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Abstract

We show that T rounds of interaction over the binary symmetric channel BSC1/2−ε with

feedback can be simulated with O(ε2T ) rounds of interaction over a noiseless channel. We

also introduce a more general “energy cost” model of interaction over a noisy channel. We

show energy cost to be equivalent to external information complexity, which implies that our

simulation results are unlikely to carry over to energy complexity. Our main technical innovation

is a self-reduction from simulating a noisy channel to simulating a slightly-less-noisy channel,

which may have other applications in the area of interactive compression.

1 Introduction

Much of modern coding theory revolves around the following question: “Given an imperfect

(noisy) channel C, what is the best way of utilizing it to simulate noiseless communication?”

A key objective of Shannon’s classical information theory [Sha48, CT06] was to answer this

question. It turns out that for memoryless channels, the number of utilizations of C needed to

transmit n bits of information scales as n/cap(C), where cap(C) is the channel capacity of C.
In this paper we consider the converse problem:

Problem 1.1. Can a noiseless channel be effectively utilized to simulate communication over

a noisy channel C?

We will focus entirely on binary channels with feedback — i.e. channels transmitting bits

∈ {0, 1}, where the transmitting party gets to observe the (possibly corrupted) received bit —

although the results can likely be generalized to a broader class of channels. Note that as our

discussion is about simulating a noisy channel with a noiseless one, the fact that the channel

has feedback only makes such simulation more difficult. Most of our discussion will focus on the

binary symmetric channel C = BSCa, for noise 0 ≤ a < 1/2. A bit b transmitted over BSCa is

received as b⊕ berr, where berr ∼ Ba is a Bernoulli random variable that causes the received bit

to be flipped. It is well known that cap(BSCa) = 1−H(a) := 1 + a log a+ (1− a) log(1− a). A

particularly interesting regime in our context is when the noise level is very high: a = 1/2− ε.
In this case 1−H(a) = Θ(ε2).

Of course, communication over a noisy channel can always be simulated by communication

over a noiseless channel: the sender can simply apply the noise before transmitting her bit to
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the receiver. However, one would like to simulate the communication effectively, only paying

O(cap(C) · n) bits of communication to simulate n utilizations of C.
We will consider the problem in a general interactive setting, where C is being used to conduct

a general interactive protocol. In the non-interactive setting, classical results from information

theory show that up to factor (1+δ), with δ → 0 as n→∞, n utilizations of C can be simulated

by ∼ cap(C) · n utilizations of C, and vice-versa. What can one say about the interactive case?

Coding for interactive communication, i.e. encoding a noiseless protocol over a noisy chan-

nel (the converse problem to the one we are trying to solve) has received a substantial amount

of attention recently. An early result by Schulman [Sch96] showed that good (constant-rate,

constant-fraction-of-errors) codes exist in the interactive setting even when the noise on the chan-

nel is adversarial. This work has since been recently improved in several directions, including

error-tolerance and the code’s computational efficiency [BR11b, BK12, GHS13, GH13, BE14].

Most relevant to our work is a result by Kol and Raz [KR13] showing a gap between inter-

active channel capacity and one-way channel capacity (interactive channel capacity is lower),

once again giving an example of interactive coding theory being much more complicated than

its one-way transmission counterpart.

Problem 1.1 can also be cast as a problem of compressing interactive communication. The

general problem of compressing interactive communication arises in the context of informa-

tion complexity and direct sum problems for randomized communication complexity [CSWY01,

BYJKS04, BBCR10, BR11a]. The (internal) information cost of a two-party protocol π is the

amount of information executing π reveals to the parties about each other’s inputs. In its full

generality, interactive compression asks to simulate an information cost-I protocol with O(I)

communication, and is equivalent to the strong direct sum problem in communication com-

plexity [BR11a]. Unfortunately, such strong interactive compression has recently been shown

to be impossible [GKR14]. A less ambitious goal is to compress π to its external information

cost Iext ≥ I. There are reasons to believe that compression to O(Iext) communication is also

impossible. For example, [Bra13] gives a specific problem that is conjectured to provide such a

separation.

Communication over a noisy channel BSC1/2−ε inherently reveals only 1−H(1/2−ε) = Θ(ε2)

information to the observer in each round. Thus, a protocol π that runs for T rounds over such

a channel has (both internal and external) information cost O(ε2T ), although the way in which

this information is limited round-by-round is highly structured. In this case, our first main

result shows that compression with O(1) multiplicative loss is possible:

Theorem 1.2. (Theorem 3.1, rephrased) Any protocol π running for T rounds over BSC1/2−ε
with feedback can be perfectly simulated by a public-randomness protocol π′ running for O(ε2T )

rounds in expectation over the noiseless channel BSC0.

Theorem 1.2 provides a new result on the cusp between information complexity theory and

interactive coding theory. It shows that (up to a constant) interaction over a noisy channel can

be simulated by interaction over noiseless channel, giving an affirmative action to Problem 1.1

in this case.

The compression proof of Theorem 1.2 relies crucially on the fact that errors on the channel

remain the same throughout the communication. We consider the following strengthening of the

error model: in each round, the party transmitting the next bit chooses the error rate 1/2 − ε
of the next bit, while paying energy cost EC of Θ(ε2). This model corresponds to a scenario

where the party gets to modulate its transmission power in a way that affects the noise level

(and thus the channel capacity) of the transmission. While we chose ε2 because it captures the

channel capacity for the selected ε, this expression is known to capture actual energy-capacity

tradeoffs in high-noise wireless scenarios (see e.g. [TV05]). We show that thus defined energy
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complexity is actually equivalent to the external information complexity:

Theorem 1.3. (Theorems 4.1 and 4.2, rephrased) For any protocol π over a variable-noise BSC

with feedback and any distribution µ over inputs, there is a protocol φ over a noiseless channel,

such that the external information cost of φ is O(ECµ(π)) and φ simulates π. Conversely, any

φ with external information cost Iext can be simulated by a π over a variable-noise BSC with

feedback with ECµ(π) = O(Iext + ε) for any ε > 0.

Theorem 1.3 implies that the analogue of Theorem 1.2 is unlikely to hold for the more

general variable-error model, since it is believed that one cannot compress a general interactive

protocol π to O(ICext(π)). We note that the strongest known compression result is of the form

O(ICext(π) · (log |π|)O(1)) [BBCR10], where |π| is the number of bits communicated by π.

We believe that techniques involved in proving Theorem 1.2 (discussed below) have the

potential to be helpful in compressing interactive communication. While we know by [GKR14]

that compressing π all the way down to IC(π) is impossible, one can hope to beat the currently

best compression scheme of Õ(
√
IC(π) · |π|) of [BBCR10]. Specifically, to the best of our

knowledge, the recursive approach we describe below has not appeared in past works in either

the Information Theory or the Theoretical Computer Science literature.

1.1 Techniques and proof overview of Theorem 1.2

In this section we briefly discuss the technical contributions of this paper. We will mainly focus

on the techniques in the proof of Theorem 1.2: while the proof of Theorem 1.3 requires care

and work, it does build on existing techniques from past works in the area, such as [BGPW13].

