
2048 IS (PSPACE) HARD, BUT SOMETIMES EASY

Rahul Mehta∗

Princeton University
rahulmehta@princeton.edu

August 26, 2014

Abstract

We prove that a variant of 2048, a popular online puzzle game, is PSPACE-Complete. Our
hardness result holds for a version of the problem where the player has oracle access to the computer
player’s moves. Specifically, we show that for an n × n game board G, computing a sequence of
moves to reach a particular configuration C from an initial configuration C0 is PSPACE-Complete.
Our reduction is from Nondeterministic Constraint Logic (NCL).

We also show that determining whether or not there exists a fixed sequence of moves S ∈ {⇑
,⇓,⇐,⇒}k of length k that results in a winning configuration for an n × n game board is fixed-
parameter tractable (FPT). We describe an algorithm to solve this problem in O(4kn2) time.

1. Introduction

The online video game 2048 [1] (read as “twenty-forty-eight”) has recently gained a great deal of pop-
ularity. Played on a 4× 4 game board with tiles containing positive powers of 2, the goal of the game is
to combine equally-valued tiles to reach the 2048 tile.

More specifically, the game board begins with an initial configuration of two tiles, of value 2 or 4,
placed at arbitrary locations on the grid. The player then selects to move UP, DOWN, LEFT, or RIGHT
(denoted as {⇑,⇓,⇐,⇒}). Each move shifts all tiles on the grid in the direction chosen. If two adjacent
tiles have the same value (i.e. 2i for some i > 0), they combine, and the single resulting tile after the
combination will have value 2i+1. Following the player’s move, the computer places a tile of value 2
or 4 at a random free location on the board. Figure 1 outlines the first six moves of a game of 2048.
Observe that if a tile’s row or column in the direction of the move x ∈ {⇑,⇓,⇐,⇒} is unobstructed,
the tile will slide as far as possible on the grid.

Sliding tile games of a similar variety have been well-studied, both in the realm of puzzles as well as
in algorithmic motion planning. Most recently, Demaine and Hearn ([4, 2]) proved that several problems
including solving sliding-block puzzles, Rush Hour, Sokoban, and Push-2-F are all PSPACE-Complete.
To accomplish this, they developed the Nondeterministic Constraint Logic (NCL) model of computation
as a generic framework for PSPACE-Hardness results (see [4]).

1.1. Definitions

We first define some basic concepts and terms that we will use throughout the paper, and then proceed
to outline the two problems that will be studied in subsequent sections. When we refer to a game board
G, we are referring to an n× n grid that can take on particular configurations, as described below;

∗Department of Computer Science, 35 Olden St., Princeton University, Princeton, NJ, 08540.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 116 (2014)

Initial State ⇓ ⇒

⇓ ⇒ ⇒

Figure 1: The first six moves of a game of 2048.

Definition 1. Given a game board G, a configuration of the board C : [n]× [n]→ {2` | ` ∈ Z>0}∪{0}
is a function that maps each of the n2 locations on the game board to a positive power of 2, or 0. For a
particular configuration C, a location (i, j) is empty if C(i, j) = 0.

We describe locations in row-major order; for example, in the final (lower-right) configuration in
Figure 1, the tile of value 4 is located at (1, 4), the two tiles of value 2 at (3, 2) and (4, 3), and the tile of
value 8 at (4, 4).

We study two variants of 2048; first, we examine the complexity of computing a sequence of moves
to reach a particular configuration C from an initial configuration C0, and second, we exhibit an efficient
algorithm for determining whether a winning sequence of moves of length k exists, starting from a
particular initial configuration C0. In order to formalize these two variants of the problem, we first
recast 2048 as a two-player game between the human player A and the computer adversary B;

Definition 2 (The Game). Given an initial configuration C0 of an n × n game board G, consider the
following game between adversaries A and B, with a goal configuration Cf . The game is played as
follows;

(1) A makes a move x ∈ {⇑,⇓,⇐,⇒}.
(2) B places one or more tiles of value 2`1 , . . . , 2`k (`1, . . . , `k ∈ Z>0) at locations (i1, j1), . . . , (ik, jk).

