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Abstract

In this paper, we construct pseudorandom generators for the class of combinatorial sums, a
class of functions first studied by [GMRZ13] and defined as follows: A function f : [m]n → {0, 1}
is said to be a combinatorial sum if there exists functions f1, . . . , fn : [m] → {0, 1} such that
f(x1, . . . , xn) = f1(x1)+ . . .+fn(xn). Derandomization of combinatorial sums generalize previously
studied classes such as combinatorial rectangles [EGL+92], small-biased spaces [NN93] and modular
sums [LRTV09] among others.

In this work, we present a pseudorandom generator for combinatorial sums with seed length

O(logm + log3/2(n/ε)), thus improving upon [GMRZ13] whenever ε ≤ 2−(logn)3/4 . As a corollary,
this gives the first improvement over the INW generator [INW94] for fooling the simple majority
function in the case of inverse polynomial error.

The main technical ingredient in our result is the use of asymptotic expansions which roughly
speaking, are refinements of the classical central limit theorem which achieve a faster convergence
rate than the central limit theorem by using more moments for the approximation. While asymptotic
version of such theorems have been known in the probability theory literature for some time, explicit
bounds were not known for sum of lattice-valued i.i.d. random variables. In the main technical
ingredient of this paper, we prove a new asymptotic expansion theorem for sums of lattice-valued
independent random variables (even for the non i.i.d. case). Given the far-reaching consequences
of the central limit theorem in theoretical computer science, we hope that the new asymptotic
expansions will be of independent interest.

∗anindya@math.ias.edu. Most of the work was done while the author was a member at the School of Mathematics,
Institute for Advanced Study and during a visit to Columbia University.
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1 Introduction

Derandomization of randomized logspace (or RL) is one of the holy grails of computational complexity
theory. Unlike BPP, where its known that even mild derandomization yields non-trivial circuit lower
bounds [IKW02, KI04] and thus likely to be out of reach of current complexity theory, no such barrier
is known for derandomization of RL. In fact, from the classical result of Savitch [Sav70], it follows
that RL ⊆ L2 which was improved upon by Saks and Zhou [SZ95] to show that RL ⊆ L3/2. Further,
following the pathbreaking result of Reingold [Rei08] (which showed SL = L), there were follow-up
works [RTV06, CRV11] which suggested that we may not be far from proving RL = L.

However, in spite of the optimism, the best known derandomization for RL remains the result of
[SZ95]. In fact, the state of oblivious derandomization remains significantly worse. To discuss this, we
recall the definition of read-once branching programs (ROBPs) and pseudorandom generators (PRGs).

Definition 1. A (S,D, T ) read-once branching program (ROBP) M is a layered directed multi-graph
with T + 1 layers and at most 2S vertices in each layer. For 0 < i < T , a vertex v in layer i of M has
at most 2D outgoing edges labeled with distinct elements of {0, 1}D all leading to a vertex in layer i+1.

We can associate a function gM : ({0, 1}D)T → [2S ] with M . Namely, we label each vertex in the
T th layer with a number in [2S ] (not necessarily distinct). On input x = (x1, . . . , xT ) where xi ∈ {0, 1}D
for all i ∈ [T ], gM (x) is the label of the vertex obtained by starting at v0 and walking along the edges
x1, . . . , xT (in order).

For the reader familiar with branching programs, we remark that typically the vertices of the last
layer are labeled with an element in {0, 1}, thus the resulting gM (·) becomes a Boolean function. In
this paper, we go for a more general definition as it is more convenient for us.

It is not difficult to see that derandomization of (S,D, T ) ROBP for S = O(log n), T = n and D = 1
suffices for derandomization of RL. Next, we define the notion of pseudorandomness for a complexity
class C. Towards this, let us adopt the notation that Um denotes the uniform distribution on m-bit
strings. In general, for a domain X, we use UX to denote the uniform distribution on the elements of
X. Also, for distributions D1 and D2 on the same domain, ‖D1−D2‖1 denotes the `1 distance between
D1 and D2.

Definition 2. Let C ⊆ {h : X → X ′}. Then, g : {0, 1}t → X is said to be a ε-PRG for C if for every
h ∈ C,

‖h(g(Ut))− h(UX)‖1 ≤ ε.

Note that h(g(Ut)) (and likewise, h(UX)) defines a random variable on the domain X ′. The seed length
of g is t and in this paper, whenever we mention PRGs, we mean they are explicit PRGs i.e. g is
computable efficiently.

The currently best known PRG for ROBP is due to Impagliazzo, Nisan and Wigderson [INW94]
which builds upon the seminal work of Nisan [Nis92].

Theorem 1. There is an explicit PRG GINW : {0, 1}t → ({0, 1}D)n which is ε-pseudorandom for
(S,D, T )-ROBP where O(D + (S + log(T/ε)) · log(T )).

For the sake of completeness, we mention that Nisan and Zuckerman [NZ96] obtained a ε-PRG

with seed length O(S + D) if T = poly(S,D) and ε ≥ 2log1−γ(S+D) for γ > 0. As can be easily seen,
this beats GINW only when T is small compared to S and D.

The problem of beating [INW94] for general ROBPs has so far resisted all attacks and in fact,
even for S = 3, D = 1 and ε < 1/2, the best known PRG has seed length O(log2 T ). To get
around this, researchers have looked at restricted class of ROBPs: One line of research has dealt with
structural restrictions on ROBPs (cf.[BV10, BRRY10, KNP11, De11, Ste12, RSV13, SVW14]). The

2



second line of research, which is also the focus of this paper (and predates the first line of research)
has dealt with ROBPs computing semantically restricted classes of functions. These include small
biased spaces [NN93], combinatorial rectangles [EGL+92, ASWZ96, Lu02, GMR+12], combinatorial
checkerboards [Wat13] and modular sums [LRTV09] among others.

A common generalization which includes all these classes is the class of combinatorial sums which
was introduced in the work of Gopalan et al. [GMRZ13]. They are defined as follows.

Definition 3. The class of combinatorial sums (denoted by Csum(m,n)) consists of f : [m]n → Z of
the form

f(x1, . . . , xn) = f1(x1) + . . .+ fn(xn) where for all i ∈ [n], fi : [m]→ {0, 1}.

Sometimes we will use the tuple (f1, . . . , fn) to refer to the combinatorial sum f .

The main result of [GMRZ13] is an ε-PRG with seed length O(logm+log n+log2(1/ε)). The main
result of this paper is the following theorem.

Theorem 2. There is a polynomial time computable PRG Gcsum : {0, 1}tcsum → [m]n which ε-fools
Csum(m,n). Here tcsum = O(logm+ log3/2(n/ε)).

When ε = n−Θ(1), this provides the first improvement over [INW94] for the class Csum(m,n).
Previously, even for m = 2, the best known PRG had a seed length of O(log2 n) for ε = n−Θ(1). To
understand the result, we begin with a high level description of the result of [GMRZ13].
Let U[m]n be the uniform distribution on [m]n. Then, note that for (y1, . . . , yn) ∼ U[m]n , each fi(yi) is
an independent {0, 1} random variable. Let us define Z =

∑
fi(yi) and Var(Z) = σ2. The key technical

component in their result is the use of the so-called discrete central limit theorem. Much like the basic
central limit theorem, there are several versions of the discrete central limit theorem (discrete CLT) as
well (see [CGS10] for a sampling of such results). However, as a corollary, we have the following (which
is the version relevant to us).

Theorem 3. Discrete central limit theorem: For Z as defined above, let Z ′ be the discretized
normal with mean E[Z] and variance Var(Z). Then, ‖Z − Z ′‖1 = O(1/σ).

We now explain the key idea behind using Theorem 3 for derandomization of combinatorial sums is as
follows. The derandomization problem is split into two cases:

• low variance case: Var(Z) ≤ Θ(1/ε2) and

• high variance case: Var(Z) ≥ Θ(1/ε2).

We now describe the PRG for these cases. In case (i), we set t = poly(1/ε), so that Var(Z)/t ≤ ε.
Let H2,n,t be a family of pairwise of pairwise independent hash functions. The PRG first samples h ∼
H2,n,t to partition [n] into t buckets. Within each bucket, the PRG uses O(1)-wise independence (the
distribution across the buckets is independent). The authors use the notion of sandwiching polynomials
(cf. [Baz07]) to show that this PRG construction indeed fools f (in case (i)) up to an error ε. However, as
the seed across the buckets are independent, hence the seed required grows as t·(logm+log n). This has
a poor dependence on ε. To get around this, the authors observe that the computation of f composed
with the PRG can be seen as ROBP (with significantly smaller size than n). Thus, they derandomize
this using Theorem 1 to bring down the seed length requirement to O(logm+ log n+ log2(1/ε)).
For case (ii), note that by Theorem 3, Z is ε-close to an appropriate discretized normal in `1 distance.
Thus, it suffices to produce a pseudorandom distribution (y′1, . . . , y

′
n) so that the induced distribution

Z ′ =
∑
fi(y

′
i) is O(ε)-close to same discretized normal. In other words, it suffices to fool the proof of
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Theorem 3. The problem is that proofs of Theorem 3 or its variants are often significantly involved (and
based on Fourier analysis or Stein’s method) and thus are not readily amenable to derandomization.
Rather, the authors come up with a new and simple (albeit quantitively slightly weaker) proof for the
discrete CLT. This proof is much simpler and amenable to derandomization. This gives a very high
level overview of the utility of Theorem 3 for derandomization of combinatorial shapes (ignoring several
details and complications).

We now list a shortcoming of the approach employed in [GMRZ13]. Note that [GMRZ13] gets
O(log2 n) seed for any inverse polynomial error which is what is guaranteed by [INW94]. The main
conceptual barrier in extending their techniques to get an error o(n−1/2) with o(log2 n) seed is as follows:
One of the main ideas that the authors bring in is to fool the proof of the discrete CLT up to error
ε. As long as the discrete CLT has error O(ε), this automatically guarantees fooling the combinatorial
shape to error O(ε). However, note that the optimal error rate for discrete CLTs with variance σ2 is
O(σ−1). Since, σ ≤ n1/2, this approach is not useful for getting error rate o(n−1/2). In fact, the error
rate of o(n−1/2) is optimal for CLTs with weaker metrics such as the Kolmogorov distance.

While [GMRZ13] requires O(log2 n) seed for any inverse polynomial error (including Ω(n−1/2)), the
above discussion naturally motivates the question of looking at possible extensions of the usual central
limit theorem where the rate of error is less than n−1/2. With this motivation, we are led to the theory
of asymptotic expansions.

1.1 Asymptotic expansions

Our aim is to get better convergence rates for sums of independent integer random variables with
respect to the `1 metric. However, for the moment, we start with the weaker criterion of Kolmogorov
metric. Also, to motivate the solution for discrete random variables, we first start with the problem of
getting better convergence rates for sums of independent (not necessarily discrete) random variables.
Towards this, let us assume that X1, . . . , Xn are i.i.d. random variables (with common distribution X)
with mean 0 and variance 1. Let Z = (

∑
Xi)/

√
n. The classical central limit theorem [Fel68] states

that

dK (Z,N (0, 1)) = O

(
1√
n

)
.

Here the constant in O(·) depends on X1. It is natural to ask if instead of approximating Z by a normal,
one can get an even better rate of convergence. More precisely, a normal distribution is parameterized
by its first two moments. It is natural to investigate the possibility that approximating Z using its first
k > 2 moments may get us a faster convergence rate.

In answering this question, a basic distinction needs to be made between discrete random variables
and continuous random variables. To see why this distinction is necessary, additionally let X1, . . . , Xn

be supported on {−1, 1}. Then the cdf of Z has a discontinuity of size O(n−1/2) at 0. As a result,
no continuous measure can approximate the cdf of Z with error o(n−1/2). This shows that there is a
fundamental gap between approximations with error o(n−1/2) and those with error Ω(n−1/2). We can
also ask whether the discrete/continuous dichotomy is the only real barrier?

The answer is affirmative. The theory of asymptotic expansions (cf.[Pet75]) is fairly well-understood
for sums of continuous i.i.d. random variables. In particular, as long as lim sup |X̂(t)| < 1,

sup
x
|Pr[Z ≤ x]−Πn,k(x)| = O

(
1

n(k−1)/2

)
, (1)

where

Πn,k(x) = Φ(x)

(
1 +

k−2∑
ν=1

Qν(x)

)
.
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In the above, for all ν, Qν is a polynomial whose coefficients are given in terms of the first ν + 2
moments of Z. The exact polynomial used here is difficult to state succinctly (see Section 2 for the
explicit description of Qν). However, the only thing relevant for the discussion is that Qν is fully
specified knowing just the first ν + 2 moments of Z. The condition that lim sup |X̂(t)| < 1 is known
in literature as Cramér’s condition and the resulting expansion (given in Πn,k(x)) is known as an
Edgeworth expansion. This expansion was first obtained by Cramér [Cra28]. For a more modern
reference, see [Fel68]. It is important to mention that O(·) in the above theorem depends upon the
random variable X and in particular, incorporates the quantitative aspect of Cramér’s condition. The
quantitative dependence is as follows (see Petrov [Pet75]):

sup
x
|Pr[Z ≤ x]−Πn,k(x)| = kO(k) · βk

σk · n−
k−1
2

+ n
k(k+1)

2 ·

(
1

2n
+ sup
|ξ|> σ2

12β3

|X̂(ξ)|

)n
(2)

where

Πn,k(x) = Φ(x)

(
1 +

k−2∑
ν=1

Qν(x)

)
.

