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Abstract

We show an exponential gap between communication complexity and information

complexity for boolean functions, by giving an explicit example of a partial function

with information complexity ≤ O(k), and distributional communication complexity

≥ 2k. This shows that a communication protocol for a partial boolean function cannot

always be compressed to its internal information. By a result of Braverman [Bra12],

our gap is the largest possible. By a result of Braverman and Rao [BR11], our example

shows a gap between communication complexity and amortized communication

complexity, implying that a tight direct sum result for distributional communication

complexity of boolean functions cannot hold, answering a long standing open problem.

Our techniques build on [GKR14], that proved a similar result for relations with

very long outputs (double exponentially long in k). In addition to the stronger result,

the current work gives a simpler proof, benefiting from the short output length of

boolean functions.

Another (conceptual) contribution of our work is the relative discrepancy method,

a new rectangle-based method for proving communication complexity lower bounds

for boolean functions, powerful enough to separate information complexity and

communication complexity.

1 Introduction

The classical works of Shannon, Fano and Huffman show that if Alice wants to send a

message x to Bob, it’s sufficient for her to send dH(x)e bits, in expectation, where H denotes
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Shannon’s entropy function [Sha48, Fan49, Huf52]. In other words, the length of the message

x can be compressed to roughly H(x), the information content of the message. Can one prove

analogous results in the interactive setting, where Alice and Bob engage in an interactive

communication protocol? The standard way to formalize this question is as whether or

not there exist gaps between the information complexity and communication complexity of

communication tasks.

Communication complexity is a central model in complexity theory that has been

extensively studied in numerous works. In the two player distributional model, each player

gets an input, where the inputs are sampled from a joint distribution that is known to both

players. The players’ goal is to solve a communication task that depends on both inputs,

such as, computing a function of both inputs. The players can use both common and private

random strings and are allowed to err with some small probability. The players communicate

in rounds, where in each round one of the players sends a message to the other player. The

communication complexity of a protocol is the total number of bits communicated by the

two players. The communication complexity of a communication task is the minimal number

of bits that the players need to communicate in order to solve the task with high probability,

where the minimum is taken over all protocols. For excellent surveys on communication

complexity see [KN97, LS09].

The information complexity model, first introduced by [CSWY01, BYJKS04, BBCR10],

studies the amount of information that the players need to reveal about their inputs in

order to solve a communication task. The model was motivated by fundamental information

theoretical questions of compressing communication, as well as by fascinating relations to

communication complexity, and in particular to the direct sum problem in communication

complexity, a problem that has a rich history, and has been studied in many works and

various settings [KRW95, FKNN95, CSWY01, JRS03, Sha03, HJMR07, BBCR10, Kla10,

Jai11, JPY12, BRWY12, BRWY13] (and many other works). In this paper we will mainly be

interested in internal information complexity (a.k.a, information complexity and information

cost). Roughly speaking, the internal information complexity of a protocol is the number of

information bits that the players learn about each other’s input, when running the protocol.

The information complexity of a communication task is the minimal number of information

bits that the players learn about each other’s input when solving the task, where the

minimum is taken over all protocols.

Many recent works focused on the problem of compressing interactive communication

protocols. Given a communication protocol with small information complexity, can the

protocol be compressed so that the total number of bits communicated by the protocol is also

small? There are several beautiful known results, showing how to compress communication

protocols in several cases. Barak, Braverman, Chen and Rao showed how to compress any

protocol with information complexity k and communication complexity c, to a protocol

with communication complexity Õ(
√
ck) in the general case, and Õ(k) in the case where

the underlying distribution is a product distribution [BBCR10] (where Õ hides logarithmic

factors in both k and c). Braverman and Rao showed how to compress any one round
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(or small number of rounds) protocol with information complexity k to a protocol with

communication complexity O(k) [BR11]. Braverman showed how to compress any protocol

with information complexity k to a protocol with communication complexity 2O(k) [Bra12]

(see also [BW12, KLL+12]). This last protocol is the most related to our work, as it

gives a compression result that works in the general case and doesn’t depend at all on

the communication complexity of the original protocol.

Another line of works shows that many of the known general techniques for proving

lower bounds for randomized communication complexity also give similar lower bounds for

information complexity [Bra12, BW12, KLL+12], and hence cannot be used to separate

information complexity and communication complexity.

In [GKR14] we showed an exponential gap between information complexity and

communication complexity for relations with very long outputs (double exponentially long

in k). The current work builds on the techniques of [GKR14] and gives the first gap

between information complexity and communication complexity for boolean functions.

We give an explicit example for a partial1 boolean function, called the bursting noise

function, parameterized by k ∈ N and applied on inputs distributed according to an input

distribution µ. We prove that the information complexity of the function is O(k), while

any communication protocol for computing this function, with communication complexity

at most 2k, has error very close to 1/2. By the above mentioned compression protocol of

Braverman [Bra12], our result gives the largest possible gap between information complexity

and communication complexity.

Theorem 1 (Communication Lower Bound). Every randomized protocol (with shared

randomness) for the bursting noise function with parameter k, that has communication

complexity at most 2k, errs with probability ε ≥ 1
2
− 2−k (over the input distribution µ).

Theorem 2 (Information Upper Bound). There exists a randomized protocol for the

bursting noise function with parameter k, that has information cost O(k) and errs with

probability ε ≤ 2−k (over the input distribution µ).

We note that the inputs to the bursting noise function are very long, namely,

triple exponential in k. The protocol that achieves information complexity O(k) has

communication complexity double exponential in k.

The Direct Sum Problem

As mentioned above, information complexity is also related to the direct sum problem in

communication complexity.

Let µ be a distribution on {0, 1}n × {0, 1}n, and let f : supp(µ) → {0, 1} be a boolean

function. Let Dµ(f) be the communication complexity of the best protocol that computes f

1We note that since information complexity and distributional communication complexity are always
defined with respect to an input distribution µ, there is no difference in this context between a partial
boolean function and a total boolean function.
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with probability at least 2/3, where the probability is over inputs distributed according to µ

and over the random bits of the protocol. Let Dµ,N(f) be the communication complexity of

the best protocol that computes f on N independent pairs sampled according to µ, getting

the answer correct with probability at least 2/3 in each coordinate (where the probability is

over the inputs and over the random bits of the protocol). The amortized communication

complexity of f is defined to be limN→∞
Dµ,N (f)

N
, that is, the limit of the communication

complexity needed to solve N tasks of the same type, divided by N .

Braverman and Rao showed that information complexity is equal to the amortized

communication complexity [BR11]. Our result therefore shows an exponential gap between

distributional communication complexity and amortized distributional communication

complexity for a boolean function, proving that tight direct sum results cannot hold.

This gives the first gap between distributional communication complexity and amortized

distributional communication complexity for boolean functions.

Techniques

Underlying our lower bound proof is the relative discrepancy method, a new rectangle-based

method for proving communication complexity lower bounds for boolean functions, powerful

enough to separate information complexity and communication complexity. We describe this

new method in Section 3.

Our techniques build on [GKR14]. We improve the lower bound technique so that it can

be applied for boolean functions, rather than for relations with extremely long outputs. In

addition to the stronger result, the current work gives a simpler proof, benefiting from the

short output length of boolean functions. Roughly speaking, since the output length of a

boolean function is 1, it is easy to ensure that in each rectangle induced by the communication

protocol, the answer is unique and does not depend on the inputs.

Organization

The paper is organized as follows. In Section 2 we define the bursting noise function.

Section 3 describes the relative discrepancy bound. In Section 4, we give an overview of the

lower bound proof. In Section 5 we give general definitions and preliminaries. In Section 6 we

prove the graph correlation lemma, a central tool that we will use in the lower bound proof.

In Section 7 we prove the communication complexity lower bound (Theorem 1). Section 8

gives a general tool that can be used to upper bound the information cost of a protocol,

using the notion of a divergence cost of a tree. In Section 9 we give a protocol for the

bursting noise function with low information cost, thus proving the upper bound required by

Theorem 2. Section 6 and Section 8 are similar to the corresponding sections in [GKR14],

and are included here for completeness.
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2 The Bursting Noise Function

The bursting noise function can be viewed as a communication game between two parties,

called the first player and the second player. The game is specified by a parameter k ∈ N,

where k > 2100. We set c = 24k and w = 2100k.

The game is played on the binary tree T with c · w layers (the root is in layer 1 and the

leaves are in layer c · w), with edges directed from the root to the leaves. Denote the vertex

set of T by V . Each player gets as input a bit for every vertex in the tree. Let x be the input

given to the first player, and y be the input given to the second player, where x, y ∈ {0, 1}V .

For a vertex v ∈ V , we denote by xv and yv the bits in x and y associated with v. The input

pair (x, y) is selected according to a joint distribution µ on {0, 1}V ×{0, 1}V , defined below.

Denote by Even(T ) ⊆ V the set of non-leaf vertices in an even layer of T and by

Odd(T ) ⊆ V the set of non-leaf vertices in an odd layer of T . We think of the vertices

in Odd(T ) as “owned” by the first player and the vertices in Even(T ) as “owned” by the

second player. Let v ∈ V be a non-leaf vertex. Let v0 be the left child of v and v1 be the

right child of v. Let b ∈ {0, 1}. We say that vb is the correct child of v with respect to x, y,

if either the first player owns v and xv = b, or the second player owns v and yv = b.

We think of the c ·w layers of the tree T as partitioned into c multi-layers, each consisting

of w consecutive layers (e.g., the first multi-layer consists of layers 1 to w). We denote by i∗

the first layer of the ith multi-layer, that is, i∗ = (i− 1)w + 1.