This game is played until one of two conditions occur; (1) the goal configuration Cf is reached, and A
wins, or (2) there are no more moves that A can make (i.e. for any x ∈ {⇑,⇓,⇐,⇒}, applying x will
not change the configuration of the game board). In this case, B wins. Such a configuration is shown in
Figure 2

1.2. Problems

We now introduce the two problems that will be studied in this paper. Both variants that we study give
playerA perfect knowledge; that is, given a configuration C and a move x ∈ {⇑,⇓,⇐,⇒},A has oracle
access to B’s move if x is applied to a board G with configuration C. This is denoted as B(C, x). The
response is a set of 3-tuples of the form {(i1, j1, `1), . . . , (ik, jk, `k)}, where for index t, (it, jt) is the
location of the added tile of value 2`t . Accordingly, an instance of 2048-GAME is uniquely determined

2

Figure 2: An example of a configuration satisfying (2) (game over).

by (1) the initial configuration C0, and (2) the responses of the computer B. In a sense, this is an easier
version of the more general problem – it is interesting to note that our hardness result still holds despite
the additional information available to A.

Problem 1 (2048-GAME). Given an n× n game board G and an oracle B to the computer player, does
there exist a sequence of moves S ∈ {⇑,⇓,⇐,⇒}∗ such that C is reached from C0?

In Section 3, we prove the following theorem:

Claim 1 (Theorem 1). 2048-GAME is PSPACE-Complete.

We then examine the related problem of determining whether or not there exists a fixed-length se-
quence of moves that results in a winning configuration.

Problem 2 (2048-k-MOVES). Given an n× n game board G, an oracle B to the computer player, and
a goal tile 2m (for some m > 0), does there exist a sequence of moves S ∈ {⇑,⇓,⇐,⇒}k of length k
such that after k moves, the board is in a winning configuration Cf (that is, Cf (i, j) = 2m, for some i
and j)?

When the problem is paramaterized in this manner (limiting the number of moves to some constant
k > 0), we show that in fact 2048-k-MOVES is fixed-parameter tractable (FPT). In Section 4, we prove
the following theorem:

Claim 2 (Theorem 2). Given an n× n game board G, 2048-k-MOVES is solvable in O(4kn2) time.

Before concluding the section, we show that the value of the maximum tile is monotonically nonde-
creasing. For a configuration C, we denote the tile of maximum value as max(C).

Lemma 1. For a game board G, a configuration Ci, and the subsequent configuration Ci+1, max(Ci) ≤
max(Ci+1).

Proof. Immediate from the combination rule of the game. When adjacent tiles of value 2` combine, they
form a single tile of value 2`+1. Consider two cases; (1) the maximum tile does not change value, or
(2) the maximum valued tile does change value. If (1) occurs, then we have equality, since max(Ci) is
left unchanged. For (2), let max(Ci) = 2`, for some ` > 0. The only case in which the tile in question
changes is if it combines with a tile of the same value. By our previous observation, two adjacent tiles
of value 2` will combine to form a single tile of value 2`+1. Thus, we have max(Ci+1) = 2`+1 > 2` =
max(Ci), which completes the proof.

3

The remainder of the paper is organized as follows; Section 2 describes the Nondeterministic Con-
straint Logic (NCL) model of computation due to Demaine and Hearn [4], and specifically, the frame-
work it provides for PSPACE-Hardness reductions. Section 3 describes in detail our reduction from
NCL to 2048-GAME. Finally, Section 4 describes an efficient algorithm to solve 2048-k-MOVES,
which establishes that it is fixed-parameter tractable (FPT).

2. Nondeterministic Constraint Logic (NCL)

We will now outline the Nondeterministic Constraint Logic (NCL) model of computation, which was de-
veloped by Demaine and Hearn [4] as a general framework for proving PSPACE-Completeness results.
All of their PSPACE-Completeness results are reductions from Quantified Boolean Formula (QBF), a
well-known PSPACE-Complete problem [3].

An NCL machine consists of a constraint graph, which is an arbitrary undirected graph G = (V,E)
with edge weights w : E → {1, 2} (all edges have weight 1 or 2). A configuration of the machine is an
orientation of the edges of G. A configuration is valid if for each vertex v ∈ V , the sum of incoming
edge weights is at least 2. A move is made by reversing a single edge in the network such that the
configuration remains valid.

