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Abstract

We propose the following computational assumption: in general if we try to compress the
depth of a circuit family (parallel time) more than a constant factor we will suffer super-quasi-
polynomial blowup in the size (number of processors). This assumption is only slightly stronger
than the popular assumption about the robustness of NC, and we observe that it has surprising
consequences. Note also that the choice of super-quasi-polynomial blowup is the smallest bound
that avoids the circuit class collapse of [Vol98].

In this proposal we put our assumption in perspective, discuss its relation to the existing
literature, and show that it has two important consequences. The first consequence is NC 6= SC,
where NC is the class characterized by uniform circuits of poly-logarithmic depth and polynomial
size, and SC is characterized by algorithms that run in poly-logarithmic space and polynomial
time. For the second consequence we use an additional but mild complexity assumption to obtain
a strong separation between the graph isomorphism GraphIso and the group isomorphism
GroupIso problem. In particular, we show that GraphIso is not reducible to GroupIso
using circuits of O(log n) depth.

1 Background

Depth reduction in circuits or equivalently parallel time speedup is one of the most fundamental
questions in computation and engineering. Let a given family of circuits C = {Cn}∞n=1 computing
a function

{
fn : {0, 1}n → {0, 1}

}
n
, where for input length n the size is size(Cn) = s(n) and

depth(Cn) = d(n). This paper revolves around the following question.

Can we reduce the depth to o(d(n)) without simultaneously increasing s(n) too much?

We propose a hypothesis1 which asserts that this is impossible when quantifying appropriately
“reduce” (for depth) and “too much” (for size). The consequences of our quantification are rather
striking, including NC 6⊆ SC that reads as “it is generally impossible to trade efficient size-depth
parallel algorithms for simultaneously time-space efficient algorithms”.

Depth Irreducibility Hypothesis (informal statement). Fix any sublinear depth d(n) =
o(n) and polynomial size s(n) = poly(n). Then, there is a family of circuits C = {Cn} with
depth(Cn) ≤ d(n) and simultaneously size(Cn) ≤ s(n), such that every D = {Dn} which computes
the same function with depth(Dn) = o(d(n)) blows up size(Dn) = “above quasi-polynomial”.

1A form of this hypothesis was made in a statement of a theorem in [PQT13]. This is an unpublished (in fact,
never circulated) manuscript about Group Isomorphism. I think this hypothesis, properly parameterized, is valuable
in its own right.
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In Section 1.1 we state the hypothesis precisely; i.e. we fix the fan-in of the circuits, uniformity
conditions, and define “above quasi-polynomial”.

We discuss the Depth Irreducibility Hypothesis (DIH) later on in Section 3. For now, observe
that DIH assumes only a slightly stronger depth irreducibility than e.g. NC1 ( NC2 where the
blow-up is any nω(1).

1.1 Definitions and formal statement of the hypothesis

For rigorous definitions of the relevant circuit models, forms of uniformity, and their relation to
parallel machines cf. [Vol99]. A circuit is syntactically a directed acyclic graph (DAG), where each
node is associated with a gate or an input. On a given input the computation with a circuit is
defined inductively in the obvious way. We consider gates ∧,∨ of fan-in 2, and families of unbounded
fan-in gates ∧m,∨m with m-input wires each, and negations ¬. The size of circuit is the number
of its gates, and the depth is the longest path in the DAG. In this paper circuits have a single
output. If the gates are of bounded fan-in {∧,∨,¬}, and the family of circuits (one circuit for
each input length n) is of size poly(n) and depth O(logk n) then we write f ∈ NCk for the function
f it computes. If the gates are semi-unbounded, i.e. ∨n,∧ (unbounded OR and bounded AND)
then for the same size-space we say that f ∈ SACk, whereas if we have ∨m,∧m then we say that
f ∈ ACk. It easily follows that NCk ⊆ SACk ⊆ ACk ⊆ NCk+1. Semi-unbounded circuits (SAC) play
a special role in this work — [ACL+14] gives a good exposition on properties and significance of
such circuits. Apart from the SACk’s we consider semi-unbounded circuits of depth log n and size
quasi-polynomial. We denote by SAC(size, depth) the class of semi-unbounded fan-in circuits of the
denoted size and depth. Unless mentioned otherwise all circuit classes are log-time or poly-log-time
uniform, cf. [Vol99] for details regarding uniformity conditions. Finally, we denote by sup-quasi-poly

