw . Hence ‖σuµ− binn ‖22 =

∑
w |EσuµIw − EUnIw|2,

and accordingly,

Eu∼Un‖σuµ− binn ‖22 =
∑
w

Eu∼Un |EσuµIw − EUnIw|2.

Fix w ∈ [0 : n]. Applying Lemma 6.1 with f = Iw, we get

Eu∼Un |EσuµIw − EUnIw|2 ≤ δ2(EUn |Iw|2 − |EUnIw|2) ≤ δ2EUnIw

since EUn |Iw|2 = EUnIw as Iw is 0/1 valued. It follows that Eu∼Un‖σuµ− binn ‖22 ≤ δ2
∑

w EUnIw
= δ2 since

∑
w Iw = 1.

Part (b) follows from Part (a) via Jensen’s inequality applied to g(u,w) = σuµ(w) − binn(w)
(namely, (Eu,w|g(u,w)|)2 ≤ Eu,w|g(u,w)|2).

We derive Part (c) from Part (b) and Part (d) of Corollary 2.10. For each u ∈ {0, 1}n, let
ε(u) = ‖σuµ− binn ‖1. By Part (d) of Corollary 2.10, we have D(σuµ||binn) ≤ nδ + 3ε(u) lg n+1

ε(u) if

n ≥ 7. Since the function x lg n+1
x is concave, Eu∼Unε(u) lg n+1

ε(u) ≤ Eu∼Unε(u) lg n+1
Eu∼Unε(u) . By Part

(b), we have Eu∼Unε(u) ≤ δ
√
n+ 1. The function x lg n+1

x is increasing for all 0 ≤ x ≤ (n + 1)/e,
thus if δ

√
n+ 1 ≤ (n+ 1)/e, we have

Eu∼UnD(σuµ||binn) ≤ nδ + 3δ
√
n+ 1 lg

√
n+ 1

δ
= O(nδ +

√
nδ lg

1

δ
).

Finally, note that the condition δ
√
n+ 1 ≤ (n + 1)/e can be ignored since the bias δ ≤ 1 and√

n+ 1 < (n+ 1)/e for all n ≥ 7.

Remark 6.3. The bound in Part (c) uses Part (d) of Corollary 2.10, which relies on the negative
spectrum lemma. If instead of Part (d) of Corollary 2.10, we use the bound in Part (c) which does
not depend on the negative spectrum lemma, we get the slightly weaker bound Eu∼UnD(σuµ||binn) =
O(n3/2δ +

√
nδ lg 1

δ ).

It follows from (c) and from Part (b) of Corollary 4.4 that small bias is enough to guarantee
that the average-weight entropy is close to that of the binomial:

Corollary 6.4 (Average-weight entropy of small-bias spaces). Let µ be a δ-biased probability
distribution on {0, 1}n. Then

0 ≤ I(|X + U |;U) = H(binn)−Havg(µ) = O(nδ +
√
nδ lg

1

δ
),

where X ∈ {0, 1}n is generated according to µ, and U ∈ {0, 1}n is a uniformly distributed random
vector independent from X.
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Remark 6.5. Note that since I(|X + U |;U) = I(U ; |X + U |) = H(U) − H(U | |X + U |) and
H(U) = n, we have H(U | |X + U |) = n−O(nδ +

√
nδ lg 1

δ ).

Lemma 6.1 fails if instead of a δ-biased probability distribution we have a probability distribution
uniformly supported by an F2-linear code Q ( Fn2 . By a more involved argument, a statement
similar to Part (b) of Corollary 6.2 can be derived for linear codes with large bilateral minimum
distance. The bilateral minimum distance of an F2-linear code Q ⊂ Fn2 is the maximum d such that
all nonzero codewords have weights between d and n− d.

Theorem 6.6 ([5, 6] Global average case pseudobinomiality for linear codes). 5 Let
Q ( {0, 1}n be an F2-linear code whose dual has bilateral minimum distance at least 2t+ 1, where
t ≥ 1 is an integer.
If t ≥ 1,

Eu∼Un‖µQ+u − binn ‖∞ ≤ min

{(
e ln

n

2t

)t(2t

n

) t
2

,
√

2e−
t

10

}
.

If t ≥ 3,

Eu∼Un‖µQ+u − binn ‖1 ≤ min

{
(2t+ 1)

(
e ln

n

2t

)t(2t

n

) t
2
−1

,
√

2(n+ 1)e−
t

10

}
.

Thus, for t = Θ(1),

Eu∼Un‖µQ+u − binn ‖1 = O

(
(lnn)t

n
t
2
−1

)
.