A natural question to ask is whether or not a particular edge can be reversed after a sequence of
moves (CONFIG-TO-EDGE), or alternately, whether there exists a sequence of moves to reach a partic-
ular configuration from some initial configuration (CONFIG-TO-CONFIG). Both of these problems are
PSPACE-Complete (see [4]). This hardness result still holds when we restrict the vertices to those with
incident edge weights 1,1, and 2, and those with 1, 1, and 1. These vertices are illustrated in Figure 3
(taken from [4]):

(a) AND (b) OR

Figure 3: NCL AND and OR Vertices

Red edges have weight 1, and blue edges have weight 2. For an orientation of the edges, observe
that for vertex (a), the blue edge can point out if and only if the two red edges are pointing in (to satisfy
the previously-mentioned constraint that the in-flow on all vertices must be at least 2). Similarly, for (b),
the top blue edge can point outward if and only if one of the bottom edges is pointing in. Thus, we can
clearly see that (a) functions as an AND gate of sorts and (b) as an OR gate.

Demaine and Hearn in fact strengthen this result even further, and show that CONFIG-TO-EDGE

and CONFIG-TO-CONFIG both remain PSPACE-Complete when the constraint graph G is planar. Thus,
proving a game to be PSPACE-Hard reduces to simply constructing NCL AND and OR gadgets from
the problem in question, and then demonstrating how to use them to construct arbitrary planar constraint
graphs.

3. The Reduction

In this section, we outline the reduction from planar NCL to 2048-GAME. We begin by constructing
NCL AND and OR vertex gadgets with 4×4 subinstances of 2048-GAME, and then demonstrate how to

4

A

B

C

(a) j-AND Gadget

A

B

C

(b) j-OR Gadget (c) (2, 4) Lattice

Figure 4: NCL AND and OR Vertices. Tiles with labels j, j + 1, etc. correspond to values 2j , 2j+1, etc.
In both gadgets, connections A and B are facing out, while connection C is facing in.

connect them together to make arbitrary planar constraint graphs. This section will prove the following
theorem;

Theorem 1. 2048-GAME is PSPACE-Complete.

Before outlining the reduction, however, we must show that 2048-GAME is in fact contained in
PSPACE. A rigorous proof of this fact is given below;

Lemma 2. 2048-GAME ∈ PSPACE.

Proof. We begin by giving an NPSPACE algorithm to decide 2048-GAME. For an n×n game board G,
we clearly can represent the current configuration of the game board in polynomial space. Starting with
an initial configuration C0 and a goal configuration Cf , we can nondeterministically select a move x ∈
{⇑,⇓,⇐,⇒} at each step (without consulting the oracle to B), and update the previous configuration
with the current one. We repeat the above procedure until one of the following conditions occurs;

(1) The goal configuration Cf is reached, in which case output YES.

(2) There are no possible moves from the current configuration C, and it is not the goal configuration
(game over); output NO.

(3) For the current configuration C, max(C) > max(Cf), in which case output NO.

Checking for these three conditions guarantees that the algorithm will terminate. Specifically, for
condition (3), if there is a tile of value greater than the maximum-valued tile in the goal configuration Cf ,
then Cf is unreachable from the current configuration C. This is immediate from Lemma 1. Thus, we
have an NPSPACE algorithm for deciding 2048-GAME. This is easily converted to a PSPACE algorithm
due to Savitch’s Theorem [7], completing our proof.

3.1. NCL AND and OR Gadgets

In order to prove Theorem 1, we first construct NCL AND and OR gadgets from small instances of
2048-GAME, and then show how to connect them into arbitrary planar graphs.

Figure 4 shows two examples of AND and OR vertex gadgets. Since the tiles in 2048 are assigned
a numerical value, an added difficulty presents itself when connecting vertex gadgets together (since
the gadgets rely on adjacent tiles containing specific powers of 2, including the connectors to “activate”
each vertex gadget). Thus, we introduce the notion of a j-OR and j-AND gadget, as is shown in Figure

5

4. The labels A, B, and C refer to the connection points for each gadget; these labels correspond to the
edges for the NCL vertices in Figure 3.