For s ≤ t ∈ N, denote by [s, t] the set {s, . . . , t} and by [t] the set {1, . . . , t}. Let i ∈ [c]

be a multi-layer. Denote s = i∗ and t = s+w − 1 = (i+ 1)∗ − 1. Let t′ ∈ [(i+ 1)∗, cw], and

let v ∈ V be a vertex in layer t′ of T . For j ∈ [s, t+ 1], let vj be v’s ancestor in layer j. We

say that v is typical with respect to i, x, y, if the followings hold:

1. For at least 0.8-fraction of the indices j ∈ [s, t]∩Odd(T ), the vertex vj+1 is the correct

child of vj with respect to x, y.

2. For at least 0.8-fraction of the indices j ∈ [s, t]∩Even(T ), the vertex vj+1 is the correct

child of vj with respect to x, y.

Observe that in order to decide whether v is typical with respect to i, x, y, it suffices to know

the bits that x, y assign to the vertices vs, . . . , vt. When x, y are clear from the context, we

omit x, y and say that v is typical with respect to multi-layer i.

We next define the distribution µ on {0, 1}V × {0, 1}V by an algorithm for sampling an

input pair (x, y) (Algorithm 1 below). In the algorithm, when we say “set v to be non-

noisy”, we mean “select xv ∈ {0, 1} uniformly at random and set yv = xv”. By “set v to

be noisy”, we mean “select xv ∈ {0, 1} and yv ∈ {0, 1} independently and uniformly at

random”. Figure 1 illustrates Algorithm 1.

The players’ mutual goal is to output the bit b defined by Step (5) of Algorithm 1. Note

that for any leaf v ∈ V , where v is typical with respect to i, x, y (that is, v is typical with

respect to the noisy multi-layer; see Algorithm 1), we have that xv ⊕ yv = b, by Step (4)
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Algorithm 1 Sample (x, y) according to µ

1. Randomly select i ∈ [c] (the noisy multi-layer).

2. Set every vertex in multi-layer i (layers [i∗, i∗ + w − 1]) to be noisy.

3. If i < c: Let L be the set of all non-typical vertices in layer i∗ + w = (i + 1)∗ with
respect to i, x, y (note that x, y were already defined on layers [i∗, i∗ + w − 1], and
therefore the typical vertices are defined). For every v ∈ L, set all the vertices in the
subtree rooted at v to be noisy.

4. Set all unset vertices in V to be non-noisy.

5. Randomly select a bit b ∈ {0, 1}.
For every leaf v ∈ V , add b to yv, that is, yv ← yv ⊕ b.

Figure 1: Illustration of Algorithm 1
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of Algorithm 1. The bit b is a boolean function of (x, y) ∈ supp(µ), since for the leaf

v ∈ V obtained by following the path of correct children starting from the root, it holds that

xv ⊕ yv = b. We denote by

f : supp(µ)→ {0, 1}

the function that assigns to every input (x, y) ∈ supp(µ) the corresponding bit b.

For i ∈ [c], we denote by µi the distribution µ conditioned on the event that the noisy

multi-layer selected by Step 1 of the algorithm defining µ, is i. Note that µi is uniformly

distributed over supp(µi) and that µ = 1
c

∑
i∈[c] µi.

For i ∈ [c], we denote by µ0
i the uniform distribution over supp(µi) ∩ f−1(0). We denote

by µ1
i the uniform distribution over supp(µi) ∩ f−1(1). Observe that µi = 1

2
(µ0

i + µ1
i ),

and for every set S ⊆ {0, 1}V × {0, 1}V , it holds that µ0
i (S) = 2µi(S ∩ f−1(0)) and

µ1
i (S) = 2µi(S ∩ f−1(1)).

Remark. Observe that c is set to be double exponential in k. If c were set to be just

exponential in k, a simple binary search algorithm would have been able to find the location

of the noisy multi-layer, and then find a typical leaf with respect to this multi-layer, and thus

compute the bursting noise function with communication complexity polynomial in k.

The protocol with low information cost. Consider the following protocol π′ for the

bursting noise function. Starting from the root until reaching a leaf, at every vertex v,

if the first player owns v, she sends the bit xv with probability 0.9, and the bit 1 − xv
with probability 0.1. Similarly, if the second player owns v, she sends the bit yv with

probability 0.9, and the bit 1− yv with probability 0.1. Both players continue to the child of

v that is indicated by the communicated bit. When they reach a leaf v they output xv ⊕ yv.
By the Chernoff bound, the probability that the players reach a leaf that is not typical with

respect to the noisy multi-layer is at most 2−Ω(w). Therefore, the error probability of π′ is

exponentially small in k.

It can be shown that if the protocol π′ does not reach a vertex in L (a non-typical

vertex with respect to the noisy multi-layer), then it reveals a small amount of information.

Intuitively, this follows since in this case, the expected number of vertices reached by the

protocol, on which the players’ inputs disagree, is O(k) (the disagreement is only on vertices

in the noisy multi-layer). However, with exponentially small probability in k, the protocol π′

does reach a vertex in L. In this case, the information revealed by the protocol may be

double exponential in k (as c = 24k), making the information cost of π′ too large.

For this reason, we consider a variant of π′, called π. Informally speaking, the protocol π

operates like π′ but aborts if too much information about the inputs is revealed. Specifically,

a player decides to abort if the bits that she receives differ from the corresponding bits in

her input too many times. In Section 9, we formally define π and show that its information

cost is O(k).
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3 The Relative Discrepancy Bound

In this section we present the relative discrepancy bound, a general method for proving

communication complexity lower bounds. For our lower bound proof, we will only use

Definition 1 and Proposition 3.

Definition 1 (Relative Discrepancy). Let ε ∈ (0, 1/2) and δ ∈ (0, 1). Let µ be a

distribution over {0, 1}n × {0, 1}n and let f : supp(µ) → {0, 1} be a function. We say

that (f, µ) has the (ε, δ) relative discrepancy property if there exists a distribution ρ over

{0, 1}n×{0, 1}n such that for every rectangle R = A×B ⊆ {0, 1}n×{0, 1}n with ρ(R) ≥ δ,

the following two properties hold:

µ
(
R ∩ f−1(0)

)
≥
(

1
2
− ε
)
· ρ(R),

µ
(
R ∩ f−1(1)

)
≥
(

1
2
− ε
)
· ρ(R).

Definition 2 (Adaptive Relative Discrepancy). Let ε ∈ (0, 1/2) and δ ∈ (0, 1). Let µ be

a distribution over {0, 1}n×{0, 1}n and let f : supp(µ)→ {0, 1} be a function. We say that

(f, µ) has the (ε, δ) adaptive relative discrepancy property if for every rectangle partition

R = {R1, . . . , Rm} of {0, 1}n × {0, 1}n, there exists a distribution ρR over {0, 1}n × {0, 1}n
such that for every rectangle Rt with ρR(Rt) ≥ δ, the following two properties hold:

µ
(
Rt ∩ f−1(0)

)
≥
(

1
2
− ε
)
· ρR(Rt),

µ
(
Rt ∩ f−1(1)

)
≥
(

1
2
− ε
)
· ρR(Rt).

Observe that the (ε, δ) relative discrepancy property implies the (ε, δ) adaptive relative

discrepancy property. Thus, the following propositions are stated for the adaptive case, but

apply for the non-adaptive case as well.

Our first proposition shows how the adaptive relative discrepancy property can be used

to obtain distributional communication complexity lower bounds.

Proposition 3. Let ε ∈ (0, 1/2) and δ ∈ (0, 1). Let µ be a distribution over {0, 1}n×{0, 1}n
and let f : supp(µ)→ {0, 1} be a function. Assume that (f, µ) has the (ε, δ) adaptive relative

discrepancy property. Then, every randomized protocol for f with communication complexity

at most s, errs with probability at least 1
2
− ε− δ ·2s when the inputs are distributed according

to µ (that is, the protocol has advantage at most ε+ δ · 2s). Equivalently, if the protocol has

advantage larger than ε′, then it has communication complexity at least log
(
ε′−ε
δ

)
.

Proof. We show that the claim holds for every deterministic protocol, and therefore it also

holds for randomized protocols. Let π be a deterministic communication protocol for f with

communication complexity at most s. Let m = 2s and letR = {R1, . . . , Rm} be the rectangle

partition induced by the protocol π, such that each rectangle Rt is associated with an output

ωt ∈ {0, 1} (the output of the protocol π on this rectangle). Let ρ = ρR be the distribution

corresponding to R promised by the (ε, δ) adaptive relative discrepancy property.
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Let E be the set of inputs (x, y) ∈ supp(µ) that the protocol π errs on. Our goal is to lower

bound µ(E), that is, the probability that the protocol errs when the inputs are distributed

according to µ. Let L = {t ∈ [m] : ρ(Rt) ≥ δ}. It holds that
∑

t∈L ρ(Rt) ≥ 1− δm. By the

(ε, δ) adaptive relative discrepancy property,

µ(E) =
∑
t∈[m]

µ(Rt ∩ f−1(1− ωt)) ≥
∑
t∈L

µ(Rt ∩ f−1(1− ωt))

≥
(

1
2
− ε
)
·
∑
t∈L

ρ(Rt) ≥
(

1
2
− ε
)
· (1− δm) ≥ 1

2
− ε− δ · 2s.

Given the (ε, δ) adaptive relative discrepancy property, Proposition 3 can only be used to

bound the communication complexity of protocols with advantage greater than ε. When ε is

close to 1/2, the proposition cannot be used to prove lower bounds for protocol with error,

say, 1/3. The following corollary shows that in the randomized case, by first applying error

reduction, the property can be used to prove lower bounds for protocols with error 1/3, even

when ε is close to 1/2.

