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1School of Computing, University of Leeds, United Kingdom
2INESC-ID, Lisbon, Portugal

Abstract. Proof systems for quantified Boolean formulas (QBFs) provide a theoretical under-
pinning for the performance of important QBF solvers. However, the proof complexity of these
proof systems is currently not well understood and in particular lower bound techniques are
missing. In this paper we exhibit a new and elegant proof technique for showing lower bounds
in QBF proof systems based on strategy extraction. This technique provides a direct transfer of
circuit lower bounds to lengths of proofs lower bounds. We use our method to show the hardness
of a natural class of parity formulas for Q-resolution. Variants of the formulas are hard for even
stronger systems as long-distance and universal Q-resolution. With a completely different lower
bound argument we show the hardness of the prominent formulas of Kleine Büning et al. [23] for
the strong expansion-based calculus IR-calc, thus also confirming the hardness of the formulas for
Q-resolution. Our lower bounds imply new exponential separations between two different types of
resolution-based QBF calculi: proof systems for DPLL-based solvers (Q-resolution, long-distance
Q-resolution) and proof systems for expansion-based solvers (∀Exp+Res and its generalizations
IR-calc and IRM-calc). The relations between proof systems from the two different classes were
not known before.

1 Introduction

Proof complexity studies the complexity of theorem proving in various formal systems, pro-
viding both sharp lower and upper bounds for the size of proofs of important combinatorial
statements. One motivation for this research comes from its close connection to fundamental
questions in computational complexity, and this connection has been present since the very
beginnings of the field [13]. Another motivation is the tremendous success of SAT solvers,
which today solve huge industrial instances of the NP-hard SAT problem with even millions
of variables. Proof complexity provides the main theoretical tool for an understanding of the
power and limitations of these algorithms. As most modern SAT solvers are based on resolu-
tion, this proof system has received key attention; and many ingenious techniques have been
devised to understand the complexity of resolution proofs (cf. [29,10] for surveys).

During the last decade there has been great interest and research activity to extend the
success of SAT solvers to the more expressive quantified boolean formulas (QBF). Due to its
PSPACE completeness, QBF is far more expressive than SAT and thus applies to further fields
such as formal verification or planning [27,5]. As for SAT solvers, runs of QBF solvers produce
witnesses respectively proofs of unsatisfiability, and there has been great interest in trying to
understand which formal system would correspond to the solvers.

In particular, Kleine Büning et al. [23] define a resolution-like calculus called Q-resolution
(Q-Res). There are several extensions of Q-Res; notably long-distance Q-resolution (LD-Q-
Res) [2], which is more powerful than the standard Q-Res [14]. Q-Res and its extensions are
important as they model QBF solving based on CDCL [16]. While Q-Res can only resolve on
existential variables, the proof system QU-Res, introduced by Van Gelder [30], also allows to
resolve on universal variables. Combining universal and long-distance resolution, Balabanov
et al. [3] recently considered the system LQU+-Res.
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Apart from CDCL, another main approach to QBF-solving is through expansion of quan-
tifiers [8,4,18]. Recently, a proof system ∀Exp+Res was introduced with the motivation to
trace expansion-based QBF solvers [17]. ∀Exp+Res also uses resolution, but is conceptually
very different from Q-Res.

In the recent work [6] two further proof systems IR-calc and IRM-calc are introduced,
which unify the CDCL and expansion based approaches in the sense that IR-calc simulates
both Q-Res and ∀Exp+Res. The system IRM-calc enhances IR-calc and additionally simulates
long-distance resolution. While IR-calc and IRM-calc are quite powerful, they still preserve the
property of strategy extraction, which is important for verifying runs of QBF solvers.

In general, it is fair to say that the complexity and relations between QBF proof systems
are not well understood. In particular, in sharp contrast to propositional proof complexity,
we currently lack any lower bound techniques for QBF proof systems.

1.1 Our contributions

In this paper we aim towards a significantly better understanding of proof complexity of QBF
proof systems. Our main contributions are the following:

1. A new lower bound method based on strategy extraction. We exhibit a new
method to obtain lower bounds to the proof size in QBF proof systems, which directly allows
to transfer circuit lower bounds to size of proof lower bounds. This method is based on the
property of strategy extraction, which is known to hold for many resolution-based QBF proof
systems. A QBF proof system has strategy extraction if given a refutation of a false QBF ϕ
it is possible to efficiently compute a winning strategy for the universal player for ϕ.

The basic idea of our method is both conceptually simple and elegant: If we know that
a family ϕn of false QBFs requires large winning strategies, then proofs of ϕn must be large
in all proof systems with feasible strategy extraction. Now we need suitable formulas ϕn.
Starting with a language L — for which we know (or conjecture) circuit lower bounds — we
construct a family of false QBFs ϕn such that every winning strategy of the universal player
for ϕn will have to compute L for inputs of length n. Consequently, a circuit lower bound for
L directly translates into a lower bound for the winning strategy and therefore the proof size.

This immediately implies conditional lower bounds. However, if carefully implemented, our
method also yields unconditional lower bounds. For Q-Res it is known that strategy extraction
is computationally easy [2]; it is in fact possible in AC0 as we verify here. Using the hardness
of parity for AC0 we can therefore construct formulas QParityn that require exponential-size
proofs in Q-Res.

Conceptually, our lower bound method via strategy extraction is similar to the feasible
interpolation technique [24], which is one of the most successful techniques in classical proof
complexity. In feasible interpolation, circuit lower bounds are also translated into proof size
lower bounds. However, feasible interpolation only works for formulas of a special syntactic
form, while our technique directly applies to arbitrary languages. It is a long-standing belief
in the proof complexity community that there exists a direct connection between progress for
showing lower bounds in circuit complexity and for proof systems (cf. [12]). For QBF proof
systems our technique makes such a connection very explicit.

2. Lower bounds for QBF proof systems. Our new lower bound method directly gives a
new lower bound for Q-Res for the parity formulas. In addition, we transfer this lower bound to
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the stronger systems of long-distance Q-resolution and QU-resolution by arguing that neither
long-distance nor universal Q-resolution gives any advantage on a suitable modification of the
parity formulas.

For the strong system IR-calc from [6] we show that the strategy extraction method is not
directly applicable (at least for unconditional bounds in the way we use it here). However,
we use a completely different lower bound argument to obtain an exponential lower bound
for the well-known formulas KBKF(t) of Kleine Büning, Karpinski and Flögel [23] in IR-calc.
In the same work [23], where Q-Res was introduced, these formulas were suggested as hard
formulas for Q-Res. In fact, a number of further separations of QBF proof systems builds
on this [14,3], even though the hardness of KBKF(t) has never been formally verified in the
literature so far. Here we show in a technically involved counting argument that the formulas
are even hard for IR-calc. As IR-calc simulates Q-Res [6] we obtain as a by-product a formal
proof of the hardness of KBKF(t) in Q-Res.

3. Separations between QBF proof systems. Our lower bounds imply a number of
new separations and incomparability results for QBF resolution systems. The two main new
results are

1. IR-calc does not simulate LD-Q-Res.
2. LQU+-Res does not simulate ∀Exp+Res.

Both are in fact exponential separations. Item 1 is obtained from the lower bound for KBKF(t),
while item 2 follows from the lower bound on a variant of the parity formulas. Together with
previous simulation results these imply many further separations. Figure 1 depicts the simu-
lation order of QBF resolution systems together with the separations. By a strict simulation
we mean that one calculus simulates the other but the reverse simulation does not hold. Two
calculi are incomparable if neither calculus simulates the other. New separation results proven
here are drawn as bold lines. Together with previous simulations and separations (cf. the table
accompanying Figure 1) this provides an almost complete understanding of the simulation
order of resolution-based QBF proof systems.

1.2 Organisation of the paper

The rest of the paper is organized as follows. Section 2 overviews relevant QBF proof systems
and introduces notation and concepts used throughout the paper. In Section 3 we show the
lower bound for the formulas KBKF(t), implying an exponential separation between IR-calc
(and Q-Res) and LD-Q-Res. In Section 4 we demonstrate our new lower bound method via
strategy extraction by proving a lower bound for the parity formulas. This implies that Q-Res
does not simulate ∀Exp+Res (and therefore IR-calc and IRM-calc). In Section 5 we push the
lower bound further to LD-Q-Res and even LQU+-Res, thereby improving the separation to
LQU+-Res vs. ∀Exp+Res. Section 6 shows that the proof technique used in Section 4 can be
applied in a wider context and thus provide more general results. Section 7 concludes the
paper and presents directions for future work.

