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Abstract. In this paper, we present novel deterministic algorithms for
multiplying two n× n matrices approximately. Given two matrices A,B
we return a matrix C′ which is an approximation to C = AB. We consider
the notion of approximate matrix multiplication in which the objective
is to make the Frobenius norm of the error matrix C − C′ arbitrarily
small. Our main contribution is to first reduce the matrix multiplication
problem to solving a set of linear equations and then use standard tech-
niques to find an approximate solution to that system in Õ(n2) time.
To the best of our knowledge this the first examination into designing
quadratic time deterministic algorithms for approximate matrix multi-
plication which guarantee arbitrarily low absolute error w.r.t. Frobenius
norm.

1 Introduction

The multiplication of two n × n matrices is one of the most basic prob-
lems in computer science. Significant effort has been devoted to finding
efficient approaches to bounding the exponent (ω) of matrix multiplica-
tion. The naive algorithm computes the product of two matrices in O(n3)
operations. Strassen [23] in his seminal paper was the first to notice that
the cubic algorithm was suboptimal. He proved that multiplication could
be achieved with complexity O(n2.81). Following this, there was a se-
quence of works that have improved the exponent. Some of them were
small improvements but they represent big conceptual advances. In a
breakthrough work Coppersmith and Winograd [7] gave a very involved
algorithm that proved that ω < 2.3754. This bound has been further im-
proved by Stothers to 2.373 [8], by Williams to 2.3728642 [26] and most
recently by Francois Le Gall to 2.3728639 [14]. These techniques in gen-
eral can be looked as an attempt to bound the value and border rank
of a trilinear form obtained by taking tensor powers of another trilinear
form [26]. In a different line of work Cohn, Umans [6] and later Cohn,
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Kleinberg, Szegedy and Umans [5] used a group theoretic construction
to re-derive the bound of Coppersmith and Winograd. They also state
certain conjectures whose truth implies that the exponent of matrix mul-
tiplication would be 2. Further work along this line has been done in [2].
Recently Iwen and Spencer [17] present a new class of matrices whose
product can be computed in time O(n2+ε) by a deterministic algorithm:
namely when the output matrix is guaranteed to contain at most n0.29462

non-zero entries in each column (or row). In addition to this there has
been a plethora of work on sparse matrix multiplication [1, 20].

1.1 What is Approximate Matrix Multiplication ?

In this paper, we deal with the notion of approximate matrix multipli-
cation i.e. given the input matrices A,B we intend to return a matrix
C ′ which is an approximation to C = AB. The first approximation al-
gorithm for matrix multiplication was proposed by Cohen and Lewis [4]
based on sampling. For input matrices with nonnegative entries they show
a concentration around the estimate for individual entries in the product
matrix with high probability. Drineas et al [9, 11] have looked into design-
ing randomized algorithms to bound the relative error w.r.t. Frobenius

norm ‖C−C′‖F
‖A‖F ‖B‖F . Their algorithm simply samples s columns from A to

form an n× s matrix A′ and s rows from B to form an s× n matrix and
finally returns A′B′ as an approximate answer. If s = O(1), the running
time of the algorithm is O(n2). This algorithm is able to guarantee that
the relative error can be bounded by O( 1√

s
) with high probability. In fact

the algorithm of Cohen and Lewis can be looked as obtaining a bound
of O( 1√

c
) where n2c samples are being used. In a different line of work

Magen and Zousias [19] have designed algorithms to approximate matrix
multiplication guaranteeing arbitrarily low relative error w.r.t the spec-

tral norm i.e. they form sketches of A,B namely Ã, B̃ such that ‖C−ÃB̃‖2‖A‖2‖B‖2
can be made arbitrarily small. Their algorithm is also randomized. Re-
cently, Pagh [20] introduced a new randomized approximation algorithm.
Instead of sketching the input matrices and then multiplying the result-
ing smaller matrices, we treat the product as a stream of outer products
and sketch each outer product. Using Fast Fourier Transform [3], Pagh
shows how to use the Count-Sketch algorithm to an outer product [20].
This algorithm has been derandomized by Kutzkov in [18]. In this work,
we introduce the notion of designing deterministic quadratic time ma-
trix multiplication algorithm that achieves arbitrarily low absolute error



w.r.t. Frobenius norm. Our technique is completely new as it uses tools
from the theory of solving Linear Systems.