Recall that to prove Theorem 1.2 we need to take a protocol π that runs for T steps over

BSC1/2−ε, and simulate it using a protocol φ that runs for O(ε2T ) steps over the noiseless

channel BSC0. A natural approach is to break π into “chunks” of Θ(1/ε2) communication each,

and to try and simulate each chunk using O(1) communication. Let π′ denote a sub-protocol of

π of γ = 1/ε2 rounds we are trying to simulate. There is a natural way to identify transcripts of

π′ with leafs of a binary tree T of depth γ. Each leaf ` corresponds to a transcript that contains

0 ≤ m ≤ γ mistakes. The goal of the parties (Alice and Bob) is to sample each ` with its correct

probability p` := (1/2− ε)m(1/2 + ε)γ−m. Note that for a given `, Alice and Bob do not know

m. Rather, since each of them only knows what part of his or her messages were corrupted,

Alice and Bob know two numbers mx and my, respectively, such that m = mx +my.

Following past works, Alice and Bob can try to first jointly sample a leaf ` and then use

rejection sampling to make sure that each ` is selected with probability proportional to p`. Since

the joint sampling happens without any communication, we select each leaf with probability 2−γ .

Note that under such a procedure no leaf ever gets selected with probability > 2−γ , thus if we

want to accommodate leafs with p` > 2−γ we should select each leaf with probability p`/M for

a constant M > 1. Note that this means that each round will succeed with probability ∼ 1/M ,

and thus we can only afford M = O(1) a large constant. This will allow Alice and Bob to

sample most but not all leafs correctly. Note that the probability of the most likely leaf in T is

2−γ · (1 + 2ε)γ ∼ 2−γ · e2/ε � 2−γ , and our rejection sampling approach is bound to fail here by

badly under-sampling this leaf.

A (partial) solution to the problem above is to choose γ slightly smaller than 1/ε2 (e.g.

1/(ε2 log |π|)), and just ignore leafs for which the ratio exceeds M . This is the approach employed

in [BBCR10] to compress to external information cost. One can show that at each round we add

small (e.g. < 1/|π|2) statistical error, and thus the simulation (mostly) works. This approach is

unsuitable for us here for two reasons. Firstly, we would like to have a perfect simulation that

does not incur any error. Secondly, in order to get a O(1)-bit simulation of π′ we cannot afford

the depth of T to be o(1/ε2).
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Instead, we adopt a recursive approach. We begin the simulation of π′ by tossing (a properly

biased) coin, and deciding whether we will be looking for a “high-error” or a “low-error” leaf,

where the threshold distinguishing “high” and “low” is chosen appropriately (note that the

“low-error” leafs are the ones getting under-counted by the rejection sampling protocol). If we

are looking for “high-error” nodes, then rejection sampling with an appropriate constant M > 1

as described above will work well. What should we do about a “low-error” leaf? We would

like to sample such a leaf ` with probability exceeding p`, since we are only trying to sample it

conditioned on entering the “low-error” regime. To get such a sampling for the low error regime

we just simulate π′, but over BSC1/2−2ε instead of BSC1/2−ε! We use induction to claim such

a sampling is possible (note that when ε = Θ(1) simulation is trivial since |π′| = 1/ε2 = O(1)).

Simulating π′ over a lower noise channel BSC1/2−2ε has the effect of “punishing” high-error leafs

(we don’t care about those since they get sampled in the high error regime), and “rewarding”

low-error leafs, which are the ones we would like to focus on. For example, the most likely

no-errors leafs is approximately e2/ε times more likely under BSC1/2−2ε than under BSC1/2−ε.

Of course, simulating π′ over BSC1/2−2ε is more expensive than over BSC1/2−ε — ≈ 4 times

more expensive as (1/ε)2 · (2ε)2 = 4 — but as long as the low-error regime is invoked < 1/4 of

the time, the total communication converges and remains O(1) in expectation.

As the problem of sampling “low-error” nodes is the main difficulty in the general compression

of interactive communication, we hope that the strategy above will be helpful in addressing this

more general problem.

1.2 Techniques and proof overview of Theorem 1.3

In this section we give a proof overview of Theorem 1.3. Theorem 1.3 has two parts. We will

discuss them separately.

Recall that the first part of Theorem 1.3 shows that for any protocol π over a variable-noise

BSC with feedback and any distribution µ over inputs, we can construct a protocol φ over a

noiseless channel, such that the external information cost of φ is O(ECµ(π)) and φ simulates

π. The proof of this part of Theorem 1.3 is straightforward. For each bit b transmitted over

BSCp in protocol π, the transmitter sends b ⊕ Bp to the receiver over a noiseless channel in

φ. The analysis of external information cost of φ follows the standard information-theoretic

argument which first converts the information cost into the sum of the divergence between the

true probability and the prior information and then bounds the divergence by the energy cost.

The second part of Theorem 1.3 shows that for any protocol φ over a noiseless channel,

we can construct a protocol π over a variable-noise BSC with feedback, such that ECµ(π) =

O(ICext(φ)+ε) for any ε > 0. Our approach considers protocol φ bit by bit. For each transmitted

bit in φ, let’s assume the transmitter wants to send this bit as Bp and both the transmitter and

the receiver have prior information Bq. Then the external information cost of this bit is D(p‖q).
This divergence is the budget for the energy cost of the corresponding part in π.

The general protocol we used in this proof to send Bp with prior Bq and energy cost D(p‖q)
does a biased random walk on points 0, 1

2n , ...,
2n−1
2n , 1. Here n is some previously fixed integer.

For this biased random walk, the transmitter and the receiver agree to start at some point

closest to q. The transmitter starts to send bits over some chosen binary symmetric channels

and they move left or right according to received bits. They stop this biased random walk when

they reach either 0 or 1, and they pick the sampled bit as the stop position. The main technique

used in this biased random walk is Lemma 4.3. This lemma shows that if we do biased random

walk on points 0, 1, ...a − 1, a, a + 1, ...a + b − 1, a + b, starting at point a and a ≥ b, then the

transmitter only needs to spend a constant energy cost to always end at point a + b. Directly

from this lemma, the transmitter can go from point q to point q · 2t with energy cost O(t).
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Table 1: Divergence lower bound
Cases Lower bounds of D(p‖q)

0 ≤ p ≤ 2q Ω( (p−q)
2

q )

2q < p < 0.02, q < 0.01 Ω(p log p
q )

2q < p, q ≥ 0.01 Ω(1)

p ≥ 0.02, q < 0.01 Ω(log 1
q )

Unfortunately, under this biased random walk framework, it is difficult to design an integral

protocol for all kinds of p and q. So for different values of p and q, our approach uses different

lower bounds of D(p‖q) as the budget for energy cost. In each case, the transmitter will use

Lemma 4.3 differently to meet the lower bounds of D(p‖q). Table 1 shows the lower bounds of

D(p‖q) used in different cases.

The ε in the energy cost comes from the fact that q might not be a point where we do random

walk (i.e. i
2n ). So we will start with a point closest to q, and this approximation will make the

energy cost increase by O(ε). In fact, this ε equals to 1
2n . As increasing n will not make the

energy cost increase, we can make this ε arbitrarily small.

2 Preliminaries

2.1 Communication Complexity

In the two-party communication model, Alice and Bob want to jointly compute a function

f : X × Y → Z. Alice is only given input x ∈ X and Bob is only given input y ∈ Y. In this

paper, we consider the public coin model, which means that Alice and Bob have access to the

shared randomness. In order to compute function f , they have to communicate with each other

following a protocol π which specifies when the communication is over, who sends the next bit

if the communication is not over, and the function of each transmitted bit given the history, the

input of the person who sends this bit and the shared randomness. The transcript of a protocol

is a concatenation of all bits exchanged.