Here σ is the standard deviation of X and βi = E[|X|i]. To get an idea of the error term, assume that
βk/σ

k = Ok(1). This is indeed true for a large class of random variables. With this assumption, the

first error term is Ok(1) · n−
k−1
2 . For the second term, provided that sup|ξ|>σ2/(12β3) |X̂(ξ)| is bounded

away from 1 by a constant, for any k = õ(
√
n), the term is exponentially small.

It is also worthwhile to mention that our interest in the exact dependence of the error term on
the random variables {Xi} is because in our application, our random variables {Xi} will not be fixed
but rather have a dependence on n. Thus, knowing the precise dependence is necessary to get any
non-trivial bounds.

At this point, we face two problems. The first is that, in general, we will be dealing with sums
of independent but not necessarily identically distributed random variables. In fact, while [Pet75] has
(nearly) explicit estimates for the convergence rate for i.i.d. variables, to the best of our knowledge,
none of the standard references (e.g. [Pet75, BR86]) on asymptotic expansions have explicit estimates
for non i.i.d. variables. The second problem is even more serious. Even if we restrict ourselves to i.i.d.
variables which are discrete, Cramér’s condition is not satisfied. For the rest of discussion to make
sense, it is useful to define the notion of a lattice-valued random variable.

Definition 4. A random variable X is said to lie on the lattice L = {a + b · h}b∈Z if Pr[X 6∈ L] = 0.
The maximum h for which there exists such a lattice L is said to be the maximal span of X.

For the rest of the discussion, if X1, . . . , Xn are discrete, we will assume they are all lattice-valued
with a common maximal span. The theory for non-lattice valued random variables is not nearly as
well-understood (cf. [BHW94] for a discussion). Assuming that X1, . . . , Xn are i.i.d. and lattice valued,
correction terms (which are discontinuous) can be added in (1) to get a similar approximation for sums
of i.i.d. lattice valued random variables. For example, the following theorem can be found in [IL71].

Theorem 4. Let X1, . . . , Xn be i.i.d. variables such that for all i ∈ [n], E[Xi] = 0, Var(Xi) = 1 and
Xi are lattice valued supported on Z with maximal span 1. Then,

sup
x

∣∣∣∣∣Pr[Z ≤ x]−Πn,k(x)−
k−2∑
ν=1

(−1)b(ν−1)/2c · n−ν/2 · Sν(x ·
√
n) ·

dνΠn,k(x)

dxν

∣∣∣∣∣ = O

(
1

n(k−2)/2

)
,

where

S2j(x) = 2 ·
∞∑
k=1

(2πk)−2j · cos(2πkx) and S2j+1(x) = 2 ·
∞∑
k=1

(2πk)−2j−1 · sin(2πkx)
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While this provides an analogue of (1) for the case of lattice valued random variables, the depen-
dence of the error on the random variable X1 is not explicit in any of the references. The situation
is even worse for non identically distributed lattice valued random variables. While in principle, it is
entirely possible that the machinery used in [IL71, Pet75] can be used to give fully-explicit bounds
even for the case of non-identical lattice random variables, previous literature seems to have avoided
this approach noting that this approach seems unwieldy for getting explicit bounds. In fact, Barbour
and C̆ekanvic̆ius [BC̆02] use this as their motivation for getting asymptotic expansions for sums of
independent integer valued random variables. Their approach is based on using Stein’s method for
approximations using signed compound Poissons (SCP). While the approach in [BC̆02] gives fairly ex-
plicit bounds and works for sums of independent (not necessarily identical) integer random variables,
the bounds do not scale well when the variance of the random variables increase. This will be true in
our case which forces us to seek an alternate approach.

1.2 Our approach

Let X1, . . . , Xn be independent lattice valued random variables and Z =
∑
Xi. We follow the approach

of Esséen [Ess45], which treats the case of i.i.d. random variables (both lattice and non-lattice) and
combine it with ideas described in Petrov [Pet75] which obtains explicit estimates for i.i.d. non-
lattice random variables. In particular, the common approach in both these works is to first study
the characteristic function of the random variable Z (i.e. the Fourier transform) and show that the
Fourier transform can be well-approximated pointwise in terms of the first ν moments with an error of
n−(ν−1)/2. In other words, we obtain an expression Z̃(ξ) which is described only in terms of the first ν
moments of Z and that ‖Ẑ(ξ)− Z̃(ξ)‖∞ = O(n−(ν−1)/2).

The next step is to show that closeness in ‖ · ‖∞ norm in the Fourier transform can translate to
closeness in total variation norm for the actual distance. This is somewhat different in the two works.
In particular, for lattice valued random variables, weaker but significantly easier-to-obtain estimates
can be obtained via the technique in Esseen [Ess45] which still suffices for our purposes. The approach
in Petrov [Pet75] involves more Fourier analysis and is harder to do but sometimes obtain better
estimates.

Obtaining the expression Z̃(ξ) is most of the technical work for getting the asymptotic expansions
theorem and in this, we largely follow the ideas laid out in Petrov [Pet75]. Of course, because we deal
with non i.i.d. variables, our calculations become more complicated (Further, at some points, we do
need to make modifications as the quantitative estimates given by [Pet75] are useful for us). Another
significant point of departure is that we deal with lattice valued variables as opposed to [Pet75] whose
explicit bounds only deal with non-lattice valued variables.

Having obtained the expression for Z̃(ξ), we follow the routine to go from `∞ distance in the Fourier
transform to `1 distance among the distributions in a fairly verbatim manner, thus obtaining our final
bound. The actual theorem obtained is somewhat involved to state here and requires a fair bit of
notation. Thus, we defer it to the next section.

1.3 Application to fooling combinatorial sums

Armed with this asymptotic expansion theorem, we recall our main result concerning derandomization
of combinatorial sums is as follows.

Theorem. There is a efficiently computable PRG Gcsum : {0, 1}t → [m]n which ε-fools every f ∈
Csum(m,n) and tcsum = O(logm+ log3/2(n/ε)).

The approach is best demonstrated by considering the setting when ε = n−Θ(1). Similar to
[GMRZ13], let us assume that the underlying combinatorial sum is specified by the tuple (f1, . . . , fn).
Let (y1, . . . , yn) ∼ U[m]n and Z =

∑
fi(yi).
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• Low variance case: Var(Z) ≤ 2c·
√

logn.

• High variance case: Var(Z) > 2c·
√

logn.

Here c is some fixed positive constant. We remark that if ε = n−ω(1), then we do an alphabet reduction
step which shows that it suffices to treat the case when m = poly(n/ε). The seed length required for
this step is O(log(m · n/ε)). This is a fairly easy step and hence, we do not describe it here.

Coming back to the case at hand, let ε = n−Θ(1) and assume that we are in case (i). In this case, we
set t = 2C

√
logn where C > c is a large constant. We also set k = Θ(

√
log n). Let Hk,n,t be a family of k-

wise independent hash functions mapping [n] to [t]. Note that the seed for Hk,n,t is thash = O(log3/2 n).
The PRG first samples h ∼ Hk,n,t to partition [n] into t buckets. Within each bucket, the PRG uses
k-wise independence (the distribution across the buckets is independent). Mimicking the machinery for
low-variance case from [GMRZ13] (described earlier) and combining it with fairly standard techniques
for obtaining concentration bounds for sums of k-wise independent random variables, we obtain the
the PRG described here ε-fools f ∈ Csum(m,n) with error ε. Unfortunately, as before, since the
seed across the buckets are independent, and hence the seed length is prohibitively large. However,
as in [GMRZ13], f composed with the PRG itself can be seen as a ROBP with much smaller size.
Derandomizing this using Theorem 1 gets us the final seed length of O(logm+ log3/2(n/ε)).

We next describe the approach for the high variance case. As the reader might have guessed, the
high variance case is where the power of asymptotic expansions is used. Here we set t = 2C

√
logn

where C < c is a constant. We also set k = Θ(
√

log n). The PRG first samples h ∼ Hk,n,t to

partition [n] into t buckets. Note that the seed required for this step is thash = O(log3/2(n)). Let
Gk,n/t,m : {0, 1}t1 → [m]n/t be a k-wise independent generator for the domain [m]n/t. Further, let

G
(cs)
m,n/t : {0, 1}t2 → [m]n/t be the PRG from [GMRZ13] which δ-fools Csum(m,n/t) with δ set to a very

small constant. Let G
(cs)
m,n/t ⊗Gk,n/t,m : {0, 1}t1+t2 → [m]n/t be defined as

G
(cs)
m,n/t ⊗Gk,n/t,m : (z1, z2) 7→ Gk,n/t,m(z1)⊕m G

(cs)
m,n/t(z2).

The final PRG applies t independent copies of G
(cs)
m,n/t ⊗Gk,n/t,m across the different buckets. First of

all, we note that the seed for each bucket is O(log3/2(n)). While the seed length for this PRG is large,
by applying the same trick (of derandomizing f composed with the PRG using Theorem 1), we note
that the total seed length for the PRG can be bounded by O(log3/2(n)). What remains to be proven
is that the basic PRG described here ε-fools f ∈ Csum(m,n) when Var(Z) > 2c·

√
logn.

First of all, let Zf,h−1(i) =
∑

j∈h−1(i) fj(yj). Further, let Z ′f,h−1(i) =
∑

j∈h−1(i) fj(yj) where

y′1, . . . , y
′
n are sampled from the output of the PRG. We first observe that the random variables

{Z ′f,h−1(i)} are independent for i ∈ [t] (as are {Zf,h−1(i)}). Further, by our construction, we have

that for any j ∈ [1, . . . , k], the jth moment of Z ′f,h−1(i) is identical to that of Zf,h−1(i) for i ∈ [t]. In fact,

because our PRG contains an independent copy of G
(cs)
m,n/t, it ensures the Fourier spectrum of Z ′f,h−1(i)

is also δ-close to the Fourier spectrum Zf,h−1(i) (for i ∈ [t]) in `∞ distance. Further, an application of
concentration bounds for sums of k-wise independent random variables implies that with probability
1− n−θ(1) for h ∼ Hk,n,t, for all i ∈ [t],

Var(Z)

2 · t
≤ Var

(
Zf,h−1(i)

)
≤ 3 ·Var(Z)

2 · t
.

It turns out that the above conditions are sufficient to apply the asymptotic expansions theorem and
imply that ∥∥∥∥ t∑

i=1

Z ′f,h−1(i) −
t∑
i=1

Zf,h−1(i)

∥∥∥∥
1

≈ t−Ω(k) ≤ ε.

This concludes our informal description of the PRG.
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2 Asymptotic expansion for sums of independent random variables

2.1 Preliminaries for the asymptotic expansion

We start by setting the notation which will be used throughout this section. For any random variable
X supported on R,

• X̂ : R→ C denote its characteristic function. In other words, X̂(ξ) = Ex∼X [ei·ξ·x].

• αX,k denotes the kth moment of X.

• βX,k dentoes the kth absolute moment of X.

• γX,k denotes the kth cumulant of X.

We now let X1, . . . , Xn be n independent random variables. We will use the following shorthands.

• The variables X1, . . . , Xn are centered.

• αi,k will denote αXi,k. Likewise for βi,k and γi,k.

• Also, βk =
∑n

i=1 βi,k.

• σ2 =
∑n

i=1 αi,2 and Z = (X1 + . . .+Xn)/σ.

We will need to define a family of polynomials {Pν(iξ)}ν∈N. The coefficients of these polynomials
will be determined by the moments of Z. For defining these, it will be convenient to assume that
αi,k, βi,k and γi,k exists for all i ∈ [n] and k ∈ N. After we finish defining the polynomials, we will
see that this assumption is not necessary. Rather, for defining Pν , we will only require existence of
the first ν + 2 moments. But it will help to gain the intuition behind defining these polynomials by
assuming all moments, cumulants and absolute moments exist. We now state the main theorem (the
exact expression for Pν is not very important at this stage).

Theorem 5. Let X1, . . . , Xn independent centered random variables such that for i = 1, . . . , n supported
on lattices of span 1. Further, let Z = (X1 + . . . + Xn)/σ. Note that Z is supported on a lattice with
span 1/σ. Call the lattice LZ . Let us assume that I ≥ 2

√
s · log s. Then,∣∣∣∣∣Pr[Z = z]− 1

2πσ
·
∫ πσ

−πσ
e−iξz · e−

ξ2

2 ·

(
1 +

s−3∑
ν=1

Pν(iξ)

)
dξ

∣∣∣∣∣ ≤ ηlow + ηmed + ηhigh

where

ηlow = sO(s) · Ls−2
3s , ηmed = e−

I2

6 + sO(s) · e−
I2

4 and ηhigh = sup
|ζ|∈[σ2/β3,π]

∣∣∣∣∣
n∏
i=1

X̂i(ζ)

∣∣∣∣∣+ sO(s) · e−
I2

4 .

