
Separating Cook Completeness from Karp-Levin Completeness

under a Worst-Case Hardness Hypothesis

Debasis Mandal∗ A. Pavan∗ Rajeswari Venugopalan†

Abstract

We show that there is a language that is Turing complete for NP but not many-one complete
for NP, under a worst-case hardness hypothesis. Our hypothesis asserts the existence of a

non-deterministic, double-exponential time machine that runs in time O(22
nc

) (for some c > 1)
accepting Σ∗ whose accepting computations cannot be computed by bounded-error, probabilistic

machines running in time O(22
β2n

c

) (for some β > 0). This is the first result that separates
completeness notions for NP under a worst-case hardness hypothesis.

1 Introduction

The notion of polynomial-time reductions is pervasive in theoretical computer science. In addition
to their critical role in defining NP-completeness, polynomial-time reductions play an important
role in establishing several results in various areas such as complexity theory, cryptography, learn-
ing theory etc. Informally, reductions translate instances of one problem to instances of another
problem; a problem A is polynomial-time reducible to a problem B if A can be solved in polynomial-
time by making queries to problem B. By varying the manner in which the queries are allowed
to make, we obtain a wide spectrum of reductions. At one end of the spectrum is Cook/Turing
reduction where multiple queries are allowed and the ith query made depends on answers to previ-
ous queries. On the other end is the most restrictive reduction, Karp-Levin/many-one reduction,
where each positive instance of problem A is mapped to a positive instance of problem B, and
so are the negative instances. In between are truth-table/non-adaptive reductions, and bounded
truth-table reductions. Interestingly, the seminal paper of Cook [7] used Turing reduction to define
NP-completeness, whereas the works of Karp [16] and Levin [19] used many-one reductions.

Understanding the differences between many-one reductions and Turing reductions is one of the
fundamental problems in complexity theory. Compared to many-one reductions, our knowledge
about Turing reductions is limited. Extending certain assertions that are known to be true for
many-one reductions to the case of Turing reductions yield much sought after separation results
in complexity theory. For example, it is known that polynomial time many-one complete sets for
EXP are not sparse [24]. Extending this result to the case of Turing reductions implies that EXP
does not have polynomial-size circuits. In the context of resource-bounded measure, it is known
that “small span theorem” holds for many-one reductions. Establishing a similar result for Turing

∗Department of Computer Science, Iowa State University. {debasis, pavan}@cs.iastate.edu. Research Sup-
ported in part by NSF grants CCF: 0916797 and CCF: 1421163.
†Department of Computer Science, Iowa State University. advaithi@cs.iastate.edu.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 126 (2014)

reductions separates EXP from BPP [15]. In addition, Turing reductions are crucial to define the
Polynomial-time hierarchy.

The differences between various types of polynomial-time reductions have been studied in dif-
ferent contexts. Selman [23] showed that if NE∩co-NE does not equal E, then there exist languages
A and B in NP such that A polynomial-time Turing reduces to B, but does not polynomial-time
many-one reduce to B. Aida et al. [1] showed a similar result in the average-case world; if P does
not equal NP, then there is a distributional problems (A,µA) and (B,µB) in DistNP such that
(A,µA) Turing reduces to (B,µB) but does not many-one reduce to (B,µB). The differences be-
tween Turing and truth-table reductions have been studied extensively in the context of random
self-reductions and coherence [4, 8, 9, 11]. For example, Feigenbaum et al. [8] showed that if non-
deterministic triple exponential time is not in bounded-error, probabilistic triple exponential time,
there exists a function in NP that is Turing random self-reducible, but not truth-table random-self
reducible.

In this paper we study the differences between many-one and Turing reductions in the context
of completeness. Even though, it is standard to define completeness using many-one reductions,
one can also define completeness using Turing reductions. A language L is Turing complete for a
class C if L is in class C and every language in C Turing reduces to L. To capture the intuition that
if a complete problem for a class C is “easy”, then the entire class is easy, Turing reductions are
arguably more appropriate to define completeness. However, all known natural languages turn out
to be complete under many-one reductions. This raises the following question: For a complexity
class C, is there a Turing complete language that is not many-one complete? This question was
first posed by Ladner, Lynch, and Selman [18].