A connection A or B is considered to be activated for a j-AND or j-OR gadget if the tile has value
not equal to 2j – this directly corresponds to reversing an edge in an NCL constraint graph. For both
AND and OR gadgets, A and B are facing in if the corresponding tile is activated, and out otherwise.

The tile labeled C is also considered to be activated if its value has increased; thus, for a j-AND

gadget, C is activated if the tile a value not equal to 2j+5 or greater, and for a j-OR gadget, if the tile has
not equal to 2j+4. Accordingly, C is facing out if it is activated, and in otherwise.

Before proving the correctness of the two gadgets, we outline the use for the gadget in Figure 4(c);
the (2, 4) Lattice. This structure has an important property; for any move x ∈ {⇑,⇓,⇐,⇒}, the
configuration remains unchanged. Thus, it is perfectly rigid. We will embed all of the other gadgets and
connection pieces into the (2, 4) lattice so as to prevent large portions of the game board shifting when
a move is made by A.

Additionally, whenever a square of the game board is uncovered by a move, the oracle B, in this
construction, will respond by placing a tile t ∈ {2, 4} in the vacant location, depending on which tile
correctly continues the (2, 4) lattice pattern. This is where the perfect knowledge comes into play; we
are allowed to “program” player B’s responses to various moves, which greatly simplifies parts of the
reduction.

Lemma 3. For a j-AND vertex gadget, C can face out if and only if A and B are facing in.

Proof. First, we observe that the tiles in the j-AND gadget will not shift at all unless either A or B is
activated, for any move x ∈ {⇑,⇓,⇐,⇒}, since there are no adjacent tiles of the same value.

Next, we demonstrate that for any sequence of moves which results in C activating, A and B must
both be activated. We claim that for C to be activated in configuration Ci, Ci−3(3, 2) = 2j+3. That is,
location (3, 2) must contain 2j+3 before C can be activated. This is summarized in the diagram below;

C = Ci(4, 4) = 2j+6 Ci−1(4, 3) = 2j+5 Ci−2(4, 2) = 2j+4 Ci−3(3, 2) = 2j+3→ → →

Correctness of the diagram can be shown inductively, by assuming that the value in Ck−1 is nec-
essary for the specified value in Ck to appear. Thus, proving the lemma reduces to determining the
conditions under which there is a C such that C(3, 2) = 2j+3.

Since we have already shown that A or B must be activated for any movement within the gadget to
occur, it suffices to prove that only activating A or B does not suffice. Without loss of generality, assume
that A is activated but not B (the proof of the opposite assumption follows the exact same reasoning). If
only A is activated, then for some C, C(3, 1) = 2j+1, and there exists a sequence of moves such that
for some subsequent C′, C′(3, 1) = 2j+2. However, C′(3, 2) = 2j+1, so no combination is possible to
achieve C′′(3, 2) = 2j+3, as is desired. Thus, A and B must be activated for C to be activated, which
concludes the proof.

An example of a sequence of moves to activate C for a 4-AND vertex gadget is in Appendix A
(Figure 12). Now, we turn our attention to the j-OR vertex. The proof closely follows that of Lemma 3.

Lemma 4. For a j-OR vertex gadget, C can face out if and only if A or B are facing in.

Proof. Again, we see that tiles in the j-OR gadget will not shift unless A or B are activated, for x ∈ {⇑
,⇓,⇐,⇒}, since no adjacent tiles in the gadget’s initial configuration are of the same value.

Next, we show that for any sequence of moves resulting in the activation of C, either A or B must
be activated. Suppose C is activated in configuration Ci. Backtracking along the tiles in the gadget,
we show that for C to be activated in Ci, then in Ci−4, A or B must be activated. The diagram below

6

describes the required configurations. The correctness of the diagram is proven inductively by assuming
that the value(s) described in Ck−1 is a necessary condition for the value(s) in Ck to be reached.