2.2 Description of {Pν}

Having stated the main theorem, we now start the process of describing the polynomials {Pν}. Toward
this, we also recall the following connection between moments and cumulants.

Fact 1. There are polynomials pk,CM , pk,MC : Rk → R such that for any random variable X,

αX,k = pk,CM (γX,1, . . . , γX,k) γX,k = pk,MC(αX,1, . . . , αX,k).

Further, if a monomial
∏k
i=1 γ

si
X,i appears in pk,CM , then

∑
i · si = k. Likewise, for pk,MC .

8



We next recall the cumulant generating function X̃ defined as X̃(ξ) = log X̂(ξ). Note that this
definition means that X̃ may not be defined on the entire R. However, it is easy to see that for every
X, there exists c > 0, such that X̃ is defined on [−c, c]. We recall the following fact connecting the kth

derivative of X̃ and the γX,k.

Fact 2. The kth derivative of X̃(ξ) exists at ξ = 0 if and only if γX,k is finite. Further,

γX,k = (−i)k · d
kX̃(ξ)

dξk

∣∣∣∣
ξ=0

Now by definition, we have that Z̃(ξ) =
∑n

i=1 X̃i(ξ/σ). For the moment, assume that the Maclaurin

expansion of X̃i exists in interval [−ci, ci] for some ci > 0. If c = min ci, then we see that the Maclaurin
series expansion of Z exists in the interval [−σc, σc]. Further, for ξ ∈ [−σc, σc], we have

Z̃(ξ) =
n∑
j=1

X̃j(ξ/σ) =

∞∑
ν=1

n∑
j=1

γj,ν · iν · ξν

σν · ν!

Next, we notice that γj,1 = 0 for all j ∈ [n]. Also,
∑n

j=2 γj,2 = σ2. This result in the simplified
expression

Z̃(ξ) = −ξ
2

2
+

∞∑
ν=1

λν+2 · (iξ)ν+2

(ν + 2)! · σν+2
,

where λν+2 =
∑n

j=1 γj,ν+2. This implies

Ẑ(ξ) = e−
ξ2

2 · exp

( ∞∑
ν=1

λν+2 · (iξ)ν+2

(ν + 2)! · σν+2

)
.

We define Pν(iξ) to denote the coefficient of wν in the formal expansion of

exp

( ∞∑
ν=1

λν+2 · (iξ)ν+2

(ν + 2)! · σν+2
· wν

)
.

Now, observe that λν+2/σ
ν+2 = γZ,ν+2. Then, we immediately see that Pν(iξ) is a polynomial

whose coefficients are given by polynomials in γZ,3, . . ., γZ,ν+2. Observe that as we said before, for

defining Pν(iξ), we do not need the Maclaurin series expansion of Z̃(ξ) to exist in any open set around
0. Neither do we require γj,k to exist for all j and k. Rather, we require γj,k to exist for all j and

1 ≤ k ≤ ν + 2. Note however that if γj,k exists for all k and the Maclaurin series expansion for Ẑ(ξ) is
valid, then

Ẑ(ξ) = e−
ξ2

2 ·

(
1 +

∞∑
ν=1

Pν(iξ)

)
.

2.3 Alternate formulation for {Pν}

We now seek an alternate formulation of the polynomials Pν which will be useful to us later on. Towards
this, we make the following definition:

Vw(ξ) =
ξ2

2
+

1

w2
· log Ẑ(ξ · w) (3)

With this, we make the following claim.

9



Claim 3. For Vw(ξ) defined as above, the following holds:

s−3∑
ν=1

Pν(iξ) · wν =
s−3∑
j=1

2j+s−3∑
k=0

dkV j
w(ξ)

dξk

∣∣∣∣
ξ=0

· ξ
k

k!
(4)

We begin with a few elementary claims about Vw. First, note that by definition, we have

dk log Ẑ(ξ · w)

dξk

∣∣∣∣
ξ=0

=

n∑
j=1

dk log X̂j(ξ · w/σ)

dξk

∣∣∣∣
ξ=0

=

n∑
j=1

wk · γj,k · ik

σk
=
wk · λk · ik

σk

The last but one equality follows by definition of cumulants. Using this, we easily have the following
equations.

For k ≤ 2, V (k)(0) = 0. (5)

For k > 2, V (k)(0) =
wk−2 · λk · ik

σk
. (6)

Towards achieving the characterization of Pν(ξ), we note that,

Pν(iξ) · wν = S1,ν + . . .+ Sν,ν , (7)

where

S`,ν =
∑

ν1+...+ν`=ν:
∏
νj>0

∏̀
j=1

λνj+2 · (iξ)νj+2

(νj + 2)! · σνj+2 · w
νj

Note that in the above, different permutations of the tuple (ν1, . . . , νi) are counted as distinct. We
then have the following claim.

Claim 4.

Si,ν =
dν+2iV i

w(ξ)

dξν+2i

∣∣∣∣
ξ=0

· ξν+2i

(ν + 2i)!

Proof. By the Leibniz rule for differentiation, we have,

dν+2iV i
w(ξ)

dξν+2i

∣∣∣∣
ξ=0

· ξν+2i

(ν + 2i)!
=

∑
ν1+...+νi=ν+2i

(
ν + 2i

ν1 ν2 . . . νi

) i∏
j=1

dνjVw(ξ)

dξνj

∣∣∣∣
ξ=0

· ξν+2i

(ν + 2i)!

However, note that using (5), we can say that for any term indexed (ν1, . . . , νj), unless all the νj > 2,
the term will vanish. Hence, we have

dν+2iV i
w(ξ)

dξν+2i

∣∣∣∣
ξ=0

· ξν+2i

(ν + 2i)!
=

∑
ν1+...+νi=ν:

∏
νj>0

(
ν + 2i

ν1 + 2 ν2 + 2 . . . νi + 2

) i∏
j=1

dνj+2Vw(ξ)

dξνj+2

∣∣∣∣
ξ=0

· ξν+2i

(ν + 2i)!
,

=
∑

ν1+...+νi=ν+2i

(
ν + 2i

ν1 ν2 . . . νi

) i∏
j=1

dνjVw(ξ)

dξνj

∣∣∣∣
ξ=0

· ξν+2i

(ν + 2i)!
,

which proves the claim.
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Proof of Claim 3: We combine Claim 4 and (7), we have

s−3∑
ν=1

Pν(iξ) · wν =
s−3∑
ν=1

ν∑
j=1

dν+2jV j
w(ξ)

dξν+2j

∣∣∣∣
ξ=0

· ξν+2j

(ν + 2j)!

=

s−3∑
j=1

s−3∑
ν=j

dν+2jV j
w(ξ)

dξν+2j

∣∣∣∣
ξ=0

· ξν+2j

(ν + 2j)!
(8)

To simplify this into our final form, we make the following claim.

Claim 5. For any j ∈ N and k < 3j,

dkV j
w(ξ)

dξk

∣∣∣∣
ξ=0

= 0.

Proof.

dkV j
w(ξ)

dξk

∣∣∣∣
ξ=0

=
∑

i1+...+ij=k

(
k

i1 . . . ij

) j∏
`=1

di`Vw(ξ)

dξi`

∣∣∣∣
ξ=0

= 0

The first equality follows by Leibniz rule for differentiation while the second equality uses the fact that
since k < 3j, there is at least one ` such that i` < 3. Using (5), we get that each of the summands and
hence the entire sum is zero.

Combining Claim 5 with (8), we get Claim 3.

2.4 Approximation of the Fourier spectrum using moments

Let us begin by defining Lk = (βk/σ
k)1/(k−2). Let us assume that Lk ≤ 1 for k ≥ 3. This can be done

without loss of generality as otherwise, Theorem 5 holds trivially. Let us now define

I =
1

C
·min

{
min
i

σ

σi
,

1

L3s

}
, (9)

for a sufficiently large constant C > 0. The exact value of C is not important as long as it is sufficiently
large. We now state the main lemma of this section which is also the main workhorse for proving
Theorem 5.

Lemma 6. For |ξ| ≤ I,∣∣∣∣∣Ẑ(ξ)− e−
ξ2

2 ·

(
1 +

s−3∑
ν=1

Pν(iξ)

)∣∣∣∣∣ ≤ c(s) · Ls−2
3s ·

(
|ξ|s + |ξ|3s−8)

)
· e−2ξ2/5

where c(s) = sO(s).

We will need a few preliminaries before we start with the proof of Lemma 6. The following inequality
follows easily from monotonicity of norms.

Claim 7. Let X be a real-valued random variable. Assuming that βX,k1+k2 exists, βX,k1 · βX,k2 ≤
βX,k1+k2.

The following lemma states that {Lk} is a monotonically non-decreasing sequence.

Claim 8. {Lk} is a monotonically non-decreasing sequence.
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Proof. Let k1 > k2 ≥ 2 and Y be any real valued random variable. Note that for λ = k2−2
k1−2 , k2 =

λk1 + (1− λ)2. Hence, applying Claim 35, we have

‖Y ‖λk1k1
· ‖Y ‖(1−λ)2

2 ≥ ‖Y ‖k2k2 .

Exponentiating all sides by (k2 − 2)−1 and rearranging powers of ‖Y ‖2, we have

‖Y ‖
k1
k1−2

k1

‖Y ‖
k1
k1−2

2

≥
‖Y ‖

k2
k2−2

k2

‖Y ‖
k2
k2−2

2

.

We now instantiate the random variable Y as follows: Sample i ∈ [n] u.a.r. and then sample Xi.
Applying the previous inequality on the random variable Y , we have(

Ei∈[n]βi,k1
) 1
k1−2(

Ei∈[n]βi,2
) k1

2(k1−2)

≥
(
Ei∈[n]βi,k2

) 1
k2−2(

Ei∈[n]βi,2
) k2

2(k2−2)

and this immediately implies (∑
i∈[n] βi,k1

) 1
k1−2

(∑
i∈[n] βi,2

) k1
2(k1−2)

≥

(∑
i∈[n] βi,k2

) 1
k2−2

(∑
i∈[n] βi,2

) k2
2(k2−2)

which proves that {Lk} is monotonically non-decreasing sequence.

We will also need a bound on Pν(iξ). Towards that, we establish the following simple bounds.

Claim 9. Let X be any centered random variable. Then, for any k, (with the notations as before),
|γX,k| ≤ 2k · βX,k.

Claim 10. For Z defined as above,
|λj |
σj
≤ 2j · jj.

Proof. We consider the random variable Z ′ = σ ·Z = X1 + . . .+Xn. Note that λj = γZ′,j . Thus, using
Claim 9, it suffices to bound βZ′,j . Assume for the moment that j is even. For an integer j, let P (j)
denote the set of all partitions of j none of which are 1. Then, we have

E[|X1 + . . .+Xn|j ] ≤
∑

(a1,...,at)∈P (j)

(
j

a1 a2 . . . at

)
·
t∏
i=1

E

[∑
j
|Xj |ai

]

=
∑

(a1,...,at)∈P (j)

(
j

a1 a2 . . . at

)
·
t∏
i=1

σai · Lai−2
ai

≤ σj · jj .

Note that the last inequality uses that Lt ≤ 1 for all t > 2. This finishes the proof for even j. For odd
j, it follows from monotonicity of norms.

We next make the following claim which bounds the value of Pν(iξ).

Claim 11.
|Pν(iξ)| ≤ νO(ν) · (|ξ|ν+2 + |ξ|3ν)
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Proof. Begin by noting that

Pν(iξ) =

ν∑
`=1

∑
ν1+...+ν`=ν:

∏
νj>0

∏̀
j=1

λνj+2 · (iξ)νj+2

(νj + 2)! · σνj+2

Thus,

|Pν(iξ)| ≤
ν∑
`=1

∑
ν1+...+ν`=ν:

∏
νj>0

∏̀
j=1

|λνj+2| · |ξ|νj+2

(νj + 2)! · σνj+2 ≤
ν∑
`=1

∑
ν1+...+ν`=ν:

∏
νj>0

∏̀
j=1

(2e)νj+2 · |ξ|νj+2,

where the last inequality uses Claim 10. The final term can be easily bound by νO(ν) ·(|ξ|ν+2+|ξ|3ν).

As a result, we also get the following corollary.

Corollary 12. ∣∣∣∣∣e− ξ22 ·
(

1 +
s−3∑
ν=1

Pν(iξ)

)∣∣∣∣∣ ≤ sO(s) · e−ξ2/2 · (|ξ|3 + |ξ|3s).

Proof of Lemma 6: We first start by showing that for |ξ| ≤ I, the function Vw(ξ) is well-defined.
Note that Vw(ξ) is well defined as long as Ẑ(ξ ·w) 6= 0. The following claim states the interval in which
this indeed holds and thus Vw(ξ) is well defined.

Claim 13. For |ξ| ≤ σ
σi

, |X̂i(ξ · w)| ≥ 1/2.

Proof. Using Taylor’s theorem (for complex valued functions), we have∣∣∣∣X̂i

(
ξ · w
σ

)
− 1

∣∣∣∣ =

∣∣∣∣E [exp

(
i · w · ξ ·Xi

σ

)
− 1− i · ξ · w ·Xi

σ

]∣∣∣∣ ≤ ξ2w2 ·E[X2
i ]

2 · σ2
.