Definition 2.1. The communication complexity of a public coin protocol π, denoted by CC(π),

is defined as the maximum number of bits exchanged on the worst input.

Definition 2.2. The average communication complexity of a public coin protocol π, denoted

by CC(π), is defined as the maximum expected number of bits exchanged over the randomness

of the protocol on the worst input.

Definition 2.3. We will say that a protocol φ over a noiseless channel simulates a protocol π

over a noisy channel if there is a deterministic function g such that g(Φ(x, y,Rφ, RφA, R
φ
B)) is

equal in distribution to Π(x, y,Rπ, RπA, R
π
B , R

c) for all x and y. Here Rφ and Rπ are the public

randomness used in protocol φ and π. RφA, RφB , RπA, RπB are the private randomness used in

protocol φ and π. Rc is the randomness for the noisy channel. Π and Φ are random variables

for transcripts of protocols π and φ.

Definition 2.4. We will say that a protocol π over a noisy channel simulates a protocol φ over

a noiseless channel if there is a deterministic function g such that g(Π(x, y,Rπ, RπA, R
π
B , R

c)) is

equal in distribution to Φ(x, y,Rφ, RφA, R
φ
B) for all x and y. Here Rφ and Rπ are the public

randomness used in protocol φ and π. RφA, RφB , RπA, RπB are the private randomness used in

protocol φ and π. Rc is the randomness for the noisy channel. Π and Φ are random variables

for transcripts of protocols π and φ.
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Additional definitions and results in basic communication complexity can be found in [KN97].

2.2 Binary Symmetric Channel and Energy Cost

Definition 2.5. The binary symmetric channel with crossover probability p (0 ≤ p ≤ 1
2 ), de-

noted by BSCp, is defined as a communication channel such that each bit sent by the transmitter

is flipped with probability p when received by the receiver.

Definition 2.6. The BSCp with feedback is defined as the BSCp such that the transmitter

also gets the (potentially flipped) bit which the receiver receives.

In this paper, we consider two kinds of two-party communication protocols over binary

symmetric channels. One is that the crossover probability of the channel is fixed during the

whole protocol. The other is that the transmitter can choose the crossover probability of the

binary symmetric channel for each transmitted bit and the receiver does not know the crossover

probability. For protocols in these two models, we can still define the communication complexity

as the maximum number of bits exchanged. However, the following definition of energy cost is

more close to the sense of information exchanged in the protocol.

Definition 2.7. If the transmitter sends one bit over BSCp with feedback, the energy cost

of this bit is defined as 4(p − 1
2 )2. The energy cost of a protocol π over binary symmetric

channels(may have different crossover probabilities) with feedback, denoted by EC(π), is defined

as the maximum expected sum of energy cost of each transmitted bit of π over the randomness

of the protocol on the worst input.

Definition 2.8. Given a distribution µ on inputs X,Y , the distributional energy cost, denoted

by ECµ(π), is defined as the expected sum of energy cost of each transmitted bit of π over input

distribution µ and the randomness of the protocol.

2.3 Information Theory and Information Cost

More definitions and results from basic information theory can be found in [CT06]. All the logs

in this paper are base 2.

Definition 2.9. The entropy of a random variable X, denoted by H(x), is defined as H(X) =∑
x Pr[X = x] log(1/Pr[X = x]).

If X is drawn from Bernoulli distributions Bp, we use h(p) = −(p log p+ (1− p)(log(1− p))
to denote H(X).

Definition 2.10. The conditional entropy of random variableX conditioned on random variable

Y is defined as H(X|Y ) = Ey[H(X|Y = y)].

Fact 2.11. H(XY ) = H(X) +H(Y |X).

Definition 2.12. The mutual information between two random variables X and Y is defined

as I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X).

Definition 2.13. The conditional mutual information between X and Y given Z is defined as

I(X;Y |Z) = H(X|Z)−H(X|Y Z) = H(Y |Z)−H(Y |XZ).

Fact 2.14. Let X1, X2, Y, Z be random variables, we have I(X1X2;Y |Z) = I(X1;Y |Z) +

I(X2;Y |X1Z).

Definition 2.15. The Kullback-Leibler divergence between two random variables X and Y is

defined as D(X‖Y ) =
∑
x Pr[X = x] log(Pr[X = x]/Pr[Y = x]).

6



If X and Y are drawn from Bernoulli distribution Bp and Bq, we use D(p‖q) as an abbre-

viation of D(X‖Y ).

Fact 2.16. Let X,Y, Z be random variables, we have I(X;Y |Z) = Ex,z[D((Y |X = x, Z =

z)‖(Y |Z = z))].

Fact 2.17. Let X,Y be random variables,

∑
x

|Pr[X = x]− Pr[Y = x]|2

2 max(Pr[X = x], P r[Y = x])
≤ ln(2) ·D(X‖Y ) ≤

∑
x

|Pr[X = x]− Pr[Y = x]|2

Pr[Y = x]

Proof:

For notation convenience, let p(x) = Pr[X = x] and q(x) = Pr[Y = x]. Let’s first prove the

right-hand side.

ln(2) ·D(X‖Y ) =
∑
x

p(x) ln(
p(x)

q(x)
)

≤ ln(
∑
x

p(x)2

q(x)
) (by concavity of ln(z))

≤
∑
x

p(x)2

q(x)
− 1

=
∑
x

(p(x)− q(x))2

q(x)

For the left-hand side, consider any convex function f such that f ′′(x) ≥ m > 0 for all

x ∈ [a, b]. By strong convexity, for x, y ∈ [a, b], we have

f(y) ≥ f(x) + f ′(x)(y − x) +
m(y − x)2

2
.

Let f(x) = x lnx. For x ∈ [a, b], we have f ′′(x) ≥ 1
b . Therefore,

a ln a ≥ b ln b+ (a− b)(1 + ln b) +
(a− b)2

2b
.

and then

a ln(
a

b
) ≥ (a− b) +

(a− b)2

2b
.

Similarly, we have

b ln(
b

a
) ≥ (b− a) +

(a− b)2

2b
.

Thus

ln(2) ·D(X‖Y ) =
∑
x

p(x) ln(
p(x)

q(x)
)

≥
∑
x

[p(x)− q(x) +
(p(x)− q(x))2

2 max{p(x), q(x)}
]

=
∑
x

(p(x)− q(x))2

2 max{p(x), q(x)}
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Finally, we define the (external) information cost of a protocol.

Definition 2.18. Given a distribution µ on inputs X,Y , and a public coin protocol π, the

external information cost is defined as ICextµ (π) = I(XY ; Π), where Π = Π(X,Y,R) is the

random variable denoting the transcript and public randomness of the protocol and R is the

public randomness.

3 Simulating the noise channel using the noiseless channel

Theorem 3.1. For every deterministic protocol π over BSC1/2−ε with feedback, there exists a

public coin protocol φ over noiseless channel such that φ simulates π and

CC(φ) ≤ α · dε2 · 2CC(π)e.

Here α is a constant and equals to max( 1
β2 , 50t2 + 10) where t = e6 and β is a constant to be

determined in the proof.