the set of functions Z+ → Z+ that grow faster than 2log
k n for every constant k and sufficiently large

n. For a size bound function s(n) we write s(n) = sup-quasi-poly(n) instead of s ∈ sup-quasi-poly.
With this notation at hand we state DIH formally.

Depth Irreducibility Hypothesis. Let non-constant d(n) = o(n) and s(n) = poly(n). Then,
there is C = {Cn} of unbounded fan-in where depth(Cn) = d(n), size(Cn) = s(n), such that for
every D = {Dn} that computes the same function as C:

depth(Dn) = o(d(n)) =⇒ size(Dn) = sup-quasi-poly(n)

For simplicity, we assume that C is a poly-log-time uniform family (in particular, constructible d
and s), whereas D can be even non-uniform. This way we also avoid discussions on randomness.

One reason for choosing sup-quasi-poly is because this is the smallest blow-up where the new
consequences (see below) can be obtained. A further, important technical reason is because if we
just suffered quasi-polynomial size blowup then there are consequences in the collapse of circuit
classes as studied in [Vol98] (for an overview of quasi-polynomial size circuit classes see [Bar92]).
Since, quasi-polynomial blow-up contrasts other conjectures in complexity theory, we go just above
that (to super-quasi-poly). It so happens that this blow-up suffices to obtain new consequences.

Variants. The above is a weak form of the intuitively stated hypothesis. Although, the require-
ment about every d(n) and s(n) may be too strong, in applications we only need d(n) = logO(1) n
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and its reduction to d(n)
logn . Stronger forms can be considered. For example, we can consider depth

reductions by a log n factor and sub-exponential size instead of sup-quasi-poly. Or, we may consider
what happens if DIH holds only for some specific level of NC. Currently, we see no reason why to
prefer one over other forms, although it is conceivable that other forms could be useful.

1.2 Depth reduction: constructions and lower bounds

This proposal discusses depth irreducibility. However, depth reduction was shown feasible through
constructions without exponential size blow-up. These previously known constructions work for a
restricted range of parameters and are of limited interest to super-constant depth reduction. Let
us now give an overview of related work2. All known constructions and lower bounds support DIH.

1.2.1 Constant depth reduction

Every boolean function f : {0, 1}n → {0, 1} can be computed by a depth-2 circuit of size O(2n) (or
2n/n − o(2n) [Lup58] for depth 5). However, depth reduction refers to constructions that reduce
the depth without simultaneously blowing up the size by much. It is shown [AH94, BT91, Yao90]
that the constant depth of AC0 and ACC0 circuits can be reduced to a fixed depth, typically 2 or
3. Here, ACC0 is the class of functions computable by circuits which in addition to the AC0 gates
have more powerful ones. These depth-reduced circuits (even when starting from AC0) use MOD
gates, or threshold gates, or some other symmetric gate; for details see within these works. The
starting point for such results is Toda’s theorem [Tod89] due to an analogy between AC0 and the

polynomial hierarchy. The depth reduction happens with a quasi-polynomial 2log
O(1) n blowup in

size. These arguments, one way or another, approximate circuit gates by low-degree polynomials.
It is a feature of these constructions that the constant d of the compressed depth appears as a

double exponent of the new size 2log
O(d) n or triple 2log

2O(d)
n.

Regarding irreducibility not much is known. For arbitrary circuits for e.g. Parity (sum of
boolean variables over GF (2)) we know that Parity 6∈ AC0, we also know that MODm (boolean
gate which is 1 if and only if the number of 1s in its input is multiple of m) cannot be computed by
AC0 circuits that in addition have MODp gates where p and m are coprime, and similar results for
a couple of other functions (such as majority). All these lower bounds show that depth reduction
comes with an exponential size blowup. If the circuits are restricted further then stronger expo-
nential blowups are known, as in e.g. monotone circuits (i.e. circuits with only ∧m,∨m gates) for
small depth reductions in the depth [HG91, Yao90].