Corollary 4. Let γ ∈ (0, 1/2) and δ ∈ (0, 1). Let f : D → {0, 1} be a function, where

D ⊆ {0, 1}n × {0, 1}n. Assume that there exists a distribution µ over D such that (f, µ) has

the (1
2
− γ, δ) adaptive relative discrepancy property. Then, every randomized protocol for f

with error probability at most 1/3 (on every input) has communication complexity at least

Ω
(

log(1/2δ)
log(1/γ)

)
− 1.

Proof. Consider a protocol for f with error probability at most 1/3 and communication

complexity s. By repeating this protocol O (log(1/γ)) times we obtain a protocol with error

at most γ/2 and communication complexity at most s′ = O(s · log(1/γ)). By Proposition 3,

γ − δ · 2s′ ≤ γ/2, thus s′ ≥ log(γ/2δ). Hence

s ≥ Ω

(
log(γ/2δ)

log(1/γ)

)
= Ω

(
log(1/2δ)

log(1/γ)

)
− 1.

Connection to the Discrepancy Method

We show that a special case of the relative discrepancy property implies an upper bound on

the (regular) discrepancy (defined below), and vice versa.

Definition 3 (Discrepancy). Let µ be a distribution over {0, 1}n × {0, 1}n and let

f : supp(µ)→ {0, 1} be a function. The discrepancy of f according to µ is

Discµ(f) = max
R

Discµ(R, f)
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where the maximum is taken over all rectangles R ⊆ {0, 1}n × {0, 1}n and

Discµ(R, f) =
∣∣µ (R ∩ f−1(0)

)
− µ

(
R ∩ f−1(1)

)∣∣ .
Let ε ∈ (0, 1/2) and δ ∈ (0, 1). If the (ε, δ) relative discrepancy property holds when the

distribution ρ is equal to µ, then for every rectangle R ⊆ {0, 1}n × {0, 1}n with µ(R) ≥ δ it

holds that (
1
2
− ε
)
· µ(R) ≤ µ

(
R ∩ f−1(0)

)
≤
(

1
2

+ ε
)
· µ(R),

where we used the fact that µ (R ∩ f−1(1)) = µ(R)− µ (R ∩ f−1(0)). Therefore,

Discµ(R, f) =
∣∣2µ (R ∩ f−1(0)

)
− µ(R)

∣∣ ≤ 2ε · µ(R).

For a rectangle R ⊆ {0, 1}n × {0, 1}n with µ(R) < δ it holds that Discµ(R, f) < δ. Taking

the maximum over all rectangles, we get that

Discµ(f) ≤ max{δ, 2ε}.

On the other direction, if we have an upper bound of ε′ > 0 on the discrepancy of f

according to µ, then for every rectangle R ⊆ {0, 1}n × {0, 1}n,

µ
(
R ∩ f−1(0)

)
≥ 1

2
(µ(R)− ε′) ,

and

µ
(
R ∩ f−1(1)

)
≥ 1

2
(µ(R)− ε′) .

Let ε ∈ (0, 1/2) and δ ∈ (0, 1) such that εδ ≥ ε′/2. Then, for every rectangle R ⊆
{0, 1}n × {0, 1}n with µ(R) ≥ δ,

µ
(
R ∩ f−1(0)

)
≥ µ(R)

2
− εδ ≥

(
1
2
− ε
)
· µ(R),

and similarly,

µ
(
R ∩ f−1(1)

)
≥
(

1
2
− ε
)
· µ(R).

Taking ρ to be equal to µ, we get that the (ε, δ) relative discrepancy property holds.

4 Overview of the Lower Bound Proof

In this section, we overview the proof of the lower bound for the communication complexity

of the bursting noise function. The lower bound is proved using the relative discrepancy

bound. Let f : supp(µ)→ {0, 1} be the bursting noise function, with parameter k, where µ

is the distribution defined by Algorithm 1. Let m = 22k , ε = 2−2k and δ = ε/m. We show

that (f, µ) has the (ε, δ) relative discrepancy property. Theorem 1 follows by Proposition 3.
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The distribution ρ

For i ∈ [c], let ρi be the uniform distribution over all inputs (x, y) such that x<i = y<i, where

x<i and y<i are the projections of x, y, respectively, on the vertices in the first i − 1 multi-

layers. We define the distribution ρ as 1
c

∑
i∈[c] ρi. Let R ⊆ {0, 1}V × {0, 1}V be a rectangle

such that ρ(R) ≥ δ. We will show the first part of the relative discrepancy property:

µ
(
R ∩ f−1(0)

)
≥
(

1
2
− ε
)
· ρ(R).

The second part of the relative discrepancy property (for f−1(1)) is proved in the same way.

Good Rectangles

For i ∈ [c] and an assignment z to the vertices in the first i − 1 multi-layers, we denote by

Rz = Az×Bz, the rectangle of all pairs of inputs (x, y) ∈ R, such that the projections of both

x, y on the vertices in the first i−1 multi-layers are equal to z. Let Xz be a random variable

uniformly distributed over Az, and let Y z be a random variable uniformly distributed over

Bz. We denote by Xz
i , Y

z
i the projections of Xz, Y z, respectively, on the vertices in multi-

layer i. We denote by I(Z) := log(|Ω|) − H(Z) the information known about a random

variable Z, where Ω is the space that Z is defined over. We say that the pair (i, z) is good

if the following two properties hold:

1. I (Xz) , I (Y z) ≤ 2 log(m).

2. I (Xz
i ) , I (Y z

i ) ≤ m2

c
.

Let G be the set of all good pairs (i, z).

How the Proof Works

The main intuition of the proof is that since c is significantly larger than 2k, the protocol

cannot make progress on all multi-layers i ∈ [c] simultaneously. We start by showing that

with high probability, when the inputs are distributed uniformly and independently after the

noisy multi-layer, very little information is known on the noisy multi-layer. Then, we show

that even when we consider only inputs from supp(µ), that agree on all non-noisy vertices

after the noisy multi-layer, still very little information is known on the noisy multi-layer.

Formally, recall that µ0
i is the uniform distribution over supp(µi)∩ f−1(0), and therefore,

µ
(
R ∩ f−1(0)

)
≥ 1

2c

∑
(i,z)∈G

µ0
i (R

z).

Together with Equations (1) and (2) that appear below, the proof is completed.

First, we show that

1

2c

(
1− 2−2k

) ∑
(i,z)∈G

ρi(R
z) ≥

(
1
2
− ε
)
· ρ(R). (1)

11



That is, the probability ρ(R) is concentrated mainly on the rectangles Rz with good (i, z)

pairs. To prove Equation (1) we show that with high probability, where every pair (i, z)

is sampled with the probability ρi(R
z)

c·ρ(R)
, very little information is known about Xz

i and Y z
i .

Therefore, the sum ∑
(i,z)∈G

ρi(R
z)

c · ρ(R)
,

is close to 1.

Next, we show that for every pair (i, z) ∈ G,

µ0
i (R

z) ≥
(
1− 2−2k

)
ρi(R

z). (2)

Here lies the main difficulty in proving the lower bound. Using the definitions of µ0
i and ρi,

we show that Equation (2) is equivalent to

Pr
[
(Xz, Y z) ∈ supp(µ0

i )
]
≥
(
1− 2−2k

)
ρi(supp(µ0

i )). (3)

That is, the probability for a random pair of inputs (x, y) ∈ Rz to be in supp(µ0
i ) is not

much smaller than the probability for a uniformly distributed pair of inputs, that have the

same projection on the vertices in the first i − 1 multi-layers, to be in supp(µ0
i ). In what

follows, we outline the proof of Equation (3).

Applying the Graph Correlation Lemma

Fix a good (i, z) pair and assume that the noisy multi-layer is i. Let E be the set of all pairs

of possible assignments to the vertices in multi-layer i. Observe that an input pair xi, yi of

assignments to the vertices in multi-layer i determine for every vertex after multi-layer i if it

is noisy or not. A pair (x, y) ∈ Rz is in supp(µ0
i ) if and only if x, y agree on all the vertices

after multi-layer i that are set to be non-noisy for inputs xi, yi. Therefore, the left hand side

of Equation (3) is equal to∑
(u,w)∈E

Pr [Xz
i = u] · Pr [Y z

i = w]

· Pr [Xz
>i and Y z

>i agree on all non-noisy vertices | Xz
i = u, Y z

i = w] ,

where Xz
>i and Y z

>i are the projections of Xz, Y z, respectively, on the vertices after multi-

layer i.

Our graph correlation lemma (Lemma 9), that may be interesting in its own right, gives

a general way to bound such expressions by

≥
(
1− 2−4k

)
pi

∑
(u,w)∈E\D

Pr [Xz
i = u] · Pr [Y z

i = w] , (4)

where D ⊂ E is a small set, compared to the size of E, and pi is the probability for a

uniformly distributed pair of inputs (x, y), that have the same projection on the vertices in

12



the first i − 1 multi-layers, to agree on all the vertices after multi-layer i that are set to be

non-noisy for inputs xi, yi. It holds that pi = ρi(supp(µ0
i )). Thus, using Lemma 9, we are

able to bound the left hand side of Equation (3), which is an expression that depends on the

variables Xz, Y z, by the expression in Equation (4) that depends only on the projections of

these variables to the vertices in multi-layer i.

We still need to bound from below the expression∑
(u,w)∈E\D

Pr [Xz
i = u] · Pr [Y z

i = w] .

This sum would be equal to 1 if it was over all pairs of assignments in E, including the pairs

in the set D. Since I (Xz
i ) , I (Y z

i ) are small, the distributions of Xz
i and Y z

i are extremely

close to uniform, and hence,∑
(u,w)∈D

Pr [Xz
i = u] · Pr [Y z

i = w] ≈ |D|
|E|

,

which is negligible.

