
Deconstructions of Reductions from Communication

Complexity to Property Testing using Generalized Parity

Decision Trees∗

Roei Tell

Department of Computer Science

Weizmann Institute of Science

roei.tell@weizmann.ac.il

September 25, 2014

Abstract

A few years ago, Blais, Brody, and Matulef (2012) presented a methodology for proving lower
bounds for property testing problems by reducing them from problems in communication com-
plexity. Recently, Bhrushundi, Chakraborty, and Kulkarni (2014) showed that some reductions
of this type can be deconstructed to two separate reductions, from communication complexity to
randomized parity decision trees and from the latter to property testing.

This work follows up on these ideas. We introduce a model called linear-access algorithms,
which is a generalization of randomized parity decision trees, and show several methods to reduce
communication complexity problems to problems for linear-access algorithms and problems for
linear-access algorithms to property testing problems. This approach yields a new interpretation
for several well-known reductions, since we present these reductions as a composition of two steps
with fundamentally di�erent functionalities.

Furthermore, we demonstrate the potential of proving lower bounds on property testing prob-
lems by reducing them directly from problems for linear-access algorithms. In particular, we
provide an alternative and simple proof for a known lower bound of Ω(k) queries on testing �k-
linearity�; that is, the property of k-sparse linear functions over F2. This alternative proof relies on
a theorem by Linial and Samorodnitsky (2002). We then extend this result to a new lower bound
of Ω(s) queries for testing s-sparse degree-d polynomials over F2, for any d ∈ N. In addition we
provide a simple proof for the hardness of testing some families of linear subcodes.

We present an unrelated result in an appendix. In property testing, testers that always accept
inputs that are in the property (i.e., testers with one-sided error) are natural and common. We
show that the dual notion, testers that always reject inputs that are far from the property, seems
to be a notion of limited scope.

Keywords: Property Testing, Communication Complexity, Parity Decision Trees, Linear-Access Al-
gorithms, A�ne Subspaces, Linear Codes, One-Sided Error.

∗An alternative title: Property Testing Lower Bounds via a Generalization of Randomized Parity Decision Trees.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 115 (2014)

Contents

1 Introduction 3

1.1 Background . 3
1.2 The current study . 3

2 Preliminaries 5

2.1 Standard notations . 5
2.2 The Hadamard code and the Reed-Muller code . 5
2.3 Three computational models . 5

3 Reductions Between the Computational Models 7

3.1 Reducing linear-access problems to property testing problems 7
3.2 Reducing communication problems to linear-access problems 11
3.3 Detour: A communication model limited to linear functions 12

4 Deconstructions of Reductions from Communication Complexity to Property Test-

ing 14

4.1 The deconstruction and a generic observation . 14
4.2 Deconstructions of known results . 15

5 Proving Lower Bounds in Property Testing by Reductions from Linear-access Al-

gorithms 18

5.1 Reductions of the form of the Hadamard code . 18
5.2 A technique for proving lower bounds on linear-access algorithms 19
5.3 A lower bound on testing a family of linear subcodes . 21
5.4 A lower bound on testing sparse linear functions and polynomials 23

6 Digest and Open Questions 25

6.1 Proving lower bounds in property testing via linear-access algorithms 25
6.2 Linear-access algorithms and parity decision trees . 26
6.3 Investigating the connection between communication complexity and property testing . 27

Acknowledgements 27

References 27

Appendix: Testers that Always Reject Inputs that are Far from the Property 29

2

1 Introduction

1.1 Background

Property testing (see [21, 13]) is the study of probabilistic algorithms that inspect a given object
in few selected locations, and try to decide whether the object has some predetermined property
or is signi�cantly di�erent from any object having that property. This is a widely-studied model
in theoretical computer science, which is closely related to probabilistically checkable proofs, coding
theory, computational learning theory and more.

A few years ago, Blais, Brody, and Matulef [3] discovered a connection between property testing
and communication complexity � another widely-studied model in theoretical computer science. In
communication complexity, two parties communicate with each other to jointly compute some function
of their inputs. Blais, Brody and Matulef presented a methodology, generalized later by Goldreich
[11], to reduce any communication complexity decision problem (where the parties compute a Boolean
function) to some corresponding property testing problem.

Loosely speaking, the methodology consists of having the two parties in a communication setting
use a suitable combining function that combines their inputs into an object for property testing. Both
parties separately run identical copies of a tester for the combined object, and provide it with virtual
access to that object: Whenever the tester wants to inspect the object at some location, the two parties
communicate with each other to compute the relevant part of the combined object, and answer the
query accordingly. At the end, the parties decide according to the decision of the tester.

This methodology has been useful in proving lower bounds for property testing problems, relying on
known lower bounds in communication complexity. That is, a known �hard� problem in communication
complexity is reduced, using a suitable combining function, to a target property testing problem,
thereby proving that the latter problem is also �hard�. Further details can be found in [3, 11].

The main observation leading to this work is that in many known uses of this methodology, the
combining function is computationally very simple, scarcely using the unlimited computational power
of the communicating parties. In particular, in several well-known reductions the two parties only need
to compute linear functions of their inputs during the communication protocol. In these cases, the
same property testing problem could be reduced from a weaker model, in which both parties are only
allowed to compute linear functions of their inputs (and not any arbitrary function, as in standard
communication complexity). The main question motivating this work is therefore:

Can lower bounds in property testing be proved by reducing from a model in which the
algorithms involved only compute linear functions of their input?

Such reductions have the potential of proving lower bounds that are tighter than currently known
bounds, and of providing simpler proofs for known lower bounds.

1.2 The current study

In this study we examine one candidate for such a weaker model from which to reduce to property
testing. Towards introducing the model, consider a communication setting in which both parties can
only compute and send each other linear functions of their respective inputs. Since the parties only
compute linear functions of the input pair (x, y), this model is equivalent, up to a constant factor in
the number of queries, to a model outside the realm of communication complexity, in which a single
party computes linear functions of its input, w = x◦y, and needs to decide whether w belongs to some
predetermined subset of strings W. This latter model is known as randomized parity decision trees.

3

In fact, Bhrushundi, Chakraborty, and Kulkarni [2] recently showed two reductions from random-
ized parity decision trees to property testing, and suggested that tighter lower bounds on property
testing problems might be achieved by reducing to them directly from the intermediary model. They
further showed that some reductions from communication complexity to property testing can be de-
constructed to two separate reductions, from communication complexity to randomized parity decision
trees and from the latter to property testing.

This work follows up on these ideas. We consider a generalized intermediary model in which,
for a �nite �eld F, a probabilistic algorithm tries to decide whether an input w ∈ Fn belongs to a
predetermined subset of strings W ⊆ Fn or does not belong to it. The algorithm may only issue
linear queries to its input, that is, queries of the form q = (q1, ..., qn) ∈ Fn to be answered by
q(w) =

∑n
i=1 qiwi (over F) and it tries to minimize the number of queries it makes. We call these

probabilistic algorithms linear-access algorithms, and the problem of deciding a subset W ⊆ {0, 1}n
with a linear-access algorithm is called a linear-access problem.

Indeed, when F = F2 the linear-access model essentially coincides with the model of randomized
parity decision trees1. The latter is a probabilistic version of the known model of deterministic parity
decision trees, that has received much recent attention (see, e.g., [9, 19, 25, 23]). We discuss the
di�erences in the underlying techniques in Section 6.2, after presenting our results.

Organization and main contributions. After presenting basic de�nitions in Section 2, including the
de�nition of linear-access algorithms, in Section 3 we present several methods to reduce communication
complexity problems to linear-access problems and linear-access problems to property testing problems.
In particular, in Section 3.1 we show that all properties of low-degree rational functions over �nite �elds
are reducible from linear-access algorithms; and ditto with respect to all subcodes of linear codes with
constant relative distance. The main contributions of this paper are presented in Sections 4 and 5:

1. In Section 4 we use the linear-access model to o�er a new interpretation of several existing results.
Speci�cally, we deconstruct several well-known reductions from communication complexity to
property testing, presenting each of them as the composition of two reductions with fundamentally
di�erent functionalities: The �rst from a communication problem to a linear-access problem, and
the second from the linear-access problem to property testing.

2. In Section 5 we demonstrate the potential of proving lower bounds for property testing problems
by reducing them directly from linear-access problems. We start by presenting, in Section 5.2,
a simple technique for proving lower bounds on linear-access problems, which relies on analysis
of a�ne subspaces in �nite �elds. This technique enables proving lower bounds on properties
reducible from linear-access algorithms (e.g., all properties of low-degree polynomials) by tackling
a potentially simpler challenge of analyzing a�ne subspaces.

In Sections 5.3 and 5.4 we use the aforementioned technique, followed by reductions to property
testing, to prove lower bounds in property testing. Speci�cally, we provide an alternative and
simple proof for a known lower bound of Ω(min{k, n−k}) queries for testing �k-linearity�; that is,
the property of k-sparse n-variate linear functions over F2.

2 We then extend this result to a new
lower bound of Ω({s,

(
n
d

)
− s}) queries for testing s-sparse n-variate polynomials of total degree

1The equivalence of linear-access algorithms over F = F2 and randomized parity decision trees depends on the
de�nition of the latter. Speci�cally, randomized parity decision trees are sometimes de�ned as arbitrary distributions
over parity decision trees (cf., e.g., [2]), whereas we de�ne linear-access algorithms as randomized oracle machines (see
De�nition 2.4). A gap between the models exists when considering distributions over parity decision trees that cannot
be computed by randomized oracle machines.

2This proof also appears in a self-contained form (see our technical report [24]).

4

d over F2, for any d ∈ N. In addition, we show an Ω(n) lower bound on testing the property
{C(x ◦ y) : x, y ∈ {0, 1}n ∧ 〈x, y〉 = 1}, where C is an arbitrary linear code with constant relative
distance and 〈·, ·〉 denotes inner product mod 2.

3. In Section 5.1 we highlight a limitation of certain reductions from linear-access algorithms to prop-
erty testing. Following [2], we show that reductions of the form corresponding to the Hadamard
code are unlikely to be helpful in proving lower bounds on target properties (where the target
properties in this case are properties of linear functions).

In Section 6 we present several open questions and suggest research directions related to linear-
access algorithms.

2 Preliminaries

2.1 Standard notations

Some standard notations that we will use include Fn for an n-dimensional vector space over a �nite
�eld F; and vi for the ith coordinate of v ∈ Fn. When n = |F|m (for some integer m), we sometimes
identify Fm with [n], and for x ∈ Fm we denote by vx the xth coordinate of v ∈ Fn. When referring to
a speci�c �eld with q elements we denote it by Fq.

We denote the addition mod 2 operator by ⊕. For u, v ∈ {0, 1}n, we de�ne 〈u, v〉 to be their
inner product mod 2, that is ⊕ni=1uivi. We also de�ne the Hamming weight of w ∈ {0, 1}n to be
‖w‖1 =

∑n
i=1 wi.

2.2 The Hadamard code and the Reed-Muller code

We de�ne two standard linear error-correcting codes that will be used throughout the paper � the
Hadamard code and the Reed-Muller code.

De�nition 2.1 (Hadamard code): Let n ∈ N and F be a �nite �eld. The Hadamard code is a function
H : Fn → F|F|n such that for w ∈ Fn, the coordinates of H(w) are the evaluations of 〈w, x〉 at any
x ∈ Fn. In other words, for any w, x ∈ Fn, H(w)x = 〈w, x〉.

