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Abstract

We provide an alternative proof for a known result stating that Ω(k) queries are needed
to test k-sparse linear Boolean functions. Similar to the approach of Blais and Kane (2012),
we reduce the proof to the analysis of Hamming weights of vectors in a�ne subspaces of
the Boolean hypercube. However, we derive our proof from a general result by Linial and
Samorodnitsky (2002) that upper bounds the number of vectors with the same Hamming
weight in every large a�ne subspace of the Boolean hypercube. Our line of argument is
reminiscent of a technique that is common in communication complexity, and it allows us
to derive the lower bound from Linial and Samorodnitsky's result quite easily.

We publish this proof as a self-contained excerpt from a broader work (2014), since it
might be of independent interest. In the other work we also extend the result to an Ω(s)
lower bound for testing s-sparse polynomials of degree d, for any d ∈ N.

Keywords: Property Testing, A�ne Subspaces.

1 Introduction

The class of k-linear Boolean functions consists of all linear Boolean functions over {0, 1}n that
are k-sparse, meaning that exactly k of their coe�cients are non-zero. While the class of linear
Boolean functions is testable with O(1) queries by the BLR tester [4], testing the subclass of
k-linear functions requires Ω(k) queries if k ∈ [0, n2 ] and Ω(n−k) queries otherwise. The problem
of testing k-linear functions is computationally equivalent to the problem of testing (n−k)-linear
functions (see [2, Apdx. B]), and hence it su�ces to analyze the case of k ≤ n

2 .
For k ∈ [0, n2 ], Blais and O'Donnell [3] proved an Ω(log k) lower bound on the query complexity

of this property, and Goldreich [6] later proved an Ω(k) lower bound for non-adaptive testers
and an Ω(

√
k) lower bound for all testers. Blais, Brody, and Matulef [1] proved an Ω(k) lower

bound for all testers, relying on a reduction from communication complexity. Blais and Kane [2]
gave an alternative proof for this lower bound by directly analyzing the property testing problem
(without a reduction from communication complexity).

In this paper we provide an alternative proof for this lower bound, that also does not rely
on a reduction from communication complexity. Speci�cally, we consider a promise that the
input function is linear, which guarantees a relative distance of 1

2 between every pair of input
functions, and prove that the query complexity of testing whether an input function is n

2 -linear
or is l-linear, for any l 6= n

2 , is Ω(n). We then use a simple black-box reduction to extend this
result to a lower bound of Ω(k) for testing k-linear functions, for any k ∈ [0, n2 ]. Both previous
proofs of this lower bound [1, 2] also considered the initial parameter of k ≈ n

2 and a promise
that the input function is linear.
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High-level overview. We rely on a standard reduction to deterministic testers with an (ar-
bitrary) distribution on the inputs. Identifying linear functions with their coe�cient vectors in
{0, 1}n, we follow Blais and Kane [2] and show that any deterministic tester with query com-
plexity q partitions {0, 1}n into a�ne subspaces of co-dimension at most q such that the tester's
output on all vectors in each subspace is identical.

We consider testers with query complexity 1
3 · n, and corresponding partitions of {0, 1}n to

subspaces of co-dimension 1
3 · n. Note that the overall fraction of �yes� instances (i.e., of vectors

with Hamming weight n
2 ) in {0, 1}

n is O( 1√
n

). We rely on a result by Linial and Samorodnitsky

[8, Thm 4.4], that upper-bounds the fraction of vectors with the same Hamming weight k ∈ [n]
in every a�ne subspace of dimension λ · n (for λ > 1

2 ) by Oλ( 1√
n

).

We choose a distribution that with probability p is uniform over all vectors with Hamming
weight n2 , and is otherwise uniform over all other vectors. Relying on Linial and Samorodnitsky's
result, and choosing p appropriately, we show that this distribution assigns at most half of the
probabilistic mass of each subspace of co-dimension 1

3 · n to vectors with Hamming weight n
2 .