5 Definitions and Preliminaries

5.1 General Notation

Throughout the paper, all logarithms are taken with base 2, and we define 0 log(0) = 0. For

a set S, when we write “x ∈R S” we mean that x is selected uniformly at random from the

set S. For a distribution τ , when we write “x ← τ” we mean that x is selected according

to the distribution τ . For Z that is either a random variable taking values in {0, 1}V or an

element in {0, 1}V , and a set T ⊆ V , we define ZT to be the projection of Z to T .

5.2 Information Cost

Definition 4 (Information Cost). The information cost of a protocol π over random

inputs (X, Y ) that are drawn according to a joint distribution µ, is defined as

ICµ(π) = I(Π;X|Y ) + I(Π;Y |X),

where Π is a random variable which is the transcript of the protocol π with respect to µ. That

is, Π is the concatenation of all the messages exchanged during the execution of π. The ε

information cost of a computational task f with respect to a distribution µ is defined as

ICµ(f, ε) = inf
π
ICµ(π),

where the infimum ranges over all protocols π that solve f with error at most ε on inputs

that are sampled according to µ.
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5.3 Relative Entropy

Definition 5 (Relative Entropy). Let µ1, µ2 : Ω → [0, 1] be two distributions, where Ω

is discrete (but not necessarily finite). The relative entropy between µ1 and µ2, denoted

D(µ1‖µ2), is defined as

D(µ1‖µ2) =
∑
x∈Ω

µ1(x) log
(
µ1(x)
µ2(x)

)
.

Proposition 5. Let µ1, µ2 : Ω→ [0, 1] be two distributions. Then,

D(µ1‖µ2) ≥ 0.

The following relation is called Pinsker’s inequality, and it relates the relative entropy to

the `1 distance.

Proposition 6 (Pinsker’s Inequality). Let µ1, µ2 : Ω→ [0, 1] be two distributions. Then,

2 ln(2) ·D(µ1‖µ2) ≥ ‖µ1 − µ2‖2,

where

‖µ1 − µ2‖ =
∑
x∈Ω

|µ1(x)− µ2(x)| = 2 max
E⊆Ω
{µ1(E)− µ2(E)} .

5.4 Information

Definition 6 (Information). Let µ : Ω→ [0, 1] be a distribution and let U be the uniform

distribution over Ω. The information of µ, denoted I(µ), is defined by

I(µ) = D(µ ‖ U) =
∑

x∈supp(µ)

µ(x) log

(
µ(x)

1
|Ω|

)
=

∑
x∈supp(µ)

µ(x) log (|Ω|µ(x)) .

Equivalently,

I(µ) = log(|Ω|)−H(µ),

where H(µ) denotes the Shannon entropy of µ.

For a random variable X taking values in Ω, with distribution PX : Ω→ [0, 1], we define

I(X) = I(PX).

5.5 Shearer-Like Inequality for Information

The following version of Shearer’s inequality [CGFS86, Kah01] is due to [Rad03].

Lemma 7 (Shearer’s Inequality). Let X1, . . . , XM be M random variables. Let X =

(X1, . . . , XM). Let T = {Ti}i∈I be a collection of subsets of [M ], such that each element

of [M ] appears in at least K members of T . For A ⊆ [M ], let XA = {Xj : j ∈ A}. Then,∑
i∈I

H[XTi ] ≥ K ·H[X].
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We state and prove here the following “Shearer-like” inequality for information. A variant

of this lemma was proved in [MT10].

Lemma 8 (Shearer-Like Inequality for Information). Let X1, . . . , XM be M random

variables, taking values in Ω1, . . . ,ΩM , respectively. Let X = (X1, . . . , XM) be a random

variable, taking values in Ω1 × · · · × ΩM . Let T = {Ti}i∈I be a collection of subsets of [M ],

such that each element of [M ] appears in at most 1
K

fraction of the members of T . For

A ⊆ [M ], let XA = {Xj : j ∈ A}. Then,

K · E
i∈RI

[I(XTi)] ≤ I(X).

Proof. Fix i ∈ I. By the definition of information,

I(XTi) =
∑
j∈Ti

log(|Ωj|)−H[XTi ].

For every j ∈ [M ], define H[Xj|X<j] = H[Xj|(X` : ` < j)]. By the chain rule for the

entropy function,

I(X) =
∑
j∈[M ]

(
log(|Ωj|)−H[Xj|X<j]

)
,

I(XTi) =
∑
j∈Ti

(
log(|Ωj|)−H[Xj|(X` : ` ∈ Ti, ` < j)]

)
.

For every j ∈ Ti it holds that H[Xj|(X` : ` ∈ Ti, ` < j)] ≥ H[Xj|X<j]. Therefore,

I(XTi) ≤
∑
j∈Ti

(
log(|Ωj|)−H[Xj|X<j]

)
.

Summing over all i ∈ I we get that∑
i∈I

I(XTi) ≤
∑
i∈I

∑
j∈Ti

(
log(|Ωj|)−H[Xj|X<j]

)
. (5)

For every j ∈ [M ], the term log(|Ωj|) − H[Xj|X<j] appears on the right-hand side of

Equation (5) at most |I|
K

times. Therefore,∑
i∈I

I(XTi) ≤
|I|
K
·
∑
j∈[M ]

(
log(|Ωj|)−H[Xj|X<j]

)
=
|I|
K
· I(X).

Dividing by |I|
K

we get that the claim holds.
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6 The Graph Correlation Lemma

Lemma 9 (Graph Correlation Lemma). 2 Let G = (U ∪W,E) be a bipartite (multi)-

graph with sets of vertices U,W and (multi)-set of edges E, such that, G is bi-regular and

|U | = |W |. Let M > T > k ∈ N be such that, T ≤ 2−20kM , and k ≥ 4. For every (u,w) ∈ E,

let T (u,w) ⊂ [M ] be a set of size T , such that, for every u ∈ U , each element of [M ] appears

in at most 2−20k fraction of the sets in {T (u,w)}(u,w)∈E, and for every w ∈ W , each element

of [M ] appears in at most 2−20k fraction of the sets in {T (u,w)}(u,w)∈E.

Let Σ be a finite set. For every u ∈ U , let Xu ∈ ΣM be a random variable, such

that, I(Xu) ≤ 24k, and for every w ∈ W , let Y w ∈ ΣM be a random variable, such that,

I(Y w) ≤ 24k, and such that, for every u ∈ U and w ∈ W , the random variables Xu and Y w

are mutually independent.

For (u,w) ∈ E, denote

µ(u,w) =
PrXu,Y w [Xu

T (u,w) = Y w
T (u,w)]

|Σ|−T
.

Let

D = {(u,w) ∈ E : µ(u,w) ≤ 1− 2−4k}.

Then,
|D|
|E|
≤ 2−4k.

Proof. We will start by proving the following claim.

Claim 10. If (u,w) ∈ D then at least one of the following two inequalities holds,

I
(
Xu
T (u,w)

)
≥ 2−8k−4,

I
(
Y w
T (u,w)

)
≥ 2−8k−4.

Proof. Assume (u,w) ∈ D. Thus,

−2−4k ≥ µ(u,w)− 1 = |Σ|T ·
(

Pr
Xu,Y w

[Xu
T (u,w) = Y w

T (u,w)]− |Σ|−T
)

=

|Σ|T ·

 ∑
z∈ΣT (u,w)

Pr
Xu

[Xu
T (u,w) = z] · Pr

Y w
[Y w
T (u,w) = z]

− |Σ|−T
 =

|Σ|T ·
∑

z∈ΣT (u,w)

(
Pr
Xu

[Xu
T (u,w) = z]− |Σ|−T

)
·
(

Pr
Y w

[Y w
T (u,w) = z]− |Σ|−T

)
. (6)

2Many variants of this lemma can be proven. In particular, a similar argument can be used to prove a
similar statement with sets T (u,w) that are not of the same size. We state the lemma here for sets T (u,w)
of the same size T , for convenience of notation.
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In the last sum, we can omit the positive summands (and the inequality still holds). As

for the negative summands, we split them into summands where (Pr[Xu
T (u,w) = z] − |Σ|−T )

is negative and (Pr[Y w
T (u,w) = z]−|Σ|−T ) is positive, and summands where it’s the other way

around. In the first case, we bound the first term by(
Pr
Xu

[Xu
T (u,w) = z]− |Σ|−T

)
≥ −|Σ|−T ,

and for the second term, we use(
Pr
Y w

[Y w
T (u,w) = z]− |Σ|−T

)
=
∣∣∣Pr
Y w

[Y w
T (u,w) = z]− |Σ|−T

∣∣∣ .
Similarly, in the second case, we bound the terms the other way around. Note also that

we can add to the sum arbitrary negative summands (and the inequality still holds). Thus,

Equation (6) implies

−2−4k ≥ |Σ|T ·
∑

z∈ΣT (u,w)

(
−|Σ|−T

)
·
∣∣∣Pr
Y w

[Y w
T (u,w) = z]− |Σ|−T

∣∣∣+

|Σ|T ·
∑

z∈ΣT (u,w)

∣∣∣Pr
Xu

[Xu
T (u,w) = z]− |Σ|−T

∣∣∣ · (−|Σ|−T ) =

−
∑

z∈ΣT (u,w)

∣∣∣Pr
Y w

[Y w
T (u,w) = z]− |Σ|−T

∣∣∣− ∑
z∈ΣT (u,w)

∣∣∣Pr
Xu

[Xu
T (u,w) = z]− |Σ|−T

∣∣∣ ,
that is, ∑

z∈ΣT (u,w)

∣∣∣Pr
Y w

[Y w
T (u,w) = z]− |Σ|−T

∣∣∣+
∑

z∈ΣT (u,w)

∣∣∣Pr
Xu

[Xu
T (u,w) = z]− |Σ|−T

∣∣∣ ≥ 2−4k.

