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Abstract

We consider the complexity class ACC1 and related families of arithmetic circuits.
We prove a variety of collapse results, showing several settings in which no loss
of computational power results if fan-in of gates is severely restricted, as well as
presenting a natural class of arithmetic circuits in which no expressive power is lost
by severely restricting the algebraic degree of the circuits. We draw attention to the
strong connections that exist between ACC1 and VP, via connections to the classes
CC1[m] for various m. These results tend to support a conjecture regarding the
computational power of the complexity class VP over finite algebras, and they also
highlight the significance of a class of arithmetic circuits that is in some sense dual
to VP. In particular, these dual-VP classes provide new characterizations of ACC1

and TC1 in terms of circuits of semiunbounded fan-in. As a corollary, we show that
ACCi = CCi for all i ≥ 1.

1 Introduction

Most of the well-studied subclasses of P are defined in terms of Boolean or arithmetic
circuits. The question of the relative power of NC1, LogCFL, and AC1, or of #NC1 and
#LogCFL boils down to the question of how the computational power of a (log-depth,
polynomial-size) circuit model depends on the fan-in of gates in the model.

∗A preliminary version of this work appeared in Proc. Symposium on Mathematical Foundations of
Computer Science (MFCS), Lecture Notes in Computer Science 9235, 2015.
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In this paper we highlight the significance of a class of semiunbounded fan-in arith-
metic circuits that is in some sense dual to the well-studied class VP. Our main contri-
bution is to present several settings where fan-in can be severely restricted for log-depth,
polynomial-size circuits, with no loss of computational power. We also present a natural
class of arithmetic circuits in which no expressive power is lost by severely restricting
the algebraic degree of the circuits.

1.1 Duality

Semiunbounded fan-in circuits play an important role in computational complexity the-
ory. Over the Boolean semiring, logarithmic depth polynomial-size semiunbounded fan-
in circuits (with bounded fan-in AND gates and unbounded fan-in OR gates, with
NOT gates only at the input level) characterize the complexity class LogCFL, also
known as SAC1, which has been the subject of numerous investigations [Ven91, Gál95,
GW96, RA00]. Over Fp, logarithmic depth polynomial-size semiunbounded fan-in cir-
cuits (with bounded fan-in multiplication gates and unbounded fan-in addition gates)
characterize the complexity class VP(Fp), the study of which was initiated by Valiant
[Val79]. VP(Fp) is usually defined as poly-size arithmetic circuits with degree nO(1);
its characterization by logarithmic depth semiunbounded fan-in arithmetic circuits was
shown in [VSBR83, AJMV98]. These classes have received a lot of attention since then
(e.g., [Bür99, Bür00, GW96, KP11]).

Because LogCFL is closed under complement [BCD+89], it can be characterized in
terms of semiunbounded fan-in circuits by restricting either the AND gates or the OR
gates to have bounded fan-in. It is unknown if there is any other algebraic structure for
which a similar phenomenon occurs. In particular, it is not known how the complexity
of functions in VP(Fp) compares to that of the functions in the classes defined by log-
arithmic depth polynomial-size semiunbounded fan-in circuits with bounded fan-in +
gates and unbounded fan-in × gates.

A large part of the motivation for this paper is to understand the computational
power of these semiunbounded fan-in circuit classes, which are in some sense dual to
Valiant’s classes VP(Fp). We use the notation ΛP(Fp) to refer to the class of prob-
lems characterized by logarithmic depth polynomial-size semiunbounded fan-in circuits
with bounded fan-in addition gates and unbounded fan-in multiplication gates. Formal
definitions appear in Section 2. We show that each class ΛP(Fp) corresponds exactly
to a particular subclass of ACC1, and that the union over all p of ΛP(Fp) is exactly
equal to ACC1 (Corollary 1). Our results extend to larger depths as well, yielding char-
acterizations of ACCi for every i in terms of semiunbounded fan-in arithmetic circuits
(Corollary 5).

Note that here (and in several of our other results) we relate Boolean classes (e.g.
ACC1) to arithmetic circuit classes. For this purpose we work with the Boolean part
of classes defined by arithmetic circuits. The VP classes are usually studied as classes
of polynomials, but it is also common to study the Boolean part of VP over a given
semiring R, where (following [BCSS98]), the Boolean part of an arithmetic circuit class
is the class of languages whose characteristic functions are computed by circuits in the
class. Especially over finite fields, there is little to distinguish VP from its Boolean part.
There is a large literature exploring the connections between Boolean and arithmetic
circuit complexity; see [Vol99].
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1.2 Fan-in Reductions

Our results mentioned above relating ACC1 to the semiunbounded fan-in ΛP classes
can be viewed as fan-in reductions. We explore this in more detail, and obtain fan-in
reductions for TC1 as well. In addition to arithmetic circuits, we also consider fan-in
reductions for both ACC1 and TC1 in the Boolean setting, considering their characteri-
zations by circuits with AND and OR gates, along with MODm gates.

1.2.1 Fan-in Reductions in Arithmetic Circuits

First we note that both ACC1 and TC1 are characterized by unbounded fan-in arithmetic
circuits, then we observe that unbounded fan-in is not necessary for these characteriza-
tions.

We show here that ACC1 =
⋃

p #AC1(Fp) (Corollary 3). On the other hand, the
semiunbounded fan-in model, where the + gates have fan-in two, also yields ACC1 (Corol-
lary 1).

The complexity class TC1 is defined by polynomial-size threshold circuits of loga-
rithmic depth. Reif and Tate [RT92] gave an alternative characterization of TC1 in
terms of unbounded fan-in arithmetic circuits of logarithmic depth where the circuits
for inputs of size n operate over the field Fpn , where pn is the n-th prime. (See also the
discussion of Reif and Tate’s work in [BCK+14].) Using standard notation (reviewed
in Section 2), this characterization can be stated as TC1 = #AC1(Fpn). We show that
no computational power is lost (modulo logspace-Turing reductions) by restricting the
fan-in of the + gates in this setting: We show that TC1 = LΛP(Fpn) (Theorem 6).

1.2.2 Fan-in Reductions in Boolean Circuits

The usual definition of ACC1 is in terms of polynomial size logarithmic depth circuits
with unbounded fan-in AND and OR gates, along with MODm gates for different m.
We observe here that TC1 has an analogous characterization: TC1 = AC1[pn] (that
is, AC1 circuits with MODpn gates, Theorem 7). We show for both ACC1 and TC1

that unbounded fan-in is not necessary for the AND and OR gates; they can both be
restricted to constant fan-in. But then, noting that MOD gates can simulate bounded
fan-in AND and OR gates, we get characterizations of both ACC1 (Theorem 10) and
TC1 (Theorem 7) by logarithmic depth polynomial size circuits using only unbounded
fan-in MOD gates. These characterizations also carry over for ACCi and TCi for every
i ≥ 1 (Corollaries 7 and 10). In particular, for all i ≥ 1,ACCi = CCi. (For definitions of
these circuit complexity classes, see Sections 2 and 3.)

1.3 Algebraic Degree

Immerman and Landau conjectured that computing the determinant of integer matrices
is complete for TC1 [IL95]. This would have several consequences, including providing a
characterization of TC1 in terms of VP(Q). Buhrman et al. [BCK+14] have argued that
the Immerman-Landau conjecture is unlikely, in that this would imply that arbitrary
polynomials having degree nO(log n) and polynomial-size arithmetic circuits mod pn could
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be simulated by arithmetic circuits of much lower degree over Q. This raises the ques-
tion: When can high-degree polynomials over one algebra be simulated by low-degree
polynomials over another?

Our degree-reduction theorem (Corollary 8) gives one natural class of polynomials
of degree nO(log n) over one algebra (F2) that can be simulated by polynomials having
much smaller degree. We show that restricting the fan-in of × gates in #AC1(F2)
circuits to be logarithmic results in no loss of expressive power; the restricted class
(whose polynomials have algebraic degree only nO(log log n)) represents the same class of
functions as the unrestricted class (with degree nO(log n)). We believe that this weakens
the arguments against the Immerman-Landau conjecture that were raised in [BCK+14],
and we suspect that there are other such examples, where restricting the fan-in of ×
gates causes no loss of power. We also see no reason why degree nO(log log n) should be
optimal. Lowering the degree to nO(1) would imply #AC1(F2) = AC1[2] = VP(F2). (We
omit “Boolean part” if it causes no confusion.)

1.4 A Conjecture

We conjecture that ACC1 is precisely the class of languages logspace-Turing reducible
to
⋃

m VP(Zm). If the conjecture is true, then ACC1 can be defined using either kind of
semiunbounded fan-in circuits, with bounded fan-in + or bounded fan-in ×.

ACC1 and VP are familiar to many theoreticians. (The complexity class ACC0 has
received a great deal of attention over the years – notably including the nonuniform
lower bound presented in [Wil14] – and the corresponding class of logarithmic-depth
circuits was familiar, even though comparatively little has been written about ACC1.
One example is [MTL+00].) We believe that we are the first to conjecture that these
two classes are very closely related.

2 Preliminaries

We assume that the reader is familiar with Boolean circuit complexity classes such as AC0

and ACC0; a good source for this background material is the excellent text by Vollmer
[Vol99]. The following standard notation is used by Vollmer for circuit complexity
classes, and we follow those conventions here:1

Definition 1. • ACi is the class of languages accepted by logtime-uniform circuit
families of polynomial size and depth O(logi n), consisting of unbounded fan-in
AND, and OR gates, along with NOT gates.