It follows that, for t ≥ 3, almost all cosets of Q have weight distributions close to the binomial
distribution in the L1-sense. An extended version of dual BCH codes gives explicit codes of size 2(n+
1)t and bilateral minimum distance at least 2t+1 [5, 6]. We can interpret Theorem 6.6 as a statement
about linear codes with large dual bilateral minimum distance being globally pseudobinomial on the
average in the L1-sense (they cannot be locally pseudobinomial due the defining linear constraints
which makes them highly biased).

7 Sum of spaces conjectures

Viola [7, 19, 27] proved that the sum of independent small-bias spaces fools constant degree polyno-
mials. Naturally, this suggests the question of whether other simple functions can be derandomized
by sums of independent small-bias spaces. Reingold and Vadhan asked whether the sum of two
independent n−O(1)-biased spaces fools log-space [21]. Meka and Zuckerman [21] ruled out the pos-
sibility that the sum of two independent spaces with constant-bias gives a hitting set for log-space.
Since any distribution which ε-fools log-space must be ε-pseudobinomial in L∞-sense (and hence
(n+1)ε-pseudobinomial in the L1-sense), a natural question is whether the sum of two independent
δ-biased spaces is O((δn)Θ(1))-pseudobinomial in the L1-sense.

If X,Y ∈ {0, 1}n are independent random vectors distributed according to µX and µY , consider
the sum X + Y over F2. The probability distribution of X + Y is the convolution µX ∗ µY :
(µX ∗ µY )(z) =

∑
x µX(x)µY (x+ z).

5Theorem 6.6 is not used in the proofs in this paper except for the proof of Lemma 7.7, which is stated to compare
with highly biased spaces.
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Conjecture 7.1 (Pseudobinomiality of sum). For all independent δ-biased random vectors
X,Y ∈ {0, 1}n, the sum X + Y is O((nδ)Θ(1))-pseudobinomial in the L1-sense.

That is, there exist constants a, b, c, n0 > 0, such that for each δ > 0, for each integer n > n0,
and all independent δ-biased random vectors X,Y ∈ {0, 1}n, the sum X+Y is aδbnc-pseudobinomial
in the L1-sense.

We argue that Conjecture 7.1 is equivalent to each of the following three conjectures.

Conjecture 7.2 (Entropy of sum). For all independent δ-biased random vectors X,Y ∈ {0, 1}n,
the Shannon entropy of the weight of X + Y satisfies H(|X + Y |) ≥ H(binn)−O((nδ)Θ(1)).

That is, there exist constants a, b, c, n0 > 0, such that for each δ > 0, for each integer n > n0,
and all independent δ-biased random vectors X,Y ∈ {0, 1}n, H(|X + Y |) ≥ H(binn)− aδbnc.

Conjecture 7.3 (Entropy of sum without the binomial: max version). For all independent
δ-biased random vectors X,Y ∈ {0, 1}n, H(|X + Y |) ≥ max{H(|X|), H(|Y |)} −O((nδ)Θ(1)).

Conjecture 7.4 (Entropy of sum without the binomial: min version). For all independent
δ-biased random vectors X,Y ∈ {0, 1}n, H(|X + Y |) ≥ min{H(|X|), H(|Y |)} −O((nδ)Θ(1)).

Lemma 7.5. Conjecture 7.1 is equivalent to Conjecture 7.2.

Lemma 7.6. Conjectures 7.2, 7.3, and 7.4 are equivalent.

The proof of Lemma 7.5 is in Section 7.1. The equivalence follows from the equivalence between
pseudobinomiality in the L1-sense and the entropy-sense, and the fact that small-bias is preserved
by restrictions and is invariant under translations (we also need the fact that small-bias implies
local pseudobinomiality on small sets of induces (Lemma 5.1) to handle the n0 parameters in the
statement of Conjecture 7.1).

The proof of Lemma 7.6 is in Section 7.2. In Conjectures 7.3 and 7.4, we get rid of the binomial
distribution using Corollary 6.4 which says that average-weight entropy of a small-bias space is
a good approximation of the entropy of the binomial distribution. To show that Conjecture 7.2
follows from Conjecture 7.4, we argue using Corollary 6.4 that there is u ∈ {0, 1}n such that both
H(|X + u|) and H(|Y + u|) are close to H(binn), and hence by Conjecture 7.4 applied to X + u
and Y + u, H(|X + Y |) = H(|(X + u) + (Y + u)|) is close to H(binn). Obviously, Conjecture 7.4
follows from Conjecture 7.3. The fact that Conjecture 7.3 follows from Conjecture 7.2 is based on
Corollary 2.7, which asserts that the entropy of the weight distribution of a probability distribution
on {0, 1}n with small bias cannot significantly exceed H(binn).