For |ξ| ≤ σ
σi

, the right hand side is at most 1/2, finishing the proof.

Claim 14. For |ξ| ≤ mini
σ
σi

, Ẑ(ξ · w) 6= 0.

Proof. Note that Ẑ(ξ · w) =
∏n
i=1 X̂i((ξ · w)/σ). Using Claim 13, we get the claim.

We now establish an upper bound on Vw(ξ). For this, our strategy is to use Taylor’s theorem around
ξ = 0. In particular, we will show the Vw and its first two derivatives are zero and then establish a
bound on the third order derivative. Using Taylor’s theorem, this will lead us to an upper bound on
Vw(ξ). We start with the following simple claims. Having established that the function Vw(ξ) as well
as its first and second order derivatives vanish at 0, we now establish a bound on the supremum of the
third order derivative. To do this, we first prove the following simple claim.

Claim 15. For any ξ ∈ R,
∣∣∣∂kX̂i(ξ)∂ξk

∣∣∣ ≤ βi,k.

Proof. Note that X̂i(ξ) = Ex∈Xi [exp(ixξ)]. As a consequence, we get that

∂kX̂i(ξ)

∂ξk
= Ex∈Xi [(i · x)k exp(ixξ)].

This immediately implies the claim.
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To establish the upper bound on the third order derivative of Vw(ξ), we establish the more general
bound on the sth order derivative for s > 2. This will be useful later on. For this, we observe the
following simple fact.

dk log u

dxk
=

∑
i1,...,ik:

∑
j·ij=k

ci1,...,ik ·
1

u‖(i1,...,ik)‖1

k∏
`=1

(
d`u

dx`

)i`
(10)

where a simple induction can be used to show that∑
i1,...,ik:

∑
j·ij=k

|ci1,...,ik | ≤ (2k)!. (11)

Claim 16. For s > 2 and |ξ| ≤ I, ∣∣∣∣dsVw(ξ)

dξs

∣∣∣∣ ≤ (4s)! · ws−2 · Ls−2
s .

Proof.

dsVw(ξ)

dξs
=

1

w2
·

(
n∑
`=1

ds log X̂`(ξ · w/σ)

dξs

)

=
1

w2
·

 n∑
`=1

∑
i1,...,is:

∑
j·ij=s

ci1,...,is ·
1

X̂`(ξ · w/σ)‖(i1,...,is)‖1
·
s∏
j=1

(
djX̂`(ξ · w/σ)

dξj

)ij
The last equality uses (10) and (11). Using Claim 15 and Claim 13, we get

∣∣∣∣dsVw(ξ)

dξs

∣∣∣∣ ≤ 1

w2
·

 n∑
`=1

∑
i1,...,is:

∑
j·ij=s

|ci1,...,is | ·
1

|X̂`(ξ · w/σ)|‖(i1,...,is)‖1
·
s∏
j=1

∣∣∣∣∣
(
djX̂`(ξ · w/σ)

dξj

)∣∣∣∣∣
ij


Note that |X̂`(ξ · w/σ)| ≥ 1/2 for |ξ| ≤ I (Claim 13), we get

∣∣∣∣dsVw(ξ)

dξs

∣∣∣∣ ≤ 1

w2
·

 n∑
`=1

∑
i1,...,is:

∑
j·ij=s

|ci1,...,is | · 2‖(i1,...,is)‖1 ·
s∏
j=1

∣∣∣∣∣
(
djX̂`(ξ · w/σ)

dξj

)∣∣∣∣∣
ij


≤ 1

w2
·

 n∑
`=1

∑
i1,...,is:

∑
j·ij=s

|ci1,...,is | · 2‖(i1,...,is)‖1 ·
s∏
j=1

β
ij
`,j · w

j·ij

σj·ij

 (Claim 15)

≤ 1

w2
· w

s

σs

 n∑
`=1

∑
i1,...,is:

∑
j·ij=s

|ci1,...,is | · 2‖(i1,...,is)‖1 ·
s∏
j=1

β
ij
`,j


≤ ws−2

σs

 n∑
`=1

∑
i1,...,is:

∑
j·ij=s

|ci1,...,is | · 2‖(i1,...,is)‖1 · β`,s

 (Claim 7)

≤ ws−2 · βs
σs

· 2s · (2s)! ≤ (4s)! · ws−2 · Ls−2
s .
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Using this, we have the following corollary.

For |ξ| ≤ I,
∣∣∣∣d3Vw(ξ)

dξ3

∣∣∣∣ ≤ 12! · w · L3. (12)

Also, repating nearly the same calculation as Claim 16, we also have

For |ξ| ≤ I,
∣∣∣∣d2Vw(ξ)

dξ2

∣∣∣∣ ≤ 8! (13)

Equipped with this inequality, we now establish an upper bound Vw(ξ). Using Taylor’s theorem
and (5), we have that for |ξ| ≤ I,

|Vw(ξ)| ≤ 1

6
|ξ3| sup

|ξ′|≤|ξ|

∣∣∣∣d3Vw(ξ′)

dξ′3

∣∣∣∣ ≤ Θ(1) · w · |ξ|3 · L3 (14)

Likewise, we have,∣∣∣∣dVw(ξ)

dξ

∣∣∣∣ ≤ Θ(1) · w · |ξ|2 · L3 and

∣∣∣∣d2Vw(ξ)

dξ2

∣∣∣∣ ≤ Θ(1) · w · |ξ| · L3. (15)

By choosing C > 0 sufficiently large in (9) and using L3s > L3, we also get that

|Vw(ξ)| ≤ w · ξ2

10
,

∣∣∣∣dVw(ξ)

dξ

∣∣∣∣ ≤ 3w · ξ
10

and

∣∣∣∣d2Vw(ξ)

dξ2

∣∣∣∣ ≤ 3w

5
. (16)

Note that by definition, we have (
X̂(ξ · w)

)1/w2

= e−ξ
2/2 · eVw(ξ).

We seek to control the quantity∣∣∣∣∣e− ξ22 · eVw(ξ) − e−
ξ2

2 ·

(
1 +

s−3∑
ν=1

wν · Pν(iξ)

)∣∣∣∣∣
and then finally put w = 1. To control this quantity, we break this the difference into two parts.

R1(w, ξ) =
∞∑

ν=s−2

e−
ξ2

2 · V ν
w (ξ)

ν!
R2(w, ξ) = e−

ξ2

2 ·

(
s−3∑
ν=1

(
V ν
w (ξ)

ν!
− wν · Pν(iξ)

ν!

))

It is easier to control R1(w, ξ), so we begin with that.

|R1(w, ξ)| ≤
∞∑

ν=s−2

e−
ξ2

2 · |Vw(ξ)|ν

ν!
≤ e−

ξ2

2 · |Vw(ξ)|s−2

(s− 2)!
· e|Vw(ξ)|

≤ |Vw(ξ)|s−2

(s− 2)!
· e−

ξ2

2
+wξ2

10 ≤ 2O(s) · ws−2 · ξ3(s−2) · Ls−2
3

(s− 2)!
· e−

ξ2

2
+wξ2

10 . (17)

The penultimate inequality uses (16) and the last inequality uses (14). We will now control R2(w, ξ)
which is slightly more tricky to control. Our calculation for this part is somewhat different from those in
Petrov [Pet75] or Bhattacharya and Rao [BR86]. In particular, these two works truncate after ν = s−3
(i.e. do an approximation in terms of the first s− 1 moments). However, naively going through their
calculations, it seems one needs to pay a factor of sO(s2). On the other hand, we pay a factor of sO(s)
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but instead need to assume that the first 3s+ 2 moments exists and the error bound is in terms of L3s.
Towards bounding R2(w, ξ), we have

R2(w, ξ) = e−
ξ2

2 ·
s−3∑
ν=1

(
V ν
w (ξ)

ν!
− wν · Pν(iξ)

ν!

)

= e−
ξ2

2 ·
s−3∑
ν=1

1

ν!
·

(
V ν
w (ξ)−

2ν+s−3∑
k=0

dkV ν
w (ξ)

dξk

∣∣∣∣
ξ=0

· ξ
k

k!

)

To get the second equality, we use (4). We next use Taylor’s theorem to get

|R2(w, ξ)| ≤
s−3∑
ν=1

e−
ξ2

2

ν!
· |ξ|

2ν+s−2

(2ν + s− 2)!
κν,2ν+s−2(ξ), (18)

where

κν,2ν+s−2(ξ) = sup
|ξ|≤I

∣∣∣∣d2ν+s−2V ν
w (ξ)

dξ2ν+s−2

∣∣∣∣ .
Thus our task reduces to bounding κν,2ν+s−2(ξ) for ν ∈ [1, . . . , s− 3]. To bound this number, we recall
the following basic fact about higher order derivatives of products of functions. Let Z+ = N ∪ {0}.
Using the Leibniz rule, we have the following:

Lemma 17.

dk
∏`
i=1 ui

dxk
=

∑
a∈Z+`:‖a‖1=k

(
k

a1, . . . , a`

)∏̀
i=1

daiui
dxai

Using Lemma 17, we have∣∣∣∣d2ν+s−2V ν
w (ξ)

dξ2ν+s−2

∣∣∣∣ =

∣∣∣∣∣∣
∑

a∈Z+ν :‖a‖1=2ν+s−2

(
2ν + s− 2

a1, . . . , aν

) ν∏
i=1

daiVw(ξ)

dξai

∣∣∣∣∣∣ ,
≤

∑
a∈Z+ν :‖a‖1=2ν+s−2

(
2ν + s− 2

a1, . . . , aν

) ν∏
i=1

∣∣∣∣daiVw(ξ)

dξai

∣∣∣∣ ,
=

∑
a∈Z+ν :‖a‖1=2ν+s−2

(
2ν + s− 2

a1, . . . , aν

) ∏
i:ai∈{0,1}

∣∣∣∣daiVw(ξ)

dξai

∣∣∣∣ ∏
i:ai≥2

∣∣∣∣daiVw(ξ)

dξai

∣∣∣∣ . (19)

Using Claim 16 and (13), we recall that for ai > 1 and |ξ| ≤ I,∣∣∣∣daiVw(ξ)

dξai

∣∣∣∣ ≤ (4 · ai)! · Lai−2
ai · wai−2.

On the other hand, for ai ∈ {0, 1} and |ξ| ≤ I, using (16) we have,∣∣∣∣daiVw(ξ)

dξai

∣∣∣∣ ≤ w · ξ2−ai

10
.

Applying the last two inequalities to (19),∣∣∣∣d2ν+s−2V ν
w (ξ)

dξ2ν+s−2

∣∣∣∣ ≤ ∑
a∈Z+ν :‖a‖1=2ν+s−2

(
2ν + s− 2

a1, . . . , aν

) ∏
i:ai∈{0,1}

w · ξ2−ai

10
·
∏
i:ai≥2

(4 · ai)! · Lai−2
ai · wai−2,

≤
∑

a∈Z+ν :‖a‖1=2ν+s−2

(
2ν + s− 2

a1, . . . , aν

) ∏
i:ai∈{0,1}

w · ξ2−ai

10
·
∏
i:ai≥2

(4 · ai)! · Lai−2
2ν+s−2 · w

ai−2
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The last inequality uses that Lai ≤ L‖a‖∞ ≤ L‖a‖1 (using Claim 8). For any given a ∈ Z+ν , use #a(0)
to denote the number of zero entries in a and #a(1) to denote the one entries. Note that for any term
in the above summation, we have

• The exponent of w is ‖a‖1 − 2‖a‖0 + 2#a(1) + #a(0).

• The exponent of L2ν+s−2 is ‖a‖1 − 2‖a‖0 + #a(1).

• The exponent of ξ is 2#a(0) + #a(1).

• 1
10 ·

∏
i:ai≥2(4 · ai)! ≤ (4(2ν + s− 2))! ≤ sO(s).

Using elementary combinatorics, it is easy to show that∑
a∈Z+ν :‖a‖1=2ν+s−2

(
2ν + s− 2

a1, . . . , aν

)
= ν2ν+s−2.

Note that |ξ| ≤ L−1
3s , using Claim 7, we get that |ξ| ≤ L−1

2ν+s−2. Thus,

L
‖a‖1−2‖a‖0+#a(1)
2ν+s−2 · |ξ|2#a(0)+#a(1) ≤ L‖a‖1−2‖a‖0+#a(1)−2#a(0)−#a(1)

2ν+s−2 ≤ Ls−2
2ν+s−2 ≤ L

s−2
3s .

Using the above and that |w| ≤ 1, we get∣∣∣∣d2ν+s−2V ν
w (ξ)

dξ2ν+s−2

∣∣∣∣ ≤ ν2ν+s−2 · sO(s) · Ls−2
3s · w

2ν+s−2.

Applying this bound in (18), we get

|R2(w, ξ)| ≤ e−
ξ2

2 ·
s−3∑
ν=1

1

ν!
· |ξ|

2ν+s−2

(2ν + s− 2)!
· ν2ν+s−2 · sO(s) · Ls−2

3s · w
2ν+s−2,

≤ e−
ξ2

2 · ws · sO(s) · Ls−2
3s · (|ξ|

s + |ξ|3s−8).