Proof overview. The proof follows the intuition outlined in Section 1.1. In the language of

the overview, protocol φv,γ,1/2−ε, which is the main protocol simulating γ layers starting from

node v in the protocol tree, decides whether to call φ0v,γ,1/2−ε or φ1v,γ,1/2−ε. φ
1
v,γ,1/2−ε takes care

of the “high-error” regime case, and is executed using rejection sampling. φ0v,γ,1/2−ε takes care

of the “low-error” regime case, and uses a recursive call to the execution of π′ over BSC1/2−2ε,

followed by rejection sampling to make probabilities align perfectly.

One technical detail which we omitted from the the intuitive description but that plays

an important role in the protocols is the thresholdθ,v,w,D function. In order to be able to

perform rejection sampling starting from a node v, we need to know whether a given node w

located γ layers below v has more errors than the “high-error” threshold θ or less. This depends

on whether the number of mistakes mx + my along the path from v to w exceeds θ or not.

Unfortunately, only Alice knows mx and only Bob knows my, and exchanging these values is

prohibitively expensive: it would cost Θ(log γ) bits of communication, whereas we can only

afford O(1) communication to perform this operation. Luckily, for nodes sampled from D, if

the distribution of (mx,my) is a product distribution (it is in our case), we are able to give an

expected O(1) protocol for the problem. In addition to answering whether mx + my > θ, the

protocol thresholdθ,v,w,D outputs a pair of “witnesses” (θx, θy) such that θx + θy = θ that work

as follows: if mx + my ≤ θ, then mx ≤ θx and my ≤ θy; if mx + my > θ, then mx ≥ θx and

my ≥ θy. These witnesses are then used by Alice and Bob when performing rejection sampling.

Proof: First we change π to be the protocol that Alice and Bob send messages alternatively.

This modification will increase CC(π) by at most a multiplicative factor of 2.

Now we consider the easy case when ε ≥ β. In this case, we just make φ to be the direct

simulation of π. That is, if in protocol π Alice has to send a bit b, then in protocol φ, Alice

sends the same bit b, and both Alice and Bob use public randomness to generate b′ ∼ B1/2−ε
and pretends the receiving bit to be b⊕ b′. In this way, the bit Bob receives in φ will have the

same distribution as the bit Bob receives in π. When Bob sends a message in π, we do the

same modification in φ. Therefore φ simulates π and CC(φ) ≤ 2CC(π) ≤ 1
β2 · ε2 · 2CC(π) ≤

α · ε2 · 2CC(π).

Now we prove this theorem by induction on the crossover probability for the case when

ε < β, showing that the theorem for 2ε implies it for ε. We construct φ by compressing γ = 1
ε2

communication bits of π over BSC1/2−ε into a protocol over a noiseless channel with constant
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communication bits. For each step of the compression, we consider γ bits of π as a protocol tree

with root node v and depth γ. In order to simulate this protocol tree, we only have to sample the

leaf nodes with the same probabilities sampled from the protocol tree. The following protocols

show how to do this. The main protocol is protocol φv,γ,1/2−ε. For notation convenience, we

define mx(v, w) to be the number of errors Alice makes from node v to node w on the protocol

tree of π, my(v, w) to be the number of errors Bob from node v to node w on the protocol tree

of π, and m(v, w) = mx(v, w) +my(v, w).

1. Let θ = γ · (1/2 − 3ε). Both players use public randomness to sample a bit b from Bernoulli
distribution Bp, where p =

∑i≤θ
i=0(1/2− ε)i(1/2 + ε)γ−i

(
γ
i

)
.

2. Run φbv,γ,1/2−ε.

Protocol 1: Protocol φv,γ,1/2−ε

1. Alice and Bob pretend the crossover probability of the protocol tree is 1/2 − 2ε and run
φv,γ,1/2−2ε to sample a leaf node w.

2. Alice and Bob run thresholdθ,v,w,D. Here D is the distribution from which w is sampled,
which satisfies Prw∼D[w] = (1/2− 2ε)m(v,w)(1/2 + 2ε)γ−m(v,w). If the result if 1, they repeat
this protocol.

3. Alice samples a bit bx which is 1 with probability

(1/2− ε)mx(v,w)−θx(1/2 + ε)−mx(v,w)+θx

(1/2− 2ε)mx(v,w)−θx(1/2 + 2ε)−mx(v,w)+θx
,

and sends this bit to Bob. Here θx gets its value from the previous run of thresholdθ,v,w,D.

4. Bob samples a bit by which is 1 with probability

(1/2− ε)my(v,w)−θy(1/2 + ε)−my(v,w)+θy

(1/2− 2ε)my(v,w)−θy(1/2 + 2ε)−my(v,w)+θy
,

and sends this bit to Alice. Here θy gets its value from the previous run of thresholdθ,v,w,D.

5. If both bx and by are 1, they accept w. Otherwise they repeat this protocol.

Protocol 2: Protocol φ0v,γ,1/2−ε

Now let’s intuitively understand how this set of protocols work. The set of protocols first

divide the leaf nodes into two sets: {u|m(v, u) ≤ θ} and {u|m(v, u) > θ}. Since for each leaf

node u, the probability that u is sampled is (1/2 − ε)m(v,u)(1/2 + ε)γ−m(v,u), the probability

that nodes in the first set are sampled is exactly p. Then the protocol uses φ0v,γ,1/2−ε to sample

a node in the first set and φ1v,γ,1/2−ε to sample a node in the second set. φ0v,γ,1/2−ε uses

the induction result of sampling a node with smaller crossover probability and φ1v,γ,1/2−ε uses

rejection sampling to sample a node in the second set. Both of these two protocols use protocol

threshold to determine whether the sampled node w has m(v, w) greater than θ or not.

Now let’s analyze these protocols.

Analysis of thresholdθ,v,w,D: This protocol’s goal is to decide whether mx(v, w) +

my(v, w) ≤ θ or not using only constant number of communication bits in expectation. This

protocol will also make Alice and Bob get θx and θy which satisfy the following conditions:
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1. Alice and Bob use public randomness to sample a leaf node w of the protocol tree rooted
at v with depth γ from the uniform distribution. Therefore each leaf node is sampled with
probability 2−γ .

2. Alice and Bob run thresholdθ,v,w,D. Here D is the uniform distribution on all leaf nodes. If
the result is 0, they repeat this protocol.

3. Let t = e6.

4. Alice samples a bit bx which is 1 with probability

(1/2− ε)mx(v,w)(1/2 + ε)γ/2−mx(v,w)

t · (1/2−ε1/2+ε)
θx−θ/2 · 2−γ/2

,

and sends this bit to Bob. Here θx gets its value from the previous run of thresholdθ,v,w,D.

5. Bob samples a bit by which is 1 with probability

(1/2− ε)my(v,w)(1/2 + ε)γ/2−my(v,w)

t · (1/2−ε1/2+ε)
θy−θ/2 · 2−γ/2

,

and sends this bit to Alice. Here θy gets its value from the previous run of thresholdθ,v,w,D.

6. If both bx and by are 1, they accept w. Otherwise they repeat this protocol.

Protocol 3: Protocol φ1v,γ,1/2−ε

• θx + θy = θ.

• If mx(v, w) +my(v, w) ≤ θ, then mx(v, w) ≤ θx and my(v, w) ≤ θy.