• ACi[m] is defined as ACi, but in addition unbounded fan-in MODm gates are al-
lowed, which output 1 iff the number of input wires carrying a value of 1 is a
multiple of m.

• For any finite set S ⊂ N, ACi[S] is defined analogously to ACi[m], but now the
circuit families are allowed to use MODr gates for any r ∈ S. It is known that, for
any m ∈ N,ACi[m] = ACi[Supp(m)], where – following the notation of [CRnS97]

1We will also refer to the complexity classes CCi[m], which are not discussed in [Vol99]. We defer
the definition of those classes to Section 3, Definition 4.
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– Supp(m) ={p : p is prime and p divides m} [Smo87]. Thus, in particular
ACi[6] = ACi[2, 3] and ACi = ACi[∅]. (When it will not cause confusion, we omit
unnecessary brackets, writing for instance ACi[2, 3] instead of ACi[{2, 3}].)

• ACCi =
⋃

m ACi[m].

• TCi is the class of languages accepted by logtime-uniform circuit families of polyno-
mial size and depth O(logi n), consisting of unbounded fan-in MAJORITY gates,
along with NOT gates.

• SACi is the class of languages accepted by logtime-uniform circuit families of poly-
nomial size and depth O(logi n), consisting of unbounded fan-in OR gates and
bounded fan-in AND gates, along with NOT gates at (some of) the leaves.

Note that the restriction that NOT gates appear only at the leaves in SACi circuits
is essential; if NOT gates were allowed to appear everywhere, then these classes would
coincide with ACi. Similarly, note that we do not bother to define a complexity class
SACi[m], since a MODm gate with a single input wire is equivalent to a NOT gate, and
thus SACi[m] would be the same as ACi[m].

A remark about uniformity: We have chosen to define the classes above in
terms of logtime-uniformity, primarily because we will have occasion to mention the
classes AC0 and TC0, and logtime-uniformity has been widely accepted as the more
appropriate uniformity condition to use when discussing small classes. But it is well-
known that, for circuit classes that contain SAC1, logtime-uniformity coincides with
logspace uniformity (see the discussion beginning at page 123 in [Vol99]), and logspace
uniformity is frequently somewhat easier to work with. Since [Vol99] does not specifically
discuss the equivalence of these uniformity conditions for classes such as AC1[m], we
include a brief discussion here. Consider a logspace-uniform circuit family {Cn} of
AC1[m] circuits, and consider any unbounded fan-in gate g at depth d in Cn, receiving
inputs from gates h1, . . . , hm. (Assume without loss of generality that Cn contains only
OR and MOD gates, using DeMorgan’s Laws, and that Cn is leveled, with gates at
level d receiving inputs from gates at level d− 1.) Cn is equivalent to a logtime-uniform
circuit Dn, where each gate g at level d in Cn is simulated by a gate gd in Dn of the same
type as g. The inputs to gd consist of fan-in two AND gates gd,h for every gate h of Cn.
The inputs to theAND gate gh are (1) the gate hd−1, and (2) a logtime-uniform SAC1

subcircuit checking whether there is a wire from h to g in Cn. It is easy to see that each
gate g at level d takes on the same value as gate gd, and that the entire construction of
Dn is logtime-uniform.

The algebraic complexity classes VP(R) for various algebraic structures R were origi-
nally defined [Val79] in the context of nonuniform circuit complexity, as classes of families
of n-variate polynomials of degree nO(1) that can be represented by polynomial-size arith-
metic circuits over R. (For more on VP, see, e.g. [Bür99, Bür00, GW96, KP11, MP08].)
In this paper, we focus on uniform circuit families, and thus we use the notation VP(R)
to denote the families of polynomials that result when we impose a logspace-uniformity
condition on the circuit families. In the original nonuniform setting, it was shown by
[VSBR83] that the circuits defining polynomials in VP(R) can be assumed to have small
depth. Later [AJMV98] a slightly improved characterization was provided, that works
also in the context of uniform circuit complexity:
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Theorem 1. [AJMV98] For any commutative semiring R, VP(R) coincides with the
class of families of polynomials over R represented by logspace-uniform circuit families
of polynomial size and logarithmic depth with unbounded fan-in + gates, and fan-in two
× gates.

Note that over Fp, many different polynomials yield the same function. For example,
since x3 = x in F3, every function on n variables has a polynomial of degree at most
2n. Very likely there are functions represented by polynomials in VP(F3) of degree,
say, n5, but not by any VP polynomial of degree 2n. On the other hand, there is a
case to be made for focusing on the functions in these classes, rather than focusing on
the polynomials that represent those functions. For instance, if the Immerman-Landau
conjecture is true, and TC1 is reducible to problems in VP(Q), it would suffice for every
function in TC1 = #AC1(Fpn) to have a representation in VP(Q), even though the
polynomials represented by #AC1(Fpn) circuits have large degree, and thus cannot be in
any VP class.

In the literature on VP classes, one standard way to focus on the functions repre-
sented by polynomials in VP is to consider what is called the Boolean Part of VP(R),
which is the set of languages A ⊆ {0, 1}∗ such that, for some sequence of polynomials
(Qn), for x ∈ A we have Q|x|(x) = 1, and for x ∈ {0, 1}∗ such that x /∈ A we have
Q|x|(x) = 0.

When the algebra R is a finite field, considering the Boolean part of VP(R) captures
the relevant complexity aspects, since the computation of any function represented by
a polynomial in VP(R) (with inputs and outputs coming from R) is logspace-Turing
reducible to some language in the Boolean Part of VP(R).

In this paper, we will be concerned exclusively with the “Boolean Part” of various
arithmetic classes. For notational convenience, we will just refer to these classes using
the “VP” notation, rather than constantly repeating the phrase “Boolean Part”.2

Following the standard naming conventions of [Vol99], for any Boolean circuit com-
plexity class C defined in terms of circuits with AND and OR gates, we define the class
#C(R) to be the class of functions represented by arithmetic circuits defined over the
algebra R, where AND is replaced by ×, and OR is replaced by + (and NOT gates at
the leaves are applied to the {0, 1} inputs).3 In particular, we will be concerned with
the following two classes:

Definition 2. Let R be any suitable semiring.4 Then

2An exception is when an arithmetic function is used as an oracle, as in the expressions LVP(Q) and

LVP(Zm). Here, we want the logspace-bounded oracle Turing machine to have access to the full power
of functions from VP(Q) and VP(Zm), respectively, and not merely the zero-one-valued functions.

3The classes #L, #P and #LogCFL also fit into this naming scheme, using established connections
between Turing machines and circuits.

4Our primary focus in this paper is on finite semirings, as well as countable semirings such as Q.
We use the standard binary representation of constants (representing separately the numerator and
denominator of a rational) when constants appear in the description of a circuit. We consider arithmetic
circuits over Q only in the context of arithmetic circuits that have algebraic degree that is bounded by
a polynomial, and thus the length of the binary representation of any number that is computed by the
circuit is itself bounded by a polynomial in the input length. It is not clear to us which definition would
be most useful in describing a class such as #AC1(R), and so for now we consider such semirings to be
“unsuitable”. Similarly, Q would be considered “suitable” for #SAC1, but not for #AC1, because #AC1

circuits have algebraic degree that is too high.
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• #AC1(R) is the class of functions f : {0, 1}∗ → R represented by families of
logspace-uniform circuits of unbounded fan-in + and × gates having depth O(log n)
and polynomial size.

• #SAC1(R) is the class of functions f : {0, 1}∗ → R represented by families of
logspace-uniform circuits of unbounded fan-in + gates and × gates of fan-in two,
having depth O(log n) and polynomial size.

Input variables may be negated. Constants from R are also allowed at the input level.
Where no confusion will result, the notation #C(R) will also be used to refer to the class
of languages whose characteristic functions lie in the given class.

Hence from Theorem 1 we obtain:

Proposition 1. Let p be a prime power. Then VP(Fp) = #SAC1(Fp).

Proof. The inclusion VP(Fp) ⊆ #SAC1(Fp) is immediate from Theorem 1. The #SAC1(Fp)
circuit that is created for a VP(Fp) circuit has no NOT gates. For the converse inclusion,
given a #SAC1(Fp) circuit family, each NOT gate at a leaf, connected to input xi can
be replaced by (xi + (p− 1))2.

2.1 New Definitions: Λ-classes

In this section, we introduce and define classes that are dual to the #SAC1(R) classes
discussed above. Define #SAC1,∗(R) to be the class of functions f : {0, 1}∗ → R
represented by families of logspace-uniform circuits of unbounded fan-in × gates and +
gates of fan-in two, having depth O(log n) and polynomial size. Proposition 1 highlights
the connection between VP and #SAC1; thus we will utilize the convenient notation
ΛP(R) to denote the dual notation, rather than the more cumbersome #SAC1,∗(R).

Of course, the set of formal polynomials represented by ΛP circuits is not contained in
any VP class, because ΛP contains polynomials of degree nO(log n). However, as discussed
in the previous section, we are considering the “Boolean Part” of these classes. More
formally:

Definition 3. Let p be a prime power. ΛP(Fp) is the class of all languages A ⊆ {0, 1}∗
with the property that there is a logspace-uniform (and hence polynomial-size) family of
circuits {Cn : n ∈ N} such that

• The depth of Cn is O(log n).

