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Abstract. We investigate the possible structural changes one can perform on a game
graph without destroying the winning regions of the players playing a parity game on it.
More precisely, given a game graph (G, p) for which we can efficiently compute winning
regions, can we remove or add a vertex or edge or change a single priority and maintain
at least part of the winning region? Also, what about restricted classes of graphs, such as
planar, k-connected and the like?
Unfortunately we find that for any such class there are simple examples where structural
alterations make computing winning regions infeasible (assuming that ParityGames 6∈ P).
That means the class of efficiently solvable parity games, even on restricted classes of
graphs, is not closed under even the simplest structural transformations.

1 Introduction

Parity Games have been thoroughly investigated for several decades, yet the main ques-
tion, whether computing winning regions is feasible (i.e. doable in polynomial time),
remains almost untouched. Interest in these games, on the other hand, is steadily in-
creasing as many applications are known. The most prominent probably being that the
model checking problem for the modal µ-calculus and the word and emptiness problem
for alternating tree automata can be reduced to deciding winners in parity games (see
[4]). For a thorough introduction see [2].

Since all but the very simplest of graph classes have not been shown to be feasible, we
are interested in general closure properties of feasible classes, i.e. what transformations
can we perform while maintaining feasibility.

2 Preliminaries

A Parity Game is a two player game, played on a directed (finite) graph G = (V1∪V2, E)
equipped with a priority function p : V1∪V2 −→ N. We call the pair (G, p) a game graph
and will usually omit mentioning p for the sake of readability. The disjoint vertex sets V1
and V2 belong to Player 1 and Player 2, respectively. At the start of the game a token is
placed on a specified vertex vs and then the Players take terms to move the token along
the edges of G. At any step of the game, the player on whose vertex the token resides,
chooses an adjacent vertex and moves the token there. A play is an infinite path on G
played according to Player 1’s and Player 2’s choices. The following conventions can be
made on the game graph

– The game graph contains no loops or sinks (vertices with out degree 0).
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– The vertices belonging to Player 1 have odd, the vertices belonging to Player 2 even
priorities.

A play is winning for Player 1, if the vertex with the highest priority that appears
an infinite number of times is odd. Otherwise it is winning for Player 2. A strategy for
Player i is a function σi mapping initial segments of plays which end in Vi, to V3−i. A
strategy σi for Player i is winning iff every play, where Player i moves according to σi,
is winning for him.

Fact 1 Parity Games are determined. That is, for any given game graph (G, p) and
starting vertex vs, either Player 1 or Player 2 has a winning strategy.

A strategy σi is called memoryless (or positional) if its function value only depends on
the last vertex of the play, i.e. if there exists a function σ′i : Vi −→ V3−i such that

σi(v0, v1, . . . , vk) = σ′i(vk),

for all vk ∈ Vi.

Fact 2 Parity Games are positionally determined. That is, for any given game graph
(G, p) and starting vertex vs, either Player 1 or Player 2 has a memoryless winning
strategy.

Thus, we can divide the game graph into a region, from which Player 1 has a winning
strategy and one, from which Player 2 has one. We call these regions winning regions
and denote them by Wini(G, p). We denote the algorithmic problem to decide if vs ∈
Win1(G, p), given a game graph (G, p) and a starting vertex vs as input, as ParityGames.

Fact 3 ParityGames ∈ NP ∩ coNP.

In [3], Jurdzinski improves this to ParityGames ∈ UP∩coUP. However, since then little
progress was made.

3 Changing the Structure of the Underlying Graph

In this paper we are interested in the impact of structural changes to game graphs on
the feasibility of determining winning regions in Parity Games. That is, what changes in
the structure of a game graph is possible without altering the complexity of determining
the winning regions of the associated parity game?

3.1 Removing a Vertex

Assume we have a game graph (G, p) and wish to remove a single vertex. How will the
complexity change if we do so?

Observation 1 Given a game graph (G, p), there is a game graph (G′, p′), such that
there is a trivial winning strategy in the game associated with (G′, p′) and G is an induced
subgraph of G′ resulting from the deletion of two vertices. Moreover the deletion of a
single vertex leaves a graph which has the same winning strategies on (G, p) as in the
game associated with (G, p).



Proof. We will construct (G′, p′) as follows. Let v be a new vertex of maximum priority
and v′ a new vertex of maximal priority +1. Without loss of generality, we assume that
v is a 1-vertex. We add edges (x, v) for every 2-vertex x, an edge (v, v′) and an edge
(v′, y) for any 1-vertex y (by construction v′ is a 2-vertex).

Now, the trivial strategy for Player 2 is to play to v. This is a winning strategy for
him. However, deletion of v yields a graph where the strategy has to be computed anew
and is equivalent to the strategies on the game over (G, p).