If A and B are real valued random variables (taking values in a finite set for instance), a simple
conditioning argument show thatH(A+B) ≥ H(A+B|B) = H(A) and similarlyH(A+B) ≥ H(B).
Thus,

H(A+B) ≥ max{H(A), H(B)}.

Unfortunately, the picture in our context is more complex. For highly biased X and Y , the entropy
H(|X + Y |) can be significantly smaller than H(|X|) and H(|Y |).

Lemma 7.7. For infinitely many values of n, there exists a coset S ⊂ Fn2 of an F2-linear code such
that H(|X|) = H(|Y |) = Θ(log n) but H(|X + Y |) = Θ(1), where X and Y are random vectors
chosen independently and uniformly from S.
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The proof uses Theorem 6.6 and it is in Section 7.3. Lemma 7.7 shows that we need at least
one variable to have small bias. The following Lemma shows that we need small bias in both.

Lemma 7.8. There exist a 2−Ω(n)-biased random vector X ∈ {0, 1}n and a deterministic vector
Y ∈ {0, 1}n such that H(|X + Y |) = H(|X|)− Ω(1).

Proof. We know from Section 5 that there exists a random vector Z ∈ {0, 1}n such that Z is δ-
biased but H(|Z|) = H(binn) − Ω(1), where δ = 2−Ω(n). By Corollary 6.4, Havg(Z) = H(binn) −
O(nδ +

√
nδ lg 1

δ ). Thus, there exist u ∈ {0, 1}n such that H(|Z + u|) = H(binn) − 2−Ω(n). Let
X = Z + u and Y = u, hence X + Y = Z.

Another way get to rid of the H(binn) term in Conjecture 7.2 is via averaging followed by
conditioning. Consider replacing H(binn) in Conjecture 7.2 by the average entropy Havg(X) =
H(|X + U | | U) of X. By Corollary 6.4, we have H(binn) = Havg(X) + O(nδ +

√
nδ lg 1

δ ). Thus,
Conjecture 7.2 is equivalent to showing that

H(|X + Y |) = H(|X + U | | U)−O((nδ)Θ(1)).

Since conditioning reduces entropy

H(|X + Y |) = H(|X + Y | | Y ) + I(|X + Y |;Y ) ≥ H(|X + Y | | Y ),

the conjecture would follow if (we don’t have a proof of the other direction) we can show that

H(|X + Y | | Y ) = H(|X + U | | U)−O((nδ)Θ(1)),

for all independent δ-biased X and Y . Compared to the argument of Viola [27] for low-degree
polynomials, the loss incurred by conditioning is at a high level similar to the loss resulting from
Jensen’s inequality in Viola’s argument (since Jensen’s inequality is also behind the fact that
conditioning reduces entropy).

By looking at the LP dual, we get the following.

Definition 7.9 (Weight-entropy function). If X ∈ {0, 1}n is a random vector, define the
weight-entropy function hµX : {0, 1}n → R by

hµX (u)
def
= H(|X + u|) = H(σuµX),

where µX is the probability distribution of X.

Conjecture 7.10 (Lower sandwiching the weight-entropy function). For each δ-biased
random vector X ∈ {0, 1}n, there exists g : {0, 1}n → R such that:

• g ≤ hµX

• EUn(hµX − g) = O((nδ)Θ(1))

• δ‖ĝ‖1 = O((nδ)Θ(1)).

Lemma 7.11. Conjecture 7.10 implies Conjecture 7.2.

The proof of Lemma 7.11 is in Section 7.4.
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Remark 7.12. We conclude this section with some observations:

1) If Conjecture 7.4 holds with error β(n, δ) (i.e., H(|X+Y |) ≥ min{H(|X|), H(|Y |)}−β(n, δ)),
careful tracking of the bounds in the direct part of the proof of Lemma 7.5 shows that: for all
independent δ-biased random vectors X,Y ∈ {0, 1}n, X + Y is (ξ + β(n, δ))-pseudobinomial

in the L1-sense, where ξ = O
(√

nδ + n1/4
√
δ lg (1/δ)

)
.

2) The correctness of the above conjectures leads to a PRG which, in addition to ε-pseudobinomiality,
has the property of retaining ε-pseudobinomiality under the action of invertible linear trans-
formations. Namely, for any invertible F2-linear transformation T : Fn2 → Fn2 , µT is ε-
pseudobinomial, where µT (x) = µ(Tx).