• Each Cn consists of input gates, + gates, and × gates.

• Each + gate has fan-in two, whereas there is no bound on the fan-in of the ×
gates.

• For each string x of length n, x is in A if and only if Cn(x) evaluates to 1, when
the + and × gates are evaluated over Fp. Furthermore, if x 6∈ A, then Cn(x)
evaluates to 0.
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Another way of relating arithmetic classes (such as VP and ΛP) to complexity classes
of languages would be to consider the languages that are logspace-Turing reducible to
the polynomials in VP(R) or ΛP(R), via a machine M with a polynomial p as an
oracle, which obtains the value of p(x1, . . . , xn) when M writes x1, . . . xn on a query
tape. As a side note, throughout the rest of this work we will be using the identity
x ≡ ((x + (m − 1))2) mod m to perform complementation of Boolean values over Zm,
and as a consequence of having this equation VP = VP and ΛP = ΛP. However,
another key trick we use is (xp−1 ≡ 1) mod p, and when p is not a constant, then this
manipulation is sometimes too expensive to deploy, in the context of VP(Fp).

It is worth mentioning that (the Boolean parts of) both VP(Fp) and ΛP(Fp) are
closed under logspace-Turing reductions, although this is still open for classes over Zm

when m is not prime.

Proposition 2. ΛP(Fp) = LΛP(Fp) and VP(Fp) = LVP(Fp)

Proof. We consider VP first. Note that there are only polynomially-many queries that
a logspace-Turing reduction can pose, on a given input x, since the query that is posed
is determined entirely by the worktape configuration of the oracle Turing machine when
it begins to write the query. These queries can be denoted y1, . . . , ynk for some k. If
A ∈ LVP(Fp), then there is a language B ∈ L such that x ∈ A iff (x, z) ∈ B where
z is the bit string of length nk recording the oracle answers for each query yi. Since
B is in the deterministic class L, it has “unambiguous” SAC1 circuits, meaning that
the corresponding #SAC1 circuits always output 0 or 1. By connecting VP(Fp) circuits
computing the answer to each oracle query yi to the input variables for z, one obtains
VP(Fp) circuits for A.

The argument for ΛP(Fp) is similar, using the fact that B ∈ L ⊆ AC1, along with
the fact (which we prove later in Corollary 2) that AC1 ⊆ ΛP(Fp) for every p.

We mention that VP classes over different fields of the same characteristic define the
same class of languages. This seems to be one way that the VP and ΛP classes differ;
see Corollary 2.

Proposition 3. Let p be a prime, and let k ≥ 1. Then VP(Fp) = VP(Fpk).

Proof. One inclusion follows immediately since Fp is a subfield of Fpk
. For the other

direction, observe that the finite field of size pk is a vector space of dimension k over
the field of size p, and thus can be represented by k × k matrices over Fp, as described
in [Gat93]. (See also [War94].) Thus each + and × gate of a ΛP(Fpk) circuit can be
replaced by subcircuits implementing matrix sum and product over Fp. (Unbounded
fan-in matrix sum corresponds to unbounded fan-in sum of each component. Fan-in two
multiplication is implemented by a depth-two subcircuit, with fan-in two × gates, and
with addition gates of fan-in O(1).) The resulting circuit is a VP(Fp) circuit.

It is also appropriate to use the VP and ΛP notation when referring to the classes
defined by Boolean semiunbounded fan-in circuits with negation gates allowed at the
inputs. With this notation, VP(B2) corresponds to the Boolean class SAC1, and ΛP(B2)
corresponds to the complement of SAC1 (with bounded fan-in OR gates, unbounded
fan-in AND gates and negation gates allowed at the inputs). It has been shown by
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[BCD+89] that SAC1 is closed under complement. Thus we close this section with the
equality that serves as a springboard for investigating the ΛP classes.

Theorem 2. [BCD+89] VP(B2) = ΛP(B2)(= SAC1 = LogCFL).

We do not believe that VP(Fp) = ΛP(Fp) for any prime p; see further related discus-
sion in Section 5.

3 Subclasses of ACC1

In this section, we first give characterizations of the ΛP classes, and then we give char-
acterizations of the VP classes, before comparing the classes to each other.

3.1 The ΛP classes

In this subsection, we present our characterizations of ACC1 in terms of the ΛP(Fpk)
classes.

Theorem 3. For any prime p and any k ≥ 1, ΛP(Fpk) = AC1[Supp(pk − 1)].

(Recall that Supp(m) is defined in Definition 1.)

Proof. (⊆): Consider a ΛP(Fpk) circuit C. We will create a circuit C ′ that has subcircuits
computing the Boolean value [g = a] for each gate g in C and for each a ∈ Fpk . (We
will use the notation “[B]” to refer to the truth-value of predicate B.) If g is the output
gate of C, then the output gate of C ′ is the gate [g = 1]. Since the input gates of C take
on only binary values (by our definition of ΛP(Fpk)), if g is an input gate of C, then the
subcircuit [g = 1] is just g, and the subcircuit for [g = 0] is ¬g. If g is a constant gate,
set to the value a ∈ Fpk , then [g = a] is set to the constant 1, and [g = a′] is set to the
constant 0, for each a′ 6= a.

If g is a + gate of C (of fan-in 2), then any gate [g = a] can be simulated with NC0

circuitry using the O(1) Boolean gates of the form [g′ = a′], where g′ feeds into g in C.
Now consider a × gate g of C, having unbounded fan-in: g =

∏
i hi. The value

[g = 0] is obtained by simply checking if there is some i such that hi = 0.
Now we show how to compute [g = a] for a 6= 0. Let pk − 1 =

∏`
j=1 q

ej

j where
Supp(pk − 1) = {q1, . . . , q`}. Let σ be a generator of the multiplicative group of Fpk .
Then g =

∏
i hi =

∏
i σ

log hi = σ
P

i log hi where “log b” denotes the unique number in
{0, . . . , pk − 1} such that σlog b = b. Hence the value [g = a] is equivalent to [log a ≡∑

i log hi mod (pk − 1)], which in turn is equivalent to the AND of the values [log a ≡∑
i log hi mod (qej

j )].
If ej = 1 then the value [log a ≡

∑
i log hi mod (qj)] is easy to compute with a

MODqj gate, as follows. Using NC0 circuitry, for each i, find the unique b such that
[hi = b] holds (and for simplicity, let us refer to this value as hi). Then, for each i,
compute the string xi = 1log hi0pk−log hi . (Note that the mapping from gates of the
form [hi = b] to xi is computable in logspace-uniform NC0.) Let Xa be the string that
results from concatenating the string 1pk−log a and all of the strings xi. Now observe
that feeding Xa into a MODqj gate computes the value [log a ≡

∑
i log hi mod (qj)].
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Now we show how to compute [log a ≡
∑

i log hi mod (qej

j )] when ej > 1. For any
expression b (such as b = (

∑
i log hi mod (qej

j ))−log a), first observe that [b ≡ 0 mod q
ej

j ]

can be computed by checking if each of b,

(
b
qj

)
,

(
b
q2
j

)
, . . .

(
b

q
ej−1
j

)
is equivalent

to 0 mod qj . (See, e.g. [BT94, Fact 2.2].) Observe also that
(

b
d

)
can be represented

as the number of different AND gates of fan-in d that evaluate to 1, taking inputs from
a string with b ones. Thus all of these conditions can be checked in constant depth with
MODqj gates and bounded fan-in AND gates, by constructing the string Xa (as in the
preceding paragraph), and using a layer of AND gates of fan-in at most q

ej−1
j .

Since C has depth O(log n), and C ′ consists of layers of constant-depth circuitry to
replace each layer of gates in C, this completes the proof of this direction.

(⊇): Given an AC1[Supp(pk − 1)] circuit C, we show how to construct an arithmetic
circuit C ′ that is equivalent to C. Each gate g of C will have an equivalent gate g in C ′.
The input gates of C and of C ′ are exactly the same.

If g is a NOT gate in C, say g = ¬h, then in C ′ we will have g = (h + (p − 1)) ×
(h + (p− 1)).

If g is an AND gate (say, g = ∧ihi), then in C ′ we will have g =
∏

i hi. OR gates
will be handled the same way, using De Morgan’s Laws.

Now consider the case when g is a MODqj gate with inputs hi. Thus g computes
the value [

∑
i hi ≡ 0 mod qj ]. Let σ be a generator of the multiplicative cyclic subgroup

of size qj . First map each hi to the value h′i = 1 + (σ + (p− 1))× hi, and observe that
h′i = σhi for all hi ∈ {0, 1}. Observe that 1 −

∏
i h

′
i = 1 − σ

P
i hi is equal to 0 if

∑
i hi

is a multiple of qj , and is non-zero otherwise. Thus 1 − (1 −
∏

i h
′
i)

pk−1 is equal to the
Boolean value [

∑
i hi ≡ 0 mod qj ].

It is easy to verify that C ′ has logarithmic depth, and uses only bounded fan-in +
gates, as well as unbounded fan-in × gates.

Corollary 1. ACC1 =
⋃

p ΛP(Fp).