2 Preliminaries

A literal is a Boolean variable or its negation; we say that the literal x is complementary
to the literal ¬x and vice versa. If l is a literal, ¬l denotes the complementary literal, i.e.
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5 [30] [30]
6 [6] Thm. 29

Fig. 1. The simulation order of QBF resolution systems

¬¬x = x. A clause is a disjunction of zero or more literals and a term is a conjunction of
literals. The empty clause is denoted by ⊥, which is semantically equivalent to false. A formula
in conjunctive normal form (CNF) is a conjunction of clauses. Whenever convenient, a clause
is treated as a set of literals and a CNF formula as a set of clauses. For a literal l = x or
l = ¬x, we write var(l) for x and extend this notation to var(C) for a clause C and var(ψ)
for a CNF ψ.

Quantified Boolean Formulas (QBFs) [22] extend propositional logic with quantifiers with
the standard semantics that ∀x. Ψ is satisfied by the same truth assignments as Ψ [0/x]∧Ψ [1/x]
and ∃x. Ψ as Ψ [0/x] ∨ Ψ [1/x]. Unless specified otherwise, we assume that QBFs are in closed
prenex form with a CNF matrix, i.e., we consider the form Q1X1 . . .QkXk. φ, where Xi are
pairwise disjoint (ordered) sets of variables; Qi ∈ {∃, ∀} and Qi 6= Qi+1. The formula φ is
in CNF and is defined only on variables X1 ∪ . . .∪Xk. The propositional part φ of a QBF is
called the matrix and the rest the prefix. If a variable x is in the set Xi, we say that x is at
level i and write lv(x) = i; we write lv(l) for lv(var(l)). In contrast to the level, the index of
a variable x (ind(x)) provides the more detailed information on the actual position of x in
the prefix, i.e. all quantifiers are indexed by 1, . . . , n from left to right. A closed QBF is false
(resp. true), iff it is semantically equivalent to the constant 0 (resp. 1).

Often it is useful to think of a QBF Q1X1 . . .QkXk. φ as a game between the universal
and the existential player. In the i-th step of the game, the player Qi assigns values to all the
variables Xi. The existential player wins the game iff the matrix φ evaluates to 1 under the
assignment constructed in the game. The universal player wins iff the matrix φ evaluates to 0.
A QBF is false iff there exists a winning strategy for the universal player, i.e. if the universal
player can win any possible game [1, Sec. 4.2.2][26, Chap. 19]. Note that a winning strategy
always exists for one and only one of the players.
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A proof system (Cook, Reckhow [13]) for a language L over alphabet Γ is a polynomial-
time computable partial function f : Γ ? ⇁ Γ ? with rng(f) = L. An f -proof of string y is
a string x such that f(x) = y. If L consists of all propositional tautologies, then f is called
a propositional proof system. For L = QBF we speak of a QBF proof system. In the systems
that we consider here, proofs are sequences of clauses; a refutation is a proof deriving ⊥. A
proof system S for L simulates a proof system P for L if there exists a polynomial p such
that for all P -proofs π of x there is an S-proof π′ of x with |π′| ≤ p (|π|). If such a proof π′

can even be computed from π in polynomial time we say that S p-simulates P .

2.1 Resolution-based calculi for QBF

This section gives a brief overview of the main existing resolution-based calculi for QBF.
Q-resolution (Q-Res), by Kleine Büning et al. [23], is a resolution-like calculus that operates
on QBFs in prenex form where the matrix is a CNF. The rules are given in Figure 2.

(Axiom)
C

C1 ∪ {x} C2 ∪ {¬x}
(Res)

C1 ∪ C2

C is a clause in the matrix. Variable x is existential. If z ∈ C1, then ¬z /∈ C2.

C ∪ {u}
(∀-Red)

C

Variable u is universal. If x ∈ C is
existential, then lv(x) < lv(u).

Fig. 2. The rules of Q-Res [23]

Long-distance resolution (LD-Q-Res) appears originally in the work of Zhang and Ma-
lik [31] and was formalized into a calculus by Balabanov and Jiang [2]. It merges comple-
mentary literals of a universal variable u into the special literal u∗. These special literals
prohibit certain resolution steps. In particular, different literals of a universal variable u may
be merged only if lv(x) < lv(u), where x is the resolution variable. The rules are given in
Figure 3. Note that the rules do not prohibit resolving w∗ ∨ x ∨ C1 and u∗ ∨ ¬x ∨ C2 with
lv(w) ≤ lv(u) < lv(x) as long as w 6= u.

(Axiom)
C

D ∪ {u}
(∀-Red)

D

D ∪ {u∗}
(∀-Red∗)

D

C is a clause in the matrix. Literal u is universal and lv(u) ≥ lv(l) for all l ∈ D.

C1 ∪ U1 ∪ {x} C2 ∪ U2 ∪ {¬x}
(Res)

C1 ∪ C2 ∪ U

Variable x is existential. If for l1 ∈ C1, l2 ∈ C2, var(l1) = var(l2) = z then l1 = l2 6= z∗. U1, U2 contain
only universal literals with var(U1) = var(U2). For each u ∈ var(U1) we require lv(x) < lv(u). If for
w1 ∈ U1, w2 ∈ U2, var(w1) = var(w2) = u then w1 = ¬w2, w1 = u∗ or w2 = u∗. U is defined as
{u∗ | u ∈ var(U1)}.

Fig. 3. The rules of LD-Q-Res [2]
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QU-resolution (QU-Res) [30] removes the restriction from Q-Res that the resolved variable
must be an existential variable and allows resolution of universal variables. The rules are given
in Figure 4.

(Axiom)
C

C1 ∪ {x} C2 ∪ {¬x}
(Res)

C1 ∪ C2

C is a clause in the matrix. If z ∈ C1, then ¬z /∈ C2.

C ∪ {u}
(∀-Red)

C

Variable u is universal. If x ∈ C is
existential, then lv(x) < lv(u).

Fig. 4. The rules of QU-Res [30]

LQU+-Res [3] extends LD-Q-Res by allowing short and long distance resolution pivots to be
universal. Two important clarifications need to be made, firstly the pivot is never a merged
literal z∗, and the level restriction now must become an index restriction, to differentiate
between universal variables on the same level. The rules are given in Figure 5.

(Axiom)
C

D ∪ {u}
(∀-Red)

D

D ∪ {u∗}
(∀-Red∗)

D

C is a clause in the matrix. Literal u is universal and lv(u) ≥ lv(l) for all l ∈ D.

C1 ∪ U1 ∪ {x} C2 ∪ U2 ∪ {¬x}
(Res)

C1 ∪ C2 ∪ U

If for l1 ∈ C1, l2 ∈ C2, var(l1) = var(l2) = z then l1 = l2 6= z∗. U1, U2 contain only universal literals with
var(U1) = var(U2). For each u ∈ var(U1) we require ind(x) < ind(u), as variable x could be at the same
level as u. If for w1 ∈ U1, w2 ∈ U2, var(w1) = var(w2) = u then w1 = ¬w2, w1 = u∗ or w2 = u∗. U is
defined as {u∗ | u ∈ var(U1)}.

Fig. 5. The rules of LQU+-Res [3]

More recently, several calculi based on instantiation of universal variables were introduced:
∀Exp+Res [20], IR-calc, and IRM-calc [6]. All these calculi operate on clauses that comprise only
existential variables from the original QBF, which are additionally annotated by a substitution
to some universal variables, e.g. ¬x0/u11/u2 . For any annotated literal lσ, the substitution σ
does not make assignments to variables at a higher quantification level than l, i.e. if u ∈
dom(σ), then u is universal and lv(u) < lv(l). To preserve this invariant, we use the auxiliary
notation l[σ], which for an existential literal l and an assignment σ to the universal variables
filters out all assignments that are not permitted, i.e. l[σ] = l{c/u∈σ | lv(u)<lv(l)}.