3) Consider the more general scenario of k ≥ 2 independent δ-biased random variables X1, . . . , Xk ∈
{0, 1}n. For δ = n−Θ(1), the complexity of the underlying PRG is 2O(k logn). The proofs of
Lemmas 7.1 and 7.2 can be easily adapted to this setup without affecting the asymptotic er-
ror term O((δn)Θ(1)). Hence the equivalence of Conjectures 7.1, 7.2, 7.3, and 7.4 holds. In
principle, the conjectures become weaker as k increases.

4) A more general framework for the above questions is the following. Let G be finite abelian
Cayley graph of diameter n. Define weight function W : G→ R, where W (g) is the distance
of g from zero. A probability distribution on G is δ-biased if |Eµχ| ≤ δ for each character χ of
G [2]. Let X and Y be independent random variables taking values in G. Consider the sum
X+Y over G. The more general problem is about studying the Shannon entropy of W (X+Y )
compared to that of W (U), where U be a uniformly random element of G. Note that for the
hypercube, the diameter n = lg |G|, i.e., it is very small compared to |G|; the setup of Cayley
graphs with large diameters such as the circle graph Cn

6 does not capture the problem.

7.1 Proof of Lemma 7.5

Assume Conjecture 7.2 (entropy of sum) holds for a, b, c, n0 > 0. Let X,Y ∈ {0, 1}n be independent
δ-biased random vectors, where n > n0. Let µX be the probability distribution of X and µY that
of Y . First, note that since X and Y are each δ-biased, X + Y is δ2-biased (because EX,Y χz(X +
Y ) = EXχz(X)EY χz(Y ), for each z ∈ {0, 1}n). Let I ⊂ [n] be nonempty and u ∈ {0, 1}I .
If |I| ≤ n0, by the local pseudobinomiality (Lemma 5.1) ‖σu(µX ∗ µY )I − bin|I| ‖1 ≤ 2δ22n0/2.
Assume in what follows that |I| > n0. Since the δ-bias property is invariant under translations and
is preserved by restrictions, X|I and Y |I + u are δ-biased. By Conjecture 7.2, H(|X + Y + u|) ≥
H(bin|I|)−aδb|I|c ≥ H(bin|I|)−aδbnc. It follows from Corollary 2.6, that ‖σu(µX ∗ µY )I−bin|I| ‖1 ≤√

(2 ln 2)(nδ2 + aδbnc). Therefore, X+Y is max{
√

(2 ln 2)(nδ2 + aδbnc), 2δ22n0/2}-pseudobinomial
in the L1-sense, for all n > n0.

Assume Conjecture 7.1 (pseudobinomiality of sum) holds for a, b, c, n0 > 0, and let X,Y ∈
{0, 1}n be independent and δ-biased, where n > n0. Thus, X + Y is aδbnc-pseudobinomial in the
L1-sense. In particular, ‖µX ∗ µY − binn ‖1 ≤ aδbnc. It follows from the entropy-difference bound
(Part (b) of Lemma 1.1) that if aδbnc ≤ 1/2, then

H(binn)−H(|X + Y |) ≤ aδbnc lg
n+ 1

aδbnc
≤ aδbnc

√
n+ 1

aδbnc
= 2
√
aδb/2nc/2

√
n+ 1,

6It is not hard to see that for Cn, the distributions of W (X) and W (U) are δ-close in the L∞-sense for any δ-biased
X. That is, only random one variable is need.
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since lg x ≤ 2
√
x, for all x > 0. If aδbnc > 1/2 (i.e., the bound of Conjecture 7.1 is not good

for the given values of δ and n), then trivially H(binn) − H(|X + Y |) ≤ H(binn) ≤ lg (n+ 1) ≤
2aδbnc lg (n+ 1). It follows that in all cases,

H(binn)−H(|X + Y |) ≤ max{2
√
aδb/2nc/2

√
n+ 1, 2aδbnc lg (n+ 1)},

for all n > n0.