• If mx(v, w) +my(v, w) > θ, then mx(v, w) ≥ θx and my(v, w) ≥ θy.

The input distribution D is the distribution where w is sampled. This protocol only works

for product distributions. More precisely, this protocol works when mx(v, w) has the same

distribution as mx(v, w) given my(v, w) to be any value and my(v, w) has the same distribution

as my(v, w) given mx(v, w) to be any value. To analyze this protocol, we first have to make sure

that in the first step of this protocol, the integer ξ exists. Consider the following two conditions:

• Pr[mx(v, w) ≤ ζ] ≤ Pr[my(v, w) ≤ θ − ζ − 1].

• Pr[mx(v, w) ≤ ζ] ≥ Pr[my(v, w) ≤ θ − ζ − 1].

For any integer ζ, at least one of these two conditions will be satisfied. Also, we know that when

ζ = −1, the first condition is satisfied and when ζ = θ, the second condition is satisfied. So if

when ζ = −1, the second condition is also satisfied, we just have to pick ξ = −1. Otherwise, we

can find some ζ between −1 and θ such that it violates the second condition and ζ + 1 satisfies

the second condition. Then we just have to pick ξ = ζ + 1.

Finally let’s analyze the communication cost of this protocol. Let p1 = Pru∼D[mx(v, u) ≤
ξ − 1], p2 = Pru∼D[mx(v, u) ≤ ξ], q1 = Pru∼D[my(v, u) ≤ θ − ξ] and q2 = Pru∼D[my(v, u) ≤
θ − ξ − 1]. The probability that this protocol recursively calls itself at step 9 is (1 − p2)q2 ≤
(1−p2)p2 ≤ 1

4 . The probability that this protocol recursively calls itself at step 10 is p1(1−q1) ≤
q1(1− q1) ≤ 1

4 . Therefore, the probability that this protocol ends in one round is at least 1
2 . In

expectation, Alice and Bob will communicate 4× 2 = 8 bits running this protocol. In addition,

if D is a product distribution as defined above, the distribution that this protocol recursively

runs on is still a product distribution.
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1. Both players find integer ξ such that Pru∼D[mx(v, u) ≤ ξ− 1] ≤ Pru∼D[my(v, u) ≤ θ− ξ] and
Pru∼D[mx(v, u) ≤ ξ] ≥ Pru∼D[my(v, u) ≤ θ − ξ − 1].

2. Alice outputs a bit b1 which is 1 if mx(v, w) = ξ and 0 otherwise.

3. Alice outputs a bit b2 which is 1 if mx(v, w) > ξ and 0 otherwise.

4. Bob outputs a bit b3 which is 1 if my(v, u) = θ − ξ and 0 otherwise.

5. Bob outputs a bit b4 which is 1 if my(v, w) > θ − ξ and 0 otherwise.

6. If b1 = 1, the protocol returns b4 and sets θx = ξ and θy = θ − ξ.
7. If b1 = 0 and b3 = 1, the protocol returns b2 and sets θx = ξ and θy = θ − ξ.
8. If b1 = 0,b3 = 0,b2 = b4, the protocol returns bx, and sets θx = ξ and θy = θ − ξ.
9. If b1 = 0,b3 = 0,b2 = 1,b4 = 0, the protocol returns thresholdθ,v,w,D|mx(v,u)>ξ,my(v,u)<θ−ξ.

10. If b1 = 0,b3 = 0,b2 = 0,b4 = 1, the protocol returns thresholdθ,v,w,D|mx(v,u)<ξ,my(v,u)>θ−ξ.

Protocol 4: Protocol thresholdθ,v,w,D

Analysis of φ0v,γ,1/2−ε: First we should make sure that the probabilities we use to sample

bx and by are no greater than 1. When Alice and Bob proceed to sample bx and by, we know

that thresholdθ,v,w,D returns 0. Therefore mx(v, w) ≤ θx and my(v, w) ≤ θy. So

(1/2− ε)mx(v,w)−θx(1/2 + ε)−mx(v,w)+θx

(1/2− 2ε)mx(v,w)−θx(1/2 + 2ε)−mx(v,w)+θx
=

(
1/2− ε
1/2− 2ε

)mx(v,w)−θx ( 1/2 + ε

1/2 + 2ε

)θx−mx(v,w)

=

(
1/4− ε/2− 2ε2

1/4 + ε/2− 2ε2

)θx−mx(v,w)

≤ 1.

Similarly, we have
(1/2− ε)my(v,w)−θy (1/2 + ε)−my(v,w)+θy

(1/2− 2ε)my(v,w)−θy (1/2 + 2ε)−my(v,w)+θy
≤ 1.

The probability that the protocol accepts some w in each round is:

∑
w,m(v,w)≤θ

(1/2− 2ε)m(v,w)(1/2 + 2ε)γ−m(v,w) · (1/2− ε)mx(v,w)−θx(1/2 + ε)−mx(v,w)+θx

(1/2− 2ε)mx(v,w)−θx(1/2 + 2ε)−mx(v,w)+θx

· (1/2− ε)my(v,w)−θy (1/2 + ε)−my(v,w)+θy

(1/2− 2ε)my(v,w)−θy (1/2 + 2ε)−my(v,w)+θy

=
∑

w,m(v,w)≤θ

(1/2− 2ε)m(v,w)(1/2 + 2ε)γ−m(v,w) · (1/2− ε)m(v,w)−θ(1/2 + ε)−m(v,w)+θ

(1/2− 2ε)m(v,w)−θ(1/2 + 2ε)−m(v,w)+θ

=
∑

w,m(v,w)≤θ

(1/2− ε)m(v,w)(1/2 + ε)γ−m(v,w) · (1/2− 2ε)θ(1/2 + 2ε)γ−θ

(1/2− ε)θ(1/2 + ε)γ−θ

= p · (1/2− 2ε)θ(1/2 + 2ε)γ−θ

(1/2− ε)θ(1/2 + ε)γ−θ

= p · (1/2− 2ε)(1/ε
2)(1/2−3ε)(1/2 + 2ε)(1/ε

2)(1/2+3ε)

(1/2− ε)(1/ε2)(1/2−3ε)(1/2 + ε)(1/ε2)(1/2+3ε)

≥ 5p.
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The last inequality comes from the following argument:

lim
ε→0

(1/2− 2ε)(1/ε
2)(1/2−3ε)(1/2 + 2ε)(1/ε

2)(1/2+3ε)

(1/2− ε)(1/ε2)(1/2−3ε)(1/2 + ε)(1/ε2)(1/2+3ε)

= lim
ε→0

(
1− 12ε2

1− 4ε2

) 1
2ε2
− 3
ε
(

1 +
2ε

1 + 2ε

) 6
ε

= lim
ε→0

exp

(
− 12ε2

1− 4ε2
·
(

1

2ε2
− 3

ε

)
+

2ε

1 + 2ε
· 6

ε

)
= e6.

So there exists a constant β such that, when 0 < ε < β,

(1/2− 2ε)(1/ε
2)(1/2−3ε)(1/2 + 2ε)(1/ε

2)(1/2+3ε)

(1/2− ε)(1/ε2)(1/2−3ε)(1/2 + ε)(1/ε2)(1/2+3ε)
≥ 5.