Using the bound on |R1(w, ξ)| (and using that |w| ≤ 1), we get that

|R1(w, ξ)|+ |R2(w, ξ)| ≤ sO(s) · Ls−2
3s ·

(
e−

ξ2

2 · (|ξ|s + |ξ|3s−8) + e−
2ξ2

5 · |ξ|3s−6·
)

Finally, plugging in w = 1, in the above, we complete the proof.

3 From Fourier closeness to `1 closeness

We start with some basics of Fourier analysis.

Definition 5. A distribution p is said to be supported on the lattice L = {a+ b ·h}b∈Z if supp(p) ⊆ L.
If h is the maximum possible number such that there exists a lattice L and supp(p) ⊆ L, then h is said
to be the maximal span of the lattice and a its offset.

We need a couple of more facts about Fourier transform of distributions.

Fact 18. Shifting the distribution by a quantity λ multiplies the Fourier transform at point ξ by eiξλ.
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Since our distributions will be supported on lattices, we first recall the Fourier inversion formula
for probability distributions on lattices. In particular, let p be any distribution over L. Then,

p̂(ξ) =

∫
eiξtdp(t) =

∞∑
ν=−∞

p(ν · h+ a) · eiξ(ν·h+a)

As a consequence, we get

h

2π
·
∫ π/h

−π/h
p̂(ξ) · e−iξ(a+ν·h) =

h

2π
·
∞∑

ν′=−∞
p(ν ′ · h+ a) ·

∫ π/h

−π/h
eiξ(ν

′−ν)h = p(ν · h+ a). (20)

We now move to stating the main theorem of this section. For this, we assume that X1, . . . , Xn are
independent centered random variables such that for i = 1, . . . , n supported on lattices of span 1.
Further, let Z = (X1 + . . . + Xn)/σ. Note that Z is supported on a lattice with span 1/σ. Call the
lattice LZ . We now state our main theorem.

Theorem 6. Let X1, . . . , Xn and Z be as defined above and let z ∈ LZ . Let us assume that I ≥
2
√
s · log s. Then,∣∣∣∣∣Pr[Z = z]− 1

2πσ
·
∫ πσ

−πσ
e−iξz · e−

ξ2

2 ·

(
1 +

s−3∑
ν=1

Pν(iξ)

)
dξ

∣∣∣∣∣ ≤ ηlow + ηmed + ηhigh

where

ηlow = sO(s) · Ls−2
3s , ηmed = e−

I2

6 + sO(s) · e−
I2

4 and ηhigh = sup
|ζ|∈[σ2/β3,π]

∣∣∣∣∣
n∏
i=1

X̂i(ζ)

∣∣∣∣∣+ sO(s) · e−
I2

4 .

Now, consider the function

P̂ (ξ) = e−
ξ2

2 ·

(
1 +

s−3∑
ν=1

Pν(iξ)

)
.

Given (20), it suffices to show that P̂ (ξ) is appropriately close to Ẑ(ξ) in the interval [−π/h, π/h]. We
do this in the following proof.
Proof of Theorem 6: We begin by noting that∣∣∣∣∣Pr[Z = z]− 1

2πσ
·
∫ πσ

−πσ
e−iξz · e−

ξ2

2 ·

(
1 +

s−3∑
ν=1

Pν(iξ)

)
dξ

∣∣∣∣∣
=

∣∣∣∣∣ 1

2πσ
·
∫ πσ

−πσ
e−iξz · Ẑ(ξ) · dξ − 1

2πσ
·
∫ πσ

−πσ
e−iξz · e−

ξ2

2 ·

(
1 +

s−3∑
ν=1

Pν(iξ)

)
dξ

∣∣∣∣∣
Towards bounding the quantity on the right hand side, let us divide the interval [−πσ, πσ] into three
parts. Define Ilow = [−I, I], Imed = [− 1

10·L3
, 1

10·L3
] \ Ilow, Ihigh = [−πσ, πσ] \ (Ilow ∪ Imed). We control

the errors in these regions separately. We define

ηlow =

∣∣∣∣∣ 1

2πσ
·
∫
ξ∈Ilow

e−iξz · Ẑ(ξ) · dξ − 1

2πσ
·
∫
ξ∈Ilow

e−iξz · e−
ξ2

2 ·

(
1 +

s−3∑
ν=1

Pν(iξ)

)
dξ

∣∣∣∣∣ .
ηmed and ηhigh are defined in an analogous manner.
Bounding in Ilow: We begin by observing that for any s ≥ 2,

max
ξ∈R

(
|ξ|s + |ξ|(3s−8)

)
· e−

2ξ2

5 ≤ s2s. (21)
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This can be easily deduced from considering two cases: |ξ| ≤ 3
√
s and |ξ| > 3

√
s. In the former case,(

|ξ|s + |ξ|(3s−8)
)
· e−

2ξ2

5 ≤
(
|ξ|s + |ξ|(3s−8)

)
≤ s2s.

In the latter case, both |ξ|s and |ξ|(3s−8) are bounded by e
2ξ2

5 and hence(
|ξ|s + |ξ|(3s−8)

)
· e−

2ξ2

5 ≤ 2.

Armed with (21) and applying Lemma 6,∣∣∣∣∣ 1

2πσ
·
∫ I

−I
e−iξz · Ẑ(ξ) · dξ − 1

2πσ
·
∫ I

−I
e−iξz · e−

ξ2

2 ·

(
1 +

s−3∑
ν=1

Pν(iξ)

)
dξ

∣∣∣∣∣ ≤ sO(s) · Ls−2
3s ·

|I|
σ

≤ sO(s) · Ls−2
3s .

Bounding in Imed: For this, we begin by proving the following useful estimate.

Lemma 19. Let X be a centered random variable with variance σ2 > 0 and E[|X|3] = β. Then, for
all t, ∣∣E[eiXt]

∣∣ ≤ exp

(
−t2 · σ2

2
+
|t|3 · β

3

)
.

Proof. Consider the random variable Z = X −X ′ where X ′ is an independent copy of X. Note that

E[eiZt] = E[eiXt] ·E[e−iXt] = |E[eiXt]|2

Thus, for our purposes, it suffices to bound E[eiZt]. Also, the above shows that 0 ≤ E[eiZt] ≤ 1. Using
the elementary inequality,

for all 0 ≤ x ≤ 1, log x ≤ x− 1,

we get that
log E[eiZt] ≤ E[eiZt]− 1. (22)

Further, using that E[eiZt] is real and the Taylor’s theorem, we have

E[eiZt]− 1 = E[cos(Zt)− 1] ≤ − t
2E[Z2]

2
+

1

6
|t|3E[|Z|3].

Combining this with (22), we have

log E[eiZt] ≤ − t
2E[Z2]

2
+

1

6
|t|3E[|Z|3] = −t2σ2 +

1

6
|t|3E[|Z|3].

Thus, it remains to bound E[|Z|3]. To do this, note that

E[|Z|3] = E[|X −X ′|3] ≤ 2E[|X| · (X −X ′)2] ≤ 4E[|X|3].

Thus, we have

log E[eiZt] ≤ −t2σ2 +
2

3
· |t|3 · β,

which finishes the proof.
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Thus, we get that that for the random variable Z ′ = X1 + . . .+Xn, we have

|E[eiZ
′ξ]| ≤ e−

ξ2σ2

2
+
|ξ|3β3

3 ,

and hence

|E[eiZξ]| ≤ e−
ξ2

2
+
|ξ|3·L3

3 .

Thus, for |ξ| ≤ L−1
3 , |E[eiZξ]| ≤ e−

ξ2

6 . Thus, combining this and Corollary 12,∣∣∣∣∣ 1

2πσ
·
∫
Imed

e−iξz · Ẑ(ξ) · dξ − 1

2πσ
·
∫ I

−I
e−iξz · e−

ξ2

2 ·

(
1 +

s−3∑
ν=1

Pν(iξ)

)
dξ

∣∣∣∣∣
≤ 1

2πσ
·
∫
Imed

e
−ξ2
6 · dξ +

1

2πσ
·
∫
Imed

sO(s) · e−
ξ2

2 · (|ξ|3 + |ξ|3s) · dξ

≤ 1

2πσ
·
∫
Imed

e
−ξ2
6 · dξ +

1

2πσ
·
∫
Imed

sO(s) · e
−ξ2
4 · dξ.

The last inequality uses I ≥ 2
√
s · log s and hence for all ξ ∈ Imed, |ξ| ≥ 2

√
s · log s. This easily implies

that ηmed ≤ e−
I2

6 + sO(s) · e−
I2

4 . This leaves us with bounding ηhigh.
Bounding in Ihigh:∣∣∣∣∣ 1

2πσ
·
∫
Ihigh

e−iξz · Ẑ(ξ) · dξ − 1

2πσ
·
∫
Ihigh

e−iξz · e−
ξ2

2 ·

(
1 +

s−3∑
ν=1

Pν(iξ)

)
dξ

∣∣∣∣∣
≤

∣∣∣∣∣ 1

2πσ
·
∫
Ihigh

e−iξz · Ẑ(ξ) · dξ

∣∣∣∣∣+

∣∣∣∣∣ 1

2πσ
·
∫
Ihigh

e−iξz · e−
ξ2

2 ·

(
1 +

s−3∑
ν=1

Pν(iξ)

)
dξ

∣∣∣∣∣ .
The latter summand (similar to the case for ηhigh) can be bounded by sO(s) · e−

I2

4 . This leaves us with
bounding the first summand. Let us call the first summand as errhigh. Towards this, we observe that

Ẑ(ξ) =
∏n
i=1 X̂i(ξ/σ). As a result,

errhigh ≤ sup
ξ∈Ihigh

|Ẑ(ξ)| = sup
|ζ|∈[σ2/β3,π]

∣∣∣∣∣
n∏
i=1

X̂i(ζ)

∣∣∣∣∣ .
This finishes our proof.

It is instructive to see the corollary of this theorem in the setting of i.i.d. centered lattice valued
random variables. Towards this, assume that X1, . . . , Xn are i.i.d. lattice valued random variables of
maximal span 1 (call the common distribution X). Further, let us use β(k) to denote E[|X|k] and α(k)

to denote E[Xk]. Further, let us assume that X is c(k)-hypercontractive i.e. β
1/k
(k) ≤ c(k) · α1/2

(2) .
Using this notation,

Lk =

(
βk
σk

) 1
k−2

=

 n · β(k)

n
k
2 · αk/2(2)

 1
k−2

=
1√
n
·

 β(k)

α
k/2
(2)

 1
k−2

≤ 1√
n
· c(k)

k
(k−2) .

Now, let us define Z = (X1 + . . . + Xn)/σ. Note that Z lies on a lattice on a lattice with span 1/σ.
Let us call this lattice L. In this setting, we have the following theorem.
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Theorem 7. Let X1, . . . , Xn be as defined above. Finally, let us define I =
√
n

c(3s)
3s

3s−2
. Then, for any

z ∈ L,∣∣∣∣∣Pr[Z = z]− 1

2πσ
·
∫ πσ

−πσ
e−iξz · e−

ξ2

2 ·

(
1 +

s−3∑
ν=1

Pν(iξ)

)
dξ

∣∣∣∣∣ ≤ sO(s) · c(3s)
3s2

s−2

n
s−2
2

+ e−
I2

6 + sO(s) · e−
I2

4

+ sup

|ζ|∈
[
α(2)
β(3)

,π

]
∣∣∣X̂(ζ)

∣∣∣n

Proof. We simply apply Theorem 6 and evaluate the error terms. First, we evaluate ηlow to get

ηlow =
sO(s) · c(3s)

3s2

s−2

n
s−2
2

.

Next, we note that I =
√
n

c(3s)
3s

3s−2
. Thus, we get

ηmed = e−
I2

6 + sO(s) · e−
I2

4 .

Finally, noting that

sup
|ζ|∈[σ2/β3,π]

∣∣∣∣∣
n∏
i=1

X̂i(ζ)

∣∣∣∣∣ = sup

|ζ|∈
[
α(2)
β(3)

,π

]
∣∣∣X̂(ζ)

∣∣∣n ,
implies that ηhigh = sup

|ζ|∈
[
α(2)
β(3)

,π

] ∣∣∣X̂(ζ)
∣∣∣n + sO(s) · e−

I2

4 , which finishes the proof.

To see the utility of the above theorem, consider the case when c(s) is upper bounded by some
polynomial function of s (this is indeed true for a large class of random variables). In this case, for
s = õ(

√
n), the first three error terms contribute an error of n−(s−2)/2. The next lemma shows that the

remaining error term has an exponential decay in n.

Lemma 20. Let X be a random variable supported on a lattice with maximal span 1. For any c > 0,
supπ≥|ζ|≥c |X̂(ζ)| < 1.

Proof. Note that if X is supported on the lattice L (with maximal span 1),

X̂(ζ) =

∞∑
ν=−∞

Pr[X = ν + a] · ei·(ν+a)·ζ .