Thus, if a deterministic tester with query complexity 1
3 ·n accepts a subspace in the corresponding

partition of {0, 1}n, then the tester errs on half of the probabilistic mass of that subspace. On
the other hand, if the tester only accepts an overall sub-constant probabilistic mass of subspaces,
it incorrectly rejects most of the probabilistic mass assigned to vectors with Hamming weight n

2 .

Note: This proof is part of a work that was published separately [9], in which we also extend
this lower bound to an Ω(min{s,

(
n
d

)
−s}) lower bound for testing s-sparse polynomials of degree

d, for any d ∈ N. We chose to present the current proof independently and in self-contained
form, since it might be of independent interest.

2 Preliminaries

For n ∈ N and w ∈ {0, 1}n, denote the Hamming weight of w by ‖w‖1 =
∑n
i=1 wi. For 0 ≤ k ≤ n,

let Wk = {w ∈ {0, 1}n : ‖w‖1 = k}. We state a special case of Linial and Samorodnitsky's result
[8, Thm 4.4]:

Theorem 1. For n ∈ N and every a�ne subspace V ⊆ {0, 1}n with dimension at least 2
3 · n, it

holds that
|V ∩Wn/2|
|V | = O( 1√

n
).

For k ∈ N, we say that a function f : {0, 1}n → {0, 1} is k-linear if f is a linear function with
exactly k(n) non-zero coe�cients.

De�nition 2. For n, k ∈ N, a tester for the problem of testing k-linear Boolean functions over
{0, 1}n under the promise that the input function is linear is a randomized oracle machine T
that satis�es the following two conditions:

1. If f : {0, 1}n → {0, 1} is k-linear, then Pr[T f (1n) = 1] ≥ 2
3 .

2. If f : {0, 1}n → {0, 1} is l-linear, for l 6= k, then Pr[T f (1n) = 0] ≥ 2
3 .

The query complexity of T is the maximum (over x ∈ {0, 1}n and internal coin tosses of
T ) number of queries that T makes. The query complexity of the property of k-linear Boolean
functions over {0, 1}n under the promise that the input function is linear is the minimum query
complexity of all testers for k-linear Boolean functions.

Note that by standard error reduction, if there exists a tester with query complexity q that
sati�es both conditions in De�nition 2, then for every δ > 0 there exists a tester with query
complexity q ·O(log(1/δ)) that satis�es both conditions with probability 1− δ (instead of 2

3 ).
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3 The proof

We start by proving the case of k = n
2 , then we extend the result to all k ∈ [0, n2 ] by a simple

black-box reduction to the k = n
2 case. Recall that testing k-linear functions is computationally

equivalent to testing (n− k)-linear functions (see [2, Apdx. B] for a proof), and hence it su�ces
to focus on the case of k ∈ [0, n2 ].

Theorem 3. For n ∈ N, the query complexity of the property of n2 -linear Boolean functions over
{0, 1}n under the promise that the input function is linear is Ω(n).

Proof. It is well-known that in order to lower bound the error probability of any probabilistic
tester with query complexity q(n), it su�ces to lower bound the error probability of all deter-
ministic testers with query complexity q(n) over an (arbitrary) distribution on the inputs. We
therefore show a distribution on the inputs such that every deterministic tester with query com-
plexity 1

3 · n errs on it with probability that is lower bounded by a universal positive constant.
According to the discussion after De�nition 2 this implies that there does not exists a tester with
query complexity o(n) for the property.

Since we consider distributions that are supported only by linear functions, we can represent
any distribution over the inputs as a distribution over {0, 1}n, where each vector w ∈ {0, 1}n
represents a ‖w‖1-linear function (by representing its coe�cients). Correspondingly, {0, 1}n is
partitioned to Wn/2, which consists of all �yes� instances, and {0, 1}n \Wn/2, which consists of
all �no� instances. A key lemma in our analysis will be the following:

Lemma 4 (following [2, 5]): Any deterministic tester with query complexity 1
3 ·n for n

2 -linearity
induces a partition of {0, 1}n into a�ne subspaces of dimension at least 2

3 ·n such that its output
on all vectors in each subspace is identical.