De�nition 2.2 (Reed-Muller code): For m, d ∈ N, let n =
(
m+d
d

)
and F be a �nite �eld. The

[|F|, d,m]-Reed-Muller code is a function RMd,m : Fn → F|F|m such that the coordinates of RMd,m(w)
are the evaluations, at any x ∈ Fm, of the m-variate polynomial of total degree at most d whose
coe�cients are represented in the coordinates of w. That is, �xing a bijection between the coe�cients
of m-variate polynomials of degree at most d and the set [n], denote by pw the polynomial whose
coe�cients are represented in w, and let RMd,m(w)x = pw(x) for any w ∈ Fn and x ∈ Fm.

2.3 Three computational models

We de�ne each of the three computational models referred to in this paper � property testing, linear-
access algorithms, and communication complexity protocols. Since some of the reductions we will
discuss involve promise problems, we present all three models in this more general setting. We also
de�ne respective complexity measures for each of the models.

5

De�nition 2.3 (property testing): For l ∈ N and a �nite set Σ, let U ,P ⊆ Σl and Π = (U ,P), and let
ε > 0. An ε-tester for Π is a randomized oracle machine T that satis�es the following two conditions:

1. If z ∈ U ∩ P then Pr[T z(1l) = 1] ≥ 2
3

2. If z ∈ U is ε-far from P, then Pr[T z(1l) = 0] ≥ 2
3 , where the distance between z and P is

minz′∈P

{
|i∈[l]:zi 6=z′i|

l

}
.

The query complexity of T is the maximum (over all z ∈ Σl and the internal coin tosses of T)
number of oracle queries that T makes. The query complexity of ε-testing Π, denoted PT(ε,Π), is the
minimum query complexity of all ε-testers for Π.

De�nition 2.4 (linear-access algorithms): For n ∈ N and a �nite �eld F, let Q,W ⊆ Fn and Φ =
(Q,W). A linear-access algorithm solving Φ is a randomized oracle machine M that satis�es the
following two conditions:

1. If w ∈ Q ∩W then Pr[MH(w)(1n) = 1] ≥ 2
3

2. If w ∈ Q \W then Pr[MH(w)(1n) = 0] ≥ 2
3

where H is the Hadamard code (as in De�nition 2.1).
The query complexity of M is the maximum (over all w ∈ Fn and internal coin tosses of M)

number of oracle queries that M makes. The query complexity of Φ, denoted LA(Φ), is the minimum
query complexity of all linear-access algorithms solving Φ.

In de�ning the communication setting we refer to the standard setting of communication complexity
and speci�cally to randomized two-party protocols in the model of shared randomness (see [17] for
details). We denote by P((x, y), r) the output of the interaction between the two parties when the �rst
party gets input x, the second party gets input y, and both parties follow protocol P and have free
access to shared randomness r. Without loss of generality, we assume that the output of the interaction
is speci�ed in P (as a function of the exchanged communication and the shared randomness) and need
not be explicitly communicated between the two parties.

De�nition 2.5 (two-party public-coin communication complexity): For n ∈ N, let R,S ⊆ {0, 1}2n
and Ψ = (R,S). A two-party protocol P solves Ψ if it satis�es the following two conditions:

1. If (x, y) ∈ R ∩ S, then Pr[P((x, y), r) = 1] ≥ 2
3

2. If (x, y) ∈ R \ S, then Pr[P((x, y), r) = 0] ≥ 2
3

The communication complexity of P is the maximum (over all (x, y) ∈ {0, 1}2n and r ∈ {0, 1}∗)
number of bits exchanged between the parties. The communication complexity of Ψ, denoted CC(Ψ), is
the minimum communication complexity of all protocols solving Ψ.

In Section 3 we shall also use the de�nition of deterministic communication complexity of a function
f : {0, 1}2n → Σ (for some �nite set Σ). A deterministic protocol P computes f if for any (x, y) ∈
{0, 1}2n it holds that P(x, y) = f(x, y), where P(x, y) is the output of the (deterministic) interaction
between the two parties when the �rst party gets input x and the second party gets input y.

6

In all three models, although we considered the general notion of promise problems, we will fre-
quently consider the special case of decision problems where the promise equals the entire space of
possible inputs. When this is the case we will frequently abuse notation, and simply denote the prob-
lem by the set of �yes� instances. For example, abusing notations for linear-access problems from
De�nition 2.4, we may consider a problem which consists of the trivial promise Q = Fn and a set of
�yes� instances W ⊆ Fn. In this case, instead of denoting the problem by Φ = (Q,W) we will simply
denote it by W, and its query complexity by LA(W).

Additionally, in all three models we de�ned the two conditions on probabilistic algorithms (or
protocols) solving the described problems by �xing the required probabilities to be 2

3 . We also consider
the notion of a probabilistic algorithm solving a problem with (a constant) error µ. For example, a
linear-access algorithm satisfying the two conditions mentioned in De�nition 2.4 with probability 1−µ
(instead of 2

3) solves the linear-access problem Φ with error µ. Note that by standard error reduction,
the µ-error query complexity of Φ (i.e., the minimum query complexity of all linear-access algorithms
solving Φ with error µ), denoted LAµ(Φ), satis�es LAµ(Φ) = Θ(LA(Φ)).

3 Reductions Between the Computational Models

In this section we set the stage for the rest of the paper by introducing methods to reduce communica-
tion problems to linear-access problems and from them to property testing problems. We also examine
several forms of such possible reductions. In particular, we highlight error-correcting codes as appeal-
ing candidates for reductions from linear-access algorithms to property testing, and linear functions as
appealing candidates for reductions from communication complexity to linear-access algorithms.

This section generalizes ideas of [2, 19, 25], who showed a speci�c reduction from communication
complexity to parity decision trees, and ideas of [2, 6], who considered two reductions from randomized
parity decision trees to properties of linear functions and of quadratic functions.

3.1 Reducing linear-access problems to property testing problems

Towards the �rst de�nition, consider a linear-access algorithm that transforms its input w into a
(possibly longer) input F (w) for a tester and emulates oracle access to F (w) for the tester. The linear-
access algorithm has no direct access to its input w, but has the ability to perform linear queries on w
(i.e., it can query H(w)). Therefore, a necessary condition for the algorithm to be able to provide the
tester with oracle access to F (w) is that for any coordinate i of F (w), the value F (w)i can be computed
based on a bounded number of linear queries on w. This gives rise to the following de�nition.

De�nition 3.1 (reductions from linear-access algorithms to property testing). For n ∈ N and a �nite
�eld F, let Q,W ⊆ Fn and Φ = (Q,W). For l ∈ N and a �nite set Σ, let U ,P ⊆ Σl and Π = (U ,P).
For ε > 0 and k ∈ N we call F : Fn → Σl an (ε, k)-reduction of the linear-access problem Φ to the
property testing problem Π if the following two conditions hold:

1. (F 's projections are computable with k linear queries): For every i ∈ [l] there exists a function,

φi : Fk → Σ, and k linear functions, q
(i)
1 , ..., q

(i)
k : Fn → F, such that for every w ∈ Fn it holds

that F (w)i = φi(q
(i)
1 (w), ..., q

(i)
k (w)).

2. (F is an ε-reduction of Φ to Π): If w ∈ Q∩W, then F (w) ∈ U ∩ P; whereas if w ∈ Q \W, then
F (w) ∈ U and F (w) is ε-far from P (where distance is measured as in De�nition 2.3).

7

If the above holds, we say that Π is (ε, k)-reducible from Φ. A property is reducible from Φ if it is
(ε, k)-reducible from it for some ε > 0 and k ∈ N.

We now show that if a property is reducible from a linear-access problem Φ, then its query com-
plexity is asymptotically lower bounded by the query complexity of Φ. Similar to [3, 11], we show
this by proving that, given oracle access to H(w) for some w ∈ Fn, a linear-access algorithm M can
emulate an execution of a tester for F (w) by making a constant number of queries to its own (i.e.,
M ′s) oracle per each query of the tester to F (w).

Theorem 3.2 (property testing lower bounds via reductions from linear-access algorithms). Let
n, l,Σ,F,Π and Φ be as in De�nition 3.1. If there exist ε > 0 and k ∈ N such that Π is (ε, k)-reducible
from Φ then LA(Φ) ≤ k · PT(ε,Π).

Proof. Given an (ε, k)-reduction F of Φ to Π and an ε-tester T for Π that makes at most PT(ε,Π)
queries, we show a linear-access algorithm M with query complexity k · PT(ε,Π) that solves Φ.

We construct M in the straightforward manner: Given oracle access to H(w), for w ∈ Fn, machine
M invokes T , feeding T its own (i.e., M ′s) randomness, and emulating oracle access to F (w) for it.

Whenever T queries F (w)i, for some i ∈ [l], machine M queries its own oracle for q
(i)
1 (w), ..., q

(i)
k (w),

computes φi(q
(i)
1 (w), ..., q

(i)
k (w)), and answers T accordingly. The output of M is simply the output

that T returns. Note that the query complexity of M is k times the query complexity of T .
By Condition (1) of De�nition 3.1, M can indeed emulate oracle access to F (w) as described. By

Condition (2) of De�nition 3.1 and the hypothesis that T is an ε-tester,

1. If w ∈ Q ∩W then F (w) ∈ U ∩ P. Hence, Pr[MH(w)(1n) = 1] = Pr[TF (w)(1l) = 1] ≥ 2
3 .

2. If w ∈ Q \ W then F (w) ∈ U and F (w) is ε-far from P. Hence, Pr[MH(w)(1n) = 0] =
Pr[TF (w)(1l) = 0] ≥ 2

3 .

We turn to explore classes of properties that are reducible from linear-access problems, and classes
of possible reductions. In particular, we prove that all properties of low-degree rational functions
over �nite �elds and all subcodes of linear codes with constant relative distance are reducible from
corresponding linear-access problems

Condition (2) of De�nition 3.1 implies that error-correcting codes, and especially linear codes, are
appealing candidates for reductions from linear-access algorithms to property testing. Indeed, most
of the reductions from linear-access algorithms to property testing that we show in this paper are
variations on error-correcting codes. Nevertheless, in Proposition 3.6 we will also demonstrate a useful
reduction that is not of this form; that is, a reduction that does not generate distance between pairs
of inputs.

Proposition 3.3 (subcodes of linear codes). For n, l ∈ N and a �nite �eld F, let C : Fn → Fl
be a linear code with constant relative distance ε > 0. Then for any W ⊆ Fn, the property P ={
C(w) ∈ Fl : w ∈ W

}
is (ε, 1)-reducible from W.

Proof. We show that F (w) = C(w) is an (ε, 1)-reduction of W to P.

8

1. F 's projections are computable with a single linear query. Let Gl×n be a generator matrix for
C. Since C(w) = Gw, it means that C(w)i = (Gw)i, which is computable with a single linear

query on w. Following the notations of De�nition 3.1, we de�ne q
(i)
1 (w)

def
== (Gw)i and φi to be

the identity function.

2. F is an ε-reduction of W to P. If w ∈ W then by de�nition F (w) ∈ P. If w 6∈ W, then by the
fact that C has relative distance ε it holds that F (w) = C(w) is ε-far from P.

As a simple corollary, we deduce that all properties of low-degree polynomials are reducible from
corresponding linear-access problems.

Corollary 3.4 (properties of low-degree polynomials). For m, d ∈ N and a �nite �eld F, let n =(
m+d
d

)
. Then for any W ⊆ Fn, the property P =

{
RMd,m(w) ∈ F|F|m : w ∈ W

}
is (δ, 1)-reducible from

W, where δ = 2−d if F = F2, and δ = 1 − d
|F| otherwise. (Recall that according to De�nition 2.2,

RMd,m(w) is the evaluation of the degree-d m-variate polynomial associated with w, at all points in
Fm.)