The previous observation says that deletion of vertices can totally destroy a given
winning strategy, and thus, the class of Parity Games with a polynomial time strategy
are not closed under such structural changes (unless ParityGames ∈ P).

However, the deleted vertex has very high in-degree. The next observation shows that
also removal of a single constant degree vertex can render a global strategy obsolete.

Observation 2 Given a game graph (G, p), there exists a game graph (G′, p′) with
|G′| = 3 · |G| + 2 such that there exists a trivial global winning strategy on (G′, p′)
and the deletion of a single vertex v of in-degree 1 and out-degree 1 leaves a graph for
which winning regions can be computed in PTIME if and only if the same holds for the
game associated with (G, p).

Proof. Given a graph G containing n1 1-vertices, G′ will consist of G together with the
following gadget graph G1

n1
. G1

n1
consists of an inverse binary tree of even height with

n1
2 leafs and a root r (by inverted we mean that an edge (x, y) in the tree is contained

in G1
n1

in its inverted direction (y, x)). From r there leads an additional edge to one of
the leafs and one edge to a new vertex v. The vertex v has only one outgoing edge to a
new cycle C of length 2. The priorities are minimal such that Player 1 wins on the cycle
C and 1 and 2 on the inverted tree (i.e. the cycle through r wins for Player 2). We add
an edge from at most two 1-vertices in G to any leaf in G1

n1
such that each 1 vertex in

G now has an edge to a leaf in G1
n1

.

The following picture shows an arbitrary graph G with 16 1-nodes and the corre-
sponding G1

16:
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Observe that the graph G′ retains many properties of G, as G1
n1

is planar, has con-
stant degree and contains only two cycles. The size is linear in the size of G and we
have only added paths of logarithmic length. If one is not interested in the degree of the
vertices, one can also collapse the whole tree into a cycle of length 2 and retain the other
properties as depicted in the following picture (we will call this gadget G0):
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Obviously, a trivial strategy for Player 1 is to always play into G1
n1

and then go to C.
Removal of v, however, makes this strategy obsolete and as 1 always loses when moving
to G1

n1
− {v}, computing winning regions in G′ − {v} is equivalent to computing them

in G.

This shows that, unless ParityGames ∈ P, the class of Parity Games solvable in P is
not closed under the deletion of vertices, even under rather strong constraints on that
vertex and the underlying graph.

3.2 Removing an Edge

Another natural alteration of the structure of a graph is the removal of an edge. It is a
similar observation as in the removal of a vertex that this is not possible without having
to recompute the Winning Regions.

Observation 3 For every graph G, there exists a graph G′ such that computation of
winning regions in G′ is trivial and if a single edge e is removed, computation of winning
regions in G′ − {e} is equivalent to computation of winning regions in G.

Proof. Given G, we let G′ be the following graph:
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The dotted lines represent an edge from every 0-vertex to v. The trivial strategy is to
move to v and then use e to go to the winning circle. Removal of e makes this strategy
invalid and we have to compute in G from scratch. As before we can use an inverted tree
to get the same result with a linear blowup for graphs with constant degree.

3.3 Adding a Vertex or an Edge

Another natural structural modification of graphs is the addition of vertices. We will see
that the addition of only a single vertex under very strong assumptions suffices to make
a feasible game as infeasible as possible.

The case we will consider is the easiest perceivable: adding a vertex v with edges
coming from G′ and edges going to G′′, where there is no path between them apart from
the ones going through v. The following picture depicts the situation:

v
G G′′

Observation 4 Let (G, p), (G′′, p′′) be a pair of (not connected) game graphs. Then there
is a game graph (G′, p′) containing (G, p), such that there is a trivial winning strategy in
the game over (G′, p′), but adding a single vertex v as depicted above makes it at least as
hard to compute winning strategies for the new graph G′ ∪ {v} ∪G′′ as it was in (G, p).

Proof. Wlog we may assume that Player 2 has a nonempty winning region in G′′ and G
contain n1 1-vertices. We let G′ := G ∪ G1

n1
as above. The new vertex v will have only

edges into the winning region of Player 2 in G′′ and one edge coming from the 2-vertex
in the cycle C:
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As before, adding v therefore destroys Player 1’s strategy in G′ to always play into
G1

n1
as it makes any such play an immediate loss for 1.

By adding an edge e instead of a vertex v this also immediately yields the same
observation for the case of adding edges:



Observation 5 Let G,G′′ be a pair of (not connected) game graphs. Then there is a
directed graph G′ containing G, such that there is a trivial winning strategy in G′, but
adding a single edge e from G′ to G′′ makes it at least as hard to compute winning
strategies for the new graph G′ ∪ {e} ∪G′′ as it was in G.

Of course the statement also holds true in the more more general setting of adding
vertices or edges into graphs that do not have two disjoint components. We will construct
a general gadget for that situation later.