The simplest instantiation-based calculus we consider is the calculus ∀Exp+Res, whose
rules are presented in Figure 6. Any axiom in a proof is taken from the matrix by choosing a
complete assignment to the universal variables. Resolution is defined as in the propositional
case where annotated literals are considered as distinct variables.
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(Axiom){
l[τ ] | l ∈ C, l is existential

}
∪{τ(l) | l ∈ C, l is universal}

C is a clause from the matrix and τ is an assignment to all universal variables.

C1 ∨ xτ C2 ∨ ¬xτ (Res)
C1 ∪ C2

Fig. 6. The rules of ∀Exp+Res [20]

(Axiom){
x[τ ] | x ∈ C, x is existential

}
C is a non-tautological clause from the matrix. τ = {0/u | u is universal in C}, where the notation 0/u for
literals u is shorthand for 0/x if u = x and 1/x if u = ¬x.

xτ ∨ C1 ¬xτ ∨ C2 (Resolution)
C1 ∪C2

C (Instantiation)
inst(τ, C)

τ is an assignment to universal variables with rng(τ) ⊆ {0, 1}.

Fig. 7. The rules of IR-calc [6]

The calculus IR-calc extends ∀Exp+Res by enabling partial assignments in annotations.
To do so, we utilize the auxiliary operations of completion and instantiation. For assignments
τ and µ, we write τ Y µ for the assignment σ defined as follows: σ(x) = τ(x) if x ∈ dom(τ),
otherwise σ(x) = µ(x) if x ∈ dom(µ). The operation τ Y µ is referred to as completion
because µ provides values for variables that are not defined in τ . The operation is associative
and therefore we can omit parentheses. For an assignment τ and an annotated clause C the
function inst(τ, C) returns the annotated clause

{
l[σ Y τ ] | lσ ∈ C

}
. Then, the calculus IR-calc

is defined in Figure 7. Axioms are taken from the matrix by assigning only those universal
variables that appear in that matrix clause. Any clause can be instantiated by giving values
to some universal variables (this is similar to specialization in first-order logic). Resolution is
defined as in ∀Exp+Res.

Axiom and instantiation rules as in IR-calc in Figure 7.

xτ∪ξ ∨ C1 ¬xτ∪σ ∨ C2 (Resolution)
inst(σ,C1)∪ inst(ξ, C2)

dom(τ), dom(ξ) and dom(σ) are mutually disjoint. rng(τ) = {0, 1}

C ∨ bµ ∨ bσ (Merging)
C ∨ bξ

dom(µ) = dom(σ). ξ = {c/u | c/u ∈ µ, c/u ∈ σ}∪ {∗/u | c/u ∈ µ, d/u ∈ σ, c 6= d}

Fig. 8. The rules of IRM-calc [6]
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The calculus IRM-calc further extends IR-calc by enabling annotations containing an as-
signment to the special symbol ∗. We call such assignments extended assignments. The rules
of the calculus IRM-calc are presented in Figure 8. The symbol ∗ may be introduced by the
merge rule, e.g. by collapsing x0/u ∨ x1/u into x∗/u. Once the symbol ∗ appears in an anno-
tation, certain resolution steps are not permitted. For instance, x∗/u and ¬xc/u cannot be
resolved.

The calculus IR-calc p-simulates ∀Exp+Res as well as Q-resolution. The calculus IRM-calc
p-simulates IR-calc as well as long-distance Q-resolution [6].

3 A lower bound in IR-calc for the formulas of Kleine Büning et al.

Our first main result is a proof complexity analysis of a well-known family of formulas
KBKF(t) first defined by Kleine Büning, Karpinski and Flögel [23]. The formulas are claimed
to be hard for Q-Res in [23]. However, a formal proof of their hardness has never been given,
even though further hardness results build on this [14,3]. Here we prove that the KBKF(t)
formulas are even hard for IR-calc, which is stronger than Q-Res (Theorem 22). This provides
the first non-trivial lower bound for IR-calc, and further even separates the system from LD-
Q-Res. As a by-product we also formally prove the hardness of KBKF(t) for Q-Res as Q-Res
is simulated by IR-calc [6].

Definition 1 (Kleine Büning, Karpinski and Flögel [23]). Consider the clauses

C− = {¬y0}
C0 = {y0,¬y1,0,¬y1,1}
C0
i = {yi,0, xi,¬yi+1,0,¬yi+1,1} C1

i = {yi,1,¬xi,¬yi+1,0,¬yi+1,1} for i ∈ [t− 1]
C0
t = {yt,0, xt,¬yt+1, . . . ,¬yt+t} C1

t = {yt,1,¬xt,¬yt+1, . . . ,¬yt+t}
C0
t+i = {xi, yt+i} C1

t+i = {¬xi, yt+i} for i ∈ [t]

The KBKF(t) formulas are defined as the union of these clauses under the quantifier prefix
∃y0, y1,0, y1,1 ∀x1 ∃y2,0, y2,1 ∀x2 . . . ∀xt−1 ∃yt,0, yt,1 ∀xt ∃yt+1 . . . yt+t.

Let us verify that the KBKF(t) formulas are indeed false QBF and — at the same time —
provide some intuition about them. The existential player starts by playing y0 = 0 because
of clause C−. Clause C0 forces the existential player to set one of y1,0, y1,1 to 0. Assume
the existential chooses y1,0 = 0 and y1,1 = 1. If the universal player tries to win, he will
correspond with x1 = 0, thus forcing the existential player again to set one of y2,0, y2,1 to
0. This continues for t rounds, leaving in each round a choice of yi,0 = 0 or yi,1 = 0 to the
existential player, to which the universal corresponds by setting xi accordingly. Finally, the
existential player is forced to set one of yt+1, . . . , y2t to 0. This will contradict one of the
clauses C0

t+1, C
1
t+1, . . . , C

0
2t, C

1
2t, and the universal player wins.

It is clear from this explanation, that the existential player has exponentially many choices
and the universal player likewise needs to uniquely correspond to all these choices to win. The
aim of this section is to show that IR-calc and therefore Q-Res in some sense need to go through
all these exponentially many options in order to refute the formula, thus forcing IR-calc and
Q-Res proofs of exponential size.

Syntactically, KBKF(t) are existential Horn formulas, i.e., they contain at most one pos-
itive existential literal per clause. In fact, they even have a stronger property: C− is the only
clause without a head (a positive existential literal). We will strengthen this in the next lemma
by a simple modification such that now all clauses have a head.
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Lemma 2. We can transform every IR-calc refutation π of KBKF(t) into a IR-calc proof π′

of y0 from KBKF(t) \ {¬y0}. We perform this by:

1. deleting every instance of the axiom {¬y0};
2. for every clause without a positive existential literal we add the literal y0 to the clause with

the empty annotation.

After this transformation, which preserves proof length, we can focus on proofs of y0 from
KBKF(t)\{¬y0}. Exploiting that all axioms now contain exactly one positive literal we show
a number of invariants, which hold for all clauses in all IR-calc proofs of the formulas.

Lemma 3. Let C be an annotated clause in an IR-calc proof of y0 from KBKF(t) \ {¬y0}.
Then the following invariants hold for C:

1. C has exactly one positive literal yAh,a for h ≤ t or yAh for h > t (or y0 with no annotation).

We call this unique literal the head of C and use the indices h and a also in the following
invariants to denote its position as well as A for its annotation.

2. If, for some j ∈ [2t], b ∈ {0, 1} and B some annotation, ¬yBj,b ∈ C (or ¬yBj ∈ C), then
j > h. i.e. the literals in the body are always at a higher quantification level than the head.

3. If ¬yBj,b ∈ C (or ¬yBj ∈ C), then A ∪ {a/xh} ⊆ B, where all extra annotations in B are
of the form ck/xk for k > h. This invariant acts vacuously for h > t where the clauses
contain no negative literals.

4. If ¬yBj,b ∈ C (or ¬yBj ∈ C) then for all k, h ≤ k < j (or h ≤ k ≤ t, when j > t )
there is ck ∈ {0, 1} such that ck/xk ∈ B, i.e. all universal variables between h and j are
instantiated.

5. If ¬yBj,b ∈ C with j ≤ t, then for k ∈ [t], d ∈ {0, 1} and D some annotation, there is no

¬yDk,d ∈ C nor ¬yDt+k ∈ C such that B ∪ {b/xj} ⊆ D.