Corollary 3.4 follows directly from Proposition 3.3, since RMd,m is a linear code with relative
distance δ. Note that, since δ depends on d, there is a trade-o� between the degree bound of the
polynomials in the property and the proximity parameter for which we can reduce the property from
W. In the special case of d = 1, the reduction is the Hadamard code and the property is one of linear
functions.

If we are willing to make slightly stricter requirements with respect to the degree bound, then we
can generalize Corollary 3.4 and reduce all properties of rational functions over F from linear-access
problems. To prove this we use a reduction that is a variant of the Reed-Muller code, but is not a
linear code by itself; therefore, this time we cannot simply rely on Proposition 3.3.

Proposition 3.5 (properties of low-degree rational functions). For m ∈ N and a �nite �eld F, let
P ⊆ (F ∪ {∞})|F|m , where ∞ is a special symbol indicating division by zero. If any z ∈ P is the
evaluations, at all points x ∈ Fm, of a rational function f

g , where f and g are polynomials of degree

at most d < |F|
4 , then P is (ε, 2)-reducible from a corresponding linear-access problem W ⊆ F2n, where

ε = 1− 4·d
|F| and n =

(
m+d
d

)
.

Proof. The linear-access problem that we reduce to the property P isW =
{
w1w2 ∈ F2n : F (w1w2) ∈ P

}
,

where F : F2n → (F ∪ {∞})|F|m is de�ned as follows: For any w1w2 ∈ F2n and x ∈ Fm, let

F (w1w2)x
def
==

RMd,m(w1)x
RMd,m(w2)x

. We show that F is an (ε, 2)-reduction of W to P:

1. F 's projections are computable with two linear queries. Given x ∈ Fm, for i = 1, 2 let

q
(i)
x (w1w2) = RMd,m(wi). Let φx be the division function in F (which returns ∞ if the de-

nominator is zero). Then, F (w)x = φx(q
(1)
x (w), q

(2)
x (w)) =

RMd,m(w1)x
RMd,m(w2)x

.

2. F is an ε-reduction of W to P. By de�nition, if w ∈ W then F (w) ∈ P. We show that any two

distinct rational functions f
g ,

f ′

g′ : Fm → Fp, where all polynomials are of degree at most d, are

9

ε-far from each other. From this it follows that for any w 6∈ W it holds that F (w) is ε-far from
P. To prove the distance claim, we rely on the Schwartz-Zippel lemma to get

Prx∈Fm

[
f(x)

g(x)
=
f ′(x)

g′(x)

∣∣∣∣∣ both g(x), g′(x) 6= 0

]
= Pr [f(x)g′(x) = f ′(x)g(x)] ≤ 2 · d

|F|

whereas on the other hand Pr[g(x) = 0∨g′(x) = 0] = Pr[g(x)g′(x) = 0] ≤ 2·d
|F| . By union-bound,

f
g and f ′

g′ are at least (1− 4·d
|F|)-far from each other.

Corollary 3.4 and Proposition 3.5 present two �canonical� reductions of properties of low-degree
polynomials or rational functions from corresponding linear-access problems, using variants of the
Reed-Muller code. We �nish this section by showing that useful reductions (to natural properties)
need not be error-correcting codes at all. Furthermore, they need not even generate distance between
all pairs of inputs.

To show this we adapt a reduction from [3, Thm 1.8]; we reduce a linear-access promise problem
in which �yes� instances and �no� instances are guaranteed to be su�ciently far, to a corresponding
property testing problem, by a reduction that does not generate distance between pairs of inputs.
Loosely speaking, the property in this case consists of all Boolean functions that are computable by
decision trees of size that is not too large.

Proposition 3.6 (reductions that do not generate distance). For a su�ciently large integer n, let
F be the set of functions f : {0, 1}n → {0, 1} that are computable by decision trees of size at most
15
16 · 2

n, and P ⊆ {0, 1}2n be the set of truth tables of F . Let W ⊆ {0, 1}2n−1

be the set of vectors with

Hamming weight exactly 2n−1

8 , and Q =W ∪ {02n−1}. Then P is (1
32 , 1)-reducible from Φ = (Q,W).

Note that in this case each w ∈ W is 2n−1

8 -far from the single (zero) vector in Q\W. The reduction we
will present does not generate additional distance, but merely preserves the existing absolute distance.

Proof. We de�ne a reduction F : {0, 1}2n−1 → {0, 1}2n as follows. For x ∈ {0, 1}n, let Par(x) =
⊕ni=1xi, and we �x some bijection ϕ between {x ∈ {0, 1}n : Par(x) = 0} and the set [2n−1]. Then for

every w ∈ {0, 1}2n−1

and every x ∈ {0, 1}n, we let

F (w)x =

{
1 Par(x) = 1

wϕ(x) Par(x) = 0

One may think of F as mapping vectors of the form (w1, ..., w2n−1)T to vectors of the form
(1, ..., 1, w1, ..., w2n−1)T , where the �rst half of the coordinates in the 2n-bit long vector correspond
to the positions x ∈ {0, 1}n with Par(x) = 1. We show that F reduces Φ to P:

1. F 's projections are computable with a single linear query. If Par(x) = 1, then φx ≡ 1. Otherwise,
φx is the identity function, and the single query qx1 satis�es qx1 (w) =

〈
eϕ(x), w

〉
(where eϕ(x) is

the standard unit vector corresponding to coordinate ϕ(x)).

2. F 1
32 -reduces Φ to P. If w ∈ W, then F (w) is computable by a decision tree of size at most

15
16 · 2

n; a proof of this fact, adapted from [3], appears below. If w ∈ Q \ W then w is the zero
vector; in this case, F (w) is the parity function, which is 1

32 -far from any function computable
by a decision tree of size 15

16 · 2
n (the proof of the latter fact appears in [3, Lemma 5.3]).

10

Lemma. If w ∈ W, then F (w), viewed as a function fw : {0, 1}n → {0, 1}, is computable by
a decision tree of size 15

16 · 2
n.

Proof. Consider the complete binary decision tree of depth n, in which all nodes at level i ∈ [n]
are labeled with the element i. This tree has 2n leaves, each corresponding to some x ∈ {0, 1}n,
and we label each leaf by fw(x).

The key observation is that if x, x′ ∈ {0, 1}n correspond to a pair of sibling leaves (where x
corresponds to the left one), then Par(x) = 0 and Par(x′) = 1, and in particular fw(x′) = 1.
Therefore every leaf corresponding to some x ∈ {x : Par(x) = 0} has a sibling x′ such that
fw(x′) = 1.

Since w ∈ W, there are exactly 2n−1

8 leaves corresponding to x ∈ {x : Par(x) = 0} that
are labeled with 1; in all these cases we can merge the leaf with its sibling, reducing the size
of the tree by one leaf. The resulting tree computes fw and is of size exactly 15

16 · 2
n.

Hence, F is a (1
32 , 1)-reduction of Φ to P.

The query complexity of solving Φ with one-sided error (i.e., by a linear-access algorithm that
accepts each �yes� instance with probability 1) is Ω(n). The proof, which we do not present fully here,
is a straight forward adaptation of a reduction that appeared in [3, Thm 1.8]; it consists of reducing
Φ from the communication problem of Gap-Equality. It follows that the query complexity of solving
P with one-sided error is also Ω(n).

3.2 Reducing communication problems to linear-access problems

In this section we show a method to reduce communication complexity problems to linear-access
problems, again in the spirit of [3, 11]. Combined with Section 3.1, this will allow us to transitively
reduce communication problems to property testing problems, via linear-access problems.

De�nition 3.7 (reductions from communication complexity to linear-access algorithms). For m ∈ N,
let R,S ⊆ {0, 1}2m and Ψ = (R,S). For n ∈ N and a �nite �eld F, let Q,W ⊆ Fn and Φ = (Q,W).
For B ∈ N, we say that a function G : {0, 1}2m → Fn is a B-reduction of the communication
complexity problem Ψ to the linear-access problem Φ if the following two conditions hold:

1. (linear queries on G are computable using B bits of communication): For any linear function
q : Fn → F, the deterministic communication complexity of the function q ◦G : {0, 1}2m → F is
at most B.

2. (G is a reduction of Ψ to Φ): If (x, y) ∈ R ∩ S then G(w) ∈ Q ∩W; whereas if w ∈ R \ S then
G(w) ∈ Q \W.

If the above holds, we say that Φ is B-reducible from Ψ. A problem Φ is reducible from a problem
Ψ if it is B-reducible from it for some B ∈ N.

We now show (analogously to Theorem 3.2) that if a linear-access problem Φ is reducible from a
communication problem Ψ, then its query complexity is asymptotically lower bounded by the commu-
nication complexity of Ψ.

Theorem 3.8 (lower bounds on linear-access algorithms via reductions from communication com-
plexity). Let m,n,F,Ψ and Φ be as in De�nition 3.7. If there exists B ∈ N such that Φ is B-reducible
from Ψ, then CC(Ψ) ≤ B · LA(Φ).

11

Proof. Let M be a linear-access algorithm solving Φ with query complexity m. We construct a two-
party protocol P solving Ψ with communication complexity B ·m.

When receiving an input pair (x, y), both parties locally invoke identical copies ofM , feeding it the
shared randomness and emulating oracle access to H(G(x, y)) for it. That is, whenever M makes a
linear query q (to G(x, y)), both parties compute the result by communicating B bits (via the protocol
guaranteed for the function q ◦ G) and then answer the query accordingly. The protocol's output is
simply the output of M .

For any (x, y) ∈ R it holds that P outputs the correct answer if and only if M outputs the correct
answer; and the communication complexity of P is at most B ·m.

Just as error-correcting codes are appealing candidates for reductions from the linear-access model
to the property testing model, linear functions are appealing candidates for reductions from com-
munication complexity to linear-access algorithms. Indeed, if each coordinate of G(x, y) is a linear
combination of x and of y (viewed as vectors over F), then any linear query q : Fn → F on G(x, y) is
computable by communicating 2 · dlog2 |F|e bits.

All the reductions from communication complexity to linear-access algorithms that we will present
in this paper are linear functions. Among them are the addition function over Fn, that isG(x, y) = x+y,
and the concatenation function, G(x, y) = x ◦ y. We mention, however, that our formulation in
De�nition 3.7 is not restricted to linear reductions.

3.3 Detour: A communication model limited to linear functions

Recall (from the beginning of Section 1.2) that linear-access algorithms over F2 are equivalent, up to a
factor of 2 in the number of queries, to communication protocols in which both parties only compute
linear functions of their respective inputs. In this subsection we shortly discuss the latter model,
which we call the linear communication model. In particular, we prove the statement that this model
is equivalent to linear-access algorithms up to a factor of 2 in the number of queries, and show a strong
separation of this model from the standard communication model. After concluding this subsection,
we will not refer to the linear communication model again in this paper.

We de�ne the linear communication model as a special case of the standard communication model
(i.e., of De�nition 2.5) that considers only communication protocols that are limited to linear functions:
These are communication protocols in which in every round of communication, the communicating
party chooses a linear function f according to the shared randomness and the communication history,
computes the value of f on its input, and communicates the result to the other party. The com-
munication complexity of a problem Ψ in the linear communication model, denoted CClin(Ψ), is the
minimum communication complexity of all probabilistic communication protocols that are limited to
linear functions and solve Ψ. We start by formally proving the statement about equivalence of this
model to the linear-access model in the case of F2.