Hence, for every (u,w) ∈ D, at least one of the following two inequalities holds,∑
z∈ΣT (u,w)

∣∣∣Pr
Xu

[Xu
T (u,w) = z]− |Σ|−T

∣∣∣ ≥ 2−4k−1,

∑
z∈ΣT (u,w)

∣∣∣Pr
Y w

[Y w
T (u,w) = z]− |Σ|−T

∣∣∣ ≥ 2−4k−1.

The claim follows by Pinsker’s inequality.

We will now proceed with the proof of Lemma 9. By Claim 10, we know that one of the

following two statements must hold:

1. For at least half of the edges (u,w) ∈ D, we have I
(
Xu
T (u,w)

)
≥ 2−8k−4.

2. For at least half of the edges (u,w) ∈ D, we have I
(
Y w
T (u,w)

)
≥ 2−8k−4.

Without loss of generality, assume that the first statement holds.
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Assume for a contradiction that

|D|
|E|

> 2−4k.

Thus, by an averaging argument, there exists u ∈ U , such that, for at least 2−4k−1

fraction of the edges (u,w) ∈ E, we have I
(
Xu
T (u,w)

)
≥ 2−8k−4. Fix u ∈ U that has

this property. Denote by E(u) the (multi)-set of edges in E that contain u, that is,

E(u) = {(u,w) : (u,w) ∈ E}. Thus,

E
(u,w)∈RE(u)

[
I
(
Xu
T (u,w)

)]
≥ 2−4k−1 · 2−8k−4 = 2−12k−5.

Since each element of [M ] appears in at most 2−20k fraction of the sets in

{T (u,w)}(u,w)∈E(u), we have by Lemma 8,

I(Xu) ≥ 2−12k−5 · 220k = 28k−5,

in contradiction to the assumption of the lemma.

7 Communication Lower Bound

In this section we prove Theorem 1. That is, we show that any randomized communication

protocol for the bursting noise function with parameter k, that has communication

complexity at most 2k, has error at least ε ≥ 1
2
−2−k (when the inputs are selected according

to the distribution µ). The lower bound is proved using the relative discrepancy bound

(Proposition 3).

7.1 Notation

Fix a rectangle R = A × B, for A,B ⊆ {0, 1}V . Let m = 22k . Let X be a random variable

taking values in {0, 1}V , that is uniformly distributed over A. Let Y be a random variable

taking values in {0, 1}V , that is uniformly distributed over B.

Let i ∈ [c] be a multi-layer. Define V<i ⊆ V to be the set of vertices in multi-layers 1

to i−1. Define Vi ⊆ V to be the set of vertices in multi-layer i. Define V≥i ⊆ V to be the set

of vertices in multi-layers i to c. Define V>i ⊆ V to be the set of vertices in multi-layers i+ 1

to c. For Z that is either a random variable taking values in {0, 1}V or an element in {0, 1}V ,

we define Z<i, Zi, Z≥i, Z>i to be the projections of Z to V<i, Vi, V≥i, V>i (respectively).

Let i ∈ [c] and z ∈ {0, 1}V<i . Define Ψz to be the set of all elements ψ ∈ {0, 1}V
with ψ<i = z. It holds that |Ψz| = |{0, 1}V≥i |. Define Az = A ∩ Ψz and Bz = B ∩ Ψz.

Define Rz = Az × Bz. Let Xz be a random variable taking values in Ψz, that is uniformly

distributed over Az. Let Y z be a random variable taking values in Ψz, that is uniformly

distributed over Bz.
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7.2 The Distribution ρ

For i ∈ [c], define ρi to be the uniform distribution over the set⋃
z∈{0,1}V<i

Ψz ×Ψz.

That is, ρi is the uniform distribution over all inputs (x, y) such that x<i = y<i. Define the

distribution ρ over {0, 1}V × {0, 1}V as 1
c

∑
i∈[c] ρi.

For i ∈ [c] and z ∈ {0, 1}V<i , define ρi,z to be the uniform distribution over the set Ψz×Ψz.

That is, ρi,z is the uniform distribution over all inputs (x, y) such that x<i = y<i = z. In

particular,

ρi,z(R) = ρi,z(R
z) =

|Rz|
|Ψz ×Ψz|

. (7)

Recall that we fixed a rectangle R. Define ρ̂ to be the distribution over the set of pairs (i, z),

where i ∈ [c] and z ∈ {0, 1}V<i , by

ρ̂(i, z) =
ρi(R

z)

c · ρ(R)
=

ρi,z(R)

c · |{0, 1}V<i| · ρ(R)
. (8)

7.3 Bounding the Information on the Noisy Multi-Layer

The following lemma shows that, in expectation over (i, z) sampled according to ρ̂, the

distribution of the projections of inputs in Rz to multi-layer i is close to uniform.

Lemma 11. It holds that

E
(i,z)←ρ̂

[I (Xz
i )] ≤ 1

c · ρ(R)
,

and similarly,

E
(i,z)←ρ̂

[I (Y z
i )] ≤ 1

c · ρ(R)
.

Proof. First observe that by Equation (8),

ρ(R) E
(i,z)←ρ̂

[I (Xz
i )] = E

i∈R[c]
E

z∈R{0,1}V<i
[ρi,z(R) · I (Xz

i )] .

Therefore, it suffices to upper-bound the right hand side by 1/c.
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Fix i ∈ [c]. It holds that

E
z∈R{0,1}V<i

[ρi,z(R) · I (Xz
i )]

=
∑

z∈{0,1}V<i

1

|{0, 1}V<i|
· |Rz|
|{0, 1}V≥i |2

· I (Xz
i )

=
1

|{0, 1}V |
∑

z∈{0,1}V<i

|Az| · |Bz|
|{0, 1}V≥i |

· I (Xz
i )

≤ 1

|{0, 1}V |
∑

z∈{0,1}V<i

|Az| · |{0, 1}V≥i |
|{0, 1}V≥i |

· I (Xz
i )

=
1

|{0, 1}V |
∑

z∈{0,1}V<i

|Az| · (|Vi| −H (Xz
i ))

=
1

|{0, 1}V |

|A| · |Vi| − ∑
z∈{0,1}V<i

|Az| ·H (Xz
i )


=

|A|
|{0, 1}V |

|Vi| − ∑
z∈{0,1}V<i

|Az|
|A|
·H (Xz

i )

 .

We have that ∑
z∈{0,1}V<i

|Az|
|A|
·H (Xz

i ) =
∑

z∈{0,1}V<i

|Az|
|A|
·H (Xi|X<i = z)

= E
z←X<i

[H (Xi|X<i = z)] = H (Xi|X<i) .
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By the chain rule for the entropy function,

E
i∈R[c]

E
z∈R{0,1}V<i

[ρi,z(R) · I (Xz
i )]

≤ |A|
|{0, 1}V |

E
i∈R[c]

[|Vi| −H (Xi|X<i)]

=
|A|

c · |{0, 1}V |

∑
i∈[c]

|Vi| −
∑
i∈[c]

H (Xi|X<i)


=

|A|
c · |{0, 1}V |

(|V | −H(X))

=
|A|

c · |{0, 1}V |
(|V | − log (|A|))

=
|A|

c · |{0, 1}V |
log

(
|{0, 1}V |
|A|

)
<

1

c
,

where the last inequality holds as −x log(x) < 1 for x ∈ [0, 1].

7.4 Good Rectangles

For i ∈ [c] and z ∈ {0, 1}V<i , we say that (i, z) is good if the following two properties hold:

1. I (Xz) , I (Y z) ≤ 2 log(m).

2. I (Xz
i ) , I (Y z

i ) ≤ m3

c
.

Let G be the set of all good pairs (i, z).

Lemma 12. It holds that

Pr
(i,z)←ρ̂

[ (i, z) ∈ G ] ≥ 1− 4

m2 · ρ(R)
.

Proof. We claim that each of the two requirements in the definition of a good pair (i, z) is

violated with probability of at most 2
m2·ρ(R)

:

1. If I (Xz) > 2 log(m) or I (Y z) > 2 log(m), then, by Equation (7), ρi,z(R) = |Rz |
|Ψz×Ψz | ≤

1/m2. Since for every i ∈ [c] there are |{0, 1}V<i| possibilities for z, by Equation (8),

the ρ̂-measure of all such pairs is at most 1
m2·ρ(R)

.

2. By Lemma 11,

E
(i,z)←ρ̂

[I (Xz
i )] ≤ 1

c · ρ(R)
,

and similarly for Y z
i . The claim follows by Markov’s inequality.
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7.5 Proof of Theorem 1

In this section we prove Theorem 1. Let f : supp(µ)→ {0, 1} be the bursting noise function,

with parameter k, where µ is the distribution defined by Algorithm 1. Let ε = 2−2k and

δ = ε/m. Recall that m = 22k . We will show that (f, µ) has the (ε, δ) relative discrepancy

property.

For the rest of the lower bound proof, we assume that the rectangle R satisfies ρ(R) ≥ δ.

We will show the first part of the relative discrepancy property. That is,

µ
(
R ∩ f−1(0)

)
≥
(

1
2
− ε
)
· ρ(R).

The second part of the relative discrepancy property (for f−1(1)) is proved in the same way.

Recall that G is the set of all good pairs (i, z), see Section 7.4. By Lemma 13 (stated and

proved in Section 7.6),

µ
(
R ∩ f−1(0)

)
=

1

2c

∑
i∈[c]

z∈{0,1}V<i

µ0
i (R

z) ≥ 1

2c

∑
(i,z)∈G

µ0
i (R

z) ≥ 1

2c

(
1− 2−2k

) ∑
(i,z)∈G

ρi(R
z).