Proof. Let A ∈ ACC1. Thus A ∈ AC1[m] for some modulus m.
By Dirichlet’s Theorem, the arithmetic progression m + 1, 2m + 1, . . . contains some

prime p. Thus AC1[m] ⊆ AC1[Supp(p− 1)] = ΛP(Fp).

Note also that several of the ΛP(Fp) classes coincide. This is neither known nor
believed to happen with the VP(Fp) classes.

Corollary 2. • ΛP(F2) = AC1, whereas ΛP(F4) = AC1[3]. Note that this contrasts
with the equality VP(F2) = VP(F4) given by Proposition 3.

• If p is a Fermat prime (that is, p− 1 is a power of 2, such as p ∈ {3, 5, 17, 257,
65,537}), then ΛP(Fp) = AC1[2].

• ΛP(F7) = ΛP(F13) = ΛP(F19).

• More generally, Supp(p− 1) = Supp(q − 1) implies ΛP(Fp) = ΛP(Fq).

Augmenting the ΛP(Fp) classes with unbounded fan-in addition gates increases their
computation power only by adding MODp gates, as the following theorem demonstrates.
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Theorem 4. For each prime p and each k ≥ 1, #AC1(Fpk) = AC1[{p} ∪ Supp(pk − 1)].

Proof. (⊆): Again, we use a gate-by-gate simulation, with subcircuits recording the
value of [g = a] for each gate g and each a ∈ Fpk . Multiplication gates are handled as
in the proof of Theorem 3. Consider now the case of an addition gate g =

∑
i hi.

Since Fpk is a vector space of dimension k over Fp, each element b ∈ Fpk is rep-
resented by a vector ~b = (b1, . . . , bk) ∈ (Fp)k, which we will represent as a bitstring
Y~b

= 1b10p−b1 . . . 1bk0p−bk . Let us call the string 1bj0p−bj the j-th component of Y~b
.

Using NC0 circuitry (as in the proof of Theorem 3), one can use the gates [hi = b]
to compute the string Y ~hi

(as in the proof of Theorem 3). Let Za,j be the string that
is the concatenation of the j-th component of all of the Y ~hi

with the j-th component of
Y ~−a, and feed each Za into a MODp gate. The gate [g = a] is an AND gate, verifying
that, for all j ≤ k, MODp(Za,j) = 1.

(⊇): As in Theorem 3, we carry out a gate-by-gate simulation, whereby each gate g
in a AC1[{p}∪Supp(pk−1)] circuit C is equivalent to a gate (also called g) in a #AC1(Fp)
circuit C ′. We only need to consider the case where g is a MODp gate with Boolean
inputs hi. In this case, note that g = 1 + ((

∑
i hi)pk−1 × (p− 1)).

Corollary 3. ACC1 =
⋃

p ΛP(Fp) =
⋃

p #AC1(Fp) =
⋃

m #AC1(Zm).

Proof. All inclusions are immediate from Theorems 3 and 4, except for #AC1(Zm) ⊆
ACC1. Consider a circuit C for some function in #AC1(Zm). Again, we will build an
ACC1 circuit C ′ with gates of the form [g = a] for each gate g in C and each a ∈ Zm.
Addition is handled as in the proof of Theorem 4. Thus consider a multiplication gate
g =

∏
i hi =

∏
j a

ej

j , where ej = |{i : [hi = aj ]}|. The sequence (a0
j , a

1
j , a

2
j , . . .) (where

the product is interpreted in Zm) is ultimately periodic with a period less than m, and
thus the value of [aej

j = b] can be computed using AC0 circuitry and a MOD gate, using
inputs of the form [hi = aj ] for various values of i. Then [g = a] can be computed in
NC0 using the O(1) gates of the form [aej

j = b].

Corollary 4. For any prime p there is a prime q such that #AC1(Fp) ⊆ ΛP(Fq).

Proof. By Dirichlet’s Theorem, there is a prime q such that q−1 is a multiple of p(p−1).
The claim now follows immediately from Theorems 4 and 3.

We remark that the proofs of Theorems 3 and 4 carry over also for depths logi n for
every i ≥ 0. (Related results for constant-depth unbounded-fan-in circuits can be found
already in [Smo87, AAD00].)

Corollary 5. For any prime p and for every i ≥ 0, #SACi,∗(Fp) = ACi[Supp(p − 1)]
and #ACi(Fp) = ACi[p ∪ Supp(p− 1)]. In particular, ACCi =

⋃
p #SACi,∗(Fp).

3.2 The VP classes

It will be useful to bear in mind that VP(Fp) also has a simple characterization in terms
of Boolean circuits. In order to present this characterization, we present a more general
definition, which will be needed later.
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Definition 4. Let m ∈ N, and let g be any function on N. Define g-ACi[m] to be the
class of languages with logspace-uniform circuits of polynomial size and depth O(logi n),
consisting of unbounded-fan-in MODm gates, along with AND gates of fan-in O(g(n)).
Clearly g-ACi[m] ⊆ ACi[m].

The class CCi is defined to be
⋃

m CCi[m], analogously to ACCi.

When g(n) = O(1), the class g-ACi[m] coincides with the class CCi[m], which was
defined by Straubing [Str94, p. 141] for the special case i = 0, and which has been
studied subsequently in e.g. [HK10, Thé94, HKLL15]. If m > 2, then no AND or OR
gates are needed at all [Str94, Chapter VIII, Exercise 9]. Thus some authors define
CCi[m] in terms of circuits consisting only of MODm gates, but the original definition
is more convenient for our purposes.

Observe that, since a MODm gate can simulate a NOT gate, g-AC1[m] remains the
same if OR gates of fan-in O(g) are also allowed.

Corollary 6. For every prime p, VP(Fp) = CC1[p] ⊆ AC1[p].

Proof. Recall that VP(Fp) = #SAC1(Fp). Thus we need only show how to simulate
bounded fan-in × gates and unbounded fan-in + gates. Bounded fan-in × gates can be
simulated in O(1) depth using AND and OR gates of fan-in two (since the values being
multiplied are of size O(1)). Unbounded fan-in + gates can be simulated using MODp

gates, as in the proof of Theorem 4.
For the converse inclusion, consider a CC1[p] circuit. Since a unary MODp gate is

equivalent to a NOT gate, we can assume that the circuit has only fan-in two AND gates
and unbounded fan-in MODp gates. Thus each Boolean AND gate can be simulated
by a fan-in two multiplication gate, and the MODp gates can be simulated as in the
proof of Theorem 4.

We remark that the same proof shows that, for any m ∈ N, VP(Zm) ⊆ CC1[m].
However, the converse inclusion is not known, unless m is prime.

3.3 Comparing ΛP and VP.

How do the ΛP and VP classes compare to each other?
As a consequence of Corollary 6 and Theorem 3, VP(Fp) ⊆ ΛP(Fq) whenever p

divides q − 1. In particular, VP(F2) ⊆ ΛP(Fq) for any prime q > 2. No inclusion of
any ΛP class in any VP class is known unconditionally, although ΛP(B2)(= SAC1) is
contained in every VP(Fp) class in the nonuniform setting [GW96, RA00], and this holds
also in the uniform setting under a plausible derandomization hypothesis [ARZ99].

No ΛP(Fq) class can be contained in VP(Fp) unless AC1 ⊆ VP(Fp), since AC1 =
ΛP(F2) ⊆ ΛP(F3) ⊆ ΛP(Fq) for every prime q ≥ 3. AC1 is not known to be contained
in any VP class, although we return to this topic again in Section 4

4 Threshold circuits and small degree

In this section, we revisit the known connections between threshold circuits and arith-
metic circuits over small (but non-constant) finite fields, and present some new alter-
native characterizations of TC1. This leads to a discussion of the possibility of “degree
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reduction” – simulating classes of arithmetic circuits using circuits with smaller algebraic
degree.

4.1 Circuits with growing modulus

The inspiration for the results in this section comes from the following theorem of Reif
and Tate [RT92] (as re-stated by Buhrman et al. [BCK+14]):

Theorem 5. TC1 = #AC1(Fpn).

Here, the class #AC1(Fpn) consists of the languages whose (Boolean) characteristic
functions are computed by logspace-uniform families of arithmetic circuits of logarithmic
depth with unbounded fan-in + and × gates, where the arithmetic operations of the
circuit Cn are interpreted over Fpn , where p1, p2, p3, . . . is the sequence of all primes
2, 3, 5, . . . That is, circuits for inputs of length n use the n-th prime to define the algebraic
structure.

This class is closed under logspace-Turing reductions – but when we consider other
circuit complexity classes defined using Fpn , it is not clear that these other classes are
closed under logspace-Turing reductions.

As an important example, we mention VP(Fpn). As we show below, this class has
an important connection to VP(Q), which is perhaps the canonical example of a VP
class. Vinay [Vin91] proved that VP(Q) has essentially the same computational power
as #LogCFL (which counts among its complete problems the problem of determining
how many distinct parse trees a string x has in a certain context-free language). Here,
we mention one more alternative characterization of the computational power of VP(Q).

Proposition 4. LVP(Fpn) = LVP(Q) = L#LogCFL.

Proof. Consider the first equality. If one wants to compute the value of a VP(Fpn) circuit
on a given input of length n, in logspace one can first compute the value of pn. Then
one can use a VP(Q) oracle to evaluate the VP(Fpn) circuit over the rationals instead of
over Fpn , obtaining an integer result. Then one can divide the result by pn and obtain
the remainder, which is the value of the circuit in Fpn , using the fact that division is
computable in logspace [CDL01, HAB02].