This question has been completely resolved for the complexity classes EXP and NEXP. Works
of Ko and Moore [17] and Watanabe [27] showed that for EXP, almost all completeness notions are
mutually different. Similar separation results are obtained for NEXP [5]. See survey articles [6,14]
for more details on these results.

For the case of NP, the progress has been very slow. The first result that achieves a separation
between Turing and many-one completeness in NP, under a reasonable hypothesis, is due to Lutz
and Mayordomo [20]. They showed that if NP does not have P-measure 0 (known as measure
hypothesis), then Turing completeness for NP is different from many-one completeness. Ambos-
Spies and Bentzien [2] achieved a finer separation under a weaker hypothesis known as genericity
hypothesis. Subsequently, Turing and many-one completeness notions are shown to be different
under even weaker hypotheses known as NP machine hypothesis, bi-immunity hypothesis, and partial
bi-immunity hypothesis [13, 21,22].

All of the above mentioned hypotheses are known as almost everywhere hardness hypotheses.
Informally, these hypotheses assert that there exists a language in NP such that every algorithm that
decides L must take more than subexponential time on all but finitely many inputs. Even though we
believe that NP is subexponentially hard, we do not have any candidate languages in NP that are
almost everywhere hard. All natural problems have an infinite set of instances that can be decided
in polynomial time. Thus these hypotheses are considered “strong hypotheses”. It has been open
whether a separation can be achieved using a worst-case hardness hypothesis (such as P 6= NP, or
NE 6= E). The only partial result in this direction is due to Gu, Hitchcock, and Pavan [10] who
showed that if there exist one-way permutations and there exists a language in NEEE ∩ co-NEEE
that can not be solved in deterministic triple exponential time with logarithmic advice, then Turing
completeness for NP differs from many-one completeness. Even though the latter hypothesis is a

2

worst-case hardness hypothesis, the former is a average-case hardness hypothesis.
In this paper, we separate Turing completeness for NP from many-one completeness using

a worst-case hardness hypothesis. This is the first result of this nature. Below is an informal
statement of our result. Please see Section 3 for a more formal statement.

Main Theorem. Suppose there exist an NEEXP machine N accepting Σ∗ and running in time
t(n) and a positive constant δ < 1 such that no zero-error, probabilistic machine Z running in time

2t(n)
δ

can compute accepting computation of N with non-trivial probability.
Then there is a Turing complete language for NP that is not truth-table complete for NP. Here

we require that t(n) is 22
nc

for some constant c > 1.

The rest of the paper is organized as follows. Section 2 is the preliminaries section. In Section 3,
we formally state our worst-case hardness hypothesis, and provide a proof of the separation theorem.
Section 4 relates the hypothesis used in this paper to a few other hypotheses studied in the context
of separating completeness notions.

2 Preliminaries

We use standard notions and definitions in complexity theory [3]. All languages are defined over
the the binary alphabet Σ = {0, 1}, Σn denotes the set of all binary strings of length n. We
use |x| to denote the length of a string x. Non-deterministic double-exponential time is defined

by NEEXP =
⋃
c>1 NTIME(22

nc

) and co-NEEXP is its complement class. We say that a non-

deterministic machine is a NEEXP machine, if its runtime is bounded by 22
nc

for some c > 1. A
language L is in ZPTIME(t(n)), if there is a probabilistic machine Z running in time O(t(n)) such
that for every x, Pr[Z(x) = L(x)] is atleast 1/4, and the probability that Z outputs an incorrect
answer is zero. The machine Z may output ⊥ with probability at most 3/4.

Definition 1. Suppose N is a non-deterministic machine accepting a language S. We say that a
t(n)-time bounded, zero-error, probabilistic machine computes accepting computations of N if there
exists a probabilistic machine Z such that

• For every x ∈ S, for every choice of random bits, the machine Z on input x either outputs a
string from Σ∗ or outputs the special symbol ⊥.

• for every x ∈ S, Pr[Z(x) is an accepting computation of N(x)] > 1/4, and

• for every x ∈ S, Pr[Z(x) 6= ⊥ and is not an accepting computation of N(x)] = 0.

Our proof uses the notion of P-selective sets introduced by Selman [23].

Definition 2. A set S ⊆ Σ∗ is P-selective if there is a polynomial time computable function
f : Σ∗ ×Σ∗ → Σ∗ such that for all strings x, y ∈ Σ∗, (1) f(x, y) ∈ {x, y}, and (2) if either of x and
y is in S, then f(x, y) is in S. The function f is called the P-selector of S.