Proposition 3.9 (equivalence of linear-access algorithms and the linear communication model): For
n ∈ N, any sets R,S ⊆ {0, 1}2n and a problem Ψ = (R,S), the communication complexity of Ψ in the
linear communication model is identical, up to a factor of 2, to its query complexity as a linear-access
problem. Speci�cally, it holds that LA(Ψ) ≤ CClin(Ψ) ≤ 2 · LA(Ψ).

Proof. Note that a linear-access algorithm M that gets input w = (x, y) ∈ {0, 1}2n can emulate the
execution of a communication protocol that is limited to linear functions on (x, y) using the same
number of queries. Speci�cally, whenever the protocol requires that one of the parties compute a

12

linear function of its input (i.e., of either x or y), machine M can compute the same function by
making a single query to its oracle.

On the other hand, a communication protocol that is limited to linear functions and gets an input
pair (x, y) can emulate the execution of any linear-access algorithm M on w = (x, y), using twice
the number of queries that M makes. This is since for every linear query q = (q1, ..., q2n) that M
makes, the communication protocol can compute the value q(x, y) by communicating two bits: The
�rst party computes ⊕ni=1qixi and communicates the result to the second party, the second party
computes ⊕2n

i=n+1qiyi and sends it to the �rst party, and both parties compute ⊕2n
i=1qiwi = q(w).

We now present a property of the linear communication model that does not hold in the standard
communication model. Recall that in the standard model, the complexity of a problem S ⊆ {0, 1}2n
might be signi�cantly di�erent than the complexity of the problem of deciding S when the bits of the
input are distributed to the two parties in a non-standard way; that is, when the �rst party gets some
predetermined subset of n bits of w ∈ {0, 1}2n (rather than the n-bit pre�x of w) and the second party
gets the remaining n bits (rather than the n-bit su�x of w). For example, consider the inner-product
communication problem; that is, IP = {(x, y) ∈ {0, 1}2n : 〈x, y〉 = 1}. The communication complexity
of IP is Ω(n) (see, e.g., [8]); however, for n = 2k, if the �rst party gets x1, y1, ..., xk, yk and the second
party gets xk+1, yk+1, ..., xn, yn then the parties can decide whether (x, y) ∈ IP by communicating
two bits (since each party can compute the parity of xiyi's that are part of its input).

In contrast, in the linear communication model it does not matter which of the two parties gets
which bits of the input. Note that partitioning every input w ∈ {0, 1}2n to two n-bit subsets, using
a predetermined partition, and giving the corresponding bits as inputs to each of the parties, can be
achieved by permuting the bits of w, using a corresponding permutation, and giving the n-bit pre�x of
the permuted string to the �rst party and the n-bit su�x of the permuted string to the second party.
We prove that this action (i.e., permuting the bits of every input) can only change the complexity of a
given problem in the linear communication model by a constant factor. Denote the symmetric group
over [2n] by S2n, and, for σ ∈ S2n and w = w1w2...w2n ∈ {0, 1}2n, let σ(w) = wσ(1)wσ(2)...wσ(2n).

Proposition 3.10 (permutations on the input in the linear communication model): For n ∈ N, let
S ⊆ {0, 1}2n. Then, up to a constant factor of 2, for every permutation σ ∈ S2n, the communication
complexity of S in the linear communication model is identical to the communication complexity of
Sσ =

{
σ(x, y) ∈ {0, 1}2n : (x, y) ∈ S

}
in the linear communication model.

Proof. Let σ ∈ Sn. Note that the query complexity of S and Sσ as linear-access problems is identical,
because permuting the input bits does not a�ect the ability of a linear-access algorithm to perform
any linear query on these input bits. Relying on Proposition 3.9, the communication complexity of S
and Sσ in the linear communication model can only di�er by a constant factor of 2.

We now prove that there exist communication problems that have O(1) communication complexity
in the standard model, yet Ω(n) communication complexity in the linear communication model.

Proposition 3.11 (separation of the linear communication model from the standard communication
model): For n ∈ N and any communication problem S ⊆ {0, 1}2n with communication complexity
CC(S) in the standard model, there exists a corresponding communication problem S ′ such that the
communication complexity of S ′ in the standard communication model is O(1) but the communication
complexity of S ′ in the linear communication model is lower bounded by CC(S)/2.

Proof. Let S ′′ =
{

((x, x′), (y, y′)) ∈ {0, 1}4n : (x, y) ∈ S
}
. Note that the communication complexity of

S ′′ in the standard model is CC(S), since given inputs ((x, x′), (y, y′)) ∈ {0, 1}4n the two parties can

13

consider the truncated inputs (x, y) and execute any protocol for solving S; and on the other hand,
given inputs (x, y) ∈ {0, 1}2n the two parties can pad them to ((x, 0n), (y, 0n)) ∈ {0, 1}4n and execute
any protocol for solving S ′′. It follows that the complexity of S ′′ in the linear communication model
is lower bounded by CC(S), since communication protocols that only compute linear functions are a
special case of standard communication protocols.

Let S ′ =
{

((x, y), (x′, y′)) ∈ {0, 1}4n : (x, y) ∈ S
}
. Clearly, the communication complexity of S ′ in

the standard model is O(1), since the �rst party can compute the result by itself. However, according
to Proposition 3.10, the communication complexity of S ′ in the linear communication model is identical
to the communication complexity of S ′′ in the linear communication model, up to a factor of 2, and
the latter is lower bounded by CC(S).

We �nish this section by clarifying the implications of Proposition 3.11 on reductions from commu-
nication complexity to linear-access algorithms. Proposition 3.11 contrasts the complexity of a set S ′ in
the standard communication model and the complexity of the same set S ′ in the linear communication
model, which according to Proposition 3.9 is equivalent to the linear-access model over F2. This per-
spective implicitly considers a reduction from communication complexity to linear-access algorithms
that is the concatenation function, G(x, y) = x ◦ y. Therefore, from a perspective of linear-access
algorithms, Proposition 3.11 can be phrased as follows: There exist sets S ′ ⊆ {0, 1}n × {0, 1}n that
have communication complexity O(1) and that can be reduced to corresponding linear-access problems
with query complexity Ω(n) via concatenation.

We stress, however, that this statement does not rule out the possibility that there exists another
communication problem with higher complexity that can be reduced to the linear-access problem S ′
via a reduction that is not the concatenation reduction. In particular, in the speci�c construction
presented in the proof of Proposition 3.11, the communication problem S can be reduced to the linear-
access problem S ′ (i.e., to the set S ′ when treated as a linear-access problem) via the linear reduction
G(x, y) = (x, y, 0n, 0n). Indeed it is an interesting question whether there exists a set S ′ such that
its query complexity as a linear-access problem is higher than the communication complexity of any
communication problem reducible to it, and we pose it as an open question in Section 6.

4 Deconstructions of Reductions from Communication Com-

plexity to Property Testing

In this section we o�er a new interpretation for known results, by deconstructing known reductions
from communication complexity to property testing, using linear-access algorithms as an intermediary
model. Bhrushundi, Chakraborty, and Kulkarni [2] demonstrated one such deconstruction, and we
re-examine it (and o�er a new interpretation of it) in Example 4.3.

4.1 The deconstruction and a generic observation

We �rst note that the reductions underlying Theorems 3.8 and 3.2 can be composed to yield:

Theorem 4.1 Let Ψ be a communication problem (as in De�nition 2.5) and Π be a property (as in
De�nition 2.3). Suppose that for some B, k ∈ N and ε > 0 there exist two reductions as follows:

1. A function G (as in Theorem 3.8) B-reducing Ψ to a linear-access problem Φ.

2. A function F (as in Theorem 3.2) (ε, k)-reducing Φ to Π.

14

Then, the query complexity of ε-testing Π is asymptotically lower bounded by 1
k·B times the communi-

cation complexity of Ψ. That is, CC(Ψ) ≤ B · k · PT(ε,Π). In this case we say that F ◦G is a reduction
from communication complexity to property testing.

Interestingly, deconstructing some well-known reductions in this manner reveals G and F that have
fundamentally di�erent functionalities.

Observation 4.2 (informal). Some known reductions from communication complexity to property
testing can be presented as the composition of two reductions, as in Theorem 4.1, each having a dis-
tinctly characterized functionality:

Ψ
G−−−−−−−−→ Φ

F−−−−−−−−→ Π

1. �Combining step�: The �rst reduction Ψ
G−−→ Φ combines two inputs (x, y), given to two parties in

the communication setting, into a single input w for a linear-access algorithm. This combination
changes the nature of the computational problem: While (by de�nition) problems in two-party
communication complexity have a structure corresponding with two separate parties, linear-access
problems do not have such an apparent structure.

2. �Distance creation step�: The second reduction Φ
F−−→ Π takes a problem that consists of �yes�

instances and �no� instances, and creates distance between these instance sets, by mapping them
to a (possibly larger) metric space. Following this perspective, it is not surprising that many
appealing examples of such reductions involve error-correcting codes.

We do not claim that all reductions from communication complexity to property testing may be
deconstructed in this manner. Furthermore, even when such a deconstruction is possible, we do not
claim that the two steps can necessarily be characterized as a �combining step� and a �distance creation
step� (e.g., Proposition 3.6 demonstrates a useful reduction, adapted from [3], in which the second step
does not generate distance). Yet in several well-known cases such a deconstruction is possible, and the
two steps correspond to Observation 4.2.

4.2 Deconstructions of known results

The �rst example we present considers the property of k-linear functions, which consists of all n-variate
linear Boolean functions over F2 that are k-sparse, meaning that exactly k of their coe�cients are non-
zero. The �rst proof for an Ω(k) lower bound3 on the query complexity of this property was provided
by Blais, Brody, and Matulef [3], who proved it using a reduction from the communication complexity
of unique-k2 -set-disjointness. Later on, Blais and Kane [4] proved the lower bound by analyzing the
problem directly in property testing. In Section 5.4 we present an alternative proof for this lower
bound, relying on techniques presented in Section 5 (Proposition 5.1 and Technique 5.3). We now
deconstruct the �rst proof (i.e., the reduction from communication complexity).

Example 4.3 (k-linearity). Reducing the problem of testing k-sparse linear functions from the com-
munication problem of unique-k2 -set-disjointness, via the linear-access problem of identifying vectors
with Hamming weight k.

3 The exact complexity of the problem is Ω(min{k, n− k}); see Section 5.4 for further details

15

The communication problem called unique-k2 -set-disjointness is de�ned on {0, 1}2n by setting the
set of �yes� instances to be

S =

{
(x, y) ∈ {0, 1}2n : ‖x‖1 = ‖y‖1 =

k

2
and ∀i ∈ [n], xi ∧ yi = 0

}
That is, S consists of pairs that when treated as indicator strings represent disjoint sets of cardinality
k
2 . The promise R consists of all pairs of strings (x, y) ∈ {0, 1}2n such that ‖x‖1 = ‖y‖1 = k

2 having
at most one coordinate i ∈ [n] such that xi ∧ yi = 1. We denote this well-known promise problem by
k
2 -UDISJ = (R,S), and note that its communication complexity is Ω(k) (see, e.g., [20, 3, 15]).