Note that if |X̂(ζ)| = 1, then ei·(ν+a)·ζ must be the same for all points ν such that Pr[X = ν + a] 6= 0.
Let Aν be the set of all such ν. Then, we immediately get that for ν1, ν2 ∈ Aν , ei·(ν1−ν2)·ζ = 1. Consider
the set AZ = {ν1 − ν2 : ν1, ν2 ∈ Aν}. Since the maximal span of the lattice is 1, it means that there is
some integral linear combination of the elements in Aν which is 1. However, that means that eı·ζ = 1
which contradicts our assumption on ζ.

Thus, the above lemma shows that sup
|ζ|∈

[
α(2)
β(3)

,π

] ∣∣∣X̂(ζ)
∣∣∣n is inverse exponential in n. Of course,

the exact exponent in the exponential decay (which is critical) can be significantly different depending
up on the particular random variable involved. As we will show, in our main application (even for the
non i.i.d. case), the last error term is indeed negligible.
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4 Derandomization for combinatorial shapes

We begin by recalling the main theorem of this section.

Theorem. There is a polynomial time computable PRG Gcsum : {0, 1}tcsum → [m]n which ε-fools
Csum(m,n). Here tcsum = O(logm+ log3/2(n/ε)).

The proof of this theorem proceeds by proving the following two results.

Claim 21. Let Gcsum,poly : {0, 1}tcsum,poly → [m]n be a polynomial time computable PRG which ε-

fools Csum(m,n) for m = O((n/ε)3) with tcsum,poly = O(log3/2(n/ε)). Then, there is a polynomial
time computable PRG Gcsum : {0, 1}tcsum → [m]n which ε-fools Csum(m,n) where tcsum = O(logm +
log3/2(n/ε)).

Theorem 8. There is a polynomial computable PRG Gcsum,poly : {0, 1}tcsum,poly → [m]n which ε-fools

Csum(m,n) for m = O((n/ε)3) with tcsum,poly = O(log3/2(n/ε)).

Clearly, by combining Claim 21 with Theorem 8, we get the main theorem. Thus, we focus on
proving Claim 21 and Theorem 8.

We can associate a n-tuple of independent Bernoulli random variables (Yf,1, . . . , Yf,n) where Yf,i ∼
fi(yi) where yi ∼ Um. We adopt the convention that given a subset B ⊆ [n], we use Zf,B =

∑
i∈B fi(yi).

We use Zf to denote the random variable when B = [n].

Proof of Claim 21. Assume that m � (n/ε)3 (else we are already done). Set m0 = A1 · (n/ε)3 where
A1 is a sufficiently large constant. Further, also assume that A1 is a prime. For simplicity, we assume
that m is a power of m0. Let p0 = m0/m and set δ = ε/100. Let H2,m,p0 be the family of p0-biased
pairwise independent hash functions instantiated using Lemma 43. Note that for any h ∼ H2,m,p0 ,
|h−1(1)| = m0. Let Gcsum,poly : {0, 1}tcsum,poly → [m0]n δ-fool the class Csum(m0, n) (instantiated using
Theorem 8. Then, we let Gcsum : H2,m,p0 × {0, 1}tcsum,poly → [m]n as follows:

Gcsum(h, x) = y′ where y′h−1(1) = Gcsum,poly(x).

Note that the seed required to sample and element of H2,m,p0 is O(logm) and thus combining with the
bound on tcsum,poly from Theorem 8, we get the stated bound on tcsum. The bound on the quality of
Gcsum remains to be proven. Toward this, we have the following claim.

Claim 22. Fix any i ∈ [n].

Pr
h∈H2,m,p0

[
‖fi(Uh−1(1))− fi(U[m])‖1 ≤

ε

8n

]
≤ ε

16n
.

Proof. Consider h ∼ H2,m,p0 . We define random variables {Aj,h}j=0,1 where Aj,h = |h−1(1) ∩ f−1
i (j)|.

Also, let {p′j}j=0,1 be defined as p′j = Prx∈U[m]
[fi(x) = j]. Note that for our purposes, it suffices to

show with probability 1− ε/(8n),∣∣∣∣p′0 − |A0,h|
m0

∣∣∣∣ ≤ ε

16n
and

∣∣∣∣p′1 − |A1,h|
m0

∣∣∣∣ ≤ ε

16n
. (23)

Further, note that showing any one of the above implies the other one as well. Assume without loss of
generality, 1/2 ≤ p′0 ≤ 1. Let us define an indicator random variable X(j,h) as follows:

X(j,h) = 1 if and only if fi(j) = 0 and h(j) = 1.
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Note that |A0,h| =
∑
X(j,h). Further, because h ∼ H2,m,p0 , {X(j,h)} are pairwise independent random

variables. Thus, E[|A0,h|] = m0 · p′0 and Var(|A0,h|) ≤ m0 · p′0. By using Lemma 36,

Pr
h∈H2,m,p0

[∣∣|A0,h| −m0 · p′0
∣∣ ≤ 4 ·

√
n ·m0 · p′0

ε

]
≥ 1− ε

16n
.

Since m0 = A(n/ε)3, by making A sufficiently large, we get that with probability 1 − ε/(16n) for
h ∼ H2,m,p0 , (23) holds. This finishes the proof.

Let (x1, . . . , xn) ∼ Unh−1(1) and (y1, . . . , yn) ∼ Un[m]. Let us define h ∼ H2,m,p0 to be good if∥∥∥∥∑
i

fi(xi)−
∑
i

fi(yi)

∥∥∥∥
1

≤ ε

8
.

By using Claim 22, we get that h ∼ H2,m,p0 is good with probability at least 1− ε/16. Consider such
a h. Fix a canonical permutation πh : h−1(1)→ [m0]. Define the distribution D′h = Gcsum(h, Utcsum,poly)
and D′ = Gcsum,poly(Utcsum,poly). Further, we also define the function gh : [m0]n → [n] as gh(z1, . . . , zn) =∑
fi(π

−1
h (zi)). Let (y′1, . . . , y

′
n) ∼ D′h and (z′1, . . . , z

′
n) ∼ D′∑

i

fi(y
′
i) =

∑
i

gh,i(z
′
i). (24)

In the above, the equality denotes the equality of the two distributions. Let (z1, . . . , zn) ∼ Unm. Since
gh ∈ Csum(m0, n), hence ∥∥∥∥∑

i

gh,i(z
′
i)−

∑
i

gh,i(zi)

∥∥∥∥
1

≤ δ. (25)

Finally, since h is good, we can reinterpret the guarantee as∥∥∥∥∑
i

gh,i(zi)−
∑
i

fi(yi)

∥∥∥∥
1

≤ ε

8
.

Combining this with (24) and (25), we get that if h is good, then∥∥∥∥∑
i

fi(y
′
i)−

∑
i

fi(yi)

∥∥∥∥
1

≤ ε

8
+ δ.

Since h is good with probability 1− ε/16, we get that Gcsum is ε-fools the class Csum(m,n).

4.1 Derandomizing combinatorial sums when m = poly(n/ε)

We assume that ε = n−Ω(1). We also assume that ε = n−o(logn). This is because Theorem 1 guarantees
derandomization of Csum(m,n) with seed length O(logm + log2 n + log n · log(1/ε)). Thus, for ε =
n−Ω(logn), the guarantee of Theorem 8 is guaranteed by Theorem 1. We partition Csum(m,n) into
two classes depending upon Var(Zf ). Let A1 > 0 to be a sufficiently large constant. We let δ =

2−A1·
√

log(1/ε). Next, we define

Csumlow(m,n) = {f ∈ Csum(m,n) : Var(Zf ) ≤ δ−1} and

Csumhigh(m,n) = {f ∈ Csum(m,n) : Var(Zf ) > δ−1}.

Using Claim 45, we get that fooling Csumlow(m,n) and Csumhigh(m,n) individually is sufficient to fool
Csum(m,n).
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5 Fooling small combinatorial sums

For this section, the strategy is as follows. We first describe a PRGGlow−easy which ε-fools Csumlow(m,n)
albeit with a poor seed length. The seed length is then reduced to the target length by a straightforward
application of Theorem 1. Choose t = δ−10 and k = c

√
log(1/ε) for some sufficiently large constant c.

Let Hk,n,t be the family of hash functions from Lemma 41. For convenience, assume that for all i ∈ [t],
the size of |h−1(i)| is the same for all i ∈ [t]. Let G3k+2,n/t,m : {0, 1}t2 → [m]n/t be the 2 + 3k-wise
independent generator from Lemma 42. We define PRG Glow−easy : Hk,n,t × ({0, 1}t2)t → [m]n defined
as follows:

Glow−easy(h, x1, . . . , xt) = y′ where y′h−1(i) = G3k+2,n/t,m(xi).

The main lemma showing the quality of this PRG is the following:

Lemma 23. Glow−easy is an ε-PRG for Csumlow(m,n).

Toward proving this lemma, we first partition [n] into two sets: L and H which are defined as

• L = {i ∈ [n] : Var(Yf,i) ≤ δ5}.

• H = {i ∈ [n] : Var(Yf,i) > δ5}.

Note that |H| ≤ O(1/δ6). Next, we define the random variable CountH,i as follows:

CountH,i = {j ∈ [n] : h(j) = i and j ∈ H}

The next claim controls the maximum of CountH,i.

Claim 24.

Pr

[
max
i∈[t]

CountH,i ≥ k
]
≤ δ3k.

Proof. Choose any particular i ∈ [t]. We first bound the probability Pr[CountH,i ≤ k] and then apply
a union bound. For every ` ∈ H, we define an indicator random variable I` which is 1 if and only if
h(`) = i. Note that the random variables {I`}`∈H are k-wise independent and Pr[I` = 1] = 1/t = δ10

for all ` ∈ H.

Pr [CountH,i ≥ k] ≤
∑

(u1,...,uk)∈H

Pr
h∈Hk,n,t

[
∧kj=1Iuj = 1

]
≤ |H|k · 1

tk
≤ δ4k.

Thus, applying a union bound, we get that Pr
[
maxi∈[t] CountH,i ≥ k

]
≤ t · δ4k. Noting that k ≥ 10, we

get the claim.

We next define the quantity VarL,i as follows:

VarL,i = Var

(
Zf,h−1(i)∩L

)
The next claim controls the value of VarL,i in the “buckets” defined by the map h.

Claim 25.

Pr
h∈Hk,n,t

[
max
i∈t

VarL,i > k · δ
]
≤ δ3k.
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Proof. We fix an i ∈ [t] and the bound the probability that VarL,i > k · δ. Towards this, note that

VarL,i =
∑
j∈L

Var(Yf,j) · Ij

where Ij is an indicator random variable which is 1 if and only if h(j) = i. Observe that for 1 ≤ j ≤ n,
E[Ij ] = δ10. To bound the growth of VarL,i, we consider bounding its kth moment. Toward this, we
consider the expansion of the variable VarkL,i.

VarkL,i =

(∑
j∈L

Var(Yf,j) · Ij
)k
.

Note that in the formal expansion of the term on the right, we will get monomials in the variables
{Ij}j∈L. Toward bounding the expectation of VarkL,i, we define the notion of signature of a monomial.

Consider a monomial
∏
j∈L(Var(Yf,j) · Ij)aj . Let a = (a1, . . . , aL) ∈ ZL. Note that for any such

monomial,
∑

j∈L aj = k and for all j ∈ L, aj ≥ 0. As a corollary, a has at most k non-zero entries. The
signature of the monomial is given by arranging the vector a in decreasing order and truncating the zero
part of the vector. Consider any signature vector σ = (v1, . . . , vr) where

∑
vi = k, v1 ≥ . . . ≥ vr > 0.

Let us define Sσ as

Sσ = E

[ ∑
a:sign(a)=σ

∏
j∈L

(Var(Yf,j) · Ij)aj
]

Sσ ≤
(

k

v1 . . . vr

) r∏
i=1

(∑
j∈L

E [(Var(Yf,j) · Ij)vi ]
)
,

≤
(

k

v1 . . . vr

) r∏
i=1

(∑
j∈L

E [Var(Yf,j)
vi · Ij ]

)
,

≤
(

k

v1 . . . vr

) r∏
i=1

δ5(vi−1) ·
(∑
j∈L

E [Var(Yf,j) · Ij ]
)
, (using Var(Yf,i) ≤ δ5)

≤
(

k

v1 . . . vr

) r∏
i=1

δ5(vi−1) · δ9 =

(
k

v1 . . . vr

)
· δ5k+4r ≤ 2k · δ5k+4.

Next, we note that the total number of possible signatures is at most 2k, and hence we get,

VarkL,i =

(∑
j∈L

Var(Yf,j) · Zj
)k
≤ 4k · δ5k+4.

Noting that VarL,i is a non-negative random variable, applying Markov’s inequality, we get that

Pr
h∈Hk,n,t

[VarL,i > k · δ] ≤ 4k · δ5k+4

kk · δk
.

Pr
h∈Hk,n,t

[max
i∈[t]

VarL,i > k · δ] ≤ 4k · δ5k−6

kk · δk
≤ δ3k,

where the last inequality uses that k ≥ 10.

We next define a h ∈ Hk,n,t to be good if
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• maxi∈[t] CountH,i < k.

• maxi∈[t] VarL,i < k · δ.

Using Claim 24 and Claim 25, we get that h ∈ Hk,n,t is good with probability 1−2 · δ3k. We next recall
the following useful lemma from [GMRZ13].