C = Ci(4, 4) = 2j+5 Ci−1(4, 3) = 2j+4 Ci−2(3, 3) = 2j+3

Ci−3(3, 2) = 2j+2

Ci−3(2, 3) = 2j+2

Ci−4(3, 1) = 2j+1 = A

Ci−4(1, 3) = 2j+1 = B

→ →

→

→

→

→

The validity of the moves in the diagram can be verified by inspection of the j-OR gadget in Figure
4(b). The fact that Ci−4(A) = 2j+1 or Ci−4(B) = 2j+1 must hold for Ci(C) = 2j+5 is immediate from
the diagram; we conclude that C can be activated, and thus face out, if and only if A or B is activated,
and therefore facing in.

An example of a sequence of moves to activate C for a 4-OR vertex gadget is in Appendix A (Figure
13).

3.2. The Reversible NCL AND/OR Gadget

Now that we have described the NCL AND and OR gadgets, we have one final vertex gadget left to
define. Observe that for either the NCL j-AND or j-OR gadget, once it is activated, the configuration
cannot be reversed; that is, once a gadget is set in a particular configuration, it cannot be altered. Thus,
if the initial configuration of an NCL machine C0 contains an activated AND vertex, and the goal is to
reverse one of the incoming edges to the vertex, then this is impossible in our vertex gadget construction
but possible in NCL.

To alleviate this, we construct a final gadget, namely the Reversible j-AND/OR gadget. This gadget
is placed in an instance of 2048-GAME when an AND vertex in the original NCL constraint graph is
activated, or when both edges of weight 1 are entering an OR vertex. The conditions under which a
Reversible j-AND/OR gadget is used are outlined in Figure 5.

A

B

C
A

B

C

Activated And Activated Or (2 incoming edges)

Figure 5: The conditions under which a Reversible j-AND/OR is used in place of a normal vertex gadget.

We now introduce the gadget. A and B are considered to be activated if their value is not equal
to 2j+4. Thus, in the initial configuration they are facing in, and when activated, are facing out. C is
activated when its value is not equal to 2j ; when it is activated, it is facing in, and when it is not, it is
facing out. The gadget is defined in Figure 6.

One specific that we note about the gadget is it’s behavior after the tile at location (2, 3) (in the
initial configuration, 2j+2) is shifted from that location, the computer player B places a new tile of value
2j+3 at (2, 3). That way, both A and B can be activated, and therefore face out. However, it is also
possible for either A or B to face out, but not the other. In fact, we prove that all possible configurations
of the vertex gadgets in Figure 5 are reachable with the Reversible j-AND/OR gadget. These reachable
configurations are listed in Figure 7 below;

We now prove that these configurations are reachable by exhibiting sequences of moves;

7

C

A

B

Figure 6: The Reversible j-AND/OR vertex gadget.

A

B

C
A

B

C
A

B

C
A

B

C

(a) (b) (c) (d)

Figure 7: Possible configurations reachable by Activated AND and OR vertices with two incoming
edges.

Lemma 5. The configurations listed in Figure 7 are reachable for any given Reversible j-AND/OR

gadget.

Proof. The following diagram depicts the Reversible j-AND/OR gadget in the four configurations listed
in Figure 7. The proof of the lemma below contains the sequences of moves necessary to reach each
configuration; this can be verified by inspection. The diagram shows the configurations for a Reversible
j-AND/OR gadget.

(a) (b) (c) (d)

We now give sequences of moves to achieve the given configurations. The sequences can easily be
verified by inspection of the gadget; (a) ⇒,⇐,⇐ (b) ⇒,⇒,⇒,⇑,⇒,⇑,⇑ (c) ⇒,⇒,⇒,⇓,⇓ (d) ⇒
,⇒,⇒,⇑,⇒,⇓,⇓. Thus, the configurations in Figure 7 are all reachable by the Reversible j-AND/OR

vertex, completing the proof.

3.3. Constructing Arbitrary Planar Constraint Graphs

We now describe how to construct arbitrary planar graphs from the NCL vertex gadgets. The vertex
gadgets, as well as the connection pieces described in this section, are embedded in an arbitrarily large
game board G comprised of 4× 4 sub-instances. Such a layout is shown in Figure 8

8

...

...