1.2.2 Beyond constant depth reduction

DIH is about super-constant depth reduction. In this setting, regarding previous work, there is no
analog to the amount of research activity for constant depth reductions. Notable exceptions are the
folklore (cf. [IMP12]) sub-exponential reduction of NC1 to constant depth, and reducing log-space
and SAC1 computations to constant depth and sub-exponential size [AHM+08]. Furthermore, direct
uses of constant-depth reductions do not work here; e.g. by slicing circuits and iterating constant
depth reductions no quasi-polynomial size can be achieved for any ω(1) depth reduction function.

2Here we care about circuit-to-circuit depth reductions, and thus we omit discussing “reductions” between different
resources as in e.g. [DT85].
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1.3 Tradeoffs and simultaneous bounds

There is a perhaps surprising connection between DIH — i.e. speeding up parallel time — and the
NC 6⊆ SC question — i.e. transforming efficient parallel time into small-space and simultaneously
small-time algorithms. Let us now put things in context and give the necessary background. For
uniform circuits running time is polynomially equivalent to circuit size, and space is polynomially
equivalent to circuit depth. If instead of Turing Machines we consider Alternating Turing Machines
(ATMs) (see e.g. [Vol99] for definitions) then the equivalences hold in a strong sense also for
simultaneous bounds, see e.g. [Ruz79b, Ruz79a]. This is because the time-space bounds of a
computation of an ATM corresponds in a transparent way to how circuits compute.

For usual TMs though these equivalences are believed to fail dramatically when we consider
simultaneous time-space and size-depth bounds. In particular, it is believed that NC 6= SC, where
NC

def
= Size-Depth(poly(n), logO(1) n) and SC

def
= Time-Space(poly(n), logO(1) n), where this notation

indicates classes of problems computable within the notation-evident simultaneous bounds. The
prototypical problem which is in NC and it is believed not be in SC is to decide the s-t connectivity
of a given directed graph. This problem has polynomial space and polynomial time (e.g. DFS)
algorithms, and a simple recursive (e.g. through Savitch) O(log2 n) space and nO(logn) time algo-
rithm. It is believed though that it is impossible to get the best of the two worlds. The assumption
NC 6= SC is very well believed to be true for at least 35 years now [Coo79]. Itself it has been
assumed true as a means to obtain other conclusions, but to the best of our knowledge until now
there was no technical reason indicating (e.g. another reasonable assumption implying) NC 6= SC.

2 Consequences

The Depth Irreducibility Hypothesis is important because of its consequences. Below we list two
surprising ones.

2.1 DIH =⇒ NC 6= SC

It is believed that NC 6= SC, and showing this is a long-standing open question [Coo79]. We show
this as an immediate consequence of our joint work with Allender et al. [ACL+14]. [ACL+14]
fully characterizes the non-deterministic version of SC. It is shown that a non-deterministic poly(n)
time and simultaneously logO(1) n space algorithm is characterized by very shallow and simultane-
ously not-very-large circuits3. Thus, if NC ⊆ NSC then e.g. log2 n depth circuits would have been
compressed to log n depth without a significant size increase.

Theorem 1 (corollary of [ACL+14]). Let SAC(2O(logk n), O(log n)) denote the class of problems

computable by poly-log-time uniform semi-unbounded circuits of size 2O(logk n) and depth O(log n).
Let also NSCk be the class of problems computable by polynomial time and poly-log-space non-
deterministic Turing Machines. Then,

NSC1︸ ︷︷ ︸
NL

⊆ SAC(2O(logn), O(log n))︸ ︷︷ ︸
SAC1

⊆ NSC2 ⊆ SAC(2O(log2 n), O(log n)) ⊆ · · · ⊆ NSC = SAC(2log
O(1) n, O(log n))

3Interestingly, such a circuit characterization of a simultaneous time-space bound computation contrasts folk
wisdom in computational complexity (see Section 1.3 for a discussion).
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Note that the above characterization of a simultaneous time-space bounded class by size-depth
circuits contrasts popular wisdom as stated in Section 1.3.