Lemma 26. Let {Xi}ni=1 and {Yi}ni=1 be (jointly) independent Bernoulli random variables and let
X =

∑
Xi and Y =

∑
Yi. Let {X ′i}ni=1 and {Y ′i }ni=1 be (jointly) 2k + 2-wise independent random

variables such that for all i ∈ [n], E[Xi] = E[X ′i] and likewise, E[Yi] = E[Y ′i ]. Let X ′ =
∑
Xi and

Y ′ =
∑
Yi. If E[X] ≤ η and E[Y ] ≤ η, then, ‖(X,Y )− (X ′, Y ′)‖1 ≤ ek · ηk.

Following [GMRZ13], we can get the following claim.

Claim 27. Let {Xi}ni=1 be independent Bernoulli random variables and {X ′i}ni=1 be a set of k-wise
independent Bernoulli random variables such that E[Xi] = E[X ′i]. If X =

∑
Xi and X ′ =

∑
X ′i such

that Var(X) ≤ η, then ‖X −X ′‖1 ≤ (2 · e)k · ηk.

Proof. Let us define A = {i ∈ [n] : E[Xi] ≤ 1/2}. We observe that

2 ·Var

( ∑
i∈A

Xi

)
≥ E

[ ∑
i∈A

Xi

]
and 2 ·Var

( ∑
i∈A

Xi

)
≥ E

[ ∑
i∈A

(1−Xi)

]
.

By Lemma 26, ∥∥∥∥( ∑
i∈A

Xi,
∑
i∈A

(1−Xi)

)
−
( ∑
i∈A

X ′i,
∑
i∈A

(1−X ′i)
)∥∥∥∥

1

≤ (2e)k · ηk.

Thus, we get that ∥∥∥∥ n∑
i=1

Xi,
n∑
i=1

X ′i

∥∥∥∥
1

≤ (2e)k · ηk.

The next claim extends the above result by allowing a small number of arbitrary Boolean random
variables.

Claim 28. Let {Xi}ni=1 be independent Bernoulli random variables and {X ′i}ni=1 be a set of k + k′-
wise independent Bernoulli random variables such that for i ∈ [n], E[Xi] = E[X ′i]. Let X =

∑
Xi,

X ′ =
∑
X ′i and for S ⊆ [n], define XS =

∑
i∈S Xi. If |S| = n−k′ and Var(XS) ≤ η, then ‖X−X ′‖1 ≤

(2e)k · ηk.

Proof. Without loss of generality, assume that S = {k′ + 1, . . . , n}. For any y ∈ {0, 1}k′ , observe that
the conditional distribution

(X ′k′+1, . . . , X
′
n)|X ′1 = y1, . . . , X

′
k′ = yk′

is k-wise independent and for all i ∈ [k′ + 1 . . . n], the marginal of X ′i in the conditional distribution
is the same as the marginal of Xi. Applying Claim 27, we get that for any y ∈ {0, 1}k′∥∥∥∥ n∑

i=k′+1

Xi −
n∑

i=k′+1

X ′i|X ′1 = y1, . . . , X
′
k′ = yk′

∥∥∥∥
1

≤ (2e)k · ηk.

Thus, ∥∥∥∥ n∑
i=1

Xi|X1 = y1, . . . , Xk′ = yk′ −
n∑
i=1

X ′i|X ′1 = y1, . . . , X
′
k′ = yk′

∥∥∥∥
1

≤ (2e)k · ηk.

Since the distribution on {X ′i}k
′
i=1 is k′-wise independent, we get the claim.
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Proof of Lemma 23: Fix a good h and i ∈ [t]. Let x ∈ Ut2 , y′h−1(i) ∼ G3k+2,n/t,m(x) and yh−1(i) ∼
U[m]n/t . Applying Claim 28 along with Claim 24 and Claim 25,∥∥∥∥ ∑

j∈h−1(i)

fj(yj)−
∑

j∈h−1(i)

fj(y
′
j)

∥∥∥∥
1

≤ (2 · e)k · (k · δ)k. (26)

Using the fact that the distributions of (yh−1(1), . . . , yh−1(t)) are mutually independent as are the dis-
tributions of (y′h−1(1), . . . , y

′
h−1(t)), we get that for any good h,∥∥∥∥ ∑
j∈[n]

fj(yj)−
∑
j∈[n]

fj(y
′
j)

∥∥∥∥ ≤ (2 · e)k · (k · δ)k · t. (27)

Since the total fraction of good h is at least 1− 2 · δ3k,∥∥∥∥ ∑
j∈[n]

fj(y
′
j)−

∑
j∈[n]

fj(yj)

∥∥∥∥ ≤ (2 · e)k · (k · δ)k · t+ 2 · δ3k ≤ ε. (28)

The only problem with Glow−easy is the prohibitively large requirement in terms of seed length.
However, observe that for any fixed h, the function fh : ({0, 1}t2)t → Z given by

f(x1, . . . , xt) =
∑
i∈[n]

fi(y
′
i) where for j ∈ [t], y′h−1(j) = G3k+2,n/t,m(xi).

Thus, fh can be computed by a (n, t2, t)-ROBP and hence we can use Theorem 1 to get a PRG for
fh. The seed length requirement will be O(t2 + (log(n/ε)) · log t) = O(log3/2(1/ε)) (where we use that
log(1/ε) = Ω(logn). Thus, we have the following theorem.

Theorem 9. There is a polynomial time computable PRG Glow : {0, 1}tlow → [m]n which ε-fools
Csumlow(m,n). Here tlow = O(logm+ log3/2(n/ε)).

6 Fooling large combinatorial sums

As before, our strategy is to first describe a PRG Ghigh−easy which fools Csumhigh(m,n) with a poor seed
length. We then achieve the desired seed length by applying Theorem 1. We now define the construction
of the PRG Ghigh−easy. We let t = δ−1/2 and k = c

√
log(1/ε) for a sufficiently large constant c. Further,

all the calculations are made assuming n is sufficiently large (compared to all the other constants). In
particular, we will assume that δk/8 ≤ ε. Further, we will also assume that k ≥ 10. Let H4k,n,t be
the family of hash functions from Theorem 42. As before, for convenience, we assume that for any
h ∈ H4k,n,t and i ∈ [t], |h−1(i)| = n/t. Let G4k,n/t,m : {0, 1}t2 → [m]n/t be the 4k-wise independent

generator from Theorem 42. Let G(cs) : {0, 1}t3 → [m]n/t be the PRG obtained from [GMRZ13] with
ε set to a sufficiently small constant. The PRG Ghigh-easy : Hk,n,t × ({0, 1}t2)t × ({0, 1}t3)t → [m]n is
described as

Ghigh-easy(h, x1, . . . , xt, z1, . . . , zt) = y′ where y′h−1(i) = Gk,n/t,m(xi)⊕m G(cs)(zi)

We also define Guniform : Hk,n,t × ([m]n/t)t → [m]n as

Guniform(h, x1, . . . , xt) = y where yh−1(i) = xi.
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Note that when the input is a uniform random element from the domain of Guniform, then the output
distribution of Guniform is identical to the uniform distribution on [m]n. However, using this way to
sample from U[m]n allows for an easier comparison with the output of Ghigh-easy. Also, for notational
brevity, for this section, unless mentioned otherwise, y and y′ are shorthands for

y ∼ Ghigh-easy(h, x1, . . . , xt, z1, . . . , zt), y ∼ Guniform(h, x1, . . . , xt).

The main claim concerning the quality of Ghigh-easy is the following.

Claim 29. ∥∥ ∑
j∈[n]

fj(yj)−
∑
j∈[n]

fj(y
′
j)
∥∥

1
≤ ε.

Toward proving Claim 29, we make a few more definitions. Let µj = Ex∈U[m]
[fj(x)]. Also, for

j ∈ [n], define f ′j : [m]→ R as f ′j(x) = fj(x)− µj . Note that for any j, yj and y′j are uniform on [m].
Thus, f ′j(yj) and f ′j(y

′
j) are centered random variables. Further,∥∥ ∑
j∈[n]

fj(yj)−
∑
j∈[n]

fj(y
′
j)
∥∥

1
=
∥∥ ∑
j∈[n]

f ′j(yj)−
∑
j∈[n]

f ′j(y
′
j)
∥∥

1
.

Thus to prove Claim 29, it suffices to show that∥∥ ∑
j∈[n]

f ′j(yj)−
∑
j∈[n]

f ′j(y
′
j)
∥∥

1
≤ ε.

Further, for any set B ⊆ [n], define the random variables UB and U ′B as follows:

UB =
∑
j∈B

f ′j(yj), U ′B =
∑
j∈B

f ′j(y
′
j).

Thus, proving Claim 29 is equivalent to showing that

‖U[n] − U ′[n]‖1 ≤ ε.

Further, observe that for any j ∈ [n], Var(f ′j(yj)) = Var(fj(yj)). We next have the following claim.

Claim 30. Let Var-tot =
∑

j∈[n] Var(fj(yj)). Then,

Pr
h∈Hk,n,t

[
max
i∈[t]

∣∣∣∣Var(Uh−1(i))− µ
∣∣∣∣ ≤ µ

2

]
≤ δk/4,

where µ = Var-tot/t.

Proof. Consider a fixed i ∈ [t]. Then, note that Var(Uh−1(i)) =
∑

j∈[n] Var(fj(yj)) · Ij where Ij is an
indicator random variable which is 1 if and only if h(j) = i. Note that the random variable {Ij}j∈[n] and
hence {Var(fj(yj)) · Ij}j∈[n] are 4k-wise independent. We observe that using linearity of expectation,
E[Var(Uh−1(i))] = µ. By applying the bounds from Theorem 37, we get

Pr
h∈Hk,n,t

[∣∣∣∣Var(Uh−1(i))− µ
∣∣∣∣ ≤ µ

2

]
≤
(

4 · 4kµ+ 16k2

µ2

)2k

Note that µ = Var-tot/t ≥ δ−1/2. As k = O(log(1/δ)), we get that the quantity on the right hand side
can be bounded by δk/2. By taking an union bound over all i ∈ [t] and t = δ−1/2, we get the stated
bound.
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Define h ∼ Hk,n,t to be good if

max
i∈[t]

∣∣∣∣Var(Uh−1(i))− µ
∣∣∣∣ ≤ µ

2
.

We next make several simple but important claims. We leave some of the proofs as they are
straightforward to verify.

Claim 31. For any fixed h, the random variables {Uh−1(i)}i∈[t] and {U ′h−1(i)}i∈[t] are independent.

Claim 32. For any fixed h, the following holds:

• The random variables U[n] and U ′[n] are supported on a lattice L of span 1 with 2n + 1 support
points.

• For any ` ≤ 4k and i ∈ [t], E[U
′`
h−1(i)] = E[U `h−1(i)].

• As a consequence, for any ` ≤ 4k, E[U
′`
[n]] = E[U `[n]].

Based on Claim 31 and Claim 32, we use the following notation. Roughly, the convention we will
stick to is to use a notion with a prime for random variables generated using the output of the Ghigh-easy

and use unprimed notation for the analogous random variables using the output of Guniform.

• For 0 ≤ ` ≤ 4k and i ∈ [t], α`,i,(h) = E[U `h−1(i)] = E[U
′`
h−1(i)].

• For 0 ≤ ` ≤ 4k, α`,(h) = E[U `[n]] = E[U
′`
[n]].

• For 0 ≤ ` ≤ 4k and i ∈ [t], β`,i,(h) = E[|Uh−1(i)|`] and β′`,i,(h) = E[U
′`
h−1(i)]. If ` is even, then note

that α`,i,(h) = β`,i,(h) = β′`,i,(h).

• For any 0 ≤ ` ≤ 4k, β`,(h) =
∑

i∈[t] E[U `h−1(i)] and β′`,(h) =
∑

i∈[t] E[U
′`
h−1(i)].

• For any i ∈ [t], we let σ2
i,(h) = Var(Uh−1(i)) = Var(U ′h−1(i)). Likewise, σ2 = Var(U[n]) = Var(U ′[n]).

Claim 33. Fix any h. For any 0 ≤ |ξ| ≤ π and i ∈ [t],

∣∣Ûh−1(i)(ξ)
∣∣ ≤ (−9 · σ2

i · ξ2

200

)
.

Proof of Claim 29: We start by fixing a good h. Note that by Claim 30, h is good with probability
at least 1 − δk/4 ≥ 1 − ε2. Thus, to prove the main claim, it suffices to show that for a good h,
‖U[n] − U ′[n]‖ ≤ ε/2. For any fixed h, note that U[n] =

∑
i∈[t] Uh−1(i) and U ′[n] =

∑
i∈[t] U

′
h−1(i). Hence,

using Claim 31 and Claim 32, both of them are sums of independent lattice valued random variables
and are supported on a lattice L with 2n+ 1 support points. Thus, it suffices to show that for every z
such that σ · z ∈ L, ∣∣∣∣Pr

[
U[n]

σ
= z

]
− Pr

[U ′[n]

σ
= z

]∣∣∣∣ ≤ ε

2n
.