By Equation (8),
1

c

∑
(i,z)∈G

ρi(R
z) = ρ(R) Pr

(i,z)←ρ̂
[ (i, z) ∈ G ] .

By Lemma 12 and since ρ(R) ≥ δ,

µ
(
R ∩ f−1(0)

)
≥ 1

2

(
1− 2−2k

)(
1− 4

m2 · ρ(R)

)
ρ(R) ≥

(
1
2
− ε
)
ρ(R).

By Proposition 3, we conclude that every randomized protocol for f with communication

complexity at most 2k, errs with probability at least 1
2
− ε− δ ·22k ≥ 1

2
−2−k when the inputs

are distributed according to µ.

7.6 Applying the Graph Correlation Lemma

Lemma 13. Let (i, z) be a good pair. It holds that

µ0
i (R

z) ≥
(
1− 2−2k

)
ρi(R

z).

Similarly,

µ1
i (R

z) ≥
(
1− 2−2k

)
ρi(R

z).

Proof. We will prove the first part. The second part is proved in the same way. For simplicity

of notation, we denote in this proof R := Rz, X := Xz and Y := Y z. Note that X and Y

are independent random variables over the domain Ψz.
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We first claim that the first part of the lemma is equivalent to the inequity

Pr
[
(X, Y ) ∈ supp(µ0

i )
]
≥
(
1− 2−2k

)
ρi
(
supp(µ0

i )
)
. (9)

This is true as

|supp(µ0
i )|

|R|
· µ0

i (R) =
|supp(µ0

i )|
|R|

· |supp(µ0
i ) ∩R|

|supp(µ0
i )|

= Pr
[
(X, Y ) ∈ supp(µ0

i )
]
,

while, since supp(µ0
i ) ⊆ supp(ρi) and R ⊆ supp(ρi), it holds that

|supp(µ0
i )|

|R|
· ρi(R) =

|supp(µ0
i )|

|R|
· |R|
|supp(ρi)|

= ρi
(
supp(µ0

i )
)
.

The rest of the proof is devoted to proving Equation (9).

Let G = (U ∪W,E) be the complete bipartite graph with sets of vertices U,W and set

of edges E, defined as follows: Let U = W = {0, 1}Vi be the set of all boolean assignments

to the vertices in multi-layer i. Let E = U ×W .

Let M be the number of vertices in layer (i+ 1)∗ of the tree T . We identify the set [M ]

with the set of vertices in layer (i + 1)∗. Let u ∈ U,w ∈ W . We define T (u,w) ⊂ [M ] to

be the set of all vertices in layer (i + 1)∗ that are set to be non-noisy for inputs u,w, by

Algorithm 1 defining µ, when the noisy multi-layer is i. That is, T (u,w) is the set of all

typical vertices in layer (i+ 1)∗ with respect to i, u, w. Observe that u and w determine for

every vertex in layer (i+ 1)∗ if it is noisy or not.

Note that by a symmetry argument, T (u,w) is of the same size T for every u,w. By

the definition of the bursting noise function and by the Chernoff bound, for any fixed u or

w and every v ∈ [M ], it holds that at most a fraction of 2−20k of the sets {T (u,w)}(u,w)∈E

contain v.

Denote I := max {I(X), I(Y ), 1}, and note that I ≤ 2 log(m) ≤ 2k+1 (by Property (1) of

a good pair (i, z)).

Define the bad sets:

D1 =
{
u ∈ U : Pr

X
[Xi = u] = 0 or I(X>i|Xi = u) > 24k

}
,

D2 =
{
w ∈ W : Pr

Y
[Yi = w] = 0 or I(Y>i|Yi = w) > 24k

}
.

By the chain rule for the entropy function,

I ≥ I(X) = log(|Ψz|)−H(X)

= log(|U | · |{0, 1}V>i|)−H(Xi, X>i)

= log(|U |) + log(|{0, 1}V>i|)−H(Xi)−H(X>i|Xi)

= I(Xi) + log(|{0, 1}V>i|)− E
u←Xi

[H(X>i|Xi = u)]

≥ E
u←Xi

[I(X>i|Xi = u)] .
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By Markov’s inequality,

Pr
X

[Xi ∈ D1] ≤ I

24k
. (10)

By a similar argument,

Pr
Y

[Yi ∈ D2] ≤ I

24k
. (11)

For u /∈ D1, we define the random variable Xu to be (X>i|Xi = u), that is, Xu has the

distribution of X>i conditioned on the event Xi = u. For u ∈ D1, we define the random

variable Xu to be uniformly distributed over {0, 1}V>i . Similarly, for w /∈ D2, we define the

random variable Y w to be (Y>i|Yi = w), that is, Y w has the distribution of Y>i conditioned on

the event Yi = w. For w ∈ D2, we define the random variable Y w to be uniformly distributed

over {0, 1}V>i . Let Σ be the set of all possible boolean assignments to the vertices of a subtree

of T rooted at layer (i+ 1)∗.

By Lemma 9 applied to the graph G, there exists a set D ⊂ E such that

|D|
|E|
≤ 2−4k, (12)

and for every (u,w) /∈ D it holds that

Pr
Xu,Y w

[
Xu
T (u,w) = Y w

T (u,w)

]
≥
(
1− 2−4k

)
|Σ|−T . (13)

It holds that

Pr
X,Y

[
(X, Y ) ∈ supp(µ0

i )
]

=
∑

(u,w)∈E

Pr
X

[Xi = u] · Pr
Y

[Yi = w] · Pr
X,Y

[
(X, Y ) ∈ supp(µ0

i ) | Xi = u, Yi = w
]

≥
∑

u∈U\D1,
w∈W\D2,
(u,w)/∈D

Pr
X

[Xi = u] · Pr
Y

[Yi = w] · Pr
X,Y

[
(X, Y ) ∈ supp(µ0

i ) | Xi = u, Yi = w
]
.

By the definition of the bursting noise function (when the noisy multi-layer is i), for every

u,w, the following holds: Conditioned on Xi = u and Yi = w, we have (X, Y ) ∈ supp(µ0
i )

if and only if X>i and Y>i agree on the subtrees rooted at vertices in T (u,w) (these are

the non-noisy subtrees). Therefore, using Equation (13) and the fact that E contains all
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pairs (u,w),

Pr
X,Y

[
(X, Y ) ∈ supp(µ0

i )
]

≥
∑

u∈U\D1,
w∈W\D2,
(u,w)/∈D

Pr
X

[Xi = u] · Pr
Y

[Yi = w] · Pr
Xu,Y w

[
Xu
T (u,w) = Y w

T (u,w)

]

≥
(
1− 2−4k

)
|Σ|−T

∑
u∈U\D1,
w∈W\D2,
(u,w)/∈D

Pr
X

[Xi = u] · Pr
Y

[Yi = w] .

To bound the last term, we consider four partial sums. Clearly,∑
(u,w)∈U×W

Pr
X

[Xi = u] · Pr
Y

[Yi = w] = 1.

By Equation (10), ∑
u∈D1

Pr
X

[Xi = u] ≤ I

24k
,

and by Equation (11), ∑
w∈D2

Pr
Y

[Yi = w] ≤ I

24k
.

By Lemma 14 (stated and proved below) and Equation (12),∑
(u,w)∈D

Pr
X

[Xi = u] · Pr
Y

[Yi = w] ≤ 2−3k.

Therefore,

Pr
X,Y

[
(X, Y ) ∈ supp(µ0

i )
]
≥
(
1− 2−4k

)
|Σ|−T

(
1− I

24k
− I

24k
− 2−3k

)
≥ |Σ|−T

(
1− 2−2k

)
.

Finally, note that for every x, y ∈ Ψz, such that xi = u and yi = w, the following holds:

(x, y) ∈ supp(µ0
i ) if and only if x and y agree on the subtrees rooted at vertices in T (u,w)

(these are the non-noisy subtrees). Therefore,

|Σ|−T = Pr
(x,y)∈RΨz×Ψz

[
(x, y) ∈ supp(µ0

i )
]

= ρi
(
supp(µ0

i )
)
,

and the assertion follows.

Lemma 14. Let (i, z) be a good pair. Let U = W = {0, 1}Vi. Let D ⊆ U ×W be such that
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|D|
|U |·|W | ≤ 2−4k. It holds that

Cz :=
∑

(u,w)∈D

Pr [Xz
i = u] · Pr [Y z

i = w] ≤ 2−3k.

Proof. For simplicity of notation, we denote in this proof X := Xz and Y := Y z. By

Property (1) of a good pair (i, z), we have I (X) , I (Y ) ≤ 2 log(m), which means that

|Rz| ≥ 1
m4 |Ψz × Ψz|. This implies that for every set L ⊆ Ψz, the probability that X is

in L is at most m4 times the probability that a uniformly distributed variable over Ψz

obtains a value in L. In particular, for every u ∈ U ,

Pr [Xi = u] ≤ m4

|U |
. (14)

Similarly, for w ∈ W ,

Pr [Yi = w] ≤ m4

|W |
. (15)

Define

U ′ =

{
u ∈ U : Pr [Xi = u] ≥ 2

|U |

}
,

W ′ =

{
w ∈ W : Pr [Yi = w] ≥ 2

|W |

}
.

By Property (2) of a good pair (i, z), we have

I (Xi) ≤
m3

c
,

I (Yi) ≤
m3

c
.