The intuition behind this lemma is that a deterministic tester that is given a linear function
as input is equivalent to a parity decision tree that inputs the coe�cients of the linear function.
The a�ne subspaces in the induced partition correspond to the leaves of the tree. For further
details see [9, Prop 5.6].

Proof. Let T be a deterministic tester, and we assume without loss of generality that it issues
exactly m ≤ 1

3 · n queries on any input. For an arbitrary input w ∈ {0, 1}n, denote the corre-
sponding ‖w‖1-linear function by fw, and denote the m queries issued during the execution of
T fw(1n) by the rows of an m-by-n matrix Q, and the responses received by r ∈ {0, 1}m. Then

VQ,r = {w′ ∈ {0, 1}n : Qw′ = r}

is an a�ne subspace of dimension at least 2
3 · n.

Clearly w ∈ VQ,r. Let w′ ∈ VQ,r. Since T is deterministic, the �rst query issued by T fw′ (1n)
is identical to the �rst query issued by T fw(1n), and since w′ ∈ VQ,r, the �rst response is also
identical in both cases. By induction, all m queries and responses will be identical in both cases,
and in particular the �nal output will also be identical. Note that this is true both for adaptive
and for non-adaptive testers.

To see that these subspaces are indeed a partition of {0, 1}n, consider two subspaces V(1)

Q(1),r(1)

and V(2)

Q(2),r(2)
such that for i = 1, 2, for every input w ∈ V(i)

Q(i),r(i)
it holds that T fw(1n) makes

queries Q(i) and receives responses r(i). If there exists w ∈ V(1)

Q(1),r(1)
∩ V(2)

Q(2),r(2)
then it follows

that Q(1) = Q(2) and r(1) = r(2), which implies that V(1)

Q(1),r(1)
= V(2)

Q(2),r(2)
. Also, any w ∈ {0, 1}n

belongs to some a�ne subspace of this form (induced by the queries and responses during the
execution of T fw(1n)).
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For p ∈ (0, 1), let Dp be a distribution over {0, 1}n that with probability p is uniform over
Wn/2 and with probability 1− p is uniform over {0, 1}n \Wn/2. Following Lemma 4, it su�ces

to show that for any partition of {0, 1}n to a�ne subspaces of dimension at least 2
3 · n and any

labeling of these subspaces by �yes� and �no�, a constant probabilistic mass of vectors under Dp
is incorrectly labeled (where a vector u ∈Wn/2 is labeled correctly if it is labeled by �yes� and a
vector v ∈ {0, 1}n \Wn/2 is labeled correctly if it is labeled by �no�).

Lemma 5. There exist constants p ∈ (0, 1) and µ > 0 such that for any su�ciently large even
integer n and any partition of {0, 1}n to a�ne subspaces of dimension at least 2

3 · n and any
2-labeling of the subspaces in the partition, the probabilistic mass under Dp of vectors that are
labeled incorrectly is at least µ.

Proof. We �rst prove that there exists p ∈ (0, 1) such that Dp assigns at most half of the
probabilistic mass of every subspace V ⊂ {0, 1}n of dimension at least 2

3 · n to V ∩Wn/2. To see
this, note that for an arbitrary u ∈ Wn/2 and v ∈ {0, 1}n \Wn/2 it holds that Dp(u) = p

|Wn/2|

and Dp(v) = 1−p
|{0,1}n\Wn/2|

. Therefore

Dp(u)

Dp(v)
=

p

1− p
·
|{0, 1}n \Wn/2|
|Wn/2|

=
p

1− p
·O(
√
n)

From this it follows that

Dp(V ∩Wn/2)

Dp(V )
=

Dp(u) · |V ∩Wn/2|
Dp(v) · |V \Wn/2|+Dp(u) · |V ∩Wn/2|

≤ Dp(u)

Dp(v)
·
|V ∩Wn/2|
|V |

=
p

1− p
·O(
√
n) ·
|V ∩Wn/2|
|V |

(1)

According to Theorem 1 it holds that (1) is upper bounded by p
1−p · c for some c > 0. By setting

p = 1
1+2·c ∈ (0, 1) we get that

Dp(V ∩Wn/2)

Dp(V ) ≤ 1
2 .