Therefore the expected number of rounds is at most 1
5p . By induction, each call of φv,γ,1/2−2ε

uses at most α · (2ε)2 · γ bits of communication in expectation. Thus the expected number of

bits communicated in φ0v,γ,1/2−ε is

1

5p
(α · (2ε)2 · γ + 2 + 8) =

4α

5p
+

2

p
.

From the above analysis, we can also see that for a specific node w with m(v, w) ≤ θ, the

probability that w is sampled and accepted in each round of this protocol is

(1/2− ε)m(v,w)(1/2 + ε)γ−m(v,w) · (1/2− 2ε)θ(1/2 + 2ε)γ−θ

(1/2− ε)θ(1/2 + ε)γ−θ
.

Then since the probability that the protocol ends in each round is

p · (1/2− 2ε)θ(1/2 + 2ε)γ−θ

(1/2− ε)θ(1/2 + ε)γ−θ
,

the probability that w with m(v, w) ≤ θ is sampled in this protocol is

(1/2− ε)m(v,w)(1/2 + ε)γ−m(v,w) · (1/2−2ε)
θ(1/2+2ε)γ−θ

(1/2−ε)θ(1/2+ε)γ−θ

p · (1/2−2ε)
θ(1/2+2ε)γ−θ

(1/2−ε)θ(1/2+ε)γ−θ
=

(1/2− ε)m(v,w)(1/2 + ε)γ−m(v,w)

p
.

Analysis of φ1v,γ,1/2−ε: First we should make sure that the probabilities we use to sample

bx and by are no greater than 1. Recall that t = e6. When Alice and Bob proceed to sample bx
and by, we know that thresholdθ,v,w,D returns 1. Therefore mx(v, w) ≥ θx and my(v, w) ≥ θy.
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So

(1/2− ε)mx(v,w)(1/2 + ε)γ/2−mx(v,w)

t · ( 1/2−ε
1/2+ε )

θx−θ/2 · 2−γ/2
≤ (1/2− ε)θ/2(1/2 + ε)γ/2−θ/2

t · 2−γ/2

=
(1− 4ε2)θ/2(1 + 2ε)γ/2−θ

e6

≤ (1 + 2ε)3/ε

e6
≤ 1.

Similarly, we have
(1/2− ε)my(v,w)(1/2 + ε)γ/2−my(v,w)

t · ( 1/2−ε
1/2+ε )

θy−θ/2 · 2−γ/2
≤ 1.

The probability that the protocol accepts some w in each round is:

∑
w,m(v,w)>θ

2−γ · (1/2− ε)mx(v,w)(1/2 + ε)γ/2−mx(v,w)

t · ( 1/2−ε
1/2+ε )

θx−θ/2 · 2−γ/2
· (1/2− ε)my(v,w)(1/2 + ε)γ/2−my(v,w)

t · ( 1/2−ε
1/2+ε )

θy−θ/2 · 2−γ/2

=
∑

w,m(v,w)>θ

(1/2− ε)m(v,w)(1/2 + ε)γ−m(v,w) · 1

t2

=
1− p
t2

.

Therefore the expected number of bits communicated in φ1v,γ,1/2−ε is at most

t2

1− p
(2 + 8) =

10t2

1− p
.

From the above analysis, we can also see that for a specific node w with m(v, w) > θ, the

probability that w is sampled and accepted in each round is

(1/2− ε)m(v,w)(1/2 + ε)γ−m(v,w) · 1

t2
.

Then since the probability that the protocol ends each round is 1−p
t2 , the probability that w

with m(v, w) ≤ θ is sampled in this protocol is

(1/2− ε)m(v,w)(1/2 + ε)γ−m(v,w) · 1
t2

1−p
t2

=
(1/2− ε)m(v,w)(1/2 + ε)γ−m(v,w)

1− p

Analysis of φv,γ,1/2−ε: Combining the analysis of φ0v,γ,1/2−ε and φ1v,γ,1/2−ε, the expected

number of bits communicated in φv,γ,1/2−ε is at most

p · (4αε2γ

5p
+

2

p
) + (1− p) · 10t2

1− p
=

4α

5
+ 2 + 10t2 ≤ 4α

5
+
α

5
= α.

For node w with m(v, w) > θ, the probability that w is sampled is

(1/2− ε)m(v,w)(1/2 + ε)γ−m(v,w)

p
· p = (1/2− ε)m(v,w)(1/2 + ε)γ−m(v,w).
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For node w with m(v, w) ≤ θ, the probability that w is sampled is

(1/2− ε)m(v,w)(1/2 + ε)γ−m(v,w)

1− p
· (1− p) = (1/2− ε)m(v,w)(1/2 + ε)γ−m(v,w).

So all the nodes are sampled according to the correct probability distribution.

4 Distributional energy cost is equal to external informa-

tion cost

Theorem 4.1. For any protocol π over a variable-error binary symmetric channel with feedback

and any distribution µ over inputs, there is a private coin protocol φ over the noiseless binary

channel, such that ICextµ (φ) ≤ 1
ln(2)ECµ(π) and φ simulates π.

Proof: Protocol φ is very simple to be constructed from π. For each transmitted bit b in π, if

the transmitter wants to send b over BSCp in step i, the transmitter in φ sends b ⊕Ni to the

receiver, where Ni ∼ Bp is a Bernoulli random variable with probability p of being 1. It is clear

that φ simulates π.

Now let’s analyze the external information cost of φ. By definition and Fact 2.14,

ICextµ (φ) = I(XY ; Φ) =

CC(φ)∑
i=1

I(XY ; Φi|Φ<i).

By Fact 2.16, we have

I(XY ; Φi|Φ<i) = Ex,y,φ<i [D((Φi|X = x, Y = y,Φ<i = φ<i)‖(Φi|Φ<i = φ<i))].

Now fix Φ<i = φ<i, let p(x, y) = Pr[(Φi|X = x, Y = y,Φ<i = φ<i) = 1] and q = Pr[(Φi|Φ<i =

φ<i) = 1]. Then we have,

Ex,y[D((Φi|X = x, Y = y,Φ<i = φ<i)‖(Φi|Φ<i = φ<i))] = Ex,y[D(p(x, y)‖q)],

and

Ex,y[p(x, y)] = q.

By the definition of KL-divergence,

Ex,y
[
D(p(x, y)‖q)−D(p(x, y)‖1

2
)

]
= Ex,y

[
p(x, y) log(

1

2q
) + (1− p(x, y)) log(

1

2(1− q)
)

]
= H(q)−1 ≤ 0.

Note that π may use private randomness. Let r be the private randomness of the party whose

turn it is to speak, and let p(x, y, r) be the probability Pr[(Φi|X = x, Y = y,R = r,Φ<i =

φ<i) = 1]. Then p(x, y) = Er|x,yp(x, y, r). By combining the previous line with Fact 2.17 and

the convexity of z 7→ z2 we have,

Ex,y[D(p(x, y)‖q)] ≤ Ex,y[D(p(x, y)‖1

2
)] ≤ Ex,y

[
4

ln(2)
(p(x, y)− 1

2
)2
]
≤

Ex,y,r
[

4

ln(2)
(p(x, y, r)− 1

2
)2
]

=
1

ln(2)
Ex,y[EC(Πi)|X = x, Y = y,Π<i = φ<i].
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To sum up, we get

ICextµ (φ) =

CC(φ)∑
i=1

I(XY ; Φi|Φ<i)

=

CC(φ)∑
i=1

Ex,y,φ<i [D((Φi|X = x, Y = y,Φ<i = φ<i)‖(Φi|Φ<i = φ<i))]

≤ 1

ln(2)

CC(π)∑
i=1

Ex,y,φ<i [EC(Πi)|X = x, Y = y,Π<i = φ<i]

=
1

ln(2)
ECµ(π).