Proof. We will simultaneously prove all the invariants by one induction on the number of
lines in the proof before C.

We start with the base case which requires to just look at the axioms. Invariant 1 holds
as we no longer have {¬y0} present in the axioms. Invariant 2 holds in all our axioms. For
Invariant 3 we only need to consider the axioms Cci with negative existential literals. The
head of Cci is yi,c and there are no universal variables of lower level than the head, hence its
annotation A = ∅. The axiom is instantiated so that c/xi is added to both negative literals,
hence we satisfy the invariant. Invariant 4 holds by the same reasons. Invariant 5 holds,
because C0 and all Ccj with j ≤ t are the only clauses with negative existential literals, these
are all of the same level.

For the inductive step there are two possibilities: either C is derived from instantiation or
by resolution.

Suppose first that C is derived from instantiation of clause D. Invariant 1 holds as instan-
tiation does not change the polarities of the literals. Invariant 2 holds as we do not change
the indices of the literals. For Invariant 3 we use Invariant 2 to know that yAh,a is the lowest
level literal in the clause D. Any annotation involving xl with l < h is therefore both added
to A and to the annotations of all other literals. Invariant 4 holds as these annotations are
not removed. For Invariant 5 we know from Invariants 2 and 4 that for any ¬yBj,b ∈ D and

¬yEk,e ∈ D (or ¬yEk ∈ D) with k > j there is some c/xl ∈ B ∪ {b/xj} such that (1− c)/xl ∈ E
and this conflict does not change by instantiation.
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Now suppose C is derived from resolving D1 and D2. Without loss of generality we let the
resolved variable be yEk,e in D2 (if yEt+k is the resolved variable we only remove a negative literal
from D1, which does not affect the invariants). Invariant 1 holds as there are two positive
literals between D1 and D2, but the head yEk,e of D2 gets removed by resolution.

Invariant 2 holds as the head yAh,a of C is the head of D1. If we have a negative literal

¬yBj,b ∈ C, then ¬yBj,b ∈ D1 or ¬yBj,b ∈ D2. If in D1 then j > h by Invariant 2 for D1. If in

D2 then j > k by Invariant 2 for D2. As ¬yEk,e ∈ D1 we get k > h again by Invariant 2 for
D1. Therefore j > h and Invariant 2 holds for C. This works similarly if the negative literal
is ¬yBj .

For Invariant 3 we again use the fact that the head yAh,a of C is also the head of D1. If

negative literal ¬yBj,b ∈ C comes from D1 then A ∪ {a/xh} ⊆ B by Invariant 3 for D1. If, on

the other hand, negative literal ¬yBj,b ∈ C comes from D2 then E ∪{e/xk} ⊆ B by Invariant 3

for D2. However, as ¬yEk,e ∈ D1 then A ∪ {a/xh} ⊆ E ⊆ E ∪ {e/xk} ⊆ B. Likewise for an
annotation in B of level lower than lv(yh,a), it must be in E and hence in A. This works
similarly if the negative literal is ¬yBj .

For Invariant 4, all literals in C that come from D1 already fulfil the condition. For the
literals coming fromD2 we use Invariant 3. Since ¬yEk,e ∈ D1 the annotation E already contains

all the necessary assignments for head yAh,a. But since E ∪ {e/xk} ⊆ B for any ¬yBj,b ∈ D2 (or

¬yBj ), then together with Invariant 4 for D2, these literals have the required annotations for

the new head yAh,a.

For Invariant 5 we need to check that if ¬yBj,b ∈ D1 and ¬yFl,f ∈ D2 (or ¬yFl ∈ D2), then
there is some conflict in the annotations (by using Invariants 2 and 4 for C). By Invariant 5
for D1 we know that there is some c/xl ∈ B∪{b/xj} such that (1− c)/xl ∈ E. By Invariant 3
we have E ∪ {e/xk} ⊆ F , hence (1− c)/xl ∈ F . ut

We will now start our lower bound argument. The overall idea is as follows. Consider the
clauses C0

t+1, C
1
t+1, . . . , C

0
t+t, C

1
t+t. These contain only a single positive existential literal. We

will show in Lemma 9 that the negative versions of these literals appear together and get the
same annotations (unless we make progress in the proof). One may be tempted to resolve
the clauses with the corresponding negative literals (initially in C0

t , C
1
t ). However, one must

choose between C0
t+i, C

1
t+i for each ¬yt+i and do this for each i.

We will collect these choices in a set Σ associated with each clause, such that we can
infer from Σ which choices were made by directly looking at the clause. We define Σ(C) for
a clause C in Definition 4 and show that we are counting the right thing in Lemmas 7, 10
and 11. More precisely, we show in Lemma 7 that axioms have empty Σ and that instantiation
steps do not change Σ at all (Lemma 10). In a resolution step D1 D2

D , the set Σ(D) either
equals Σ(D1) ∪Σ(D2) or grows by exactly one new element (Lemma 11). In some sense, we
only make progress in the proof in the latter case, and we need exponentially many resolution
steps of this kind. Putting everything together we find that by the end of the proof we must
have collected all the exponentially many choices in Σ(y0), implying an exponential lower
bound to the proof length (Theorem 12).

We now give the formal arguments starting with the definition of Σ.

Definition 4. Let C be a clause in an IR-calc proof of y0 from KBKF(t) \ {¬y0}. We define
the set Σ(C) of complete annotations (to all xi) by the following rules.

1. Σ(C) = ∅ when C = {yBt+j} (type-1 clause).
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Assume now that C is not type-1 and has the head yAh,a.

2. Σ(C) = ∅ when there exists j < h such that xj is not given a value in the annotation A
(type-2 clause).

3. Otherwise (type-3 clause), Σ(C) is defined by the following process of adding and remov-
ing assignments according to C, which now has complete annotations for each literal by
Invariant 4.
We start by initialising Σ(C) as all complete annotations X to x1, . . . , xt such that A ∪
{a/xh} ⊆ X (if y0 is the head we add the complete set of annotations).
For each ¬yBj,b ∈ C with j ≤ t we remove from Σ(C) all complete annotations X such that

B ∪ {b/xj} ⊆ X. Finally, we remove annotations B for yBj ∈ C with j > t (note that B
is necessarily complete by invariants 3 and 4).

Obviously, any clause C with head yt+j for j > 0 is a type-1 clause. Further, C is an
instantiation of C0

t+j or C1
t+j whose annotated versions are in fact unit clauses.

Example 5. Let t = 5 and assume that the clause

C = {yx̄12,1,¬y
x̄1x2
3,1 ,¬yx̄1x2x̄3x̄4x̄56 ,¬yx̄1x2x̄3x̄4x̄57 ,¬yx̄1x2x̄3x4x57 }

is derived in an IR-calc proof of KBKF(5). Because the annotation of the head yx̄12,1 is as com-
plete as possible, the clause C is a type-3 clause, so Σ(C) is defined by the adding/removing
process. This happens in the following steps:

– yx̄12,1 means we add the 8 = 2(5−2) complete annotations with prefix x̄1x2.

– ¬yx̄1x23,1 means we then remove the 4 complete annotations with prefix x̄1x2x3.

– ¬yx̄1x2x̄3x̄4x̄56 and ¬yx̄1x2x̄3x̄4x̄57 means we remove the annotation x̄1x2x̄3x̄4x̄5.
– ¬yx̄1x2x̄3x4x57 means we remove the annotation x̄1x2x̄3x4x5.

Therefore we obtain the set of annotations Σ(C) = {x̄1x2x̄3x̄4x5, x̄1x2x̄3x4x̄5} of size 2.

Remark 6. For a type-3 clause C we have the following properties of Σ(C):

– We only remove an annotation when it was originally added from the presence of the head
yAh,a. This is true by Invariant 3.

– Unless yXj ∈ C for j > t, we only remove an annotation X at most once from Σ(C). This

holds by Invariant 5. If ¬yXj ∈ C for j > t, then X can be removed from Σ up to t times

by other ¬yXl ∈ C. In this case, however, X is not removed by any ¬yBj,b ∈ C with j ≤ t
by Invariant 5.

An important fact is that for axioms we get empty Σ as we verify in the next lemma.

Lemma 7. For each clause C ∈ KBKF(t) \ {¬y0}, instantiated as an IR-calc axiom CB, we
get Σ(CB) = ∅.