It follows that any labeling of a subspace of dimension at least 2
3 · n by �yes� incorrectly

labels at least half the probabilistic mass assigned by Dp to that subspace. Now, �x an arbitrary
partition of {0, 1}n to subspaces of dimension at least 2

3 ·n. If the probabilistic mass of subspaces
that are labeled by �yes� is at most p

2 , then there is a probabilistic mass of p2 of vectors in Wn/2

that are incorrectly labeled by �no�. On the other hand, if the probabilistic mass of subspaces
that are labeled by �yes� is larger than p

2 , then vectors in {0, 1}n \Wn/2 with probabilistic mass

of at least 1
2 ·

p
2 = p

4 are incorrectly labeled by �yes�. The lemma follows with µ = p
4 .

According to Lemmas 4 and 5, the error probability under Dp of every deterministic tester
with query complexity 1

3 · n is lower bounded by the universal constant µ > 0. The theorem
follows.

For k < n
2 we use a simple black-box reduction to the case of Theorem 3 to show that the

query complexity of testing k-linear functions is Ω(k). This black-box reduction is implicit in a
padding argument presented by [2] for similar purposes.

Theorem 6. For n ∈ N and k ∈ [0, n2 ], the query complexity of the property of k-linear Boolean
functions over {0, 1}n under the promise that the input function is linear is Ω(k).
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Proof. Let m = 2 · k < n. Assuming that there exists a tester T ′ for the property of k-linear
functions over {0, 1}n, we construct a corresponding tester T for m2 -linear functions over {0, 1}

m,
with the same error probability and query complexity (both problems are under the promise
that the input function is linear). Since the query complexity of testing m

2 -linear functions over
{0, 1}m is Ω(m), it follows that the query complexity of testing k-linear functions over {0, 1}n is
Ω(m) = Ω(k).

The construction itself is as follows. The tester T is given oracle access to a function f :
{0, 1}m → {0, 1}, and simulates the execution of T ′ when T ′ is given access to a function
g : {0, 1}n → {0, 1} that is de�ned in the following way: For every z = x ◦ τ ∈ {0, 1}n, where
x ∈ {0, 1}m and τ ∈ {0, 1}n−m, let g(x ◦ τ) = f(x) =

∑m
i=1 fixi. Note that T can answer any

oracle query that T ′ makes to g by making a single oracle query to f . Furthermore, f is an
m
2 -linear function if and only if g is a k-linear function. The theorem follows.

4 Digest

Similar to the approach of Blais and Kane [2], we reduce the proof to a geometric problem
regarding the intersection of Wn/2 with large a�ne subspaces of {0, 1}n. However, our line of

argument is slightly di�erent: Blais and Kane consider a distribution that with probability 1
2

is uniform over Wn
2−1 and is otherwise uniform over Wn

2 +1, whereas we consider a distribution
that with probability p > 0 is uniform over Wn/2, and is otherwise uniform over {0, 1}n \Wn/2.
This allows us to rely on the general result proved by Linial and Samorodnitsky.

Since we consider a distribution that is supported by all linear functions, our proof does not
easily extend to a lower bound on other properties, in the same way that both previous proofs
do (see [1, Prop 3.4] for further details). For example, the distribution in the proof of Theorem
3 clearly does not yield a lower bound on testing functions with Fourier degree at most n

2 (since
it is supported by �yes� instances that have Fourier degree n

2 and by �no� instances that have all
Fourier degrees in [n] \ {n2 }).

Our line of argument is reminiscent of a technique that is common in communication complex-
ity (see, e.g., [7, Method 1]). Indeed, this proof emerged from an examination of the in�uential
methodology of Blais, Brody, and Matulef [1] for reducing problems in communication complexity
to property testing problems (see [9] for further details).
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