Theorem 4.2. For any protocol π over a noiseless channel, any distribution µ over inputs and

any ε = 1
2n , n ∈ Z, n > 0, there is a protocol φ over a variable-error binary symmetric channel

with feedback, such that ECµ(φ) = O(ICextµ (π) + ε) and φ simulates π.

Proof: Similarly to the proof of Theorem 4.1, we first express the external information cost

of π as the sum of the divergence between the true probability and the prior probability. Let

px,y,i,πi = Pr[(Πi|X = x, Y = y,Π<i = π<i) = 1] and qi,πi = Pr[(Πi|Π<i = π<i) = 1]. Then we

have

ICextµ (π) =

CC(π)∑
i=1

Ex,y,π<i [D((Πi|X = x, Y = y,Π<i = π<i)‖(Πi|Π<i = π<i))]

=

CC(π)∑
i=1

Ex,y,π<i [D(px,y,i,π‖qi,πi)].

We are going to construct φ by simulating π’s communication bit by bit. For the ith transmitted

bit, given inputs x, y and the previous transcript π<i, it is sufficient to prove that the corre-

sponding simulation in φ uses energy cost at most O(D(px,y,i,π<i‖qi,π<i) + ε
2i ) in expectation,

and the receiver can sample a bit from Bernoulli distribution Bpx,y,i,π<i given prior qi,π<i .

Now, we construct the simulation of the ith transmitted bit given inputs x, y and the previous

transcript π<i. Since we fix i, x, y, π<i here, we will abbreviate px,y,i,π<i and qi,π<i as p and

q. The main framework of the construction has following steps: Let ni = n · 2i and εi = 1
2ni

.

Alice and Bob agree to do biased random walk on points 0, 1
2ni

, 2
2ni

, · · · , 2ni−12ni
, 1, starting at

a point closest to q. For each step, the transmitter sends one bit over some binary symmetric

channel with some chosen crossover probability. They move right for one step if the received

bit is 1, and they move left for one step if the the received bit is 0. They stop this random

walk whenever they reach 0 or 1, and take the value on the point as the corresponding sampled

bit. As
∑CC(π)
i=1 εi ≤ ε, it is sufficient to prove that the energy cost of this communication of

O(D(p‖q) + εi) and after random walk they reach 1 with probability p. Note that setting εi in

this way is for the case when π has finite external information cost but a potentially unbounded

communication complexity. Otherwise we can pick εi = ε
CC(π) .

We need the following lemma as the main technique of our construction.

Lemma 4.3. Suppose Alice and Bob agree to do biased random walk on points 0, 1, . . . , a + b

via communication over binary symmetric channels, and they start at point a. If a ≥ b, the

transmitter only has to send messages with energy cost at most 48 to make them always end at

a+ b.
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Proof: We prove this lemma by induction on (a+ b)2 + b, showing that the lemma for smaller

(a+ b)2 + b implies it for larger (a+ b)2 + b. The basis of this induction proof is the case when

b ≤ 12. If b ≤ 12, the transmitter only has to send 1 over BSC0 (noiseless channel) for b times.

This will take at most 12 < 48 energy cost and they will end at a+ b.

If b > 12. Let c = ba2 c. The protocol is as follows:

1. They first do biased random walk on points a− c, a− c+ 1, · · · , a, · · · , a+ b with start point
a. For each step, the transmitter sends 1 over BSC 1

2
− 3

c
. They stop this procedure when they

reach either a− c or a+ b, or they have already taken c2 steps. Suppose they stop at point d.

2. If they reach d = a+ b, the protocol ends.

3. If d < a, we know that d ≥ a− c. By induction, they do biased random walk on points 0, ..., a
with start point d to get back to a. And then they run this protocol again.

4. If d = a, they run this protocol again.

5. If d > a, by induction, they do biased random walk on points 1, ..., a+ b with start point d to
get to a+ b and the protocol ends.

Protocol 5: Biased Random Walk

Let’s analyze this protocol. First we calculate the probability that they reach point a− c after

the first part of the protocol. This probability is no more than the probability of reaching a− c
if we change the stop condition of the first part to stopping only when reaching either a− c or

a+ b. We can calculate the second probability by recursion. For ( 1
2 + 3

c )-biased random walk on

points a− c, ..., a+ b with start point t, define ut to be the probability of reaching a+ b. Then

we have ua−c = 0, ua+b = 1 and ut = ( 1
2 + 3

c )ut+1 + ( 1
2 −

3
c )ut−1 for a − c < t < a + b. Let

β =
1
2−

3
c

1
2+

3
c

, we have

ut =
1 + · · ·+ βt−(a−c)−1

1 + · · ·+ βb+c−1
.

Since c+ 1 = ba2 c+ 1 ≥ b/2 and b > 12, we know 3c ≥ b. Then we have

ua =
1 + · · ·+ βc−1

1 + · · ·+ βb+c−1
≥ 1

1 + βc + β2c + β3c
>

1

1 + 3βc
.

We also have

βc =

(
1−

6
c

1
2 + 3

c

)c
≤
(

1− 6

c

)c
< e−6.

So

ua >
1

1 + 3βc
>

1

1 + 3e−6
.

Therefore, for the first part of the protocol, the probability of reaching a−c is at most 1− 1
1+3e−6 .

Now let’s calculate the probability of stopping at point between a − c and a + b after c2

steps of ( 1
2 + 3

c )-biased random walk . For each step, with probability 1
2 + 3

c , the coordinate

will increase 1, and with probability 1
2 −

3
c the coordinate will decrease 1. If a− c < d < a+ b,

the sum of these values will be less than b. By Chernoff bound, the probability that the sum of

these values is less than b is no more than

e−
2(6c−b)2

4c2 < e−
2(3c)2

4c2 = e−4.5.

So the probability that a− c < d < a+ b is at most e−4.5.
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Now we can calculate the expected energy cost of this protocol. Let’s assume the expected

energy cost of this protocol is v. For the first part of the protocol, it takes 4( 1
2 −

3
c −

1
2 )2 ·c2 = 36

energy cost. If a− c ≤ d < a, the protocol will spend at most v + 48 energy cost after the first

part. If d = a, the protocol will spend at most v after the first part. If a < d < a + b, the

protocol will spend at most 48 energy. So if d 6= a + b, the protocol will spend at most v + 48

energy cost after the first part. Using the probability we calculate before, we have

v ≤ (e−4.5 + 1− 1

1 + 3e−6
)(v + 48) + 36 ≤ (

1

16
+

1

16
)(v + 48) + 36 =

v

8
+ 42.

Therefore v ≤ 48 as desired.

Directly from this lemma, the transmitter can go from point q to point 2t · q with energy

cost O(t) by applying the protocol in this lemma t times.

Let’s start the construction. Without loss of generality, let’s assume 0 < q ≤ 1
2 . Notice that

we ignore the case when q = 0. Because if q = 0, p must be 0 and the receiver can sample one

bit from Bp without any communication. Now we assume 2niq is an integer and we will consider

the case that 2niq is not an integer later in the proof. The general protocol of sampling one bit

from Bernoulli distribution Bp given prior q is as Protocol 6.