Proof. For axiom C0 we first add all annotations to Σ, but then due to the presence of ¬y1,0

and ¬y1,0 remove all annotations starting with 0/x1 and 1/x1, respectively. This results in
Σ(C0) = ∅.

Using C0
1 = {y1,0, x1,¬y2,0,¬y2,1} as an IR-calc axiom results in {y1,0,¬y0/x1

2,0 ,¬y0/x1
2,1 }.

Computing Σ of this clause, we first add all annotations starting with 0/x1, but then re-
move all annotations starting with (0/x1, 0/x2) and (0/x1, 1/x2), yielding again empty Σ.
Analogous reasoning applies to C1

1 .

11



When using clauses C0
i , C

1
i with 2 ≤ i ≤ t as IR-calc axioms, we obtain type-2 clauses,

which have empty Σ by definition. The remaining clauses C0
t+i, C

1
t+i give rise to type-1 clauses,

again with empty Σ. ut

It will be crucial for our lower bound argument to understand how Σ(C) changes when
we go through the clauses C in the proof. For this we first need two technical lemmas on the
structure of IR-calc proofs of KBKF(t) \ {¬y0}.

Lemma 8. In an IR-calc proof from KBKF(t)\{¬y0}, a type-2 clause cannot be resolved with
a type-3 clause.

Proof. Suppose we have a resolution step between a type-2 and a type-3 clause. The resolved
variable has a complete annotation as all variables in type-3 clauses have them. However,
because of Invariants 3 and 4 the head of the type-2 clause must have a complete annotation,
contradicting our assumption. ut

Lemma 9. Let C be a clause in an IR-calc proof from KBKF(t) \ {¬y0}. If ¬yBt+j ∈ C and

¬yBt+l /∈ C with j, l > 0, then there is an annotation of xl in B.

Proof. We proceed by induction on the number of lines to derive C. The base case is vacuously
true as all ¬yt+j literals get introduced in the same axioms.

For the inductive step we distinguish whether C is derived by instantiation or by resolution.
In the case that C is derived by instantiation of D we do not lose any annotation, so the
hypothesis remains true.

If C is derived by resolving D1 and D2, the claim still holds if the resolved variable is
different from any yBt+l. In the case that ¬yBt+l ∈ C and we resolve on yBt+l, the clause C must
be resolved with some instantiation of axiom C0

t+l or C1
t+l. This instantiation introduces an

annotation of xl, hence the same annotation of xl appears in B. ut

The next two lemmas are the key to our lower bound. We show first that the set Σ is
not affected by instantiation steps. In Lemma 11 we will then analyse how Σ changes in a
resolution step.

Lemma 10. Suppose in an IR-calc proof from KBKF(t) \ {¬y0} we instantiate clause D to
get clause D′. Then Σ(D) = Σ(D′).

Proof. If D is a type-1 clause it remains a type-1 clause under instantiation. Hence Σ(D′)
remains empty. If D is a type-3 clause it has complete annotations; hence under instantiation it
does not change. If D is a type-2 clause then the only problem arises when instantiation makes
the annotations complete, i.e., the clause turns into a type-3 clause. We will use induction on
the number of lines until D.

Induction Hypothesis: Let D be a type-2 clause that can be instantiated by σ to get a
type-3 clause D′. Then Σ(D′) is empty.

For the base case, we observe that instantiating any type-2 axiom always gives empty Σ.
For the inductive step, we can derive D by instantiation or resolution. For the inductive
argument we can ignore the case where D is derived by instantiation as that instantiation
could have been incorporated into σ.

Let D now be derived by resolving two clauses D1 and D2. Assume without loss of gener-
ality that D1 is a type-2 clause. By Lemma 8 the other clause D2 must be type 1 or type 2.

12



Suppose first that D2 is a type-1 clause {yBt+j}. Let D′1 be the instantiation of D1 by
σ, since σ gives a complete assignment to the annotations in D it must also do so in D1 by
Invariant 3. By inductive hypothesis we have Σ(D′1) = ∅. The only result of the resolution step
with D2 is the removal the literal ¬yBt+j . In order for this to have any effect on Σ(D), there

can be no other ¬yBt+l (for 1 ≤ l ≤ t, l 6= j) in D1. Hence by Lemma 9 B contains annotations

for all xl with 1 ≤ l ≤ t, l 6= j. Further B contains an annotation of xj as D2 = {yBt+j}
must contain such an annotation. Therefore B is a complete assignment to x1, . . . , xn. By
Invariant 3 this can only happen when D1 is a type-3 clause rather than a type-2 clause.

Suppose instead, D2 is a type-2 clause, and without loss of generality the resolved variable
is positive in D2, i.e., it is the head of D2. Let D′2 be the instantiation of D2 by σ. Since σ
gives a complete assignment to the annotations in D it must also do so in D2, i.e., D′2 is
type 3. This holds since D2 is type 2 and therefore has a negative literal; with Invariant 3
this implies that D′2 is type 3. By inductive hypothesis we therefore have Σ(D′2) = ∅. When
computing Σ(D′), the lack of the negative literal on the resolved variable means we may have
additional elements in Σ(D′). However, these were exactly the assignments that were added
by the head in D′2 and so we know — as Σ(D′2) is empty — that we have the sufficient literals
in D′ to remove all elements in Σ(D′). ut

Lemma 11. Let t denote disjoint union. Suppose in an IR-calc proof from KBKF(t) \ {¬y0}
we resolve D1 with D2 to get clause D, where the resolved variable is positive in D2.

If D1 is a type-3 clause that is resolved with the type-1 clause D2 = {yBt+j} for j > 0

and there is no k > 0, k 6= j such that ¬yBt+k ∈ D1, then Σ(D) = Σ(D1) t Σ(D2) t {B} =
Σ(D1) t {B}. Otherwise Σ(D) = Σ(D1) tΣ(D2).

Proof. In the first case, D1 is a type-3 clause and D2 is a type-1 clause. Then the resolution
step is the same as removing ¬yBt+j from the clause D1. The resolvent D must be a type-3

clause as all annotations remain. Because there is no k > 0, k 6= j such that ¬yBt+k ∈ D1, we
can use Lemma 9 to know B is complete and Remark 6 to infer that B ∈ Σ(D). If we otherwise
resolve a type-3 clause D1 with a type-1 clause D2, but there is another ¬yBt+k ∈ D1, then
the same assignments are added and deleted in Σ(D) as in Σ(D1), hence Σ(D) = Σ(D1) =
Σ(D1) tΣ(D2).

Consider now the remaining cases. If we resolve a type-1 clause with a type-2 clause, then
we obtain a type-2 clause, hence Σ remains empty. Likewise, resolving two type-2 clauses
results in a type-2 clause and therefore again empty Σ. By Lemma 8, we cannot resolve
type-2 with type-3 clauses.

Therefore the last case is when two type-3 clauses are resolved. Let D2 provide the positive
resolved literal yEk,e. Because yEk,e is the head of D2, every annotation X ∈ Σ(D2) has E ∪
{e/xk} ⊆ X. As ¬yEk,e ∈ D1, the sets of assignments Σ(D1) and Σ(D2) are disjoint. But also

there is no annotation Y ∈ Σ(D1) with E ∪ {e/xk} ⊆ Y because of the presence of ¬yEk,e
in D1 and Invariant 5. Therefore Σ(D) is the union of Σ(D1) and Σ(D2) because in our
adding/removing process we only get rid of instructions from yEk,e and ¬yEk,e which cancel out
anyway, and keep all other instructions.

ut

We can now deduce that all proofs of KBKF(t) in IR-calc are of at least exponential size.

Theorem 12. All proofs of KBKF(t) in IR-calc have length at least 2t.
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Proof. We will show that all IR-calc proofs of y0 from KBKF(t)\{¬y0} are of exponential size.
By Lemma 2 each refutation of KBKF(t) can be transformed into one of these in polynomial
time. Hence each refutation of KBKF(t) must be of exponential size.