1. �Combining step�: We reduce k
2 -UDISJ to a natural linear-access problem that requires identi-

fying strings with Hamming weight exactly k; that is, k-WT = {w ∈ {0, 1}n : ‖w‖1 = k} (with
the trivial promise {0, 1}n). The reduction is simply G(x, y) = x ⊕ y. Indeed, if (x, y) repre-
sent disjoint k

2 -sets then ‖x⊕ y‖1 = k, and if they represent k
2 -sets that intersect on a single

coordinate then ‖x⊕ y‖1 = k − 2. Furthermore, any linear query on G(x, y) is computable by 2
communication bits (since G is linear over {0, 1}).

2. �Distance creation step�: We reduce the problem of k-WT to the property of k-linear functions
simply by using the Hadamard code. Indeed, treating vectors as coe�cients of linear functions, if
the vector has Hamming weight k then the function is k-linear, and otherwise it is a (k−2)-linear
function, which is 1

2 -far from being k-linear.

Hence, in this case we have �

(x, y)
x⊕y−−−−−−−−−−→ ‖w‖1 ∈ {k, k − 2} H(w)−−−−−−−−−−−→ H(w) is k-linear or (k − 2)-linear

In this example, the �rst reduction takes a problem with a clear two-party structure � deciding
whether sets held by two parties are disjoint � and reduces it to a problem that has no such apparent
structure: Deciding by linear queries if the Hamming weight of a vector is k. The second reduction, on
the other hand, is merely an error-correcting code creating distance between �yes� instances (vectors
of weight k) and �no� instances (vectors of weight k−2). These two functionalities re�ect two separate
functional components that exist in the �composed� reduction F ◦G.

Interestingly, both �direct� proofs of a lower bound on testing k-sparse linear functions, which do not
involve a reduction from communication complexity (the one provided by [4] and the one that appears
in Section 5.4), can easily be adapted to serve as a direct proof for a lower bound on the linear-access
problem k-WT . A more general explanation for this phenomena is provided after Proposition 5.1. �

The next example is a deconstruction of a family of reductions that is similar to two families of
reductions presented in [11, Thms 4.1 and 4.2]. Loosely speaking, for a linear error-correcting code
C with constant relative distance ε > 0 and a �hard� communication problem Ψ = (R,S), we prove
that ε-testing the property {C(x ◦ y) : (x, y) ∈ R ∩ S} is also �hard�. Since error-correcting codes are
appealing candidates for reductions for the �distance creation step�, this property is an appealing one
to think of in the current context.

Example 4.4 For n ∈ N, let Ψ = (R,S) be a communication problem over {0, 1}2n with linear
communication complexity; that is, CC(Ψ) = Ω(n). For l ∈ N, let C : {0, 1}2n → {0, 1}l be a linear
code with constant relative distance ε > 0. Then the query complexity of ε-testing the property P ={
C(x ◦ y) ∈ {0, 1}l : (x, y) ∈ S ∩R

}
is linear, that is PT(ε,P) = Ω(n).

16

1. �Combining step�: We reduce Ψ to a corresponding linear-access problem W, de�ned by W ={
w = x ◦ y ∈ {0, 1}2n : (x, y) ∈ S ∩R

}
. The reduction G is the concatenation function G(x, y) =

x ◦ y, and since it is linear in x and y, any linear query on G(x, y) (over F2) is computable by
communicating 2 bits.

2. �Distance creation step�: We reduce W to P with the code C. According to Proposition 3.3 this
is an (ε, 1)-reduction.

This deconstruction demonstrates that the �combining step� does not have to explicitly add x and
y as vectors over some �eld in order to eliminate the original two-party structure of the problem.
Indeed, the problem of deciding W using arbitrary linear queries does not have an apparent structure
corresponding with two separate parties. We will consider Example 4.4 again in Section 5.3, where we
prove a lower bound on a subfamily of properties from this family by reducing them directly from the
intermediary linear-access model.

The last example we present relies on the fact that we allowed linear-access algorithms to operate
over an arbitrary �nite �eld F (rather than only over F2, as in the case of randomized parity decision
trees). Speci�cally, we show a reduction from a communication problem in {0, 1}n to a linear-access
problem in Fn3 , and then to a property of functions from Fn3 to F3.

We de�ne the property of linear functions with {0, 1}-coe�cients over F3 as the set of functions
from Fn3 to F3 that are linear and whose coe�cients are either 0 or 1. Goldreich proved [10] a lower
bound of Ω(

√
n) on testing this property working directly in the property testing model, and Brais,

Brody, and Matulef [3] proved an Ω(n) lower bound by a reduction from the communication problem
of set-disjointness. We now deconstruct the latter reduction.

Example 4.5 (linear functions over F3 with coe�cients in {0, 1}). Reducing the testing problem of
linear functions over F3 with coe�cients in {0, 1} from the communication problem of set-disjointness,
via the linear-access problem of identifying vectors in Fn3 with coordinates in {0, 1}.

The communication problem of set-disjointness (a general version of unique-k2 -set-disjointness,
presented earlier) is de�ned on {0, 1}2n by considering the trivial promise and setting the set of �yes�
instances to be DISJ = {(x, y) : ∀i ∈ [n], xi ∧ yi = 0}. That is, DISJ consists of pairs of n-bit strings
that when treated as indicators of subsets of [n] represent disjoint sets. The communication complexity
of this well-known problem is Ω(n) (see, e.g., [20]).

1. �Combining step�: We reduce DISJ to a linear-access problem that requires identifying vectors
in Fn3 whose coe�cients are 0 or 1. That is, {0, 1}-W = {w ∈ Fn3 : ∀i ∈ [n], wi ∈ {0, 1}} and the
promise is the trivial one. The reduction G : {0, 1}2n → Fn3 is G(x, y) = x+ y over F3; that is, x
and y are treated as vectors in Fn3 and G is the component-wise addition of these vectors. Indeed,
any linear query on G(x, y) over F3 can be computed by communicating four (i.e., 2 · dlog2(3)e)
bits, and it is easy to see that G reduces DISJ to {0, 1}-W.

2. �Distance creation step�: We reduce the problem of {0, 1}-W to the property of linear functions
with coe�cients in {0, 1} simply by using the Hadamard code (over F3).

In this example too, the �rst reduction takes a problem with a clear two-party structure (the set-
disjointness communication problem) and reduces it to a problem that has no such apparent structure
(the {0, 1}-W linear-access problem). The second reduction is a linear error-correcting code. �

17

5 Proving Lower Bounds in Property Testing by Reductions

from Linear-access Algorithms

In this section we study the potential of proving lower bounds on property testing problems by re-
ducing them directly from linear-access problems. We start by showing a limitation of this approach:
Speci�cally, in Section 5.1, we show that reductions that correspond to the Hadamard code are unlikely
to be helpful in proving lower bounds in property testing, since in this case any linear-access algorithm
is essentially a tester for the target property testing problem (see Proposition 5.1).

In contrast, we show that in other cases reducing property testing problems from linear-access
algorithms is bene�cial. In Section 5.2 we show a simple technique for proving lower bounds on linear-
access algorithms, relying on the analysis of a�ne subspaces in Fn (see Proposition 5.2 and Technique
5.3). We demonstrate this technique in the following two subsections by proving lower bounds on
natural linear-access problems, and deriving corresponding lower bounds in property testing.

In particular, in Section 5.3 we show a lower bound of Ω(n) queries for testing the property
{C(x ◦ y) : x, y ∈ {0, 1}n ∧ 〈x, y〉 = 1}, where C is an arbitrary linear code with constant relative
distance. Furthermore, in Section 5.4 we provide an alternative proof for the known lower bound of
Ω(min{k, n−k}) queries for testing k-sparse linear Boolean functions over {0, 1}n, which was presented
in Example 4.3. We then extend this result to a lower bound of Ω(min{s,

(
n
d

)
− s}) queries for testing

s-sparse polynomials of degree d over {0, 1}n, for any d ∈ N.

5.1 Reductions of the form of the Hadamard code

Bhrushundi, Chakraborty, and Kulkarni noted [2] that a randomized parity decision tree of size m
solving W ⊆ {0, 1}n exists if and only if a 1

2 -tester with query complexity m exists for the property
P = {H(w) : w ∈ W}, under the promise that the input for the tester is the evaluations of a linear
function. Buhrman et al. [6] also pointed out this phenomena for the speci�c property of k-sparse
linear functions. We present a proof of the analogous result in the general setting of linear-access
algorithms and comment on its implications towards proving lower bounds for property testing.

Intuitively, this phenomena happens since performing a linear query on the coe�cients of a linear
function (which is what a linear-access algorithm does) is equivalent to querying the linear function
at a corresponding point (which is what a tester does). In both cases the answers to these queries are
encoded in the Hadamard code of the coe�cients of the linear function.

Proposition 5.1 For n ∈ N and a �nite �eld F, let W ⊆ Fn. Then there exists a linear-access
algorithm M that solves W if and only if there exists an ε-tester T with the same query complexity for
the promise problem Π = (U ,P), where U = {H(w) ∈ F|F|n : w ∈ Fn} and P = {H(w) ∈ F|F|n : w ∈
W} and ε ≤ |F|−1|F| . Furthermore, given access to the same oracle, of the form H(w) for some w ∈ Fn,
machines M and T issue the same queries and output the same decision

Proof. Note that an ε-tester for Π and a linear-access algorithm for W are both oracle machines that
get access to an oracle of the form H(w), for some w ∈ Fn, and need to decide with probability at
least 2

3 whether w ∈ W or w 6∈ W. For a linear-access algorithm this is true by de�nition, whereas for
an ε-tester this is true since any z ∈ U is of the form z = H(w), for some w ∈ Fn, whereas H(w) ∈ P
if and only if w ∈ W, and the Hadamard code guarantees that any two codewords are ε-far from each
other.

The only di�erence between an ε-tester for Π and a linear-access algorithm forW is that for w ∈ Fn,
the ε-tester gets 1|F|

n

as input whereas the linear-access algorithm gets 1n as input. It follows that any

18

oracle machine that solves one problem can be modi�ed to an oracle machine that solves the other
problem, by changing its dependence on its explicit input (1n or 1|F|

n

), and this modi�cation satis�es
the �furthermore� clause in the proposition.

Proposition 5.1 suggests that reductions of the form of the Hadamard code are unlikely to be
helpful in proving lower bounds on the query complexity of the target property Π: Any analysis of
linear-access algorithms solving W can serve as an analysis for ε-testers solving Π, and vice versa.
Furthermore, since hardness of the promise problem Π implies hardness of the property P (without
the promise), the reduction from linear-access algorithms seems redundant also towards proving lower
bounds on the query complexity of ε-testing P.4

A good demonstration of this phenomena is provided by two existing proofs for a lower bound on
testing k-sparse linear functions, which analyze the problem without reducing it from a communication
problem. Both the existing proof by Blais and Kane [4] and the proof we provide in this paper
(Theorems 5.6 and 5.8) can be easily adapted to serve as lower bounds both for testers for k-sparse
linear functions and for linear-access algorithms solving the corresponding linear-access problem k-WT ,
which can be reduced to the property via the Hadamard code (see Example 4.3 for de�nitions of these
problems).

As a last comment on this subject, we note that Proposition 5.1 can be slightly generalized to ac-
count for arti�cial reductions that are similar to the Hadamard code. For example, a similar proposition
is true for reductions in which redundant information is added to the code (e.g., F (w) = H(w)◦H(w))
or in which a permutation on F is applied coordinate-wise (e.g., F (w)x = H(w)x + 1): In these cases
an ε-tester for the property {F (w) : w ∈ W} exists if and only if a linear-access algorithm for W with
the same query complexity exists (the two machines, however, do not issue the exact same queries to
their respective oracles). Since these are rather arti�cial reductions, we chose not to highlight them in
the proposition itself.