Conversely, if one wants to evaluate a VP(Q) circuit on a given n-tuple of ratio-
nals, one can use the standard technique of computing the numerator and denominator
separately; the circuits for these functions are also in VP(Q). Thus our task boils
down to evaluating an integer-valued arithmetic circuit Cn. To do this, we use Chi-
nese remaindering, and evaluate circuits (with some dummy variables) over the primes
pn, pn+1, . . . , pn+nc for some constant c. Converting between Chinese remainder repre-
sentation and binary representation can be accomplished in logspace [CDL01, HAB02],
which completes the proof of the first equality.

For the second equality, we similarly use the fact that VP(Q) circuits with integer
coefficients and inputs can be evaluated in #LogCFL, and appeal to [Vin91].

When we consider arithmetic circuits of superpolynomial algebraic degree (such as
the ΛP classes), evaluating the circuits over the integers can produce outputs that require
a superpolynomial number of bits to express in binary. Thus, when we consider such
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classes, it will always be in the context of structures (such as Fpn) where the output can
always be represented in a polynomial number of bits.

Our first new result in this section, is to improve Theorem 5. Note that this result
bears some similarity to Theorem 3 and Corollary 3 (showing that arithmetic circuits can
be simulated using circuits with bounded fan-in multiplication gates) and Corollary 4
(making explicit the change of field required for this simulation).

Theorem 6. TC1 = #AC1(Fpn) = LΛP(Fpn).

Proof. The first equality is due to [RT92]. The inclusion of LΛP(Fpn) in TC1 follows since
ΛP(Fpn) is a subclass of #AC1(Fpn) and TC1 is closed under logspace-Turing reducibility.

Consider a logspace-uniform circuit family {Cn} where Cn is a #AC1 circuit over
Fpn . We will show how to simulate Cn, by making calls to an appropriate function in
ΛP(Fpn). The first step is to find a prime q that is not too much larger than pn, such
that q − 1 is a multiple of pn(pn − 1). Xylouris [Xyl11] has shown that the sequence
1+pn(pn−1), 1+2pn(pn−1), 1+3pn(pn−1) . . . contains a prime of size O(p10.4

n ). Thus
our logspace oracle machine will begin by enumerating the elements of this sequence, and
is guaranteed to find some such prime q. Note that this means that q− 1 = `pn(pn − 1)
for some `, and note also that, for all large n, this means that ` < (pn)10). We will show
how to construct a logspace-uniform ΛP(Fqm) circuit family {Dm} defining a function
that our logspace oracle Turing machine can query, in order to simulate Cn. (In order
to avoid confusion, we use “m” to index the ΛP circuit family, and denote the sequence
of primes as q1, q2, . . . for this family, although of course pi = qi for all i.)

The logspace machine that creates Dm on input 1m (by the logspace uniformity
condition) operates as follows: Find qm, and then find the prime factorization of qm−1.
If there is no prime p such that qm−1 = p(p−1)` for some ` < p10, then Dm is a circuit
that computes the constant zero polynomial. Otherwise, note that there can be at most
ten different primes pn1 < pn2 < . . . , pn10 for which qm−1 = pnj (pnj−1)`nj for `nj < p10

nj
,

since otherwise qm−1 = pn1(pn1−1)pn2 · · · pn11`
′ for some `′, where `n1 = pn2 · · · pn11`

′ >
p10

n1
. Assume therefore that there are 1 ≤ c ≤ 10 such primes pn1 < pn2 < . . . , pnc .

The arithmetic circuit Dm operating over Fq will compute a polynomial of the form∑c
j=1 yj · Pnj (x1, . . . , xnj ) on the variables {y1, . . . , yc} ∪ {x1, . . . , xnc}. (Note that the

number of variables is at most 10 + nc, which is less than m for all large m.) Here, the
polynomial Pnj is computed by a subcircuit that is constructed to simulate Cnj . (Note
that if the logspace oracle machine wants to simulate Cnj on input (x1, x2, . . . , xnj ),
then it can query the oracle (computed by Dm) by setting variable ynj to 1 and all of
the other variables yi to zero, and providing the input (x1, x2, . . . , xnj ), (and setting all
of the rest of the m variables to zero).) In what follows, we let n = nj , and we show
how to build the subcircuit C ′

n of Dm that will allow us to simulate Cn.
For each gate g of C and each a ∈ Fpn , C ′

n will have a gate computing the Boolean
value [g = a]. If g is an input gate, say g = xi, then the Boolean value [g = a] is given
by ((xi − a)pn−1 + (pn − 1))2.

Let us now consider the case when g is a + gate, g =
∑

i hi. Let γ be a generator
of the cyclic subgroup of the multiplicative group of Fq of order pn. Our circuit C ′

n will
have gates hi,a computing the value

hi,a = ([hi = a]× (γa − 1) + 1).
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Observe that
∏

a hi,a is equal to γhi . C ′
n will have a gate g′ computing the value g′ =∏

i,a hi,a. Note that g′ is equal to γ
P

i hi = γg (since γ has order pn). The value of
the gate [g = b] (for a given b ∈ Fpn) is thus c−1

b ×
∏

σ 6=b(γ
σ − g′), where the constant

cb =
∏

σ 6=b(γ
σ − b) can be computed in logspace and is thus available as a constant in

C ′
n.

It remains only to deal with the case when g is a × gate, g =
∏

i hi. In C ′
n, the gate

[g = 0] is 1−
∏

i(1− [hi = 0]).
Let µ be a generator of the multiplicative group of Fpn , and let α be a generator of

the subgroup of the multiplicative group of Fq of order pn − 1. If g does not evaluate to
0, then g is equal to µb for some b. Our circuit C ′

n will have gates hi,σ computing the
values

hi,σ = ([hi = µσ]× (ασ − 1) + 1).

Our circuit C ′
n will have gates h′i computing the value h′i =

∏
σ hi,σ. Observe that h′i is

equal to αa if hi = µa, and h′i is equal to 1 if hi = 0.
In C ′

n, there will be a gate g′ that computes the following value: g′ = (1 − [g =
0])
∏

i h
′
i = ([g 6= 0])

∏
i α

logµ hi = ([g 6= 0])α
P

i logµ hi = ([g 6= 0])αlogµ g. Observe that,
if g 6= 0, then g = µb for some b, and in this case g′ evaluates to αb. The value of the
gate [g = µb] (for a given b ∈ Fpn) is thus c−1

b ×
∏

σ 6=b(α
σ − g′), where the constant

cb =
∏

σ 6=b(α
σ − µb) can be computed in logspace and is thus available as a constant in

C ′
n.

For completeness, we add two more relevant characterizations of TC1. (Recall the
definition of g-AC1[m] from Definition 4.)

Theorem 7. TC1 = #AC1(Fpn) = LΛP(Fpn) = AC1[pn] = CC1[pn].

Proof. We need only consider the last two equalities.
(⊇): Majority gates can simulate AND, OR, and MODpn gates in constant depth;

thus this direction is easy.
(⊆): Let ε be chosen so that 2nε < pn for every n. Any MAJORITY gate (of

fan-in nk) can be simulated by an AC0-reduction to MAJORITY gates having fan-
in nε [AK10]. Thus if A ∈ TC1, then A is accepted by a family of circuits of AND,
OR, and MAJORITY gates, where the MAJORITY gates have fan-in at most nε. It
suffices to show how to simulate a MAJORITY gate with inputs h1, . . . , h`. Note that
MODpn(h1, . . . , h`, 1pn−b) computes the value [b =

∑
i hi]. Thus the MAJORITY of

the hi is simply the OR, over all b > `/2 of the subcircuits computing [b =
∑

i hi].
For the final equality, first note any AND or OR gate with fan-in at least pn can be

replaced by a constant-depth tree of AND and OR gates of fan-in strictly less than pn.
Next, use DeMorgan’s laws to remove all of the AND gates. Thus the circuit has only
MOD gates and small fan-in OR gates. But note that if we feed the wires from an OR
gate into a MODpn gate, then the result is the NOR of the inputs (since if all of the
wires are zero, the MOD gate outputs 1, and otherwise the number of wires that are
one is less than pn, and thus the MOD gate outputs zero. Negating each such NOR
(again using a MOD gate) completes the proof.

We also mention that Theorem 7 generalizes to other depths, in a way analogous to
Corollary 5:
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Corollary 7. TCi = #ACi(Fpn) = ACi[pn] = CCi[pn].

For i ≥ 1 the equality TCi = L#SACi,∗
(Fpn ) also holds, but for i = 0 a more careful

argument is needed, using AC0-Turing reducibility in place of logspace-Turing reducibil-
ity.

In the next section, it will be necessary to consider arithmetic circuits over certain
rings (especially the ring of integers mod m for composite m). We present the definition
here, rather than in the next section, because this new definition also provides additional
characterizations of TC1, which is the topic of this section.

Definition 5. Let (mn) be any sequence of natural numbers (where each mn > 1) such
that the mapping 1n 7→ mn is computable in logspace. We use the notation #AC1(Zmn)
to denote the class of functions f with domain {0, 1}∗ such that there is a logspace-
uniform family of arithmetic circuits {Cn} of logarithmic depth with unbounded fan-in
+ and × gates, where the arithmetic operations of the circuit Cn are interpreted over
Zmn, and for any input x of length n, f(x) = Cn(x). We use the notation #AC1(ZL) to
denote the union, over all logspace-computable sequences of moduli (mn), of #AC1(Zmn).