Using Lemma 5.12 in [KR13] (stated for convenience at the end of the section, Lemma 15)

it holds that

Pr [Xi ∈ U ′] < 5 ·
(
m3

c

)0.1

, (16)

Similarly,

Pr [Yi ∈ W ′] < 5 ·
(
m3

c

)0.1

. (17)

The expression Cz is a sum over pairs (u,w) ∈ D. We bound Cz by a sum of three

partial sums, and work on each partial sum separately. The first partial sum is over pairs

(u,w) ∈ U ×W with u ∈ U ′, the second is over pairs (u,w) ∈ U ×W with w ∈ W ′, the

third is over pairs (u,w) ∈ D with u /∈ U ′ and w /∈ W ′.

We bound the first partial sum as follows. We use Equation (15) for the first step, and
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Equation (16) for the third. ∑
(u,w)∈U×W

u∈U ′

Pr [Xi = u] · Pr [Yi = w]

≤ m4

|W |
∑

(u,w)∈U×W
u∈U ′

Pr [Xi = u]

= m4 ·
∑
u∈U ′

Pr [Xi = u]

≤ 5m4 ·
(
m3

c

)0.1

≤ c−0.05.

The second partial sum is bounded in a similar way. We bound the third partial sum using

the bound that we have on the size of D,∑
(u,w)∈D

u/∈U ′,w/∈W ′

Pr [Xi = u] · Pr [Yi = w] ≤ |D| · 2

|U |
· 2

|W |
≤ 2−4k+2.

We conclude that Cz ≤ 2−3k.

Lemma 15 (Lemma 5.12 in [KR13]). Let µ : Ω → [0, 1] be a distribution satisfying

I = I(µ) ≤ 0.01. Let A ⊆ Ω be the set of elements with µ(x) ≥ 2
|Ω| . Then,

µ(A) < 4I0.25 log
(

1
I0.25

)
+ I < 5I0.1.

8 Bounding Information Cost by Tree Divergence Cost

In this section we give a general method that can be used to upper bound the information

cost of any protocol π. Our method uses the notion of divergence cost of a tree, a notion

that was implicit in [BBCR10] and was formally defined in [BR11].

Let π be a communication protocol between two players. We assume that the first player

has the private input x and the second player has the private input y, where (x, y) were

chosen according to some joint distribution µ. In this section, we assume without loss of

generality that π does not use public randomness (but may use private randomness), as for

the purpose of upper bounding the information cost, the public randomness can always be

replaced by private randomness. We also assume, without loss of generality, that the players

take alternating turns sending bits to each other. That is, in odd rounds, the first player

sends a bit to the second player, and in even rounds the second player sends a bit to the first

player (if this is not the case, we can add dummy rounds that do not change the information

cost).

We denote by Tπ the binary tree associated with the communication protocol π. That

is, every vertex v of Tπ corresponds to a possible transcript of π, and the two edges going
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out of v are labeled by 0 and 1, corresponding to the next bit to be transmitted. We think

of the first player as owning the vertices in odd layers of Tπ (where the root is in layer 1),

and of the second player as owning the vertices in even layers of Tπ. When the protocol π

reaches a non-leaf vertex v, the player who owns v sends a bit to the other player.

Every input pair (x, y) for the protocol π induces a distribution Pv = (pv, 1−pv) for every

non-leaf vertex v of the tree Tπ, where pv is the probability that the next bit transmitted by

the protocol π on the vertex v and inputs x, y is 0. We think of Pv as a distribution over

the two children of the vertex v. Observe that the player who owns v knows Pv. Given the

binary tree Tπ and the distributions Pv for every non-leaf vertex v of Tπ, where for each v the

player who owns v knows Pv, we can assume without loss of generality that the protocol π

operates as follows: Starting from the root until reaching a leaf, at every vertex v, the player

who owns v samples a bit according to Pv and sends this bit to the other player. Both players

continue to the child of v that is indicated by the communicated bit.

Assume that for every non-leaf vertex v of Tπ, we have an additional distribution

Qv = (qv, 1 − qv) that is known to the player who doesn’t own v. We think of every Pv
as the “correct” distribution over the two children of v. This distribution is known to the

player who owns v. We think of Qv as an estimation of Pv, based on the knowledge of the

player who doesn’t own v. For the rest of the section, we think of Tπ as the tree Tπ together

with the distributions Pv and Qv, for every non-leaf vertex v in the tree Tπ.

To upper bound the information cost of a protocol π it is convenient to use the notion

of divergence cost of a tree [BBCR10, BR11].

Definition 7 (Divergence Cost [BBCR10, BR11]). Consider a binary tree T , whose root

is r, and distributions Pv = (pv, 1 − pv), Qv = (qv, 1 − qv) for every non-leaf vertex v in the

tree. We think of Pv and Qv as distributions over the two children of the vertex v. We define

the divergence cost of the tree T recursively, as follows. D(T ) = 0 if the tree has depth 0,

otherwise,

D(T ) = D(Pr‖Qr) + E
v∼Pr

[D(Tv)], (18)

where for every vertex v, Tv is the subtree of T whose root is v.

An equivalent definition of the divergence cost of T is obtained by following the recursion

in Equation (18) and is given by the following equation:

D(T ) =
∑
v∈V

p̃v ·D(Pv‖Qv), (19)

where V is the vertex set of T , and for a vertex v ∈ V , p̃v is the probability to reach v by

following the distributions Pv, starting from the root. Formally, if v is the root of the tree T ,

then p̃v = 1, otherwise,

p̃v =

{
p̃u · pu if v is the left-hand child of u

p̃u · (1− pu) if v is the right-hand child of u.
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Let X be the input to the first player and Y be the input to the second player. In the

protocol π, the players use two private random strings and no public randomness. Denote

the private random string of the first player by R1, and the private random string of the

second player by R2. For a layer d of Tπ, let Πd be the vertex in layer d that the players

reach during the execution of the protocol π, when the inputs are (X, Y ) and the private

random strings are R1 and R2 (if π ends before layer d, then Πd is undefined).

Let the tree T ′π be the same as Tπ, except that every distribution Qv, for every non-leaf

vertex v in Tπ, is replaced with the distribution Q′v = (q′v, 1 − q′v), where q′v is defined as

follows: Let d be the layer of v. If v is owned by the first player, q′v is the function of v, y

and r2, defined as

q′v = E
X,R1

[pv|Y = y,R2 = r2,Πd = v].

If v is owned by the second player, q′v is the function of v, x and r1, defined as

q′v = E
Y,R2

[pv|X = x,R1 = r1,Πd = v].

We think of Q′v as the best estimation of the correct distribution Pv, based on the

knowledge of the player who doesn’t own v, whereas Qv is some estimation. Intuitively,

D(Pv‖Qv) is the information that the player who doesn’t own v learns on Pv from the bit

sent during the protocol at the vertex v, assuming that she expects this bit to be distributed

according to Qv, whereas D(Pv‖Q′v) is the information that she learns based on the best

possible estimation of Pv. Therefore, intuitively, the divergence cost of T ′π is at most the

divergence cost of Tπ, in expectation. This is formulated in the following lemma.

Observe that the protocol π induces the distributions Pv (known to the player who

owns v) and Q′v (known to the player who doesn’t own v), while the distribution Qv may be

any distribution known to the player who doesn’t own v.

Lemma 16. For every protocol π and distributions Qv known to the player who doesn’t

own v, as above, it holds that

E[D(T ′π)] ≤ E[D(Tπ)],

where the expectation is over the sampling of the inputs according to µ and over the

randomness.

Proof. By Equation (19),

E
X,Y,R1,R2

[D(Tπ)−D(T ′π)] = E
X,Y,R1,R2

[∑
v

p̃v (D(Pv‖Qv)−D(Pv‖Q′v))

]
,

where p̃v is as in Definition 7. We separate the sum on the vertices to layers and work on

each layer separately. Fix a layer d in the tree. Let Ld be the set of vertices in layer d. To
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simplify notation, let A denote (X,R1), let B denote (Y,R2), and let V denote Πd. Then,

E
X,Y,R1,R2

[∑
v∈Ld

p̃v (D(Pv‖Qv)−D(Pv‖Q′v))

]
= E

A,B,V
[D(PV ‖QV )−D(PV ‖Q′V )] .

(Recall that V is undefined when the protocol ends before layer d. In that case, for simplicity,

we think of PV , QV and Q′V as all being equal, and hence D(PV ‖QV ) = D(PV ‖Q′V ) = 0).

By the definition of relative entropy,

E
A,B,V

[D(PV ‖QV )−D(PV ‖Q′V )]

= E
A,B,V

[
pV

(
log

(
pV
qV

)
− log

(
pV
q′V

))
+ (1− pV )

(
log

(
1− pV
1− qV

)
− log

(
1− pV
1− q′V

))]
= E

A,B,V

[
pV log

(
q′V
qV

)
+ (1− pV ) log

(
1− q′V
1− qV

)]
. (20)

Assume that the first player owns the vertices in layer d. The case that the second player

owns the vertices in layer d is analogous. Consider the first summand in Equation (20). It

holds that,

E
A,B,V

[
pV log

(
q′V
qV

)]
= E

B,V

[
E
A

[(
pV log

(
q′V
qV

))∣∣∣∣B, V ]] .
By the definition of q′V , for fixed B, V , it holds that q′V = EA [pV |B, V ]. Since q′V and qV
are functions of B and V , when we condition on B and V , q′V and qV are fixed. Therefore,

conditioned on B and V , the term log
(
q′V
qV

)
is independent of A. We get that,

E
B,V

[
E
A

[(
pV log

(
q′V
qV

))∣∣∣∣B, V ]] = E
B,V

[
E
A

[pV |B, V ] log

(
q′V
qV

)]
= E

B,V

[
q′V log

(
q′V
qV

)]
.