3.4 Changing a Priority

Using the same gadget Gi
ni

as above we can directly see that changing a single priority
can have a similar effect.

Observation 6 Given a game graph G, there exists a game graph G′ with |G′| = 3·|G|+2
such that there exists a trivial global winning strategy on G′ and changing a single priority
leaves a graph for which winning regions can be computed in PTIME if and only if the
same holds for the game over G.

Proof. Given a graph G, we add the graph G1
n1

as before, getting a graph G′ with a
trivial strategy for Player 1. We can change a single priority in the cycle C to make it
a losing cycle for Player 1 and therefore render the whole gadget useless for him. So his
strategy on G′ � G is as complicated to compute as it was in G.

4 Restricted Graph Classes

As we have seen in the previous section, in general it is not possible to alter the structure
of the game graph even locally, without possibly losing all of the feasibility of the asso-
ciated parity game. Moreover, we have seen that the gadgets presented above work for
some restricted classes, like graphs of bounded degree or tree width. But what happens
for other, natural classes of graphs?

4.1 Graphs with high Connectivity

An important point in constructing the gadgets was their low connectivity. So what can
we say about k-connected graphs? Or even graphs whose connectivity depends on the
number of vertices, like in the case of the random graph?

We can modify Gi
ni

slightly to a graph we will call Gi,1−con
ni , so that the whole

digraph G′ = G ∪ Gi,1−con
ni retains the property that between any two vertices a path

exists (assuming that G had this property). The following picture shows an arbitrary
graph G with 16 1-nodes and the corresponding G1,1−con

16 :
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C

> 4

The only assumption we have to make is that G contains one vertex with priority at
least 5 for i = 1 or 4 for i = 2.

Can we show that we can get a similar result as above by removing k vertices or k
edges for k connected graphs? If so, is it maybe save to remove k − 1 many? To make
the following more readable, we will consider only gadgets built to change the
strategy for Player 1. That is, all gadgets we look at will be connected to
1-vertices from the original graph. The case for Player 2 is verbatim.

To investigate this we start with the simple gadget G0 depicted earlier:
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Of course we can turn this easily into a gadget G1 for the 1-connected case:

3

4 r

2

v

2

3

G
> 4

Now for the 2-connected case we can modify the above gadget as follows to retain a new
gadget G2:
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As above, we could also build a gadget with a constant degree, but would definitely lose
the planarity (which we might have lost in the 2-connected case anyways), because we
would have two identical inverted trees T1, T2 where we would connect the kth layer of
any such tree with the k+ 1th layer of the other one. I.e. if there is an edge (a1i,j , a

1
i′,j+1)

in T1, then we would also have to add the edge (a1i,j , a
2
i′,j+1) from T1 to T2.

Removing the vertex v2 would make the gadget useless as Player 2 could force a cycle
between r1 and r2. Removing v1 or v3 would render the upper respectively the lower half
of the gadget useless.

We can generalise the above gadget G2 as follows. We let Gk be two copies of the
complete bipartite graph Kk,k on k 1-vertices and k 2-vertices. The priorities in the
first copy are 4 and 3, the ones in the second 2 and 3. Each 1-vertex in the first copy
is connected in a 1-1 fashion with a 2-vertex in the second copy. The following picture
depicts Gk (all edges are both ways):
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Observation 7 Let G be any k-connected graph, then there exists a k-connected graph
G′ such that there is a trivial strategy on G′ and removing a single vertex v makes the
strategy in G′ as hard to compute as in G.

Proof. Let G′ := G ∪ Gk, where k distinct 1-vertices g1, . . . , gk (with priority at least
5) from G are connected to k distinct 2-vertices r1, . . . .rk in the first copy of Kk,k



of Gk. Then removing any 2-vertex vi in the second copy of Kk,k in Gk means that
the associated 1-vertex in the first vertex cannot be used to play into the second copy
anymore, so Player 2 can keep the game in the first copy, where he has the highest
priority. So, Player 1 will never play into the gadget and his strategy is to be computed
from scratch and coincides with the one on G.

As mentioned before we can also construct the gadget using k many identical inverted
trees to get a gadget that is k-connected and of constant degree k + 3. More precisely
we take k many identical inverted trees T1, . . . , Tk and add to each inner inner vertex
k−1 outgoing edges in the following fashion. Let ai,h,j denote the j-th vertex in the h-th
layer of Ti and let (ai,h,j , ai,h+1,j′) ∈ E(Ti), then we add the edge (ai,h,j , ai′,h+1,j′) for
any i′ ≤ k. Moreover, in each inverted tree Ti we let an edge go from the root directly
to the first leaf ai,1,1. We fix an even and an odd priority p1 < p2 and give alternating
priorities to each layer, starting with p2 for the leafs. We call this gadget with k-many
inverted trees, ` leafs per tree and alternating priorities p1 < p2, Tk

`,p1,p2
:

p2
p2

p1

r1

p1

rk

Observe that the k-connectivity is established through the adjoined k-connected
graph G. Also, we have to require that the lowest priority is not used in the graph
G (can always be achieved by renumbering).