Since the sequence of primes (pn) is logspace-computable, TC1(= #AC1(Fpn)) is
clearly contained in #AC1(ZL). Conversely, all of the functions in #AC1(ZL) are com-
putable in TC1. To see this, consider a function f ∈ #AC1(ZL). To evaluate f(x) for
an input of length n, first we compute the modulus mn and the circuit Cn. To evaluate
each gate g of Cn (in binary), first we compute the sum or product of the values that
feed into g (which can be done in constant depth using threshold circuits) and then
we reduce the result modulo mn (which involves division, which can also be computed
in constant depth). Thus, arithmetic circuits over the integers mod mn for reasonable
sequences of moduli mn give yet another arithmetic characterization of TC1.

4.2 Degree Reduction

The results of Sections 3 and 4 gave examples of fan-in reduction for arithmetic circuits
(showing that ACC1 and TC1 can be characterized either in terms of unbounded fan-in or
semiunbounded fan-in arithmetic circuits). However, those theorems showed only how
to reduce the fan-in of addition gates; thus they did not involve decreasing the algebraic
degree of the circuits under consideration. Degree reduction is the topic to which we
turn now.

In this subsection, we introduce a class of circuits that is intermediate between the
unbounded fan-in circuit model and the semiunbounded fan-in model, for the purposes
of investigating when arithmetic circuits of superpolynomial algebraic degree can be
simulated by arithmetic circuits (possibly over a different algebra) with much smaller
algebraic degree.

The starting point for this subsection is Theorem 4.3 in [AJMV98], which states
that every problem in AC1 is reducible to a function computable by polynomial-size
arithmetic circuits of degree nO(log log n). In this section, we refine the result of [AJMV98],
and put it in context with the theorems about TC1 that were presented in the previous
subsection. Those results show that TC1 reduces to semiunbounded fan-in arithmetic
circuits in the ΛP(Fpn) model, but leave open the question of whether TC1 also reduces
to semiunbounded fan-in arithmetic circuits in the VP(Fpn) model (which coincides with
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VP(Q)). We are unable to answer this question, but we do show that some interesting
inclusions can be demonstrated if we relax the VP model, by imposing a less-stringent
restriction on the fan-in of the × gates.

Definition 6. Let (mn) be any sequence of natural numbers (where each mn > 1) such
that the mapping 1n 7→ mn is computable in logspace. #WSAC1(Zmn) is the class of
functions represented by logspace-uniform arithmetic circuit families {Cn}, where Cn is
interpreted over Zmn, where each Cn has size polynomial in n, and depth O(log n), and
where the + gates have unbounded fan-in, and the × gates have fan-in O(log n). We use
the notation #WSAC1(ZL) to denote the union, over all logspace-computable sequences
of moduli (mn), of #WSAC1(Zmn). In the special case when mn = p for all n, we obtain
the class #WSAC1(Fp).

Note that with the O(log n) fan-in restriction on the × gates these circuits are not
semiunbounded, but do have a “weak” form of the semiunbounded fan-in restriction.
We refrain from defining a weakly semiunbounded analog of the ΛP classes, because it
is easy to show that they are equivalent to the ΛP classes, since AC0 circuits can add
logarithmically-many numbers, given in binary.

We improve on [AJMV98, Theorem 4.3] by showing AC1 is contained in #WSAC1(F2);
note that all polynomials in #WSAC1(Fp) have degree nO(log log n), and note also that
the class of functions considered in [AJMV98] is not obviously even in TC1. In addition,
we improve on [AJMV98] by reducing not merely AC1, but also AC1[p] for any prime p.
This includes ΛP(Fp) for any p such that Supp(p− 1) ⊆ {2}. Also, we obtain an exact
characterization of AC1[p], whereas [AJMV98] presented merely an inclusion.

Theorem 8. Let p be any prime. Then AC1[p] = #WSAC1(Fp).

Proof. The inclusion #WSAC1(Fp) ⊆ AC1[p] is straightforward. The proof of Corollary 6
shows how to simulate semiunbounded fan-in circuits over Fp by AC1[p] circuits. We
merely need to add to that construction, to show how to handle multiplication gates of
logarithmic fan-in. Let g be a multiplication gate computing the product of the gates
h1, . . . , hc log n. As in the proof of Corollary 6, the simulating AC1[p] circuit will have
gates of the form [hi = b] for all b ∈ Fp. Thus the value of g depends on only O(log n)
binary bits of the simulating circuit, and the value of [g = a] can be computed by a
logspace-uniform DNF expression. This yields the desired AC1[p] circuit.

For the proof of the converse inclusion, the main technical ingredient involved is the
following lemma from [AJMV98]. (In [AJMV98] the lemma is stated only for MOD2,
but the proof carries over to any MODm gate with only trivial changes. (See also the
very similar result of [HK10, Proposition 3.4].) For completeness, a detailed proof may
be found in Appendix A.)

Lemma 1. [AJMV98] Let m be any natural number, m > 1. For each ` ∈ N, there is a
family of constant-depth, polynomial-size, probabilistic circuits consisting of unbounded-
fan-in MODm gates, AND gates of fan-in O(log n), and O(log n) probabilistic bits,
computing the OR of n bits, with error probability < 1/n`.

Now we follow closely the proof of [AJMV98, Theorem 4.3].
Take an AC1[p] circuit, replace all AND gates by OR and MODp gates (using

DeMorgan’s laws), and then replace each OR gate in the resulting circuit with the sub-
circuit guaranteed by Lemma 1 (for ` chosen so that n` is much larger than the size of the
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original circuit), with the same O(log n) probabilistic bits re-used in each replacement
circuit. The result is a probabilistic, polynomial-size circuit that, with high probability,
provides the same output as the original circuit. (This assertion may not be obvious to
the reader. We provide a careful proof in Appendix B.)

Note that replacing AND gates by × and replacing each MODp gate g having wires
from hi with a subcircuit of the form 1 + (p − 1)(

∑
i hi)p−1, one obtains an arithmetic

circuit over the integers, whose value mod p is equal to the output of the original AC1[p]
circuit with high probability. (This is one place where we use the fact that p is prime.)
The circuit has depth O(log n), and has unbounded fan-in + gates, and all × gates have
fan-in O(log n), and thus it is a weakly semiunbounded fan-in circuit.

Create nO(1) copies of this probabilistic circuit, one copy for each sequence of prob-
abilistic bits; call these circuits D1, D2, . . . , Dnc . Note that each Di computes a value
in {0, 1}. Note also that 1−Di is also computable in #WSAC1(Fp). Thus we can feed
these values into an arithmetic NC1 circuit computing MAJORITY (using the fact that
all functions in NC1 are in #NC1 [CMTV98]). The resulting circuit is equivalent to our
original AC1[p] circuit.

We especially call attention to the following corollary, which shows that, over F2,
polynomial size logarithmic depth arithmetic circuits of degree nO(log n) and of degree
nO(log log n) represent precisely the same functions!

Corollary 8. #WSAC1(F2) = #AC1(F2) = AC1[2] = ΛP(F3).

Proof. The containment #WSAC1(F2) ⊆ #AC1(F2) is immediate from the definition
(since #WSAC1(F2) circuits are a restricted form of #AC1(F2) circuits). The second
equality is from Theorem 4. The equality AC1[2] = ΛP(F3) is from Theorem 3. The
inclusion AC1[2] ⊆ #WSAC1(F2) is from Theorem 8.

If we focus on the Boolean classes, rather than on the arithmetic classes, then we
obtain a remarkable collapse.

Theorem 9. Let 1 < m ∈ N. Then AC1[m] = log-AC1[m].

Proof. The proof of Theorem 8 begins with the statement of Lemma 1, which holds for
any modulus m. The proof then uses Lemma 1 to replace a general AC1[m] circuit by
an equivalent probabilistic circuit with unbounded fan-in MODm gates and AND gates
with logarithmic fan-in, using only O(log n) probabilistic bits.

The proof of Theorem 8 proceeds to modify this to obtain an arithmetic circuit.
Instead, we simply make polynomially-many copies of this Boolean circuit (one copy for
each probabilistic sequence), and take the majority vote of these copies.

Using Theorem 4 it follows that arithmetic AC1 circuits over any finite field Fp can be
simulated by Boolean circuits with MOD gates and small fan-in AND gates. It remains
open whether this in turn leads to small-degree arithmetic circuits over Fp when p > 2,
and also whether the fan-in of the AND gates can be sublogarithmic, without loss of
power.

When m is composite, Theorem 9 can be improved to obtain an even more striking
collapse, by invoking the work of Hansen and Koucký [HK10].

Theorem 10. Let m > 1 not be a prime power. Then AC1[m] = CC1[m].
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Proof. Let p 6= q where {p, q} ⊆ Supp(m). It suffices to show how to construct a family
of CC1[m] circuits to simulate a given AC1[m] circuit family.