Consider now an IR-calc proof π = (C1, C2, . . . , Cm) of y0 from KBKF(t)\{¬y0} and define
si = |

⋃i
j=1Σ(Cj)|. By Lemma 7, the axioms all have empty Σ, hence s1 = 0. By Definition 4,

the set Σ(y0) contains all 2t complete annotations, therefore sm = 2t. Progressing in the proof
from the axioms to y0, we therefore build up the set Σ from an empty to an exponential-size
set. If the clause Ci+1 is an axiom or derived by instantiation, then si = si+1 by Lemmas 7
and 10. For a resolution step, we have si+1 ≤ si + 1 by Lemma 11. Therefore the proof π
contains at least 2t resolution steps. ut

Since IR-calc simulates Q-Res [6], we get as a corollary the hardness of KBKF(t) for Q-Res
as already stated in [23].

Corollary 13. All proofs of KBKF(t) in Q-Res are of at least exponential size.

As the formulas KBKF(t) are easy for long-distance and universal resolution [14,30] we
obtain the following exponential separations.

Corollary 14. IR-calc does not simulate LD-Q-Res, QU-Res, LQU-Res, LQU+-Res, or IRM-
calc.

Proof. The formulas KBKF(t) are known to have polynomial-size proofs in LD-Q-Res [14] and
QU-Res [30], and therefore by the known simulations also in LQU-Res [3,14], LQU+-Res [3,14]
and IRM-calc [6,14]. ut

4 A lower bound for Q-resolution via strategy extraction

In this section we show a new and conceptually very different lower bound for Q-Res. This
lower bound constitutes in fact a new lower bound technique that is widely applicable (cf.
Section 6). We illustrate this technique here with an exponential lower bound for parity
formulas in Q-Res. This provides a separation between Q-Res and ∀Exp+Res.

The lower bound argument rests on strategy extraction, which is a widely used paradigm
in QBF solving and proof systems. We recall that Q-Res admits strategy extraction via a
computationally very restricted model, namely decision lists.

Definition 15 (decision list [28]). A decision list is a finite sequence of pairs (ti, ci) where
ti is a term and ci ∈ {1, 0} is a Boolean constant. Additionally, the last term is the empty
term, semantically equivalent to true.

For an assignment µ, a decision list D = (t1, c1), . . . , (tn, cn) evaluates to ci if i is the
least index such that µ |= ti. We say that (ti, ci) triggers under µ if this condition is satisfied.
Observe that a decision list unequivocally defines a Boolean function since tn = 1.

Winning strategies in form of decision lists can now be efficiently extracted from Q-Res
proofs:

Theorem 16 (Balabanov and Jiang [2]). Given a Q-Res refutation π of QBF φ, there
exists a winning strategy for the universal player for φ such that for each universal variable u
of φ the winning strategy can be represented as a Boolean function fu that is expressible as a
decision list whose size is polynomial in |π|.
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Balabanov and Jiang use a different form than decision lists but it is semantically equiv-
alent. We believe that decision lists are more intuitive for our purposes.

The general idea behind our lower bound technique is as follows. First, we observe that we
can define a family of QBFs φf , such that every winning strategy of the universal player must
compute a unique boolean function f (Lemma 18). If we then know that strategy extraction
is possible by a weak computational model, say AC0, we can carefully choose the boolean
formula φf such that the unique winning strategy f cannot be computed by AC0 circuits. As
the extracted strategy is polynomial in the proof, this implies a lower bound on the proof
size. Thus we immediately turn circuit lower bounds to lower bounds for the proof size.

We will now implement this idea for the parity function Parity(x1, . . . , xn) = x1⊕· · ·⊕xn,
which is the classical example of a function not computable in AC0.

Theorem 17 (Furst, Saxe, Sipser [15]). Parity /∈ AC0. In fact, every non-uniform family
of bounded-depth circuits computing Parity is of exponential size.

We first observe how to construct a QBF that forces a unique winning strategy.

Lemma 18. Consider the QBF ∃x1, . . . , xn∀z. (z ∨ φf ) ∧ (¬z ∨ ¬φf ), where φf is a proposi-
tional formula depending only on the variables x1, . . . , xn. Let f : 2n → {0, 1} be a Boolean
function that returns 1 iff φf evaluates to true. Then there is a unique strategy for the uni-
versal player for z, which is z ← f .

Proof. The strategy for z may only depend on the variables x1, . . . , xn and it must be so that
the matrix evaluates to false under the given assignment µ to the xi variables. By inspecting
the matrix, z must be set to 0 whenever φf evaluates to 0 and the other way around. ut

We will now use this idea specifically for the parity function.

Parity formulas. Consider the QBF Φ = ∃X∀z∃T. (F+ ∧ F−) where F+ is a CNF encoding
of (z ∨ Parity(X)) and F− encodes (¬z ∨ ¬Parity(X)). Both F+ and F− use additional
variables in T . More precisely, for N > 1 define QParityN as follows. Let xor(o1, o2, o) be
the set of clauses

{¬o1 ∨ ¬o2 ∨ ¬o, o1 ∨ o2 ∨ ¬o, ¬o1 ∨ o2 ∨ o, o1 ∨ ¬o2 ∨ o},

which defines o to be equal to o1 ⊕ o2. Define QParityN as

∃x1, . . . , xN ∀z ∃t2, . . . , tN . xor(x1, x2, t2) ∪
N⋃
i=3

xor(ti−1, xi, ti) ∪ {z ∨ tN ,¬z ∨ ¬tN}.

Note that since we want to encode parity as a CNF, i.e. a bounded-depth formula, and
Parity /∈ AC0, we need to use further existential variables (recall that existential AC0 char-
acterises all of NP). Choosing existential variables ti to encode the prefix sums x1 ⊕ · · · ⊕ xi
of the parity x1 ⊕ · · · ⊕ xN provides the canonical CNF formulation of parity.

To use the lower bound of Theorem 17 we need to verify that Q-Res allows strategy
extraction in AC0. This holds as every decision list can be turned into a bounded-depth
circuit.

Lemma 19. A function fD that can be represented as a decision list D of polynomial size is
in AC0.
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Proof. Let S = {i | (ti, 1) ∈ D} be the indices of all pairs inD with 1 as the second component.
Observe that fD evaluates to 1 under µ iff one of the ti with i ∈ S triggers under µ. For each
ti with i ∈ S construct a function fi = ti ∧

∧i−1
l=1 ¬tl. Construct a circuit for the function

fS =
∨
i∈S fi. The function fS is equal to fD and can be computed in AC0 as all ti are just

terms. ut

We can now put everything together and turn the circuit lower bound of Theorem 17 into
a lower bound for proof size in Q-Res.

Theorem 20. Any Q-Res refutation of QParityN is of exponential size in N .

Proof. By Lemma 18 there is a unique strategy for the variable z in QParityN , which is the
Parity function on N variables. From Theorem 16, there is a polynomial-time algorithm for
constructing a decision list DN from any Q-Res refutation of QParityN . Such decision list
can be converted in polynomial time into a circuit with bounded depth by Lemma 19. Hence,
the decision list must be of exponential size in N due to Theorem 17. ut

In contrast to this lower bound, the parity formulas are easy in ∀Exp+Res.

Lemma 21. The formulas QParityN have polynomial-size ∀Exp+Res refutations.

Proof (sketch). Expand z in both polarities, which generates the clauses xor(x1, x2, t
0/z
2 ) ∪⋃N

i=3 xor(t
0/z
i−1, xi, t

0/z
i ) ∪ {t0/zN } and xor(x1, x2, t

1/z
2 ) ∪

⋃N
i=3 xor(t

1/z
i−1, xi, t

1/z
i ) ∪ {¬t1/zN }.

Inductively, for i = 2, . . . , N derive clauses representing t
0/z
i = t

1/z
i . This lets us derive a

contradiction using the clauses t
0/z
N and ¬t1/zN . ut

Theorem 20 together with Lemma 21 immediately give the following separations.

Theorem 22. Q-Res does not simulate ∀Exp+Res, IR-calc, IRM-calc.

This also has consequences for the complexity of strategy extraction in ∀Exp+Res.

Corollary 23. Winning strategies for ∀Exp+Res cannot be computed in AC0. This even holds
when the system ∀Exp+Res is restricted to formulas with constant quantifier complexity.