Figure 8: An arbitrarily large game board G comprised of 4× 4 sub-instances of 2048-GAME.

There is also a second issue that we must navigate. Due to the vertex gadgets’ connection tiles (A,
B, and C) containing numerical values of 2, connecting arbitrary vertices is not as simple as in other
reductions from NCL.

We address this by turning to the famed Four Color Theorem (see [5] for more detail regarding
several proofs). Since we are constructing planar NCL constraint graphs, we can turn to the Four
Color Theorem, and in particular, an O(n2) algorithm by Robertson, et. al. [6] to find a four coloring.
By assigning colors to the vertices in the constraint graph, we are able to specify the value of j for
the j-AND, j-OR, and Reversible j-AND/OR gadgets. For each of the four colors, let j = 4, 5, 6, 7
respectively. Note that the diagrams in Appendix A are for NCL gadgets with j = 4.

The k-k′-CONNECTION Gadget We now describe a connection piece to connect gadgets with differing
values of j. We call this a k-k′-CONNECTION piece, and its layout in our context of the 4×4 sub-instance
of 2048-GAME. The diagram is contained in Figure 9

Figure 9: The k-k′-CONNECTION gadget.

The gadget is attachable to a gadget that will terminate with value 2k on any one of its output edges
(C for normal AND/OR gadgets, and A and B for the Reversible AND/OR gadget). We note that this
gadget can be shifted vertically within the 4× 4 sub-instance to yield connection pieces for output tiles
at varying locations.

The major “trick,” so to speak, lies in the gadget’s activation sequence. When the tile with initial
value of k + 4 at (3, 3) vacates that location, the computer player B will place a tile of value k′ − 1 at
(3, 3). Then, the tile is free to combine with the second tile of value k′ − 1 at (3, 4), which will result in
(3, 4) having the value k′, which in turn implies that it will activate a gadget with j = k′.

9

Lemma 6. The k-k′-CONNECTION gadget contains an activation sequence such that an outgoing tile
of value k will activate a gadget with j = k′.

Proof. We will exhibit an activation sequence of the gadget to demonstrate that it indeed fulfills its
promise, namely that it will activate an NCL vertex gadget with j = k′ if the outgoing tile of the previ-
ous gadget has value k. This is exhibited with values k = 7 and k′ = 14.

Initial State ⇒ ⇒ ⇒ ⇓

⇒

The k-LINE and k-CORNER Pieces We finally describe two additional connection pieces which will
finish our construction of arbitrary planar graphs. These are the k-LINE and k-CORNER gadgets, and
are outlined below in Figure 10;

(a) k-LINE (b) k-CORNER

Figure 10: k-LINE and k-CORNER connection pieces.

3.4. Proof of Theorem 1

Now that we have finished describing the components of the reduction, we are ready to prove the main
theorem (that 2048-GAME is PSPACE-Complete);

Proof of Theorem 1. Immediate from the construction described in Section 3. Specifically, we first find
a valid four-coloring of the NCL constraint graph G using the algorithm due to Robertson, et. al. [6],
and then follow the procedure outlined in Section 3.3 to connect the NCL vertex gadgets together using
a combination of k-k′-CONNECTION, k-LINE, and k-CORNER pieces.

Next, we must orient the edes of the constraint graph G according to its current configuration. We
set the tiles in the vertex gadgets accordingly; if an edge corresponds to an activated configuration, the
appropriate tile value is set on the vertex gadget (either at A, B, or C).

10

We have now shown how to convert an orientation of an arbitrary planar constraint graph into an in-
stance of 2048-GAME; if we can decide 2048-GAME, then we can decide CONFIG-TO-CONFIG. Thus,
2048-GAME is PSPACE-Hard, and by Lemma 2, 2048-GAME ∈ PSPACE. Therefore, we conclude
that 2048-GAME is PSPACE-Complete.

4. An FPT Algorithm for 2048-k-MOVES

On one hand, our paper shows that the most natural problem that emerges from 2048 is intractable.
However, we show in this section that another variant of the game is fixed-parameter tractable (FPT).
Recall that 2048-k-MOVES is the problem of deciding whether or not there exists a sequence of moves
of length k S ∈ {⇑,⇓,⇐,⇒}k such that after each of the moves is executed, the board will be in a
winning configuration.