2 Basic Idea

Given two n × n matrices A and B, consider the equation AB = C
where the objective is to find C. Multiplying both sides of the equation
by a chosen vector v = [v1, v2 . . . vn]T , we get ABv = Cv, which can
be rewritten as Cv = u where computing u can be done in O(n2) time.
Thus we are reduced to solving the system V c = u, where c is the n2 ×
1 variable vector and V is the n × n2 matrix whose ith row is the n2

dimensional vector whose first n(i− 1) entries are 0’s, next n entries are
v1, v2, . . . , vn and the remaining entries are zeroes. In what follows we
present algorithms that use this property to find an approximate solution
to the system of linear equations. Our main contribution is the following
theorem.

Theorem 1. Given two n × n matrices A,B such that the magnitude
of each entry is atmost M = O(1) and an δ > 0, there exists an algo-
rithm that runs in O(n2 log 1

δ ) time and returns a matrix C ′ such that the
Frobenius norm of the matrix C ′ −AB is atmost δ.

3 Preliminaries

In this section we describe the basic linear algebraic preliminaries needed
for our analysis.

3.1 Vector Norms

Definition 1. A vector norm is a mapping from ‖ · ‖ : Cn → C that
satisfies the following

– |x| > 0 for all x 6= 0.(|0| = 0)

– |αx| = |α||x|.
– |x + y| ≤ |x|+ |y|.

Thus norm is a measure of of the length of a vector. Following are
examples of some vector norms

(a) lp norm: |x|p = (
∑

i |xi|p)1/p for 1 ≤ p ≤ ∞
(b) l∞ norm: |x|∞ = maxi |xi|.



3.2 Matrix Norms

Definition 2. A matrix norm is a mapping from ‖ · ‖ : Cn×n → C that
satisfies the following

– ‖A‖ ≥ 0 for all A ∈ Cn×n and ‖A‖ = 0 iff A = 0.
– ‖αA‖ = |α|‖A‖ for all A,B ∈ Cn×n.
– ‖A+B‖ ≤ ‖A‖+ ‖B‖ for all A,B ∈ Cn×n.
– ‖AB‖ ≤ ‖A‖‖B‖ for all A,B ∈ Cn×n.

Notice that the first three properties states that ‖ · ‖ is a vector norm
on Cn×n, the last property only makes sense if A and B are matrices.
Examples of matrix norms are

(a) Maximum norm: ‖A‖max = max |aij |.
(b) Infinity norm: ‖A‖∞ = max1≤i≤n

∑n
j=1 |aij |.

(b) Frobenius norm: ‖A‖F =
√∑

i,j a
2
ij .

(c) p-operator norm: ‖A‖P = max|x|p=1 |Ax|p, where | · |p : Cn → n is the
vector p-norm and 1 ≤ p ≤ ∞.

Induced Norms

Definition 3. Given a vector norm |·|v on Cn we can define the induced
norm ‖ · ‖ on Cn×n as

‖A‖ = max
x6=0

|Ax|
|x|

for all A ∈ Cn×n

It can be verified that an induced norm is indeed a matrix norm. For
example, p-operator norm is an induced norm for all 1 ≤ p ≤ ∞.

4 Using Positive Definite System

In this section we describe a deterministic algorithm to find an approx-
imate solution to the system mentioned in Section. The idea is to pre-
multiply both sides of equation V c = u by V T to get V TV c = V Tu,
where V TV is a positive semi-definite matrix. Thus we have converted
the system into form Ax = y where A is a symmetric positive semi-
definite matrix. Unfortunately, there are no methods known to find an
approximate solution to a system in this form but if A is a symmetric
positive definite then there are iterative methods to find an approximate



solution to the system. In the remaining of this section we first describe
an iterative method to solve positive definite system and discuss how A
can be converted to a positive definite matrix and then apply iterative
methods to solve the system.