Proof. Consider again the family of formulas QParityN . As these formulas have polynomial-
size ∀Exp+Res refutations by Lemma 21, we cannot extract strategies in AC0 as these would
compute parity. ut

5 Extending the lower bound to long-distance and universal resolution

We now aim to extend the lower bound from the previous section to stronger QBF proof sys-
tems using long-distance resolution and resolution on universal variables. For this we cannot
directly use the strategy extraction method from the last section. However, we will slightly
modify the parity formulas and then reduce the hardness of the modified formulas in the
stronger systems to the hardness of QParity in Q-Res. As the modified formulas remain
easy for ∀Exp+Res, these lower bounds imply lots of new separations between the proof sys-
tems involved.
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5.1 A lower bound for parity in long-distance resolution

We start by extending the lower bound to LD-Q-Res, which will provide a separation of LD-Q-
Res and ∀Exp+Res. For this we consider a variant of the parity formulas from the last section.
Let xorl(o1, o2, o, y) be the set of clauses

{y ∨ ¬o1 ∨ ¬o2 ∨ ¬o, y ∨ o1 ∨ o2 ∨ ¬o, y ∨ ¬o1 ∨ o2 ∨ o, y ∨ o1 ∨ ¬o2 ∨ o}

(xorl defines o to be equal to o1 ⊕ o2 if y = 0). Define LQParityN as

∃x1, . . . , xN∀z∃t2, . . . , tN .

xorl(x1, x2, t2, z) ∪
N⋃
i=3

xorl(ti−1, xi, ti, z)

∪ xorl(x1, x2, t2,¬z) ∪
N⋃
i=3

xorl(ti−1, xi, ti,¬z)

∪ {z ∨ tN ,¬z ∨ ¬tN}.

It is easy to verify that the same arguments as for QParity in Section 4 also apply to
LQParity, yielding:

Proposition 24. The formulas LQParityN have polynomial-size ∀Exp+Res refutations, but
require exponential-size Q-Res refutations.

We now want to show that LQParity is hard for LD-Q-Res by arguing that long-distance
steps do not help to refute these formulas. In the next two lemmas we will show that this
actually applies to all QBFs Φ meeting the following condition.

Definition 25. We say that z is completely blocked in a QBF Φ, if all clauses of Φ contain
the universal variable z and some existential literal l such that lv(z) < lv(l).

Lemma 26. Let Φ be a QBF and z be completely blocked in Φ. Let further C be a clause
derived from Φ by LD-Q-Res. If C contains some existential literal l such that lv(z) < lv(l),
then z ∈ C or ¬z ∈ C, or z∗ ∈ C.

Proof. We prove the lemma by induction on derivation depth. The hypothesis is established
by the clauses in the matrix of Φ due to the condition that z must be in all matrix clauses
and also that all these clauses contain some existential literal that blocks z.

The hypothesis is preserved by ∀-reduction because a literal over z cannot be ∀-reduced
if the clause contains an existential literal l with lv(z) < lv(l).

Consider now two clauses C1 = D1 ∨ x and C2 = D2 ∨ ¬x resolved into the clause C3. If
C3 contains some literal l such that lv(z) < lv(l), then one of C1, C2 must contain l and from
induction hypothesis it must also contain the variable z, which then appears in C3. ut

Lemma 27. Let Φ be a QBF such that z is completely blocked in Φ and let π be a refutation
of Φ such that the variable z is ∀-reduced as early as possible. Then the derivation of the
empty clause in π does not contain z∗ in any of its clauses.
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Proof. Assume that we have a clause C in π that contains z∗. We will argue that C is not
necessary to derive the empty clause ⊥, i.e., there is no path in π from C to ⊥. Since z∗

does not appear in any of the matrix clauses, there must be a resolution step where it is
introduced. Consider any such two clauses C1 = D1 ∨ x ∨ z and C2 = D2 ∨ ¬x ∨ ¬z resolved
into C = D3 ∨ z∗. From the assumption that ∀-reductions are carried out as soon as possible,
in both clauses C1 and C2 there must be some literals that block z and ¬z, respectively.
From the conditions on LD-Q-Res, x or ¬x cannot be the blocking literal (it must be that
lv(x) < lv(z) upon merging). This means that C contains at least one literal b that blocks z∗.

Now we argue that b cannot be resolved away. For contradiction assume that there is a
resolution step of some C ′ and D on b where there is a path from C to C ′. Moreover, let that
be the first resolution step on b, i.e., b appears in all clauses on the path between C and C ′.
From Lemma 26, the clause D must contain a literal on the variable z. But this contradicts
the conditions of LD-Q-Res because resolution steps are not permitted on literals b with
lv(z) < lv(b) if one of the antecedents contains a merged literal z∗ and the other contains
some literal on z. This means that C does not participate in the derivation of the empty
clause ⊥. ut

This enables us to prove the hardness of LQParity in LD-Q-Res.

Theorem 28. Any refutation of LQParityN in LD-Q-Res is exponential in N .

Proof. Any LD-Q-Res refutation π can be in polynomial time translated into a refutation π′

such that ∀-reductions are carried out as soon as possible (such a refutation has clauses that
are equal to the clauses of π or some universal literals are missing). From Lemma 27, the
derivation of ⊥ in π′ contains no occurrences of the merged literal z∗, hence any such clauses
can be removed from the refutation. Therefore π′ is in fact also a Q-Res refutation. Hence, π
must be exponential in N due to Proposition 24. ut

As an immediate consequence we obtain:

Theorem 29. LD-Q-Res does not simulate ∀Exp+Res, IR-calc, IRM-calc.

5.2 A lower bound for parity in universal resolution

Our next goal is to extend the lower bound for the parity formulas even further to resolution
systems that can resolve on universal variables. To do this we modify again the formulas,
using a similar technique as in [3]. The trick is essentially to double the universal literals so
they form tautological clauses when resolved. This way resolution on universal variables does
not give any advantage.

Definition 30. Let xoru(o1, o2, o, l1, l2) be the set of clauses {l1∨ l2∨¬o1∨¬o2∨¬o, l1∨ l2∨
o1 ∨ o2 ∨ ¬o, l1 ∨ l2 ∨ ¬o1 ∨ o2 ∨ o, l1 ∨ l2 ∨ o1 ∨ ¬o2 ∨ o}. Define QUParityN as

∃x1, . . . , xN∀z1, z2∃t2, . . . , tN .

xoru(x1, x2, t2, z1, z2) ∪
N⋃
i=3

xoru(ti−1, xi, ti, z1, z2)

∪ xoru(x1, x2, t2,¬z1,¬z2) ∪
N⋃
i=3

xoru(ti−1, xi, ti,¬z1,¬z2)

∪ {z1 ∨ z2 ∨ tN ,¬z1 ∨ ¬z2 ∨ ¬tN}
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It is clear that these formulae are false as the universal player should play both z1 and z2

as they would z in QParity. We will now assume that in an LQU+-Res refutation we ∀-reduce
immediately. It is easy to verify that this does not increase proof size (cf. also Proposition 1
in [3]). For QUParity we now show an analogous result to Lemma 26.

Lemma 31. Let C be a clause in an LQU+-Res refutation of QUParityN where ∀-reduction
steps are performed as soon as possible. If C contains some existential literal l such that
lv(z2) < lv(l), then either z1, z2 ∈ C, or ¬z1,¬z2 ∈ C, or z∗2 ∈ C.

Proof. The proof is the same as for Lemma 26, except for the possibility of universal resolution
steps. As ∀-reductions are required to happen immediately, in our induction hypothesis we
know that a z1 literal can only occur together with the corresponding z2 literal. Therefore
resolving on z1 removes this variable and merges the complementary z2 literals; hence we get
the z∗2 literal.

The merged literals cannot be pivots. Neither can z2. This holds because we know by
induction hypothesis that when z2 appears unmerged, then also z1 appears unmerged with
the same polarities. Hence resolving with z2 as the pivot would merge z1, which is illegal due
to the index restriction. ut

We can now argue that neither long-distance nor universal resolution steps help to refute
QUParity.

Lemma 32. Any LQU+-Res refutation of QUParityN does not contain any clauses with z∗1
or z∗2 or any application of resolution on universal pivots.

Proof. We first argue for z∗2 . Let z∗2 ∈ C. As we assume that ∀-reductions are performed
immediately, the literal z∗2 is blocked by an existential literal l when z∗2 is created in C by a
long-distance resolution step. Then l cannot be removed from C by resolution as any clause
with ¬l in it contains a literal over z2 by Lemma 31. Also z∗2 cannot be removed via universal
resolution. So the empty clause can never be derived from any clause containing z∗2 .