Corollary 1. NC 6= SC, unless DIH is false.

2.2 DIH =⇒ strong separation between GroupIso and GraphIso

In [CTW13] it is shown that GraphIso is not AC0 reducible to GroupIso. In the Graph Isomor-
phism Problem (GraphIso) we are given two graphs G,H and we wish to decide whether they
are isomorphic G ∼= H. The Group Isomorphism Problem is defined similarly for two finite groups
encoded through their Cayley tables, and now “isomorphism” means “group isomorphism”. It is
believed that GraphIso is a computationally difficulty problem (but not NP complete), whereas
for GroupIso is believed to be solvable in polynomial time. As of now there is no polynomial time
algorithm for any of the two problems.

Assuming DIH and the widely believed assumption that the complexity class DET is not con-
tained in SAC1 we conclude that GraphIso is not SAC1 reducible to GroupIso. Here DET is the
decision analog of the functional class that corresponds to computing the determinant of matrices
Zn×n containing n-bit integers. This decisional DET contains NL. The same holds for SAC1, but
it is a somewhat mild assumption4 that DET 6⊆ SAC1. At the same time it is not hard to see that
GroupIso ∈ NSC2 [PQT13]. Putting these together with [Tor04] , which shows that GraphIso
is hard for DET, we conclude as follows.

Theorem 2 ([PQT13]). Suppose that DIH is true and that DET 6⊆ SAC1. Then, there is no SAC1

reduction of GraphIso to GroupIso.

Furthermore, the higher in NC one proves hardness for GraphIso the stronger the above
separation becomes. For example, if GraphIso is shown hard for AC3 then under DIH we conclude
that there is no o(log3 n) depth reduction of GraphIso to GroupIso.

3 Discussion

The robustness of NC was conjectured (see e.g. [Coo79]) in the earlier days of computational
complexity. Robustness means NC1 ( NC2 ( . . . . Since then the web of computational hardness
assumptions has grown far more complex. About a fifteen years ago people started to make stronger
assumptions than the initially made ones, which was very fruitful. For example, the Exponential
Time Hypothesis (ETH), first introduced in [IPZ98], asserts that the satisfiability of 3-SAT formulas
of n variables cannot be decided in time 2o(n). Another very prominent example is the Unique
Games Conjecture (UGC) [Kho02], where a stronger form of the PCP theorem is assumed true.
These stronger conjectures (and their strengthenings, e.g. strong ETH, small-set expansion [RS10]
and so on) are important not merely because some people believe that they are true mathematical
facts. Here are some additional reasons for studying conjectures such as ETH and UGC. The first
reason is phycological and to a lesser extent epistemological. If for instance ETH gets refuted this
contrasts common wisdom in computational complexity. Then, other things that appear to be
“obviously true but hard to prove” will be seriously challenged (and they should if this is the case).
The second reason is that new techniques are invented towards understanding these conjectures.

4Personal communication with Meena Mahajan.
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Finally, given that these conjectures are true then through them (which are just stronger forms of
their predecessors) the web of computational assumptions gets simpler, by connecting seemingly
unrelated pieces together.

We feel more confident about the validity of DIH compared to e.g. ETH (and even more to
UGC). This belief can be quantified with the number of conceptual leaps one has to make for
reaching each conjecture. ETH talks about the specifics of a problem, and discusses the required
resources at a very detailed level. More importantly, maybe now it is time to revisit the question
why do we believe that the NC hierarchy is robust. The original conjecture AC1 ( AC2 is that there
are problems in, for example AC2 such that every O(log n) depth circuit computing them must have
size nω(1). But it is hard to believe that back in the 70s when this conjecture was made people
actually thought this nω(1) as e.g. nlogn or nlog logn. We already show that instantiating this nω(1)

to anything above quasi-polynomial has substantial implications.
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