7.2 Proof of Lemma 7.6

Clearly, Conjecture 7.4 (min version) follows from Conjecture 7.3 (max version). To show that
Conjecture 7.2 follows from Conjecture 7.4, let X,Y ∈ {0, 1}n be independent δ-biased random
vectors. We will argue that H(|X + Y |) = H(binn)−O((nδ)Θ(1)) assuming Conjecture 7.4. Since
X is δ-biased, by Corollary 6.4, H(binn) − Eu∼UnH(|X + u|) = ε, where ε = O(nδ +

√
nδ lg 1

δ ).
Thus, the fraction of elements u ∈ {0, 1}n such that H(binn) − H(|X + u|) > 3ε is at most 1

3 .
Similarly, since Y is δ-biased, the fraction of elements u ∈ {0, 1}n such that H(binn) − H(|Y +
u|) > 3ε is at most 1

3 . Hence, there exists u ∈ {0, 1}n such that H(binn) − H(|X + u|) ≤ 3ε
and H(binn) − H(|Y + u|) ≤ 3ε. Fix such a u, let X ′ = X + U , and let Y ′ = Y + U . We
have H(|X ′|) ≥ H(binn) − 3ε and H(|Y ′|) ≥ H(binn) − 3ε. It follows from Conjecture 7.4 that
H(|X ′ + Y ′|) ≥ H(binn) − 3ε − O((nδ)Θ(1)). Since X ′ + Y ′ = X + u + Y + u = X + Y, we get
H(|X + Y |) ≥ H(binn)− 3ε−O((nδ)Θ(1)) = H(binn)−O((nδ)Θ(1)).

To derive Conjecture 7.3 from Conjecture 7.2, we use Corollary 2.7. By Corollary 2.7, H(|X|) ≤
H(binn)+nδ and H(|Y |) ≤ H(binn)+nδ, i.e., H(binn) ≥ max{H(|X|), H(|Y |)}−nδ. If Conjecture
7.2 holds, then

H(|X + Y |) ≥ H(binn)−O((nδ)Θ(1)) ≥ max{H(|X|), H(|Y |)} − nδ −O((nδ)Θ(1)).

7.3 Proof of Lemma 7.7

The proof uses Theorem 6.6. Let n = 2r − 1, where r ≥ 2 is an integer, and let D be the
(2r − 1, 2r − 1 − r, 3)-Hamming code, thus D⊥ is the (2r − 1, r, 2r−1)-Hadamard code. Let Q =
D⊥ ∪ (D⊥ + ~1) be the extended Hadamard code of size 2r+1 = 2(n + 1), where ~1 is the all
ones vector. The dual Q⊥ of Q is the set of even weight codewords of D. Since ~1 ∈ D, each
codeword in D other than 0 and ~1 has weight between 3 and n − 3. Since n is odd, ~1 6∈ Q⊥.
Thus Q⊥ has bilateral minimum distance at least 3 (actually, at least 4). Each nonzero codeword
of the Hadamard code D⊥ has weight n+1

2 , hence the possible weights of the codewords of Q
are 0, n−1

2 , n+1
2 , and n. Thus, H(µQ) = Θ(1) (actually, H(µQ) = 1 + o(1)). It follows from

Theorem 6.6 that Eu∼Un‖µQ+u − binn ‖∞ = O
(

lnn√
n

)
. Thus, there exists u ∈ {0, 1}n such that

‖µQ+u−binn ‖∞ = O
(

lnn√
n

)
. Since ‖ binn ‖∞ = O( 1√

n
), we get ‖µQ+u‖∞ = O

(
lnn√
n

)
. It follows that

H(µQ+u) ≥ lg 1
‖µQ+u‖∞ = Ω(log n). To sum up, H(µQ+u) = Θ(log n) but H(µQ+u ∗ µQ+u) = Θ(1)

since µQ+u ∗ µQ+u = µQ because (Q+ u) + (Q+ u) = Q.

7.4 Proof of Lemma 7.11

Let X,Y ∈ {0, 1}n be independent δ-biased random vectors. We have EUnhµX = H(|X+U | | U) =
Havg(X) and EµY hµX = H(|X + Y | | Y ). Let g : {0, 1}n → R such that g ≤ hµX , hence

EµY hµX ≥ EµY g = EUnhµX − EUn(hµX − g)− (EUng − EµY g).
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Since conditioning reduces entropy and |EUng − EµY g| ≤ δ‖ĝ‖1, we get

H(|X + Y |) ≥ H(|X + Y | | Y )

≥ Havg(X)− EUn(hµX − g)− δ‖ĝ‖1

= H(binn)−O(nδ +
√
nδ lg

1

δ
)− EUn(hµX − g)− δ‖ĝ‖1 (by Corollary 6.4).

8 Functions fooled by pseudobinomiality

Although a more critical problem at this stage is that of constructing small pseudobinomial spaces,
it is worth mentioning the LP duality characterization of the space of functions fooled by pseu-
dobinomiality. The class of functions fooled by the k-wise independence properly are characterized
by tight sandwichability between low degree polynomials [3, 4]. For δ-biased distributions, we get
small L1-norm in the Fourier domain instead of low degree polynomials [3, 4].