5.2 A technique for proving lower bounds on linear-access algorithms

We now present a technique for proving lower bounds for linear-access problems. We start by showing
that the problem of proving lower bounds in the linear-access model can be reduced to the analysis of
a�ne subspaces of Fn.

Proposition 5.2 (deterministic linear-access algorithms partition Fn to a�ne subspaces). For n ∈ N
and a �nite �eld F, let M be a deterministic oracle machine that, when given input 1n and oracle
access to an oracle of the form H(w) for w ∈ Fn, makes m queries and outputs either 0 or 1. Then
M induces a partition of Fn to t ≤ |F|m a�ne subspaces (V1, ...,Vt) such that for any i ∈ [t] and
w,w′ ∈ Vi it holds that MH(w)(1n) = MH(w′)(1n) and during both executions the same queries were
issued and the same responses were given.

Note that in the case of F = F2, a deterministic linear-access algorithm is a parity decision tree,
and the a�ne subspaces in the partition correspond to the leaves of the tree.

Proof. For w ∈ Fn, denote the m queries issued by MH(w)(1n) during its execution by Qm×n (i.e., the
queries are depicted in Rows(Q)) and the responses received by r ∈ Fm. Let

VQ,r = {w′ ∈ Fn : Qw′ = r}
4Regarding upper bounds for P, to obtain a tester for P from an existing tester for Π one can add a linearity test [5]

and use self-correction (see, e.g., [2, Appendix A] for details). However, self-correction may increase the tester's query
complexity by a logarithmic multiplicative factor.

19

be an a�ne subspace.
Clearly w ∈ VQ,r. Let w′ ∈ VQ,r. Since M is deterministic, the �rst query issued by MH(w′)(1n)

is identical to the �rst query issued by MH(w)(1n), and since w′ ∈ VQ,r, the �rst response is also
identical in both cases. By induction, all m queries and responses will be identical in both cases, and
in particular the �nal output will also be identical. We stress that this is true for both adaptive and
non-adaptive machines.

To see that these subspaces are a partition of Fn, consider two subspaces V(1)

Q(1),r(1)
and V(2)

Q(2),r(2)

such that for i = 1, 2, for every input w ∈ V(i)

Q(i),r(i)
it holds that MH(w)(1n) executes queries Q(i) and

receives responses r(i). If there exists w ∈ V(1)

Q(1),r(1)
∩ V(2)

Q(2),r(2)
then it follows that Q(1) = Q(2) and

r(1) = r(2), which implies that V(1)

Q(1),r(1)
= V(2)

Q(2),r(2)
. Also, any w ∈ Fn belongs to some a�ne subspace

of this form (induced by the queries and responses during the execution of MH(w)(1n)).
Further note that there are at most |F|m subspaces in the partition. If we assume that all queries

made by M are linearly independent, then the response to M 's �rst query induces a partition of Fn to
|F| distinct subspaces; and on each of these subspaces, the response to M 's second query will induce
a partition of the subspace to |F| smaller subspaces. By induction, the response to the mth query
induces a partition of Fn to |F|m subspaces. In the general case, if some queries are dependent on
previous ones, then the number of subspaces in the partition can only be smaller.

Using Proposition 5.2, we suggest a simple technique for proving lower bounds in the linear-access
model.

Technique 5.3 (a technique for showing lower bounds on linear-access algorithms). For Q,W ⊆ Fn
and Φ = (Q,W), we show a lower bound of LA(Φ) = Ω(m) as follows:

1. (Standard reduction to deterministic algorithms): In order to lower bound the error probability
of any linear-access algorithm with query complexity m, it su�ces to lower bound the error
probability of all deterministic oracle machines of query complexity m over some (arbitrary)
distribution on the inputs. We therefore focus on lower bounding the latter.

2. (Partition to a�ne subspaces): Without loss of generality we assume that each deterministic
oracle machine we examine makes exactly m linearly independent queries when given input 1n

and oracle access to H(w), for any w ∈ Fn. According to Proposition 5.2, any such machine
induces a partition of Fn to |F|m a�ne subspaces of dimension n−m such that its output is �xed
on each of them.

3. (Key step): Show a distribution over the inputs that assigns an Ω(1) probabilistic mass to Q∩W,
and an Ω(1)-fraction of the probabilistic mass of every a�ne subspace of dimension n − m to
Q \W (alternatively, the roles of Q∩W and Q \W in this requirement can be switched).

These steps yield a lower bound of m queries on linear-access algorithms solving Φ with some constant
error µ, that is LAµ(Φ) > m. It follows that LA(Φ) = Ω(m).

To see that indeed these steps yield an Ω(m) lower bound, assume that we prove Step (3) by
presenting a distribution D that satis�es both requirements (of the �rst alternative). Consider an
arbitrary deterministic linear-access algorithm M with query complexity m. Since the probabilistic
mass of �yes� instances is lower bounded by some p ∈ (0, 1), if M accepts subspaces of probabilistic
mass at most p2 , then it incorrectly rejects a probabilistic mass of p2 �yes� instances. On the other hand,

20

whenever M accepts a subspace V in its partition of Fn, it su�ers an error of magnitude µ′ · D(V),
for a �xed constant µ′ > 0. Therefore, if M accepts subspaces of probabilistic mass larger than p

2 , it
su�ers an error of at least µ′ · p2 , due to incorrectly accepted �no� instances. Either way, the algorithm
M su�ers a constant error. Proving Step (3) with the alternative formulation yields a symmetric
argument.

The key step in the technique is Step (3) � analyzing the intersection of large a�ne subspaces in
Fn with Q∩W or with Q \W. While analyzing a�ne subspaces is a straight forward approach when
trying to prove lower bounds for properties of linear functions (see, e.g., [4]), it follows from our results
that lower bounds on broader classes of properties (e.g., all properties of low-degree polynomials) can
also be provable with this technique. Indeed, we use Technique 5.3 in Section 5.3 to prove a lower
bound on testing subcodes of linear codes, and in Section 5.4 to prove lower bounds on a property of
polynomials over F2.

Technique 5.3 is reminiscent of a known lower bound technique in communication complexity (see,
e.g., [16, Method 1]). We stress, however, that in communication complexity one needs to analyze
products of arbitrary sets (of size that is not too small), whereas here we just need to analyze a�ne
subspaces of a �xed large size, which is a potentially simpler challenge.

5.3 A lower bound on testing a family of linear subcodes

In this section we apply Technique 5.3 to prove a lower bound on the inner-product linear-access
problem; that is, the problem of recognizing strings of the form x ◦ y such that 〈x, y〉 = 1. The proof is
relatively easy, using only Technique 5.3 and elementary linear algebra. Following this proof, for any
linear code C with constant relative distance, we show how to reduce the inner-product linear-access
problem to the property consisting of codewords of the form C(x ◦ y), where 〈x, y〉 = 1. Thus, we
derive a lower bound on testing this family of properties, which is a family of subcodes of linear codes.

A lower bound on similar families of properties was originally proved by Goldreich [11, Thms 4.1
and 4.2] by reducing the properties from the inner-product communication complexity problem, that
requires identifying input pairs (x, y) such that 〈x, y〉 = 1. The original proof for an Ω(n) lower bound
on the communication complexity of the inner-product problem was provided by Chor and Goldreich
[8] and relied on Lindsey's lemma. In Example 4.4 we presented a deconstruction of reductions from
communication complexity to property testing of a corresponding form. Here, we reduce the property
directly from the intermediary model.

Proposition 5.4 (inner-product linear-access problem). For an even integer n ∈ N let W = {w =
(x, y) ∈ {0, 1}n : 〈x, y〉 = 1}. Then the query complexity of W as a linear-access problem is Ω(n).

Proof. We prove that every a�ne subspace of dimension 4
5 ·n contains a balanced proportion of vectors

fromW and from {0, 1}n \W. This is a well-known result in the area of randomness extraction, which
follows from the fact that the inner-product function (sometimes referred to as the Hadamard function)
is an a�ne extractor. Two proofs for this general fact were recently presented in writing by Cohen and
Shinkar [9], and we provide a third proof (with weaker parameters) using elementary linear algebra.
To �nish the proof we consider the uniform distribution over {0, 1}n, and note that it translates the
balanced proportions of �yes� instances and �no� instances inside every a�ne subspace of dimension
4
5 · n to an identically balanced probabilistic mass assigned to both sets.

We therefore focus on showing that every a�ne subspace of dimension 4
5 · n contains a balanced

proportion of vectors from W and from {0, 1}n \ W. For a su�ciently large even integer n = 2k and

21

m =
⌊
n
5

⌋
, let V be an arbitrary a�ne subspace of dimension n−m. We partition V into 2m product

subspaces and prove the claim for each of these subspaces. The intuitive reason for this partition is
that W has a structure corresponding to two separate parts (x and y for input (x, y)), and hence it
will be easier to analyze its intersection with product subspaces.

To de�ne these product subspaces, we present the a�ne subspace as V = {w ∈ {0, 1}n : Qw = r},
where Q is an m× n matrix and r ∈ {0, 1}m. We also denote Q

def
== (Q′|Q′′), where Q′ and Q′′ are of

dimensions m× k. Now, for every s ∈ {0, 1}m, let

V(s) def
==

{
w = (x, y) ∈ {0, 1}2k :

Q′x = s
Q′′y = r ⊕ s

}
Note that w ∈ V if and only if w ∈ V(s) for some s ∈ {0, 1}m, and that for s 6= s′ it holds that
V(s) ∩ V(s′) = ∅, hence this is indeed a partition of V. Furthermore, note that for any s ∈ {0, 1}m it
holds that V(s) is the Cartesian product (i.e., external sum) of the following two subspaces:

X (s) = {x ∈ {0, 1}k : Q′x = s}

Y(s) = {y ∈ {0, 1}k : Q′′y = r ⊕ s}

That is, V(s) = X (s) × Y(s).

Lemma. For every s ∈ {0, 1}m it holds that |V(s) ∩W| ≤ 3
4 · |V

(s)|.

Proof. If V(s) = ∅ then the claim clearly holds. Otherwise, let m′
def
== Rank(Q′) and

m′′
def
== Rank(Q′′), where both m′ and m′′ are upper bounded by m. Then |X (s)| = 2k−m

′

and |Y(s)| = 2k−m
′′
and |V(s)| = 22k−m

′−m′′ . We upper bound |V(s)∩W| in this case by upper
bounding the size of the following two sets:

1. Dep =
{

(x, y) ∈ V(s) : y ∈ Span(Rows(Q′))
}
. Since |Span(Rows(Q′))| = 2m

′
, it holds

that |Dep| ≤ |X (s)| · 2m′ = 2k.

2. Ind =
{

(x, y) ∈ V(s) : y 6∈ Span(Rows(Q′)) ∧ 〈x, y〉 = 1
}
. Note that for any �xed y ∈

Y(s) \ Span(Rows(Q′)) there are exactly 1
2 · |X

(s)| vectors x such that (x, y) ∈ Ind.
This is the case since for such y we can add the independent row y to Q′ and the
coordinate 1 to s, enforcing the additional constraint 〈y, x〉 = 1 on X (s). Therefore
|Ind| ≤ 1

2 · |X
(s)| · |Y(s)| = 1

2 · |V
(s)|.