Let us now argue for z∗1 and assume z∗1 ∈ C. If z∗1 is introduced into C by resolving clauses
D1 and D2, the literals z1 and ¬z1 in D1 and D2, respectively, must be blocked by existential
literals. Therefore by Lemma 31, the clauses D1 and D2 also contain z2 and ¬z2, respectively.
Hence also z∗2 is introduced into C and we get back to the previous case.

Finally, universal resolution steps cannot be performed when deriving the empty clause.
For universal resolution on z1, using again Lemma 31 together with the assumption of per-
forming ∀-reductions as early as possible leads to the introduction of z∗2 , and we again get
back to the case above.

No resolution on z2 is possible as from Lemma 31 it would cause both literals of z1 to be
merged, which is illegal due to the index restriction in long-distance resolution over universal
variables. ut

This immediately implies the hardness of QUParity for LQU+-Res because by the pre-
vious lemma any LQU+-Res refutation of QUParityN is a Q-Res refutation, which by The-
orem 20 is exponential in size.

Theorem 33. QUParityN require exponential-size refutations in LQU+-Res.

As QUParityN still remains easy for ∀Exp+Res in a proof similar to Lemma 21 we get
the following separations.

Theorem 34. QU-Res, LQU-Res, LQU+-Res do not simulate ∀Exp+Res, IR-calc, IRM-calc.
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6 Strategy extraction as a general lower bound technique

The results of Section 4 can be vastly generalised. We say that a QBF proof system P has
strategy extraction in complexity class C if from each proof π of a QBF ϕ we can compute a
winning strategy of the universal player for ϕ from π in C.

Let L be a language in Σp
k/poly for some k ≥ 0. Let L = {x ∈ Σ? | ∃y1∀y2 . . . Qyk. A(x, y)},

where A is a predicate computable in P/poly. We can thus compute A by a sequence of
polynomial-size circuits An. The computation of each such circuit An can be described by
a CNF Cn(x̄, ȳ, w̄), where x̄ are the propositional variables associated with the input x,
ȳ1, . . . , ȳk are the propositional variables for the witnesses y1, . . . , yk, and w̄ are auxiliary
propositional variables describing the gates of the circuit An.

We now define a QBF

ΦL,n(x̄, ȳ1, . . . , ȳk, z, w̄) = ∃x̄∀z∃ȳ1∀ȳ2 . . . Qȳk∃w̄. (z ↔ Cn(x̄, ȳ1, . . . , ȳk, w̄)).

Clearly, this is a false QBF as it expresses that x is both in and outside L. Moreover, from
the construction of the formula it is clear that the only winning strategy for the universal
player is to play z = 1 − χL(x), where χL is the characteristic function of L, and to supply
arbitrary values for the remaining universal variables ȳ2 etc. Therefore each winning strategy
for the universal player for ΦL will have to compute the characteristic function of L. This
immediately yields conditional lower bounds for proof systems with strategy extraction:

Theorem 35. Let P be QBF proof system with strategy extraction in P/poly. Then P is not
polynomially bounded, unless PH ⊆ P/poly.

Proof. For arbitrary k ≥ 1 consider the satisfiability problem SATk, which asks whether
a given QBF (possibly with free variables) with k quantifier blocks and starting with an
existential block of quantifiers is satisfiable. Note that SATk is the canonical Σp

k-complete
problem. Choose L = SATk and consider the formulas ΦSATk,n. Assume that ΦSATk,n have
polynomial-size proofs in P . These proofs might be non-uniform, but we can compute them
in P/poly. As P also has strategy extraction in P/poly we obtain SATk ∈ P/poly. If this holds
for all k ≥ 1 we get PH ⊆ P/poly. ut

Note that the assumption PH 6⊆ P/poly is considered very weak. In fact, even NP ∩
coNP ⊆ P/poly is considered unlikely as factoring is in NP ∩ coNP. Also by the Karp-Lipton
theorem [21], NP ⊆ P/poly implies that the polynomial hierarchy collapses to the second level,
and there are even stronger Karp-Lipton collapse consequences known (cf. [11,7]).

As one application of Theorem 35 we mention our calculus IRM-calc [6], which has strategy
extraction in P/poly.

Corollary 36. IRM-calc is not polynomially bounded unless PH ⊆ P/poly.

If the proof system allows for strategy extraction via weaker models, then we can improve
the conditional lower bounds to unconditional lower bounds, possibly even exponential. We
exemplify this paradigm in our next results.

Theorem 37. Let P be a QBF proof system.

1. Let P have strategy extraction in a complexity class C such that the non-uniform version of
C is strictly weaker than NP/poly (i.e. NP/poly\C/poly 6= ∅). Then P is not polynomially
bounded.
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2. If P has strategy extraction in AC0, then P has exponential lower bounds to the size of
proofs.

Proof. For item 1 let P be have strategy extraction in C and L ∈ NP/poly \ C/poly. Assume
towards a contradiction that the formulas ΦL,n have polynomial-size P -proofs. These proofs
might be non-uniform. However, as strategies can be extracted in C, these proofs imply
L ∈ C/poly, contradicting our assumption.

For item 2 we can use the formulas ΦParity,n (or directly QParityn). If P admitted
subexponential-size P -proofs for these formulas (even non-uniform), these would translate
into subexponential-size bounded-depth circuits for Parity, contradicting Theorem 17. ut

Our previous Theorem 20 is an instance of item 2 of Theorem 37. In contrast, we can show
that the method of strategy extraction is not effective for ∀Exp+Res (and therefore neither
for IR-calc nor IRM-calc), because all formulas that are potentially hard via the strategy
extraction method are easy for ∀Exp+Res, similarly as in Lemma 21.

Proposition 38. For every language L ∈ P/poly the formulas ΦL,n have polynomial-size
∀Exp+Res refutations.

Proof. For L ∈ P/poly the formula ΦL,n has the form

ΦL,n(x̄, ȳ, z, w̄) = ∃x̄∀z∃w̄. (z ↔ Cn(x̄, w̄))

with the single universal variable z. In ∀Exp+Res we expand z in both polarities, obtaining
two copies of the matrix clauses annotated with 0/z and 1/z, respectively. Both of these
copies describe the computation of the circuit Cn. Let wi be the variable from w̄ representing
the output at gate i of the circuit Cn. By induction on i we derive clauses representing

w
0/z
i ↔ w

1/z
i in polynomial-size proofs. This finally gives a contradiction with the clauses

w
1/z
n and ¬w0/z

n , stemming from instantiating the axiom z ↔ wn. ut

We remark that the same method of constructing short ∀Exp+Res proofs does not work
once we have further universal or existential variables in the formulas, i.e. if L is a language
from a level Σp

i or Πp
i with i ≥ 1.

7 Conclusion

In this paper we have shown new lower bounds for Q-Res, IR-calc, LD-Q-Res and LQU+-Res,
and thereby settled the relative complexity of the main resolution-based QBF calculi. This
reveals an almost complete picture of the simulation order of these proof systems (cf. Figure 1).
Most importantly, our results show striking separations between all proof systems modelling
CDCL-based QBF solving vs. proof systems modelling expansion-based solving. This provides
theoretical evidence that these two paradigms for QBF-solving are indeed complementary and
should enhance the power of the solvers when carefully used in conjunction.

Two specific questions that remain open are to show explicit lower bounds for natural
QBF formulas for IRM-calc and to fully explore the relationship of this system to universal
resolution. With respect to lower bounds for IRM-calc we remark that it is easy to transfer
classical resolution lower bounds to this system (e.g., use the existentially closed version of
the pigeonhole principle) and thereby improve Corollary 36 to an unconditional lower bound.
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However, it would be interesting to find meaningful classes of QBFs that are hard for IRM-
calc. Regarding the relationship to universal resolution we leave open whether IRM-calc can
simulate LQU+-Res (but conjecture incomparability of the systems).

A more general and challenging open problem is to determine the extent of the applicability
of our new lower bound method via strategy extraction. Here we have shown that this method
is very effective for ∃∀∃-formulas in Q-Res, but fails for exactly these formulas in expansion-
based systems as ∀Exp+Res and stronger. Is it possibly to use the technique for different types
of QBFs even for unconditional lower bounds for stronger QBF proof systems?
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