For pseudobinomiality, we get sums of translations of symmetric functions {fi}i on subsets of
the variables such that the total L∞-norm

∑
i ‖fi‖∞ is small.

Lemma 8.1 (Sandwiching). Let f : {0, 1}n → R and ε, α > 0. Then the following are equivalent:

I) |Eµf − EUnf | ≤ α, for each ε-pseudobinomial probability distribution µ on {0, 1}n

II) There exist functions f l : {0, 1}n → R (lower sandwiching function) and fh : {0, 1}n → R
(upper sandwiching function) which can be expressed as

f l(x) = cl +
∑
i

f li (xIli
+ uli) and fh(x) = ch +

∑
i

fhi (xIhi
+ uhi ),

where cl, ch ∈ R, and for each i, I li , I
h
i 6= ∅ ⊂ [n], uli ∈ {0, 1}I

l
i , uhi ∈ {0, 1}I

h
i , f li : {0, 1}Ili → R

is a symmetric function (i.e., f li (y) depends only on the weight |y| of y), and fhi : {0, 1}Ihi → R
is a symmetric function such that:

a) (sandwiching) f l ≤ f ≤ fh

b) EUn(f − f l) + ε
∑

i ‖f li‖∞ ≤ α
c) EUn(fh − f) + ε

∑
i ‖fhi ‖∞ ≤ α.

Proof of the direct part. The key point is that if g : [0 : n]→ R and µ is a probability distribution
on {0, 1}n such that ‖µ−binn ‖1 ≤ ε, then |Eµg−Ebinng| ≤ ε‖g‖∞. Hence, following the reasoning
in [3, 4], we get that if f ≤ fh, then

Eµf − EUnf ≤ EUn(fh − f) + (Eµf
h − EUnfh) ≤ EUn(fh − f) + ε

∑
i

‖fhi ‖∞.

Similarly, if f l ≤ f , we get EUnf − Eµf ≤ EUn(f − f l) + ε
∑

i ‖f li‖∞. Thus, (II) implies (I).
The other direction follows from LP duality. Note that in addition to µ ≥ 0,

∑
x µ(x) = 1, we

have the following primal L1-constraints on µ: ‖σuµI − bin|I| ‖1 ≤ ε, for all nonempty I ⊂ [n], and

all u ∈ {0, 1}I . Each of those L1-constraints can be represented in terms of 2|I|+1 linear constraints:
|EµβI,u,a − EUnβI,u,a| ≤ ε, for each a : [0 : |I|]→ {−1, 1}, where βI,u,a : {0, 1}n → {−1, 1} is given
by βI,u,a(x) = a(|xI + u|).
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Note that, asymptotically, (II) is equivalent to EUn(fh − f l) = O(α), N l = O(αε ), and Nh =
O(αε ), where N l =

∑
i ‖f li‖∞ and Nh =

∑
i ‖fhi ‖∞. Thus, the pseudobinomiality property fools

f iff N l and Nh are small (e.g., polynomial in n) and EUn(fh − f l) is small (e.g., O(n−Θ(1))).
Compared to the small-bias case, we have translations of symmetric functions on subsets of the
variables instead of the characters {χz}z.

A natural resulting question is to study the boolean functions which can be approximated in
the above sense. The simplest related question is probably: which functions {0, 1}n → {0, 1} can
be expressed as

∑
i fi(|xIi + ui|) with {(Ii, ui, fi)}i as above, and

∑
i ‖fi‖∞ polynomial in n?

9 Proof of the negative spectrum lemma

The proof is based on analyzing the binomial coefficients. A natural question is whether there is a
less technical proof. For convenience, we repeat the statement of the lemma here.

Lemma 2.3 Let L : {0, 1}n → R be the log-binomial function given by:

L(x) = lg binn(|x|).

Then L̂(z) ≤ 0 for each z ∈ {0, 1}n. Moreover, L̂(z) = 0 if |z| odd, and L̂(z) < 0 if z 6= 0 and |z|
even.

If |z| is odd, then χz(x) = −χz(x + ~1) and binn(|x|) = binn(n − |x|) = binn(|x + ~1|), hence
χz(x) binn(|x|) + χz(x+~1) binn(|x+~1|) = 0 for each x ∈ {0, 1}n. It follows that

L̂(z) =
1

2n

∑
x

χz(x) lg binn(|x|) = 0.