To bound the difference, we apply Theorem 5 (provided the hypothesis for applying the theorem is
satisfied). Let us choose s to be the largest even integer such that 3s ≤ 4k. Let us define

L`,(h) =

(
β`,(h)

σ`

) 1
`−2

, L′`,(h) =

(
β′`,(h)

σ`

) 1
`−2

.
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I(h) =
1

C
min

{
min
i∈[t]

σ

σi,(h)
, L−1

3s,(h)

}
, I ′(h) =

1

C
min

{
min
i∈[t]

σ

σi,(h)
, L
′−1
3s,(h)

}
.

With this, we also have the following: If ` is even, L`,(h) = L′`,(h). Also, I(h) = I ′(h). We next bound
β`,(h) for an even integer `.

β′`,(h) = β`,(h) =
t∑
i=1

E

[
U `h−1(i)

]
≤

t∑
i=1

``
(

E[U2
h−1(i)]

)`/2
+

t∑
i=1

``
( ∑
j∈h−1(i)

E[f ′j(yj)
`]

)

≤
t∑
i=1

``
(

E[U2
h−1(i)]

)`/2
+

t∑
i=1

``
( ∑
j∈h−1(i)

E[f ′j(yj)
2]

)

≤
t∑
i=1

``
(

3 · σ2

2 · t

)`/2
+ ``σ2 ≤ `` · 2`/2 · σ`

t(`−2)/2
. (29)

The first inequality uses Theorem 38, the second inequality uses that f ′j is supported in [−1, 1] and the
third inequality uses that h is good. Using this, we get

L′`,(h) = L`,(h) =

(
β`,(h)

σ`

) 1
`−2

≤ 32 · `√
t
. (30)

We also let {Pν(iξ)} be the family of polynomials appearing in Theorem 5 defined with respect to the
random variables {Uh−1(i)}i∈[t]. Likewise, we let {P ′ν(iξ)} be the analogous polynomials defined with
respect to the random variables {U ′h−1(i)}i∈[t]. Note that for 1 ≤ ν ≤ 4k, the polynomial Pν(iξ) is

identical to P ′ν(iξ). We next see that

I(h) = I ′(h) =
1

C
min

{
min
i∈[t]

σ

σi,(h)
, L−1

3s,(h)

}
≥ 1

C
min

{ √
t

32 · `
,
2
√
t

3

}
=

√
t

32 · C · `
≥ t1/4. (31)

Thus, applying Theorem 5, we get that for any σ · z ∈ L,∣∣∣∣∣Pr

[
U[n]

σ
= z

]
− 1

2πσ
·
∫ πσ

−πσ
e−iξz · e−

ξ2

2 ·

(
1 +

s−3∑
ν=1

Pν(iξ)

)
dξ

∣∣∣∣∣ ≤ ηlow + ηmed + ηhigh

and ∣∣∣∣∣Pr

[U ′[n]

σ
= z

]
− 1

2πσ
·
∫ πσ

−πσ
e−iξz · e−

ξ2

2 ·

(
1 +

s−3∑
ν=1

P ′ν(iξ)

)
dξ

∣∣∣∣∣ ≤ η′low + η′med + η′high

where
ηlow = η′low = sO(s) · Ls−2

3s,(h) = sO(s) · L′s−2
3s,(h),

ηmed = η′med = e−
I2
(h)
6 + sO(s) · e−

I2
(h)
4 = e−

I
′2
(h)
6 + sO(s) · e−

I
′2
(h)
4 ,

ηhigh = sup
|ζ|∈[σ2/β3,(h),π]

∣∣∣∣∣
t∏
i=1

Ûh−1(i)(ζ)

∣∣∣∣∣+ sO(s) · e−
I2
(h)
4 and

η′high = sup
|ζ|∈[σ2/β′

3,(h)
,π]

∣∣∣∣∣
t∏
i=1

Û ′
h−1(i)

(ζ)

∣∣∣∣∣+ sO(s) · e−
I
′2
(h)
4 .

Applying the triangle inequality, we get∣∣∣∣∣Pr

[
U[n]

σ
= z

]
− Pr

[U ′[n]

σ
= z

]∣∣∣∣∣ ≤ 2 · ηlow + 2 · ηmed + ηhigh + η′high.
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We now upper bound the quantities appearing on the right hand side. All the calculations are done
assuming the constant c is sufficiently large, n is sufficiently large compared to c and ε ≤ n−2. First,
plugging in the values for k and t, it is easy to see that

sO(s) · Ls−2
3s,(h) ≤

kO(k)

tk/2
≤ ε

32n
; sO(s) · e−

I2
(h)
4 ≤ kO(k) · e−

√
t/4 ≤ ε

32n
; e−

I
′2
(h)
6 ≤ e−

√
t/6 ≤ ε

32n
. (32)

sup
|ζ|∈
[

σ2

β3,(h)
,π
]
∣∣∣∣∣
t∏
i=1

Ûh−1(i)(ζ)

∣∣∣∣∣ ≤ sup
|ζ|∈
[

1
σ·L4,(h)

,π
]
∣∣∣∣∣
t∏
i=1

Ûh−1(i)(ζ)

∣∣∣∣∣ (uses Claim 8)

≤ exp

(
−9 ·

∑t
i=1 σ

2
i

200 · σ2 · L2
4,(h)

)
(uses Claim 33)

= exp

(
−9

200 · L2
4,(h)

)
(uses (30))

= e−Ω(t) ≤ ε

32n
. (33)

Thus, it remains to bound sup|ζ|∈[σ2/β′
3,(h)

,π]

∣∣∣∏t
i=1 Û

′
h−1(i)

(ζ)
∣∣∣. Towards this,

sup
|ζ|∈
[

σ2

β′
3,(h)

,π
]
∣∣∣∣∣
n∏
i=1

Û ′
h−1(i)

(ζ)

∣∣∣∣∣ ≤ sup
|ζ|∈
[

1
σ·L′

4,(h)

,π
]
∣∣∣∣∣
t∏
i=1

Û ′
h−1(i)

(ζ)

∣∣∣∣∣ (uses Claim 8).

Further, we have that for all i ∈ [t],

sup
|ζ|∈
[

1
σ·L′

4,(h)

,π
] ∣∣∣Ûh−1(i)(ζ)

∣∣∣ ≤ exp

(
−9 · σ2

i

200 · σ2 · L′24,(h)

)
(uses Claim 33)

≤ (1− Ω(1) (uses (30)) and that h is good.)

Thus, by using Claim 45 and Claim 40, we have that for all i ∈ [t],

sup
|ζ|∈
[

1
σ·L′

4,(h)

,π
] ∣∣∣Ûh−1(i)(ζ)

∣∣∣ ≤ (1− Ω(1)). (34)

Thus,

sup
|ζ|∈
[

σ2

β′
3,(h)

,π
]
∣∣∣∣∣
t∏
i=1

Û ′
h−1(i)

(ζ)

∣∣∣∣∣ ≤ e−Ω(t) ≤ ε

32n
.

Putting (32), (33) and (34), we get that∣∣∣∣∣Pr

[
U[n]

σ
= z

]
− Pr

[U ′[n]

σ
= z

]∣∣∣∣∣ ≤ ε

2n

which concludes the proof.
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A Useful analytic inequalities

The following inequalities can found in [Gar07].

Lemma 34. Monotonicity of norms: Let 1 ≤ p ≤ q <∞ and f ∈ Lp ∩ Lq. Then,

‖f‖p ≤ ‖f‖q

.

Lemma 35. Lyupanov’s inequality: Let 1 ≤ p, q < ∞ and 0 ≤ λ ≤ 1. Let r = λp + (1 − λ)q. Let
f ∈ Lp ∩ Lq. Then,

‖f‖rr ≤ ‖f‖λpp · ‖f‖(1−λ)q
q .

Lemma 36. Chebyshev’s inequality: For any random variable X, with E[X] = µ and Var(X) = σ2,
for any t ≥ 0,

Pr[|X − µ| ≤ t · σ] ≤ 1

t2
.

The next couple of inequalities are concentration bounds on sums of random variables.

Lemma 37. Bellare-Rompel [BR94]: Let X1, . . . , Xn be k-wise independent random variables sup-
ported in [0, 1]. Let X = X1 + . . .+Xn. If µ = E[X], then

Pr[|X − µ| > a] ≤ 8 ·
(
kµ+ k2

a2

)k/2
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Lemma 38. Rosenthal’s inequality [IS06]: Let X1, . . . , Xn be independent random variables such
that E[Xi] = 0. If Z = (X1 + . . .+Xn), then

E[|Z|2m] ≤ (2m)2m ·max

{ n∑
i=1

E[|Xi|2m],

( n∑
i=1

E[X2
i ]

)m/2}
.

The next lemma gives a lower bound on the decay of Fourier spectrum for a sum of independent
Bernoulli variables.

Lemma 39. Let X1, . . . , Xn be independent Bernoulli random variables where Pr[Xi = 1] = pi (for
i = 1, . . . , n). Let Z = X1 + . . .+Xn and σ be the variance of Z. Then, for |ξ| ≤ π,

|Ẑ(ξ)| ≤ exp

(
−9 · σ2 · ξ2

200

)
.

Proof.

Ẑ(ξ) =

n∏
i=1

X̂i(ξ) =

n∏
i=1

(1− pi + pi · eiξ).

Thus,

|Ẑ(ξ)|2 =
n∏
i=1

|X̂i
2
(ξ)| =

n∏
i=1

(1− pi(1− pi) sin2(ξ/2)) ≤
n∏
i=1

(
1− 9 · pi(1− pi)ξ2

100

)
.

The last inequality uses the elementary fact that for −π/2 ≤ ξ ≤ π/2, | sin(ξ)| ≥ 0.6 · ξ. Further, using
that for x ≥ 0, e−x ≥ 1− x, we get

n∏
i=1

(
1− 9 · pi(1− pi)ξ2

100

)
≤

n∏
i=1

exp

(
−9 · pi(1− pi)ξ2

100

)
= exp

(
−9 · σ2 · ξ2

100

)
.

This finishes the proof.

Lemma 40. Let X and Y be two random variables supported R. Then, for any ξ ∈ R,∣∣∣∣Ex∈X [ei·ξ·x]−Ey∈Y [ei·ξ·y]

∣∣∣∣ ≤ ‖X − Y ‖1.
Proof. Recall that for any function f ∈ L1(R), ‖f‖1 ≥ ‖f̂‖∞. Viewing X and Y as a map from R to
[0, 1] and putting f = X − Y , we get the lemma.

B Useful existing constructs in pseudorandomness

Lemma 41. k-wise independent hash function: A family of functions Hk,n,t = {h : [n] → [t]} is
said to be k-wise independent if for all i1, . . . , ik ∈ [n] and j1, . . . , jk ∈ [t]

Pr
h∈Hk

[h(i1) = j1 ∧ . . . ∧ h(ik) = jk] =
1

tk
.

Further, elements from such a family Hk can be sampled efficiently using O(k(log t+ log n)) bits.

Lemma 42. k-wise independent PRG: Gk,n,m : {0, 1}tk,m,n → [m]n is said to be a k-wise indepen-
dent generator if for every i1, . . . , ik ∈ [n] and j1, . . . , jk ∈ [m],

Pr
x∈Utk,m,n

[Gk,n,m(x)i1 = j1 ∧ . . . ∧Gk,n,m(x)ik = jk] =
1

mk
.

Further, an efficiently computable Gk,n,m exists with tk,m,n = O(k logm+ k log n) bits.
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Lemma 43. Biased pairwise independence A family of functions H2,n,p = {h : [n1]→ {−1, 1}} is
said to be pairwise independent with bias p ∈ [0, 1] if for any i1, i2 ∈ [n],

Pr
h∈H2,n,p

[h(i1) = 1 ∧ h(i2) = 1] = p2 and Pr
h∈H

[h(i1) = 1] = p.

Further, if q = n · p is a prime number, then elements from H2,n,p can be sampled with O(log n) bits.

C Some invariance results for PRGs

The following simple results show that PRGs for certain classes remain invariant under shifting by a
fixed string.

Claim 44. Let G : {0, 1}tk,m,n → [m]n be a k-wise independent generator. Then, G′z : {0, 1}tk,m,n →
[m]n defined as G′z(x) = G(x)⊕m z is also a k-wise independent generator.

The proof for the above is left as exercise for the reader.

Claim 45. Let G : {0, 1}t → [m]n be an ε-PRG for Csum(m,n). Then, for z ∈ [m]n, G′z : {0, 1}tk,m,n →
[m]n defined as G′z(x) = G(x) ⊕m z also ε-fools Csum(m,n). The same also holds for PRGs for the
classes Csumlow(m,n) and Csumhigh(m,n).

Proof. Let f ∈ Csum(m,n) be specified by the tuple (f1, . . . , fn).

‖f(G′z(Ut))− f(U[m]n)‖1 = ‖f(G′z(Ut))− f(U[m]n ⊕m z)‖1 = ‖g(G(Ut))− g(U[m]n)‖1,

where g = (g1, . . . , gn) and for 1 ≤ i ≤ n, gi(xi) = fi(xi ⊕m zi). Since g ∈ Csum(m,n), hence we
get that G′z is an ε-PRG for Csum(m,n). Further, since Var(Zg) = Var(Zf ), we have the same for
Csumlow(m,n) and Csumhigh(m,n).
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