Hansen and Koucký showed [HK10, Lemma 3.5] that, for every c > 1 there is a
constant-depth probabilistic circuit composed of MODpq gates that computes the OR
of n variables, using only O(log n) probabilistic bits, and having error probability less
than 1/nc. Thus we can replace each unbounded fan-in AND and OR gate in the
AC1[m] circuit with the corresponding circuit (possibly with negation gates) guaran-
teed by [HK10]. The MODpq gates can be replaced with MODm gates via standard
techniques, as in the proof of Theorem 3. By choosing a suitably large value for c, the
resulting probabilistic circuit simulates the original circuit with small error probability.

Now, as in the proof of Theorem 9 we can make polynomially-many copies of the
probabilistic circuit, hardwiring in different values for the probabilistic bits, and take
the majority vote.

Corollary 9. ACC1 =
⋃

p ΛP(Fp) =
⋃

p #AC1(Fp) =
⋃

m #AC1(Zm) = CC1.

Corollary 10. ACCi = CCi for all i ≥ 1.

This equality is still open for the case i = 0, although Hansen and Koucký show that
the probabilistic versions of ACC0 and CC0 coincide [HK10].

Note that ⋃
p prime

CC1[p] =
⋃
p≥2

VP(Fp) ⊆
⋃
m

LVP(Zm) ⊆ ACC1 = CC1.

The right-most class corresponds to uniform families of MODm gates (for composite
m), and to arithmetic circuits of degree nO(log n). The left-most class consists of uniform
families of MODp gates for prime p, and to arithmetic circuits of degree nO(1). The
intermediate class corresponds to arithmetic circuits of polynomial degree, but having
access to composite moduli. It is natural to wonder how much the composite moduli
can help, in simulating higher-degree arithmetic circuits using small degree.

It might be useful to have additional examples of algebras, where some degree re-
duction can be accomplished. Thus we also offer the following theorem:

Theorem 11. Let p be any prime. Then AC1[p] ⊆ L#WSAC1(ZL).

Proof. As in Theorem 8, here we need to simulate AC1[p] circuits. The proof proceeds
precisely as in the proof of Theorem 8, up to the construction of the sequence of circuits
D1, D2, . . . , Dnc (in the final paragraph of the proof of Theorem 8). (These are the
copies of the probabilistic circuit simulating the original AC1[p] circuit, with different
copies of the probabilistic bits hardwired in.)

We now make use of the “Toda polynomials” introduced in [Tod91]. For example,
there is an explicit construction in [BT94] of a polynomial Pk of degree 2k− 1 such that
(y mod p) ∈ {0, 1} implies Pk(y) mod pk = y mod p. It is observed in [AG94] that, for
k = O(log n), the polynomial Pk can be implemented via logspace-uniform constant-
depth circuits over the integers. Thus, by replacing each multiplication gate with a tree
of fan-in two, the polynomial can be implemented by a semiunbounded fan-in circuit of
logarithmic depth.
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Applying this polynomial to the output of each circuit Di, we obtain a #WSAC1(Z)
circuit whose value mod p is the same as the output of the original AC1[p] circuit with
high probability, and with the additional property that the output of the circuit, when
represented in p-ary notation, has all of the c log n low-order symbols of the result equal
to zero (except possibly the lowest-order symbol). We will choose c to be the constant
such that there are c log n probabilistic bits). Call the resulting circuit Ei.

Now create a circuit whose output gate computes
∑

i Ei. The output gate of the
resulting #WSAC1(Z) circuit records a number whose low-order c log n positions (in
p-ary notation) records the number of the nc copies that output 1. If this number is
greater than nc/2, then the original circuit accepted its input; otherwise it rejected its
input.

In order to compute this number using #WSAC1(ZL) instead of #WSAC1(Z), we
use this logspace-computable sequence of moduli: mn = pn. Evaluating the arithmetic
over Zpn gives the number represented by the low-order n positions of the result, in p-
ary notation. A logspace oracle machine, upon being given this number (say, in binary
notation) can compute the value of this number modulo p1+c log n and determine if that
number is greater than nc/2, and can thereby determine if the original circuit accepted
its input.

It is natural to wonder whether this theorem can be extended, to allow compos-
ite moduli. A direct application of the techniques of [AG94, BT94, Yao90] requires
multiple applications of the Toda polynomials, and this in turn results in circuits of
superlogarithmic depth.

Using Theorems 3 and 11 we obtain the following.

Corollary 11. If p is a Fermat prime, then ΛP(Fp) ⊆ L#WSAC1(ZL).

5 Conclusions, Discussion, and Open Problems

We have introduced the complexity classes ΛP(R) for various algebraic structures R,
and have shown that they provide alternative characterizations of well-known com-
plexity classes. Furthermore, we have shown that arithmetic circuit complexity classes
corresponding to polynomials of degree nO(log log n) also yield new characterizations of
complexity classes, such as the equality

AC1[p] = log -AC1[p] = #WSAC1(Fp).

Furthermore, in the case when p = 2, we obtain the additional collapse

#AC1(F2) = AC1[2] = log -AC1[2] = #WSAC1(F2),

showing that algebraic degree nO(log n) and nO(log log n) have equivalent expressive power,
in this setting.

We have obtained new characterizations of ACC1 in terms of restricted fan-in:

ACC1 =
⋃
p

#AC1(Fp) =
⋃
p

ΛP(Fp) = CC1.

20



That is, although ACC1 corresponds to unbounded fan-in arithmetic circuits of logarith-
mic depth, and to unbounded fan-in Boolean circuits with modular counting gates, no
power is lost if the addition gates have bounded fan-in (in the arithmetic case) or if only
the modular counting gates have unbounded fan-in (in the Boolean case). It remains
unknown if every problem in ACC1 is reducible to a problem in

⋃
m VP(Zm), although

we believe that our theorems suggest that this is likely. It would be highly interesting
to see such a connection between ACC1 and VP.

We believe that it is fairly likely that several of our theorems can be improved. For
instance:

• Perhaps Theorems 9 and 10 can be improved, to show that for all m, AC1[m] =
CC1[m]. Note that this is already known to hold if m is not a prime power. By
Corollary 6 this would show that VP(Fp) = AC1[p] for all primes p. It would also
show that #AC1(F2) = VP(F2) = ΛP(Fp) for every Fermat prime p. (We should
point out that this would imply that AC1 ⊆ VP(Fp) for every prime p, whereas
even the weaker inclusion SAC1 ⊆ VP(Fp) is only known to hold non-uniformly
[GW96].)

• Can Corollary 11 be improved to hold for all primes p, or even for ΛP(Fpn)? The

latter improvement would show that TC1 ⊆ L#WSAC1(ZL).

• Perhaps one can improve Theorem 11, to achieve a simulation of degree nO(1).
Why should nO(log log n) be optimal? Perhaps this could also be improved to hold
for composite moduli?

• If some combinations of the preceding improvements are possible, TC1 would re-
duce to VP(Q), which would be a significant step toward the Immerman-Landau
conjecture.

We began this investigation, wondering if the equality VP(B2) = ΛP(B2) could
carry over to any other algebraic structure. We think that it appears as if VP(Fp) and
ΛP(Fp) are incomparable for every non-Fermat prime p > 2, since VP(Fp) = CC1[p] and
ΛP(Fp) = CC1[Supp(p − 1)]. That is, these classes correspond to circuits consisting of
modular counting gates for completely different sets of primes. For Fermat primes we
have ΛP(Fp) = log-AC1[2] and again the VP and ΛP classes seem incomparable.

For the special case of p = 2, we have VP(F2) = CC1[2] and ΛP(F2) = AC1. We
hold out some hope that VP(F2) = AC1[2], in which case it would appear that the VP
class could be more powerful than the ΛP class – but based on current knowledge it also
appears possible that the VP and ΛP classes are incomparable even for p = 2.

Some of our theorems overcome various hurdles that would appear to stand in the
way of a proof of our conjecture that ACC1 =

⋃
m LVP(Zm).5 First, recall that VP(Zm) ⊆

CC1[m] (Corollary 6). Thus, if the conjecture is correct, then unbounded fan-in AND
and OR gates would have to be simulated efficiently with bounded fan-in AND and OR
gates (which in turn can be replaced by MOD gates). But this is true in this context:
AC1[m] = CC1[m], if m is not a prime power (Theorem 10). If m is a prime power, then

5Here, “VP(Zm)” refers to the class of functions defined on Zm that are represented by VP circuits,
rather than to a class of languages. The distinction is significant, as is discussed in [AG15].
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the fan-in can be reduced to log n (Theorem 9). If the fan-in can be reduced to O(1) also
in the case of prime power moduli, then AC1[p] = CC1[p] = VP(Fp). If CC1 circuits can
be simulated using an oracle for functions in VP(Zm′) for some m′, then the conjecture
holds. (The latter simulation is possible if the MOD gates in the CC1 circuits are for a
prime modulus; see Corollary 6.)

A second objection that might be raised against the conjecture deals with algebraic
degree. ACC1 corresponds precisely to polynomial-size logarithmic depth unbounded
fan-in arithmetic circuits over finite fields (Corollary 3). Such circuits represent polyno-
mials of degree nO(log n), whereas VP circuits represent polynomials of degree only nO(1).
One might assume that there are languages represented by polynomial-size log-depth
arithmetic circuits of degree nO(log n) that actually require such large degree in order to
be represented by arithmetic circuits of small size and depth.