If z = 0, then L̂(0) = EUnL ≤ 0 since L ≤ 0.
In what follows assume that |z| even and z 6= 0. Let S = support(z) and m = |S|, hence m is

even and m ≥ 2. We have

L̂(z) =
1

2n

∑
x

χz(x) lg binn(|x|)

=
1

2n

∑
x′′∈{0,1}Sc

∑
x′∈{0,1}S

(−1)|x
′| lg

( |S|+|Sc|
|x′|+|x′′|

)
2|S|+|Sc|

=
1

2n

∑
x′′∈{0,1}Sc

∑
x′∈{0,1}S

(−1)|x
′| lg

(
|S|+ |Sc|
|x′|+ |x′′|

)
(since

∑
x′∈{0,1}S (−1)|x

′| = 0)

=
1

2n

∑
x′′∈{0,1}Sc

|S|∑
w=0

(−1)w
(
|S|
w

)
lg

(
|S|+ |Sc|
w + |x′′|

)

=
1

2n

∑
x′′∈{0,1}Sc

βm(|x′′|, |Sc| − |x′′|),

where βm(a, b) is defined below.
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Definition 9.1. If m, a, b ≥ 0 are integers, define

βm(a, b)
def
=

m∑
w=0

(−1)w
(
m

w

)
lg

(
m+ a+ b

w + a

)
.

Lemma 2.3 then follows from the following lemma.

Lemma 9.2. If m ≥ 2 is even and a, b ≥ 0, then βm(a, b) < 0.

This in turn follows from the following lemma.

Lemma 9.3. Let m ≥ 2 be even, then

a) βm(a, b) < βm(a+ a′, b+ b′) for each a, b, a′, b′ ≥ 0 such that not both a′ and b′ are zero

b) limc→∞ βm(c, c) = 0.

To derive Part (b) of Lemma 9.3, we need the following.

Theorem 9.4. (de Moivre-Laplace normal approximation of the binomial [11], page 184)
If w ∈ [0 : n] is a function of n such that |w − n/2| = o(n2/3), then

binn(w) =

√
2

πn
e−2

(w−n/2)2

n (1± o(1)).

Proof of Part (b) of Lemma 9.3. Let c ≥ 0. We have

βm(c, c) =
m∑
w=0

(−1)w
(
m

w

)
lg

(
m+ 2c

w + c

)

=
m∑
w=0

(−1)w
(
m

w

)
lg

(
m+2c
w+c

)√
m+ 2c

2m+2c
(since

∑
w(−1)w

(
m
w

)
= 0).

Thus,

lim
c→∞

βm(c, c) =
m∑
w=0

(−1)w
(
m

w

)
lg lim
c→∞

Ac,

where

Ac =

(
m+2c
w+c

)√
m+ 2c

2m+2c
= binm+2c(w + c)

√
m+ 2c.

By de Moivre-Laplace normal approximation of the binomial, limc→∞Ac =
√

2
π , hence

lim
c→∞

βm(c, c) =

(
lg

√
2

π

)
m∑
w=0

(−1)w
(
m

w

)
= 0.
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To derive Part (a) of Lemma 9.3, expand

lg

(
m+ a+ b

w + a

)
= lg (m+ a+ b)!− lg (w + a)!− lg (m− w + b)!

= lg (m+ a+ b)!− lgw!− lg (m− w)!−
a∑
i=1

lg (w + i)−
b∑
i=1

lg (m− w + i).

Thus,

lg

(
m+ a+ b

w + a

)
− lg

(
m+ a+ a′ + b+ b′

w + a+ a′

)
= lg

(m+ a+ b)!

(m+ a+ a′ + b+ b′)!
+

a+a′∑
i=a+1

lg (w + i) +
b+b′∑
i=b+1

lg (m− w + i).

It follows that

βm(a, b)− βm(a+ a′, b+ b′) =
a+a′∑
i=a+1

γm(i) +
b+b′∑
i=b+1

γm(i), (15)

where γm(i) is defined below.

Definition 9.5. If m, i ≥ 0 are integers, let

γm(i)
def
=
∑
w

(−1)w
(
m

w

)
lg (w + i).

Note that we used in the derivation of (15) the fact that
∑

w(−1)w
(
m
w

)
= 0, and the fact that∑

w

(−1)w
(
m

w

)
lg (m− w + i) =

∑
w

(−1)w
(
m

w

)
lg (w + i),

which holds because m is even.
Part (a) of of Lemma 9.3 follows from (15) and the following lemma.

Lemma 9.6. If m ≥ 2 is even and i ≥ 0, then γm(i) < 0.