In the same way, we get that the second summand in Equation (20) is

E
A,B,V

[
(1− pV ) log

(
1− q′V
1− qV

)]
= E

B,V

[
(1− q′V ) log

(
1− q′V
1− qV

)]
.

Put together it holds that,

E
A,B,V

[D(PV ‖QV )−D(PV ‖Q′V )] = E
B,V

[D(Q′V ‖QV )] ≥ 0,

since the divergence is non-negative. This is true for every layer d in the tree. Therefore,

summing over all layers, we get that

E
A,B

[D(T ′π)] ≤ E
A,B

[D(Tπ)].
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The following lemma relates the information cost of π to the expected divergence cost

of Tπ. It was shown in [BR11] (see Lemma 5.3 therein) that ICµ(π) = E[D(T ′π)]. Together

with Lemma 16 we get:

Lemma 17. For every protocol π and distributions Qv known to the player who doesn’t

own v, as above, it holds that

ICµ(π) = E[D(T ′π)] ≤ E[D(Tπ)],

where the expectation is over the sampling of the inputs according to µ and over the

randomness.

9 Information Upper Bound

In this section we prove Theorem 2. Let (x, y) ∈ supp(µ) be an input pair to the bursting

noise function. Consider the following protocol π′ for the bursting noise function. Starting

from the root until reaching a leaf, at every vertex v, if the first player owns v, she sends the

bit xv with probability 0.9, and the bit 1− xv with probability 0.1. Similarly, if the second

player owns v, she sends the bit yv with probability 0.9, and the bit 1−yv with probability 0.1.

Both players continue to the child of v that is indicated by the communicated bit. When

they reach a leaf v they output xv ⊕ yv. By the Chernoff bound, the probability that the

players reach a leaf that is not typical with respect to the noisy multi-layer is at most 2−Ω(w).

That is, the error probability of π′ is exponentially small in k.

The information cost of the protocol π′ is too large. The reason is that if the protocol

reaches a non-typical vertex at the end of the noisy multi-layer (with respect to the noisy

multi-layer), an event that occurs with probability exponentially small in k, then the rest of

the protocol reveals to each player Ω ((c− i)w) bits of information about the input of the

other player, in expectation (as all the vertices below a non-typical vertex are noisy), and note

that Ω ((c− i)w) is double exponentially large (for almost all i). Thus, in expectation, the

information revealed to each player about the input of the other player is double exponential

in k.

For that reason, we consider a variant of the protocol π′, called π. Informally speaking,

the protocol π operates like π′ but aborts if too much information about the inputs is

revealed. Recall that in every round of the protocol π′, the players are at a vertex v of T and

the player who owns v sends a bit bv indicating one of v’s children. In the new protocol π,

after receiving that bit, the receiving party sends a bit av indicating whether they should

abort the protocol, where av = 1 stands for abort and av = 0 stands for continue. If a bit

av = 1, indicating an abort, was sent, the protocol terminates and both players output an

arbitrary bit, say 0. It remains to specify how the receiving party, without loss of generality

the second player, decides whether to abort or continue, that is, how she determines the

value of av.
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To determine whether to abort, the second player considers the last ` = 2100k vertices

v1, . . . , v`, reached by the protocol and owned by the first player, and the corresponding bits

bv1 , . . . , bv` that were sent by the first player (if less than ` bits were sent by the first player so

far, then the second player does not abort). For every j ∈ [`], the second player compares bvj
and yvj . The second player decides to abort and sends av = 1 if and only if less than 0.8` of

these pairs are equal (otherwise the second player sends av = 0).

The following claim shows that the probability that π aborts is exponentially small in k.

If π does not abort, it gives the same output as π′. We conclude that the error probability

of π is exponentially small in k.

Claim 18. Let (x, y) ∈ supp(µ) be an input pair to the bursting noise function. The protocol

π aborts with probability at most 2−10k on the input (x, y).

Proof. Fix (x, y) ∈ supp(µi) for some i ∈ [c]. Let E be the event that the protocol π reaches

a non-typical vertex after multi-layer i (with respect to multi-layer i). By the Chernoff

bound, the event E occurs with probability at most 2−100k, as w = 2100k. Let A be the event

that the protocol π aborts. Assume that E does not occur. By the Chernoff bound, the

probability of aborting after each round is at most 2−250k , as ` = 2100k and since if E does not

occur then xv and yv can only differ for at most w vertices reached by the protocol π. By the

union bound, the probability of abort (conditioned on ¬E) is at most cw · 2−250k < 2−100k.

Therefore,

Pr[A] ≤ Pr[E] + Pr[A|¬E] ≤ 2 · 2−100k.

We next upper bound the information cost of the protocol π. Observe that after π reaches

a leaf v of the tree T , two additional bits, xv and yv are exchanged, which adds at most 2

to the information cost of π. Therefore, for the rest of the section, we ignore the exchange

of these last two bits, and think of π as terminating after reaching a leaf of T .

To upper bound the information cost of the protocol π we will use Lemma 17. We denote

by Tπ the binary tree associated with the communication protocol π, as in Section 8. That

is, every vertex v of Tπ corresponds to a possible transcript of π, and the two edges going out

of v are labeled by 0 and 1, corresponding to the next bit to be transmitted. The non-leaf

vertices of the tree Tπ have the following structure: Every non-leaf vertex v in an odd layer

of Tπ corresponds to a non-leaf vertex of T , the binary tree on which the bursting noise game

is played. Since the correspondence is one-to-one, we refer to the vertex in T corresponding

to v also as v. The next bit to be transmitted by π on the vertex v is bv. For a non-leaf

vertex v in an even layer of Tπ, the next bit to be transmitted by π on the vertex v is av.

As explained in Section 8, every input pair (x, y) ∈ supp(µ) to the bursting noise function,

induces a distribution Pv = (pv, 1− pv) for every non-leaf vertex v of the tree Tπ, where pv is

the probability that the next bit transmitted by the protocol π on the vertex v and inputs

x, y is 0. Namely, if v is in an odd layer of Tπ (and recall that in this case we think of v

as both a vertex of Tπ and of T ), the distribution Pv is the following: In the case that the
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first player owns v in T , if xv = 0 then Pv = (0.9, 0.1), and if xv = 1 then Pv = (0.1, 0.9).

In the case that the second player owns v, if yv = 0 then Pv = (0.9, 0.1), and if yv = 1 then

Pv = (0.1, 0.9). If v is in an even layer of Tπ then Pv is Pv = (0, 1) if the player sending av
decides to abort, and Pv = (1, 0) if she decides to continue (note that given x, y, v, this

decision is deterministic).

For every non-leaf vertex v of Tπ, we define an additional distribution Qv = (qv, 1 − qv)
(depending on the input (x, y)). We think of every Pv as the “correct” distribution over the

two children of v. This distribution is known to the player who sends the next bit on the

vertex v. We think of Qv as an estimation of Pv, based on the knowledge of the player who

doesn’t send the next bit. For a vertex v in an odd layer of Tπ (and recall that in this case

we think of v as both a vertex of Tπ and of T ), the distribution Qv is the following: In the

case that the first player owns v in T , if yv = 0 then Qv = (0.9, 0.1), and if yv = 1 then

Qv = (0.1, 0.9). In the case that the second player owns v, if xv = 0 then Qv = (0.9, 0.1),

and if xv = 1 then Qv = (0.1, 0.9). If v is in an even layer of Tπ then Qv = (1− 1
cw
, 1
cw

).

For the rest of the section, we think of Tπ as the tree Tπ together with the distributions Pv
and Qv, for every vertex v in the tree Tπ.

Proposition 19. It holds that

D(Tπ) = O(k).

Proof. Fix (x, y) ∈ supp(µi) for some i ∈ [c]. By Equation (19),

D(Tπ) =
∑
v

p̃v ·D(Pv‖Qv),

where p̃v is the probability that the protocol π reaches the vertex v on input (x, y). We will

bound the last sum separately for vertices v in odd layers and for vertices v in even layers.

We first sum over vertices in even layers. For every vertex v in an even layer of Tπ, if

Pv = (0, 1) (protocol aborts) we have D(Pv‖Qv) = log(cw), and if Pv = (1, 0) (protocol

continues) we have D(Pv‖Qv) = log
(

1
1−1/cw

)
= log

(
1 + 1

cw−1

)
< 2

cw
. By Claim 18, the

probability that π aborts is at most 2−10k. Therefore, the sum in Equation (19) taken over

vertices in even layers is at most cw · 2
cw

+ 2−10k · log(cw) ≤ 3, as for each of the cw even

layers, the probability of reaching a vertex in this layer is at most 1.

We next sum over vertices in odd layers. Recall that each such vertex corresponds to

a vertex in T . Let v be a vertex in an odd layer of Tπ. If v corresponds to a non-noisy

vertex in T we have D(Pv‖Qv) = 0, and if v corresponds to a noisy vertex in T we have

D(Pv‖Qv) ≤ 4. Recall that i is the noisy multi-layer. Then,

1. The vertices above multi-layer i in T add nothing to the divergence cost.

2. Multi-layer i of T adds O(w) to the divergence cost.

3. If i < c: Let v be the vertex in layer i∗ + w of T that the players reach during the

execution of the protocol π. If v is a typical vertex with respect to multi-layer i, the
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vertices below v add nothing to the divergence cost. If v is a non-typical vertex, the

protocol aborts after at most 4` rounds in expectation. Since the probability that v is

a non-typical vertex with respect to multi-layer i is at most 2−1000k (as w = 2100k), the

expected divergence cost added by this case is at most 2−1000k · 4` · 4 ≤ 1.

Together, the total divergence cost is O(w) = O(k), as claimed.

By Proposition 19 and Lemma 17 we get that ICµ(π) ≤ O(k).
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