Since V(s) ∩W ⊆ Dep ∪ Ind, it follows that

|V(s) ∩W| ≤ 2k +
1

2
· |V(s)| = (2m

′+m′′−k +
1

2
) · |V(s)| ≤ 3

4
· |V(s)|

where the last inequality is since for n ≥ 12 it holds that m ≤ k
2 − 1, implying that m′+m′′ ≤

2m ≤ k − 2. �

Using a nearly identical argument we can deduce that |V(s) \W| ≤ 3
4 · |V

(s)|. Since this is true for
all V(s) in the partition of V, it is also true for V itself, and therefore

1

4
≤ |V ∩W|

|V|
≤ 3

4

22

To �nish the proof, let D be the uniform distribution over {0, 1}n. Then it holds that 1
4 ≤

D(V∩W)
D(V) ≤ 3

4 , and hence also overall 1
4 ≤ D(W) ≤ 3

4 . Therefore D satis�es both requirements in Step

(3) of Technique 5.3, and the proposition follows.

Digest. The lower bound on the linear-access inner-product problem follows from the fact that the
inner-product function IP (x, y) = 〈x, y〉 is an a�ne extractor (i.e., is balanced on a�ne subspaces of
su�cient dimension). This is analogous to a result by Chor and Goldreich [8], who proved a lower
bound on the communication complexity of the inner-product function by showing that it is a two-
source extractor (for a de�nition and further details see, e.g., [8, 22]). Continuing the analogy, since
communication complexity is a stronger computational model than linear-access algorithms, the result
used to prove a lower bound in communication complexity (i.e., that IP is a two-source extractor) is
stronger than the result used to prove a lower bound on linear-access algorithms (i.e., that IP is an
a�ne extractor).

Combining Proposition 5.4, Proposition 3.3, and Theorem 3.2 we get

Corollary 5.5 For an even integer n and l ∈ N, let C : {0, 1}n → {0, 1}l be a linear code of constant
relative distance ε > 0. Let P = {C(x ◦ y) : (x, y) ∈ {0, 1}n ∧ 〈x, y〉 = 1}. Then PT(ε,P) = Ω(n).

5.4 A lower bound on testing sparse linear functions and polynomials

We start this section by applying Technique 5.3 to lower bound the query complexity of the linear-
access problem k-WT , presented in Example 4.3 (recall that for k ∈ [n] we de�ne k-WT = {w ∈
{0, 1}n : ‖w‖1 = k}). Speci�cally, we show that the query complexity of k-WT is Ω(min{k, n − k}).
We then rely on Proposition 5.1 to show that this lower bound is essentially equivalent to a property
testing lower bound of Ω(min{k, n−k}) queries for testing �k-linearity�; that is, for testing the property
of k-sparse linear Boolean functions over {0, 1}n. We thus provide an alternative proof for this known
result.

We �nish the section by proving a new lower bound on a property that is generalization of �k-
linearity�; speci�cally, we show that Ω(min{s,

(
n
d

)
− s}) queries are needed to test the property of

s-sparse polynomials of degree d over {0, 1}n, for any d ∈ N. This result too is proved via a reduction
from the k-WT linear-access problem, with k = s.

Theorem 5.6 (the k-WT linear-access problem): For n, k ∈ N, let k-WT be the linear-access problem
de�ned by the set of �yes� instances Wk = {w ∈ {0, 1}n : ‖w‖1 = k} and the trivial promise. Then the
query complexity of k-WT is Ω(min{k, n− k}).

We start by proving the result with parameter k = n
2 ; that is, for

n
2 -WT . Then, we extend this

to all values of k ∈ [0, n2] by reducing to the k = n
2 case. For any k ∈ [n], the problems of k-WT and

of (n − k)-WT are computationally equivalent, and therefore it su�ces to focus on k ∈ [0, n2]: The
equivalence follows since w ∈ k-WT if and only if w⊕1n ∈ (n−k)-WT , and computing a linear query
on either of the vectors, w or w⊕ 1n, is possible by performing only a single linear query on the other
vector (see [4, Apdx. B] for a full proof of a similar fact).

Recall that in the proof of Proposition 5.4 we considered the uniform distribution and proved that
every large a�ne subspace contains a balanced proportion of �yes� entries and of �no� entries. In the
case of n2 -WT this approach will not work, since the overall fraction of �yes� instances (i.e., of vectors
with Hamming weight n

2) in {0, 1}
n is O(1√

n
). We therefore rely on a general result by Linial and

Samorodnitsky that states:

23

Linial and Samorodnitsky [18, Thm 4.4]: The fraction of vectors with the same Ham-
ming weight in every a�ne subspace of dimension λ · n (for λ > 1

2) is upper-bounded by
Oλ(1√

n
).

Proposition 5.7 (the n
2 -WT linear-access problem): For n ∈ N, the query complexity of the linear-

access problem n
2 -WT , that is the problem de�ned by the set of �yes� instances Wn/2 = {w ∈ {0, 1}n :

‖w‖1 = n
2 } and the trivial promise, is Ω(n).

Proof. Let V be an arbitrary a�ne subspace of {0, 1}n of dimension at least 2
3 · n. For p ∈ (0, 1),

let Dp be a distribution that with probability p is uniform over Wn/2 and is otherwise uniform over
{0, 1}n\Wn/2. Note that for an arbitrary u ∈Wn/2 and v ∈ {0, 1}n\Wn/2 it holds that Dp(u) = p

|Wn/2|

and Dp(v) = 1−p
|{0,1}n\Wn/2|

. Therefore

Dp(u)

Dp(v)
=

p

1− p
·
|{0, 1}n \Wn/2|
|Wn/2|

=
p

1− p
·O(
√
n)

From this it follows that

Dp(V ∩Wn/2)

Dp(V)
=

Dp(u) · |V ∩Wn/2|
Dp(v) · |V \Wn/2|+Dp(u) · |V ∩Wn/2|

≤ Dp(u)

Dp(v)
·
|V ∩Wn/2|
|V|

=
p

1− p
·O(
√
n) ·
|V ∩Wn/2|
|V|

(1)

According to Linial and Samorodnitsky's result it holds that (1) is upper bounded by p
1−p · c for some

c > 0. By setting p = 1
1+2·c ∈ (0, 1) we get that

Dp(V∩Wn/2)

Dp(V) ≤ 1
2 . The proposition follows.

Recall that to complete the proof of Theorem 5.6 (i.e., extend the lower bound for every k ∈ [n])
it su�ces to show a lower bound of Ω(k) for any k ∈ [0, n2). We prove this lower bound by a simple
black-box reduction to the case of Proposition 5.7. This black-box reduction is implicit in a padding
argument presented in [4] for similar purposes.

Proof of Theorem 5.6. For k ∈ [0, n2), let m = 2 · k < n. Assuming that there exists a linear-access
algorithm M ′ for k-WT over {0, 1}n, we construct a corresponding algorithm for m

2 -WT over {0, 1}m
with the same error probability and query complexity. Since the query complexity of m2 -WT is Ω(m),
it follows that the query complexity of k-WT over {0, 1}n is Ω(m) = Ω(k). The construction itself is
straight forward: The algorithm M is given access to H(w), for some w ∈ {0, 1}m, and simulates the
execution ofM ′ whenM ′ is given access to H(w′), where w′ = w◦0n−m. Note thatM can answer any
oracle query that M ′ makes by making a single query to its own oracle, and also that ‖w‖1 = ‖w′‖1
and therefore ‖w‖1 = m

2 if and only if ‖w′‖1 = m
2 = k. �

Recall that according to Proposition 5.1, if a property Π is reducible from a linear-access problem Φ
via the Hadamard code, then both problems are essentially equivalent. In Example 4.3 we showed that
the Hadamard code reduces k-WT to the property of k-sparse linear Boolean functions. Therefore,
Theorem 5.6 is essentially equivalent to the following proposition:

24

Theorem 5.8 (k-linearity, alternative formulation of Theorem 5.6): For n, k ∈ N, the query com-
plexity of testing the property of k-sparse linear Boolean functions over {0, 1}n is Ω(min{k, n− k}).

A self-contained proof of Theorem 5.8, using the argument presented in the proof of Theorem 5.6
instead of relying on Proposition 5.1, appears in our technical report [24].

Testing sparse polynomials. We now extend Theorem 5.8 to a lower bound on a broader family
of properties. For integers n, s, and d, we de�ne the property of s-sparse degree-d polynomials as all
n-variate polynomials over F2 that are of total degree d such that exactly s of their coe�cients are
non-zero. This problem is a straightforward generalization of the problem of testing k-sparse linear
functions (i.e., of Theorem 5.8), which is the special case of d = 1.

A lower bound on a related property was proved by Blais, Brody, and Matulef [3]: They considered
the property that consists of all n-variate s-sparse polynomials, of any degree, and showed that its
query complexity is Ω(min{s, n− s}). Our formulation is a parametrization of their problem, since we
consider a property that only consists of polynomials of a predetermined degree d ∈ N. Furthermore,
we show a lower bound of Ω(min{s,

(
n
d

)
− s}), which is stronger when s = ω(n).5

Theorem 5.9 Let n, s, d ∈ N where n > d, and let s-SP ⊆ {0, 1}2n be the property of s-sparse degree-d
polynomials. Then, the query complexity of (2−d)-testing the property is Ω(min{s,

(
n
d

)
− s}).

We prove Theorem 5.9 by reducing from the linear-access problem of s-WT . While the proof of
Theorem 5.8 uses the Hadamard code as a reduction, in the following proof we use a variant of the
Reed-Muller code.

Proof of Theorem 5.9. Let m =
(
n
d

)
, and s-WT = {w ∈ {0, 1}m : ‖w‖1 = s}. By Theorem 5.6, the

query complexity of s-WT is Ω(min{s,m−s}). Let F : {0, 1}m → {0, 1}2n be de�ned as follows: Every
w ∈ {0, 1}m represents the coe�cients of a polynomial that has total degree d and whose coe�cients
of all monomials of total degree less than d are zero. Correspondingly, F (w) is the evaluations of
this polynomial on all points in Fn2 . Note that for every w ∈ s-WT it holds that F (w) it an s-sparse
polynomial of total degree d, since it has exactly s non-zero coe�cients and all of them correspond
to monomials with d variables. By the properties of the Reed-Muller code, for every w 6∈ s-WT it
holds that F (w) is (2−d)-far from being s-sparse, and in particular is (2−d)-far from being an s-sparse
degree-d polynomial. Furthermore, the projections of F are computable with a single linear query.
Hence F is a (2−d, 1)-reduction of s-WT to the property of s-sparse degree-d polynomials. �

6 Digest and Open Questions

6.1 Proving lower bounds in property testing via linear-access algorithms

In this work we discussed two classes of properties that can be reduced from linear-access algorithms:
Properties of low-degree rational functions over �nite �elds (and in particular, properties of low-
degree polynomials), and subcodes of linear codes with constant relative distance. Correspondingly,
we proved lower bounds on testing the sparsity of polynomials over F2 (Theorem 5.9) and on testing
certain families of linear subcodes (Corollary 5.5). These results lead to the following questions:

5Note that one might expect a lower bound of Ω(min{s,
(n+d

d

)
− s}) for this property, since n-variate degree-d

polynomials have
(n+d

d

)
coe�cients. However, since for a �xed d ∈ N it holds that both

(n+d
d

)
and

(n
d

)
are Θ(nd), the

di�erence between such a lower bound and the one presented in Theorem 5.9 is not signi�cant.

25

Open question 1: Can additional classes of natural properties be reduced from linear-
access algorithms?

Open question 2: Can additional new (or tighter) lower bounds on natural properties be
proved via reductions from linear-access algorithms?