Our degree-reduction theorem (Corollary 8) shows that this assumption is incorrect.
Every Boolean function that can be represented by an arithmetic AC1 circuit over F2

(with algebraic degree nO(log n)) can be represented by an arithmetic AC1 circuit over
F2 where the multiplication gates have fan-in O(log n) (and thus the arithmetic circuit
has algebraic degree nO(log log n)).
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[MTL+00] Cristopher Moore, Denis Thérien, François Lemieux, Joshua Berman, and
Arthur Drisko. Circuits and expressions with nonassociative gates. Journal
of Computer and System Sciences, 60(2):368–394, 2000.

[RA00] K. Reinhardt and E. Allender. Making nondeterminism unambiguous. SIAM
Journal on Computing, 29:1118–1131, 2000.

[RT92] J. Reif and S. Tate. On threshold circuits and polynomial computation.
SIAM Journal on Computing, 21:896–908, 1992.

[Smo87] R. Smolensky. Algebraic methods in the theory of lower bounds for Boolean
circuit complexity. In ACM Symposium on Theory of Computing (STOC),
pages 77–82, 1987.

[Str94] H. Straubing. Finite Automata, Formal Logic, and Circuit Complexity.
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6 Appendix A: Proof of Lemma 1

In this section, we present a detailed proof of Lemma 1, showing the adjustments that
need to be made, in order to deal with arbitrary MODm gates.

Here is a reminder of the statement of Lemma 1: Let m be any natural number,
m > 1. For each ` ∈ N, there is a family of constant-depth, polynomial-size, probabilistic
circuits consisting of unbounded-fan-in MODm gates, AND gates of fan-in O(log n),
and O(log n) probabilistic bits, computing the OR of n bits, with error probability <
1/n`.

Proof. Our presentation here is a slight adjustment of the proof in [AJMV98]. There
are no significant changes in the proof, which relies crucially on the fact that one can
replace an OR gate with a MOD gate, when there is a guarantee that at most one of
the inputs to the OR gate evaluates to 1.

The construction in [CRS95] gives a depth 5 probabilistic circuit that computes
the NOR correctly with probability at least 1

2 and uses O(log n) random bits. More
precisely, using the terminology of [CRS95], let m′ = d log ne, let S = {1, . . . ,m′}, and
let F be the collection of subsets of S, such that A ∈ F iff the bit string k of length
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m′ = dlog ne representing the characteristic sequence of A corresponds to a binary
number k ≤ n such that the k-th bit of the input sequence x1, . . . , xn has value 1. That
is, the OR of x1, . . . , xn evaluates to 1 iff F is not empty. The strategy of [CRS95] is
to use probabilistic bits to define a way of assigning a “weight” to each set Ak ∈ F so
that if F is not empty, then with high probability there is a unique element of F having
minimum weight. The next paragraph explains how this is done.

Let c = d log m′e and let t = dm′/ce. For any 1 ≤ i ≤ m′ and 0 ≤ j ≤ t − 1, define
bi,j as follows:

bi,j =
{

2i−jc if jc < i ≤ (j + 1)c
0 otherwise

(It may help the reader’s intuition to consider an m′-bit sequence k = k1, . . . , km′ . Divide
this sequence into blocks; Block(j) has positions kjc+1, kjc+2, . . . , k(j+1)c. Clearly, km′ is
in Block(kt−1). Now, if ki 6∈ Block(j), then bi,j = 0, else bi,j = 2i−jc. Note that i− jc is
the position of ki within Block(j). )

Choose t numbers r0, . . . , rt−1 in the range 1 ≤ rj ≤ 50 log5 n uniformly and inde-
pendently at random (and note that this amounts to choosing O(log n) random bits).
Finally, define wi to be equal to

∑t−1
j=0 bi,jrj . The weight of a set A is then

∑
i∈A wi. The

analysis in Proposition 2 of [CRS95] shows that if F is not empty, then with probability
at least .99, there is a unique minimal weight set in F .

This paragraph explains how to implement this system as a uniform constant-depth
circuit. Note first that for any k ≤ n and for any fixed p ≤ log7 n, there is a depth 2
circuit of MODm gates and small-fan-in AND gates that evaluates to 1 iff the weight
of Ak is equal to p. Here Ak is that subset of S whose characteristic sequence is the
binary representation of k. (To see this, note that the only inputs to this circuit are
the O(log n) probabilistic bits. Thus the DNF for this function can be computed in
logspace, and the OR gate at the root can be replaced by a MODm gate with m − 1
additional 1 inputs. Here we are making use of the fact that there can only be one of
the AND gates that feed into to the MODm gate that returns 1, namely the one where
the weight of Ak = p.)

Taking the AND of this circuit with the input bit xk results in a depth three circuit
that evaluates to 1 iff Ak ∈ F and the weight of Ak is equal to p. Thus there is a
polynomial-size depth-4 circuit with a MODm gate at the root (with m− 1 additional
1 inputs) that evaluates to 1 iff the number of sets in F that have weight p is equivalent
to 1 mod m. Hence there is a uniform depth-5 circuit with an OR at the root that
evaluates to 1 iff there is some weight p ≤ log7 n such that the number of sets in F
having weight p is equivalent to 1 mod m. By the remarks in the preceding paragraph,
if the OR of x1, . . . , xn evaluates to 1, then with probability at least .99, our depth-5
circuit will also. (Clearly, if the OR is zero, then the depth-5 circuit also evaluates to
zero.) If we replace the OR gate at the root with AND and negate each of the MODm

gates that feed into that OR gate (recalling that a unary MODm gate is a NOT gate)
we obtain our desired circuit for the NOR function – except that the fan-in of the gate
at the root is log7 n, and our goal is for the AND gates to have fan-in at most log n.
But replacing this AND gate with a depth-7 tree of AND gates of fan-in log n yields
an equivalent circuit of the desired form. Let us denote this circuit by C(x, r).

It remains only to reduce the error probability from 1
100 to 1

nl , without using too
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many additional probabilistic bits. We accomplish this using a standard construction,
as in [AJMV98]: Consider a graph with vertices for each of our O(log n)-bit probabilistic
sequences, the edge relation is given by the construction of an expander graph presented
in [GG81], where each vertex has degree five. Inspection of [GG81] shows that, in
logspace, one can take as input one of our original probabilistic sequences r as well
as a new probabilistic sequence s ∈ {1, 2, 3, 4, 5}c` log n (for some constants c and `)
and output the vertex r′ reached by starting in vertex r and following the sequence of
edges indicated by s. Since this function depends on only O(log n) bits, the DNF for
this function can be computed in logspace, and (as above) can be implemented using a
MODm gate and AND gates of small fan-in. Let this circuit be denoted by R(r, s).

Thus we can construct a constant-depth circuit that computes the AND for all
i ≤ cl log n of C(x,R(r, s[1..i])) (where s[1..i] denotes the prefix of s of length i, where
r and s are probabilistically chosen. By Section 2 of [IZ89], this circuit computes the
NOR correctly with probability 1− 1

nl . Adding a MODm gate at the root allows us to
compute the OR, as desired. This completes the proof of the lemma.

7 Appendix B

In this appendix, we provide a careful proof of the following assertion, which was made
in the proof of Theorem 8:

Let C be a polynomial-size circuit of MODp gates and OR gates. Replace each OR
gate in the resulting circuit with the sub-circuit guaranteed by Lemma 1 (for ` chosen
so that n` is much larger than the size of the original circuit C), with the same O(log n)
probabilistic bits re-used in each replacement circuit. Call the resulting circuit C ′.
Then C ′ is a probabilistic, polynomial-size circuit that, with high probability, provides
the same output as the original circuit.

This follows from the following, slightly stronger claim.
Let Cg be the probabilistic subcircuit of C ′ that replaces an OR gate g of C. Let g′

be the output gate of Cg. We claim that, for every input x, for most settings of the prob-
abilistic bits, the values of each gate g of C agrees with the value of the corresponding
gate g′ of C ′ on input x.

To establish this claim, consider some topological sort of the OR gates; i.e., a linear
order so that if g comes before h, then there is no path from h to g. Choose any input
x. Let Eg be the event that g is the first gate in this order such that g′ and g take on
different values on input x. The probability that there is any gate g such that g and g′

take on different values is equal to Pr(
⋃

g Eg) ≤
∑

g Pr(Eg). Let zg be the sequence of
bits that is input to gate g in C on input x. Then

Pr(Eg) = Pr(g′ 6= OR(zg) and ¬Eh for all h < g)
≤ Pr(g′ 6= OR(zg)).

By Lemma 1, Pr(g′ 6= OR(zg)) ≤ 1/n`. Thus Pr(
⋃

g Eg) ≤
∑

g 1/n`, which can be made
as small as n−c by appropriate choice of the constant `.)

27



8 Appendix C: diagram of new macro and micro inclusions

SAC1

#SAC1(Fp) = VP(Fp) = CC1[p] AC1

LVP(Fpn ) = L#SAC1(Fpn ) = LVP(Q)

AC1[p] = log-AC1[p] = #WSAC1(Fp)

L#WSAC1(ZL)
ACC1 = ∪p#AC1(Fp) = ∪pΛP(Fp) =

∪p1...pkAC1[p1 . . . pk] = ∪mCC1[m] = CC1

TC1 = #AC1(Fpn ) = LΛP(Fpn ) = AC1[pn] = CC1[pn]
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Figure 1: Macro inclusions within TC1
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Figure 2: Micro inclusions within ACC1
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