This problem is decidable in polynomial time due to the fact that the number of moves is constant.
While the constant may be quite large, it does not change the asymptotic running time of our algorithm.
First, we introduce the notion of a game tree;

C0

C1
1 C2

1 C3
1 C4

1

C1
k C2

k C3
k C4

k C5
k C6

k C7
k C8

k C4k−3
k C4k−2

k C4k−1
k C4k

k

⇑ ⇓ ⇐ ⇒

⇑ ⇓ ⇐ ⇒ ⇑ ⇓ ⇐ ⇒ ⇑ ⇓ ⇐ ⇒

... ...

. . .

Figure 11: A game tree for an instance of 2048-k-MOVES of depth k.

Each vertex of the tree that can be reached by a path of length ` represents a possible configuration
of the game after ` moves. The tree can be constructed in O(4k) time by querying the oracle for the 4k

possible sequences of moves S ∈ {⇑,⇓,⇐,⇒}k. Our algorithm, in essence, traverses the vertices of
the game tree and halts when a winning configuration is found, or if there are none. We are now ready
to prove the second result of our paper;

Theorem 2. Given an n× n game board G, 2048-k-MOVES is solvable in O(4kn2) time.

Proof. The algorithm can perform any recursive traversal of the game tree to explore the leaf nodes. We
first observe that the game tree is in fact a 4-ary tree. It is well-known that for a d-ary tree of depth `,
the number of leaf nodes is d`. Thus, for our 4-ary tree of depth k, there are 4k leaf nodes.

When each leaf is visited, the value of each of the n2 tiles on the game board is compared to 2m, the
goal tile. If they are equal, halt and output YES and the configuration Cf . If a game board is in a game
over configuration (i.e. the subsequent configurations of the four children nodes are precisely equal to
the current configuration), terminate the recursion for that branch of the tree.

Since we check each of the n2 tiles of G at each of the 4k leaf nodes, the worst-case running time of
the procedure is O(4kn2), showing that 2048-k-MOVES ∈ FPT.

11

References

[1] Gabriele Cirulli, 2048, http://gabrielecirulli.github.io/2048/, Accessed: 2014-
07-02.

[2] Erik D. Demaine, Robert A. Hearn, and Michael Hoffmann, Push-2-f is pspace-complete, CCCG,
2002, pp. 31–35.

[3] Michael R. Garey and David S. Johnson, Computers and intractability: A guide to the theory of
np-completeness, W. H. Freeman & Co., New York, NY, USA, 1979.

[4] Robert A. Hearn and Erik D. Demaine, Pspace-completeness of sliding-block puzzles and other
problems through the nondeterministic constraint logic model of computation, Theor. Comput. Sci.
343 (2005), no. 1-2, 72–96.

[5] Jirı́ Matousek and Jaroslav Nesetril, Invitation to discrete mathematics (2. ed.), Oxford University
Press, 2009.

[6] Neil Robertson, Daniel P. Sanders, Paul D. Seymour, and Robin Thomas, The four-colour theorem,
J. Comb. Theory, Ser. B 70 (1997), no. 1, 2–44.

[7] Walter J. Savitch, Relationships between nondeterministic and deterministic tape complexities, J.
Comput. Syst. Sci. 4 (1970), no. 2, 177–192.

A. Activation Sequences for AND and OR Gadgets

Initial State ⇓ ⇒ ⇓

⇓ ⇒ ⇓ ⇒

⇒

Figure 12: A possible sequence for activating C in a 4-AND gadget (⇓,⇒,⇓,⇓,⇒,⇓,⇒,⇒).

12

http://gabrielecirulli.github.io/2048/

Initial State ⇓(b) ⇓(b) ⇓(b)

⇓(b) ⇒(b)

⇒(a) ⇒(a) ⇒(a) ⇓(a)

⇒(a)

Figure 13: Two possible sequences of moves to activate C; (b) ⇓,⇓,⇓,⇓,⇒, and (a) ⇒,⇒,⇒,⇓,⇒
(corresponding to A and B as the activating tile, respectively).

13

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