4.1 Steepest Descent Method for solving Positive Definite
Systems

Solving positive definite systems is a topic of deep interest. A good refer-
ence for iterative methods for solving positive definite systems is [15].
Steepest Descent is a general iterative method for finding local min-
ima of a function f . In the context of Linear systems it is useful be-
cause the solution to Ax = b is the x that minimizes the quadratic form
f(x) = 1

2x
TAx− bx+ c. Given a current estimate xi, the gradient ∇f(xi)

or more precisely, its negative gives the direction in which f is decreasing
most rapidly. Hence, one would expect that taking a step in this direction
should bring us closer to the minimum we seek. We will see that in order
to guarantee convergence of this method A has to be positive definite.
Let x denote the actual minimizer, xi denote our ith estimate, and

ei = x− xi
ri = b−Axi = Aei

The update rule is

xi+1 = xi + αiri

where αi is chosen such that ri+1ri = 0. Using simple algebraic manipu-

lations the value of αi turns out to be
rTi ri
rTi Ari

.

Convergence It can be shows that the steepest descent method con-
verges, i.e. the 2-norm of the error vector is atmost ρ in O(κ log 1

ρ) steps,

where κ = λmax(A)
λmin(A)

. We can write ei+1 (the error vector at the i+ 1th

iteration) in terms of ei as follows:

ei+1 = x1 + αi(b−Axi)− x ∗
= (I − αiA)ei

It can be proven that if we analyse this iteration by taking a fixed value of
αi = 2

λmax+λmin
, which is worse than the value of αi we actually choose,

the 2-norm of the error vector |ei| ≤ ρ in O(κ log 1
ρ) iterations [28].



4.2 Perturbation of A

Recall that A = V TV which has zero eigenvalues and hence is not positive
definite. We perform a perturbation of A to Â = A+ εI where ε > 0 will
be fixed later. Notice that A is a block diagonal matrix with A′ as the
n× n matrix that appears in the main diagonal n times where A′ is the
outerproduct vvT . The following holds for Â.

Lemma 1. Â is positive definite.

Proof. We need to show that for any non-zero vector x, xTAx > 0 which
is equivalent to proving xTAx + εxTAx > 0. Since A is positive semi-
definite and ε > 0, it is true.

Lemma 2. If λ is the maximum eigenvalue of A, then λ =
∑n

i=1 v
2
i .

Proof. Since A has just one non zero eigenvalue which is also the only
non-zero eigenvalue of A′. To find the eigenvalue of A′ we consider the
characteristic polynomial of A′ which is

det(λI −A′) = det(λI − vvT )

= (1− 1

λ
vT v)|λ|

where the last line follows from a result in [27]. Thus to find the to find
the eigen-value of vvT we have to solve for (1 − 1

λv
T v)|λ| = 0 that gives

λ = vT v =
∑n

i=1 v
2
i

Lemma 3. Let λmax(Â)(λminÂ) be the maximum(minimum) eigenvalue

of Â, then λmax(Â)

λmin(Â)
≤ 1 + λ

ε where λ =
∑n

i=1 v
2
i .

Proof. Since Â is block diagonal, Â−1 is also block diagonal with (A′ +
εI)−1 repeated in the main diagonal n times. By Sherman-Morrison for-
mula,

(vvT + εI)−1 = (εI)−1 − (εI)−1vvT (εI)−1

1 + vT (εI)v

=
1

ε
· I − 1

ε2
· A′

1 + ε
∑n

i=1 v
2
i

By lemma, if λi is an eigenvalue of A then 1
λ is an eigenvalue of A−1. Also

from Section for any induced norm,

λmax(Â) ≤ ||Â||2
λmax(Â−1) ≤ ||Â−1||2

1

λmin(Â)
≤ ||Â−1||2



Since Â is symmetric ||Â||2 =

√
λmax(ÂT Â) = λmax(Â) and since Â−1

is also symmetric, ||Â−1||2 = λmax(Â−1) = 1
λmin(Â)

. By the definition

of Â, λmax(Â) = λ + ε where λ =
∑n

i=1 v
2
i and λmin(Â) = ε. Thus,

λmax(Â)

λmin(Â)
≤ 1 + λ

ε .