Observation 8 Let G be any k-connected graph with degree at most κ, then there exists
a k-connected graph G′ of degree at most max{k+3, κ} such that there is a trivial strategy
on G′ and removing at most k vertices v1, . . . , vk the strategy in G′ is as hard to compute
as in G.



Proof. As the proof of Observation 7 using the above family of k many inverted trees
and then going into Gk by connecting the roots to the 2-vertices in the left Kk,k of Gk.

For the removal of edges or alteration of priorities we can essentially use the same
gadget.

Observation 9 Let G be any k-connected graph, then there exists a k-connected graph
G′ such that there is a trivial strategy on G′ and removing a single edge ei the strategy
in G′ is as hard to compute as in G. Moreover altering a single priority pi the strategy
in G′ is as hard to compute as in G.

Proof. We let G′ = G ∪Gk and p′ � G = p+ 4. In addition, we connect each 1-vertex in
G with a 2-vertex in the first copy of Kk,k in Gk. See the following picture:
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To make the gadget a losing move for Player 1, remove any edge ei or change the priorities
of any vi to 4. The strategy for Player 2 is to play to the 1-vertex adjacent to vi or that
has been incident with ei. Obviously this is a winning strategy for Player 2, so Player 1
will not play into the gadget and his strategy has to be recomputed.

The above gadgets Gk are still feasible for f(n)-connected graphs, for any reasonable
choice of f , as they then are of at most quadratic size in the size of the original graph.
So we can conclude that removing edges or vertices, or changing priorities is infeasible
in the above cases.

We can use the same gadget to show that adding a vertex is infeasible.

Observation 10 Let G be any k-connected graph, then there exists a k-connected graph
G′ such that there is a trivial strategy on G′ and adding a single vertex v the strategy in
G′ is as hard to compute as in G.

Proof. Let G′ = G ∪Gk as above. Then adding a vertex v that establishes a path from
a 2-vertex in the second copy of Kk,k to one in the first copy clearly makes the gadget
a winning region for Player 2.



To show hardness of adding edges, we will basically make the same argument as for
adding a vertex. The only problem we run into, is that we have nowhere sensible to
go from a 2-vertex, as we would like to end up in the first Kk,k of Gk, but the only
option would be to go back to a 1-vertex (we restricted edges to connect 1-vertices with
2-vertices and vice versa), which, of course, would be losing. So we have to add another
gadget to Gk (observe that the edges from the first to the second Kk,k are directed only
from left to right!):
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As before we will connect the k-connected graph to the leftmost vertices of this
gadget. This gives Player 1 the strategy to play into the gadget and then force the token
to the rightmost Kk,k, where he wins as he has the highest priority.

Observation 11 Let G be any k-connected graph, then there exists a k-connected graph
G′ such that there is a trivial strategy on G′ and adding a single edge e the strategy in
G′ is as hard to compute as in G.

Proof. As mentioned above, G′ is the graph G together with the above gadget, granting
Player 1 a trivial winning strategy.

However, if we add an edge e to the above gadget as follows, this strategy will be
useless.
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In the modified gadget, Player 2 can force a cycle on the left half of the gadget and
therefore wins for all plays starting there. Thus, Player 1 will not play into the gadget
and the complexity of computing the winning regions on G′ ∪ {e} is the same as that of
G.

4.2 Planar Graphs

Planar graphs are a very natural class of graphs, but pose one immediate problem when
trying to use the argument presented so far. Unless the graph contains no two cycles
which intersect in more than one vertex (i.e. unless the graph only has two faces) we
cannot connect all vertices belonging to one player with one gadget. The obvious solution
is to use several gadgets, at most one for each face, to get similar results as above. This
yields the following.

Observation 12 Given a game graph (G, p), there is a game graph (G′, p′) extending
it, such that there is a trivial strategy on (G′, p′), but removing or adding a linear (in
the number of faces of G) amount of edges or vertices or altering that many priorities
will yield a graph over which winning regions are as hard to compute as on (G, p).

5 Conclusion

As we have observed above, even for classes of graphs with very strong structural restric-
tions, it is not possible to do simple alterations to the graph structure while maintaining
a reasonable part of the strategy.

It would be very interesting to see how this translates to the random graph. As we
need many vertices in our gadgets to have constant degree, these gadgets do not exist
in the graph. Therefore, it would be an interesting step to see the influence randomly
adding or removing a vertex or an edge to the graph or changing a random priority.
Unfortunately, gadgets in the random graph seem to be almost not usable, as all vertices
will be connected to various other parts in the graph, which makes the analysis very
complicated (and the gadget likely not usable).
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