The proof of Lemma 9.6 is below and it uses the following lemmas.

Lemma 9.7. (Taylor series of lg) For all q ≥ 0 and 0 ≤ z ≤ 1, we have

lg (z + q) = lg

(
q +

1

2

)
+
∞∑
k=1

αk(q)

(
z − 1

2

)k
,

where αk(q) < 0 for each even k ≥ 2

Lemma 9.8. If m ≥ 2 and k ≥ 0 are integers such that m is even, then

∑
w

(−1)w
(
m

w

)
(w −m/2)k


= 0 if k is odd
= 0 if k is even and k < m
> 0 if k is even and k ≥ m.
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9.1 Proof of Lemma 9.6

We have

γm(i) =
m∑
w=0

(−1)w
(
m

w

)
lg (w + i)

=
m∑
w=0

(−1)w
(
m

w

)
lg

(
w

m
+

i

m

)
(since

∑
w(−1)w

(
m
w

)
= 0)

=
m∑
w=0

(−1)w
(
m

w

)(
lg

(
i

m
+

1

2

)
+
∞∑
k=1

αk

(
i

m

)(
w

m
− 1

2

)k)
(by Lemma 9.7)

=

∞∑
k=1

αk

(
i

m

)
1

mk

m∑
w=0

(−1)w
(
m

w

)(
w − m

2

)k
(since

∑
w(−1)w

(
m
w

)
= 0)

=
∑

k≥m even

αk

(
i

m

)
1

mk

m∑
w=0

(−1)w
(
m

w

)(
w − m

2

)k
(by Lemma 9.8)

< 0 (by Lemmas 9.7 and 9.8).

Note that Lemmas 9.7 is applicable since k ≥ m ≥ 2.

9.2 Proof of Lemma 9.7

Using the Taylor series of the natural logarithm

ln (x+ 1) =

∞∑
k=1

(−1)k+1

k
xk for |x| ≤ 1,

we get

lg (z + q) = lg

(
q +

1

2

)
+ lg

(
z − 1

2

q + 1
2

+ 1

)

= lg

(
q +

1

2

)
+

∞∑
k=1

(−1)k+1

k
(
q + 1

2

)k
ln 2

(
z − 1

2

)k
,

if
∣∣∣ z− 1

2

q+ 1
2

∣∣∣ ≤ 1, i.e., if −q ≤ z ≤ 1 + q. Thus, the expansion holds for all q > −1
2 and −q ≤ z ≤ 1 + q,

and in particular for q ≥ 0 and 0 ≤ z ≤ 1.

9.3 Proof of Lemma 9.8

The proof uses a standard argument based on the method of generating functions (e.g., [11], Chapter
11). If k = 0, the summation is clearly zero. Assume in what follows that k ≥ 1. Let fk : {0, 1}m →
R be given by fk(x) = (−1)|x|(|x| −m/2)k. Thus, with respect to the uniform distribution Um on
{0, 1}m, we have

EUmfk =
1

2m

∑
w

(−1)w
(
m

w

)
(w −m/2)k.
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We study below the sign of EUmfk. Let s be a real variable and consider the moment generating

function gs : {0, 1}m → R: gs(x) = (−1)|x|es(|x|−m/2). Thus, fk(x) = ∂k

∂sk
gs(x)|s=0, and hence

EUmfk = ∂k

∂sk
EUmgs|s=0. We have

EUmgs =
∑
w

(
m
w

)
2m

(−1)wes(w−m/2) =
1

2m

∑
w

(
m

w

)
(−es/2)w(e−s/2)m−w

=
(
− sinh

(s
2

))m
=
(

sinh
(s

2

))m
,

since m is even. Therefore, EUmfk = ∂k

∂sk

(
sinh

(
s
2

))m |s=0, for all k ≥ 1. We have for all z ∈ R,

sinh (z) =
∑

t odd≥1

zt

t!
.

Thus, (
sinh

(s
2

))m
=

∑
t≥m even

(s
2

)t ∑
t1,...,tm odd ≥1:

∑
i ti=t

1

t1! . . . tm!
.

Note that t must be even since t1, . . . , tm are odd and m is even. Thus, ∂k

∂sk

(
sinh

(
s
2

))m |s=0 = 0 if
k < m, or if k is odd and k ≥ m. If k ≥ m and k is even, we have

∂k

∂sk

(
sinh

(s
2

))m
|s=0 =

k!

2k

∑
t1,...,tm odd ≥1:

∑
i ti=k

1

t1! . . . tm!
> 0.
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