4.3 Error Analysis

Let x′ be the output of the algorithm, x′′ be the a solution to the equation
(Â + εI)x = y and x′′′ be the solution to the original equation Ax = y.
Because of the guarantees of the algorithm we can assume that |x′−x′′| ≤
ρ. Our aim is to bound the 2-norm of the error vector x′ − x′′′. First we
derive upper and lower bounds on |x′′|.

|y| ≤ ||(Â+ εI)||2|x′′|

|x′′| ≥ ||(Â+ εI)||2
|y|

and

|x′′| ≤ ||(Â+ εI)−1||2|y|

We now prove a result that shows that the norm of the error vector
|x′ − x′′′| can be made arbitrarily small.

Lemma 4. |x′ − x′′′| ≤ δ where δ > 0 can be made arbitrarily small.

Proof. Using the fact that (Â + εI)x′′ = Âx′′′, we have |Âx′′′| = |(Â +
εI)x′|. Now

|Âx′′′| =

√√√√ n∑
j=1

(nv2
n∑
i=1

cji)2 =
√
nv

√√√√ n∑
j=1

(

n∑
i=1

cji)2

=
√
nv

√√√√ n∑
i,j=1

c2ji + 2
n∑
j=1

n∑
k1<k2

cjk1cjk2

≥
√
nv

√√√√ n∑
i,j=1

c2ji =
√
nv|x′′′|



Thus from above

√
nv|x′′′| ≤ |(Â+ εI)x′′| ≤ ‖(Â+ εI)‖2|x′′|

≤ ‖(Â+ εI)‖2‖(Â+ εI)−1‖2|y|

=
λ+ ε

ε

√√√√ n∑
i,j

v2i

(
n∑
k=1

cikvj

)2

|x′′′| ≤ 1√
nv
· λ+ ε

ε

√√√√ n∑
i,j

v2i

(
n∑
k=1

cikvj

)2

≤ 1

n2
√
n
· λ+ ε

ε
·M ′.

where M ′ = O(n) is the maximum row sum of the resultant matrix C
and ε = vi = v = 1

n3 for all i = 1, 2 . . . , n. From the above analysis we
have,

|x′ − x′′′| ≤ |x′ − x′′|+ |x′′ − x′′′| ≤ ρ+ |x′′|+ |x′′′|

≤ ρ+ ‖(Â+ εI)−1‖2|y|+
1√
n
· λ+ ε

ε
·M ′

= ρ+
M

n5ε
+

1

n2
√
n
· λ+ ε

ε
·M ′ ≤ δ.

where δ is a constant greater than but arbitrarily close to ρ (say 1.001 ρ).

4.4 Running Time Analysis

The running time analysis is simple, the number of iterations of the steep-

est descent method is O(λmax(Â)

λmin(Â)
log 1

ρ) which according to our choice of ε

and v′is is O(log 1
ρ). Every iteration involves multiplying Â with a vector

x which despite the fact that Â is an n2×n2 matrix can be done in O(n2)
time. The reason being Â = A+εI and both Ax and Ix can be computed
in O(n2) time. Note that the matrix Â is never stored as it is.

5 Conclusion

In this paper we have introduced a new technique of multiplying two
matrices approximately by solving a set of linear equations. By using
standard methods for solving some specific linear systems namely positive
definite systems we have been able to design deterministic algorithms to



ensure arbitrarily small absolute error between our answer and the actual
product. Such a result to the best of our knowledge is the first of its
kind in the context of approximate matrix multiplication. We suspect
that this technique will find further applications in the problem of exact
matrix multiplication.
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