We mention, however, that many natural properties of low-degree polynomials are known to be testable
in O(1) (and even testable with Proximity-Oblivious testers, see [1]). Yet, as demonstrated by the
lower bound on testing the sparsity of polynomials over F2, other properties of low-degree polynomials
may admit signi�cant lower bounds.

Interestingly, all property testing lower bounds we showed in this work by reductions from linear-
access algorithms can also be proved by reductions from communication complexity: Theorem 5.8 was
indeed proved in [3, Thm 1.1] using a reduction from the set-disjointness communication problem (see
Example 4.3); Theorem 5.9 can be proved via a similar reduction from the set-disjointness communi-
cation problem (substituting the Hadamard code for the Reed-Muller code); and Corollary 5.5 can be
proved similar to [11, Thm 4.2], using a reduction from the inner-product communication problem. A
natural question is therefore whether this represents a more general phenomena.

Open question 3: Is there a linear-access problem with higher query complexity than
the communication complexity of every communication problem that is reducible to it?

In this work we were able to show (Proposition 3.11) that there exist sets S ′ ⊆ {0, 1}n × {0, 1}n that
have communication complexity O(1) and that can be reduced to corresponding linear-access problems
with query complexity Ω(n) via concatenation.

6.2 Linear-access algorithms and parity decision trees

Lower bounds on deterministic parity decision trees follow from the fact that some functions are a�ne
dispersers, that is, are not constant on a�ne subspaces of su�ciently large dimension. This is since
a parity decision tree needs to partition the input space into a�ne subspaces of su�ciently small
dimension such that the function to be computed is constant on every subspace in the partition.

However, when considering linear-access algorithms, which are a generalization of randomized par-
ity decision trees, a�ne dispersers do not yield lower bounds in the same way. Technique 5.3 and
Proposition 5.4 demonstrate that lower bounds on linear-access algorithms follow from the fact that
some functions are a�ne extractors, that is, are far from being constant on a�ne subspaces of suf-
�ciently large dimension. As Proposition 5.4 demonstrates, in this case we can reduce the problem
to an analysis of deterministic testers and consider a uniform distribution on the inputs. To prove a
lower bound in this manner it su�ces that the corresponding function be a weak a�ne extractor: In
particular, any �xed distance from being constant on a�ne subspaces of any linear co-dimension (λ ·n
for any constant λ > 0) su�ces.

We stress that there are also other ways to show lower bounds on linear-access algorithms (i.e.,
besides considering a�ne extractors and the uniform distribution). For example, the proof of Theo-
rem 5.6 relies on Technique 5.3 but considers a distribution that is very di�erent from the uniform
distribution.

26

6.3 Investigating the connection between communication complexity and

property testing

In addition to proving lower bounds, the current work further investigates the connection between
communication complexity and property testing, continuing the line of work started by Blais, Brody,
and Matulef [3], and followed by Goldreich [11] and by Bhrushundi, Chakraborty, and Kulkarni [2].

The decomposition we suggested (of reductions from communication complexity to property test-
ing) will not necessarily work for all reductions between the models; speci�cally, as mentioned in the
discussion following Theorem 3.8, our form of decomposition is to a large extent appealing for reduc-
tions that only compute linear functions of the inputs. Yet, since the decomposition sheds light on the
functionality of the two parts of these reductions, the question remains whether reductions of a more
general form can be deconstructed in a similar (or other) fashion.

Acknowledgements

The author thanks Tom Gur for suggesting the initial observation motivating the study and for several
helpful discussions during the research process. The author is grateful to Avishay Tal for pointing him
to the work of Linial and Samorodnitsky. The author also thanks his advisor, Oded Goldreich, for his
guidance and support in the research and writing process. This research was partially supported by
the Israel Science Foundation (grant No. 671/13).

References

[1] Arnab Bhattacharyya, Eldar Fischer, Hamed Hatami, Pooya Hatami, and Shachar Lovett. Every
locally characterized a�ne-invariant property is testable. In Proceedings of the Forty-�fth Annual
ACM Symposium on Theory of Computing, STOC '13, pages 429�436, New York, NY, USA, 2013.
ACM.

[2] Abhishek Bhrushundi, Sourav Chakraborty, and Raghav Kulkarni. Property testing bounds for
linear and quadratic functions via parity decision trees. In CSR, pages 97�110, 2014.

[3] Eric Blais, Joshua Brody, and Kevin Matulef. Property testing lower bounds via communication
complexity. Computational Complexity, 21(2):311�358, 2012.

[4] Eric Blais and Daniel M. Kane. Tight bounds for testing k-linearity. In APPROX-RANDOM,
pages 435�446, 2012.

[5] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numerical
problems. In Proceedings of the Twenty-second Annual ACM Symposium on Theory of Computing,
STOC '90, pages 73�83, New York, NY, USA, 1990. ACM.

[6] Harry Buhrman, David García-Soriano, Arie Matsliah, and Ronald de Wolf. The non-adaptive
query complexity of testing k-parities. Chicago J. Theor. Comput. Sci., 2013, 2013.

[7] Deeparnab Chakrabarty and C. Seshadhri. A o(n) monotonicity tester for boolean functions over
the hypercube. In Proceedings of the Forty-�fth Annual ACM Symposium on Theory of Computing,
STOC '13, pages 411�418, New York, NY, USA, 2013. ACM.

27

[8] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and probabilistic
communication complexity (extended abstract). In FOCS, pages 429�442, 1985.

[9] Gil Cohen and Igor Shinkar. The complexity of dnf of parities. Electronic Colloquium on Com-
putational Complexity (ECCC), 21:99, 2014.

[10] Oded Goldreich. On testing computability by small width obdds. In APPROX-RANDOM, pages
574�587, 2010.

[11] Oded Goldreich. On the communication complexity methodology for proving lower bounds on
the query complexity of property testing. Electronic Colloquium on Computational Complexity
(ECCC), 20:73, 2013.

[12] Oded Goldreich, Sha� Goldwasser, Eric Lehman, and Dana Ron. Testing monotonicity. In FOCS,
pages 426�435, 1998.

[13] Oded Goldreich, Sha� Goldwasser, and Dana Ron. Property testing and its connection to learning
and approximation. J. ACM, 45(4):653�750, July 1998.

[14] Oded Goldreich and Dana Ron. Property testing in bounded degree graphs. In STOC, pages
406�415, 1997.

[15] Johan Håstad and Avi Wigderson. The randomized communication complexity of set disjointness.
Theory of Computing, 3(11):211�219, 2007.

[16] Hartmut Klauck. Rectangle size bounds and threshold covers in communication complexity. In
IEEE Conference on Computational Complexity, pages 118�134, 2003.

[17] Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University Press, 1997.

[18] Nathan Linial and Alex Samorodnitsky. Linear codes and character sums. Combinatorica,
22(4):497�522, 2002.

[19] Ashley Montanaro and Tobias Osborne. On the communication complexity of xor functions.
CoRR, abs/0909.3392, 2009.

[20] Alexander A. Razborov. On the distributional complexity of disjointness. In ICALP, pages 249�
253, 1990.

[21] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applications
to program testing. SIAM J. Comput., 25(2):252�271, February 1996.

[22] Ronen Shaltiel. An introduction to randomness extractors. In ICALP (2), pages 21�41, 2011.

[23] Amir Shpilka, Avishay Tal, and Ben lee Volk. On the structure of boolean functions with small
spectral norm. In ITCS, pages 37�48, 2014.

[24] Roei Tell. An alternative proof of an Ω(k) lower bound for testing k-linear boolean functions.
Electronic Colloquium on Computational Complexity (ECCC), 21, 2014.

[25] Zhiqiang Zhang and Yaoyun Shi. On the parity complexity measures of boolean functions. Theor.
Comput. Sci., 411(26-28):2612�2618, 2010.

28

Appendix: Testers that Always Reject Inputs that are Far from

the Property

Referring to De�nition 2.3, recall that the standard de�nition of an ε-tester T with one-sided error
for a property testing problem Π = (U ,P) is an ε-tester that always accepts inputs that are �yes�
instances; that is, T also satis�es the following condition: If z ∈ U ∩ P then Pr[T z(1l) = 1] = 1.
Testers with one-sided error are common, and many natural properties admit such testers with o(n)
query complexity (e.g., linearity testing [5], monotonicity of Boolean functions [12, 7], testing various
graph properties in various models [13, 14] etc.).

We consider the dual notion of testing with one-sided error, that is, testers that always reject
inputs that are �no� instances. We call such machines ε-testers with perfect soundness. Formally, a
randomized oracle machine is an ε-tester with perfect soundness for Π = (U ,P), where U ,P ⊆ {0, 1}n,
if it satis�es the following two conditions:

1. If z ∈ U ∩ P then Pr[T z(1n) = 1] > 0.

2. If z ∈ U is ε-far from P then Pr[T z(1n) = 0] = 1.

Indeed, we consider a very relaxed notion with respect to the acceptance probability of �yes�
instances: That is, we require acceptance with any positive probability, instead of a constant value
such as 1

2 . Yet, as shown next, even this relaxed notion seems quite limited in scope: Speci�cally, we
show that a property (considered with the trivial promise) admits an ε-tester with perfect soundness
and query complexity q only if every input is (ε + q

n)-close to the property. This follows as a special
case of the following, more general, result:

Theorem 1 For n ∈ N, let U ,P ⊆ {0, 1}n such that U ∩ P 6= ∅ and let Π = (U ,P). If there exists an
ε-tester with perfect soundness and query complexity q for Π, then every z ∈ {0, 1}n is either q

n -close
to {0, 1}n \ U or (qn + ε)-close to U ∩ P.

Proof. Let x ∈ U ∩P. Then, there exists a random string r such that the residual deterministic tester
T x(1n, r) accepts after making q queries (we assume for simplicity and without loss of generality that
T always makes exactly q queries). Denote the coordinates of these q queries by (i1, i2, ..., iq).

Note that every z′ ∈ {0, 1}n such that (z′i1 , z
′
i2
, ..., z′iq) = (xi1 , xi2 , ..., xiq) is accepted by the residual

deterministic tester with random string r. Since T has perfect soundness, this implies that every such
z′ either violates the promise (i.e., z′ 6∈ U) or is ε-close to P.

Hence, for any z ∈ {0, 1}n, by changing the q coordinates (zi1 , zi2 , ..., ziq) to equal (xi1 , xi2 , ..., xiq)
we obtain a string z′ that is either ε-close to U ∩ P or in {0, 1}n \ U .

Corollary 2 For n ∈ N, let P ⊆ {0, 1}n be a non-empty set. If there exists an ε-tester T for the
property P (i.e., for the promise problem Π = ({0, 1}n,P)) that has perfect soundness and query
complexity q, then every z ∈ {0, 1}n is (ε+ q

n)-close to P.

Corollary 2 implies that most natural properties do not admit testers with perfect soundness and
query complexity o(n), because in natural cases not all inputs are close to the property.

Nevertheless, testers with perfect soundness and query complexity o(n) do exist for classes of
promise problems. In particular, when any two inputs in a promise U are ε-far from each other, then
any ε-tester with one-sided error for a property Π = (U ,P) yields an ε-tester with perfect soundness
for the property ΠC = (U ,U \P) by complementing the output. This is because in this case an ε-tester

29

for Π is simply an oracle machine deciding, for every z ∈ U , whether z ∈ P or not. Also note that in
this case, every input z ∈ {0, 1}n is 1

n -close to violating the promise.
Appealing examples for such promise problems are problems of testing subcodes of error-correcting

codes, under the promise that the input is a codeword. Speci�cally, this applies to properties of
low-degree polynomials and of linear functions with the corresponding promise.

30

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