1. Let ni = n · 2i and εi = 1
2ni

. Alice and Bob agree to do some biased random walk on points

0, 1
2ni
, · · · , 12 with start point q.

2. If they end at point 0, then 0 is the sampled bit.

3. If they end at point 1
2 , the transmitter will send one more bit over some binary symmetric

channel, and the received bit will be taken as the sampled bit.

Protocol 6: General Protocol

The energy cost we are going to use when 2qni is an integer is O(D(p‖q)). We use different

lower bounds of D(p‖q) for different values of p and q. In all the cases, Alice and Bob will follow

the general protocol. The only difference is that for different cases, the transmitter will choose

different biases for biased random walk. The detailed differences are shown in Protocol 7.

1. If 0 ≤ p ≤ 2q, the transmitter will first send 1’s over BSC 1
2

until they reach point 1
2 or 0.

Suppose they reach 1
2 , the transmitter will send 1 over BSC1− p

2q
if p ≥ q, and send 0 over

BSC p
2q

if p < q.

2. If 2q < p < 0.02, q < 0.01, the transmitter will first send 1’s over BSC 1
2

until they reach point

b 2niq

p
c

2ni
or 0. If they reach

b 2niq

p
c

2ni
, the transmitter will use the protocol in Lemma 4.3 O(log(pq ))

times to arrive 1
2 . Finally the transmitter will send 1 over BSC

1−
pb 2niq

p c
2niq

.

3. Otherwise, the transmitter will use the protocol in Lemma 4.3 O(log(1q )) times to arrive 1
2 .

Then the transmitter will send 1 over BSC1−p if p ≥ 1
2 , and send 0 over BSCp if p ≤ 1

2 .

Protocol 7: Detailed Protocols in cases

To analyze these protocols, we need the following simple lemma:

Lemma 4.4. Suppose Alice and Bob agree to do unbiased random walk on points 0, 1, ..., a+ b

via communication over BSC 1
2
, and they start at point a. Then the probability that they end at

a+ b is a
a+b .
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Proof: For unbiased random walk on points 0, ..., a + b with start point t, define ut to be the

probability of reaching a + b. Then we have u0 = 0, ua+b = 1 and ut = 1
2 (ut−1 + ut+1) for

0 < t < a+ b. Solve this we get ut = t
a+b and thus ua = a

a+b .

Now we are going to show in cases that the detailed protocols sample a bit from Bernoulli

distribution Bp and use energy cost O(D(p‖q)) in expectation. Notice that although the last

2 cases use the same protocol, as we use different lower bounds of D(p‖q) in these 2 cases, we

have to analyze them separately.

1. 0 ≤ p ≤ 2q: By Lemma 4.4, after unbiased random walk, the probability that they

reach 1
2 is 2q. So the probability that the sample bit is 1 is 2q × p

2q = p. By Fact 2.17,

D(p‖q) = Ω( (p−q)2
q ). The energy cost of the protocol only comes from the last bit, which

equals to 2q × 4( p2q −
1
2 )2 = O

(
(p−q)2
q

)
= O(D(p‖q)).

2. 2q < p < 0.02, q < 0.01: By Lemma 4.4, after unbiased random walk, the probability

that they reach
b 2niqp c
2ni

is 2niq

b 2niqp c
. So the probability that they get sample bit 1 is 2niq

b 2niqp c
×

pb 2niqp c
2niq

= p.

Now let’s give the lower bound of D(p‖q) in this case.

• If p > 3q, then p log p
q ≥ p log(3) and

|(1− p) log
1− p
1− q

| = (1− p) log
1− q
1− p

= (1− p) log(1 +
p− q
1− p

) < p− q ≤ p.

So

D(p‖q) = p log
p

q
+(1−p) log

1− q
1− p

≥ p log
p

q
−p ≥ (1−1/ log(3))p log

p

q
= Ω

(
p log

p

q

)
.

• If 2q < p ≤ 3q, by Fact 2.17, D(p‖q) = Ω(p) and p log p
q = O(p), so D(p‖q) =

Ω(p log p
q ).

So in this case D(p‖q) = Ω(p log p
q ). The energy cost of this protocol comes from the

biased random walk which has energy cost O(log p
q ) and the last bit which has energy cost

at most 1. As 2niq ≥ 1, the probability that the transmitter has to do biased random

walk and to send the last bit is

2niq

b 2niqp c
<

2niq
2niq
p − 1

= p× 2niq

2niq − p
= p

1

1− p
2niq

< p
1

1− p
= O(p).

Therefore the total energy cost is at most

O(p(log
p

q
+ 1)) = O(p log

p

q
) = O(D(p‖q)).

3. p > 2q and q ≥ 0.01: From the protocol, we know that they will always arrive 1
2 after

biased random walk. Then after the last step, the probability that they get 1 is p. For the

lower bound of D(p‖q), since p− q > q ≥ 0.01, by Fact 2.17, D(p‖q) = Ω((p− q)2) = Ω(1).

The energy cost of the protocol is

O(log
1

q
+ 1) = O(1) = O(D(p‖q)).

4. p ≥ 0.02, q < 0.01: Similarly as the previous case, the probability that the sampled bit is

1 is p. Now we give the lower bound of D(p‖q).
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• If 0.005 < q < 0.01, then

D(p‖q) = Ω(1) = Ω(log
1

q
).

• If q ≤ 0.005, then

D(p‖q) = p log
1

q
+ (1− p) log

1

1− q
−H(p) ≥ p log

1

q
−H(p).

Now let’s consider H(p)/p. If p > 1/5, then H(p)/p < 1/(1/5) = 5. If 0.02 < p ≤ 1/5,

H(p)/p = log
1

p
+

1− p
p

log(1+
p

1− p
) ≤ log

1

p
+

1− p
p
· p

1− p
< log(50)+1 = log(100).

Therefore, for all p ≥ 0.02, H(p)/p < log(100). So

p log 1
q

H(p)
≥ log(200)

H(p)
p

>
log(200)

log(100)
.

Thus

D(p‖q) ≥ p log
1

q
−H(p) ≥

(
1− log(100)

log(200)

)
p log

1

q
= Ω

(
log

1

q

)
.

So in this case, D(p‖q) = Ω(log 1
q ). The energy cost of the protocol is

O(log
1

q
+ 1) = O(log

1

q
) = O(D(p‖q)).

After analyzing these four cases, we have shown that when 2niq is an integer, our protocol

can make the receiver sample a bit from Bernoulli distribution Bp and spends energy cost

O(D(p‖q)). For the case when 2niq is not an integer, we can pick q′ = d2niqe
2ni

and run the above

protocol with prior q′. Then the receiver can still sample from Bernoulli distribution Bp, and

the protocol has cost O(D(p‖q′)). Since we have

D(p‖q′)−D(p‖q) = p log
q

q′
+(1−p) log

1− q
1− q′

≤ (1−p) log

(
1 +

q′ − q
1− q′

)
≤ (1−p)·q − q

′

1− q′
≤ 1· εi

0.5
= 2εi,

the energy cost is at most

O(D(p‖q′)) = O(D(p‖q) + εi)

as desired.
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