The well-known example of P-selective sets are the left-cut sets L(r) = {x | x < r}, where r is
an infinite binary sequence, and < is the dictionary order with 0 < 1. The following lemma is due
to Toda [25].

3

Lemma 1. For every P-selective set L, there is a polynomial time algorithm that given any finite
set of strings Q as input, outputs a sequence x1, · · · , xm such that {x1, · · · , xm} = Q, such that for
some integer p, 0 ≤ p ≤ m, Q ∩ L = {xi | i ≤ p} and Q ∩ L̄ = {xi | i > p}.

Consider two languages A and B. A is polynomial time Turing reducible to B, denoted by
A ≤P

T B, if there is a polynomial time oracle Turing machine M such that A = L(MB). Note that
M can make at most polynomially many queries to B and they can be adaptive. The language A is
polynomial-time truth-table reducible to B, denoted by A ≤P

tt B, if there is a pair of polynomial time
computable functions 〈f, g〉 such that for every x ∈ Σ∗, (1) f(x) is query set Q = {q1, q2, · · · , qk}
and (2) x ∈ A ⇐⇒ g(x,B(q1), B(q2), · · · , B(qk)) = 1. We call f the query generator and g the
truth-table evaluator. Given a polynomial time reducibility ≤P

r , a set B is ≤P
r -complete for NP if

B is in NP and for every set A ∈ NP, A is ≤P
r reducible to B.

Notation. Let τ : N → N be a function defined as τ(n) = 22
n
. The functions of the form

22
f(n)

, that are used in many places throughout this paper, are not visually appealing; from now
we represent such functions as τ(f(n)). Then τ(δf(n)) represents 22

δf(n)
. We use τ ε(n) to denote

(τ(n))ε. Further, logc n represents (log n)c.

3 Separation Theorem

In this section we prove the main result of this paper. Note that we are considering only polynomial
time reductions in the rest of the paper. First, we formally state our hypothesis.

Hypothesis W. There exist a positive constant δ < 1 and an NEEXP machine N1 accepting Σ∗ that
runs in time t(n) such that no 2t(n)

δ
-time bounded, zero-error, probabilistic machine can compute

the accepting computations of N1. Here t(n) = 22
nc

for some constant c > 1.

Theorem 1. If Hypothesis W holds, then there is a Turing complete language for NP that is not
truth-table complete for NP.

Before we provide a formal proof, we first describe proof outline. Our proof proceeds in four
steps. Note that Hypothesis W is a “worst-case hardness hypothesis”. This means that for every
probabilistic, 2t(n)

δ
-time bounded, machine Z1 there exists infinitely many inputs x such that the

probability that Z1(x) computes an accepting computation of N1(x) is very small. This is equivalent
to the following: there exist infinitely many input lengths n for which there exists at least one string
x of length n so that the probability that Z1(x) is an accepting computation of N1(x) is very small.
In the first step (Section 3.1), we amplify the hardness of N1 and obtain an NEEXP machine N2

with the following property: For every 2t(n)
δ
-time bounded, probabilistic machine Z2, there exist

infinitely many input lengths n at which for every string x of length n the probability that Z2(x)
is an accepting computation of N2(x) is small.

In the second step (Section 3.2), we first define a padding function pad : Σ∗ → N. Via standard
padding arguments we obtain an NP-machine N running in time p(n) that accepts a tally set
T = {0pad(x) | x ∈ Σ∗}. For ` ≥ 0, let T` = {0pad(x) | x ∈ Σ`}. The NP-machine N has the following
hardness property: For every f(n)-time bounded, probabilistic machine Z (for an appropriate choice
of f) there exist infinitely many integers ` such that Z fails to compute accepting computations on
every string from T`.

4

Using the NP-machine N , we define the Turing complete language L in step three (Section 3.3).
The language L is formed by taking disjoint union of two NP languages L1 and L2. The language
L1 consists of tuple of the form 〈x, a〉 so that x ∈ C (for some NP-complete language C), and a is
an accepting computation of N(0n) (for some n that depends on x). In L2, we encode accepting
computations of N using a P-selective set. It follows that C can be Turing reduced to L by first
obtaining an accepting computation of N (by making queries to L2) and then by making one query
to L1. The idea of forming L1 is borrowed from [21], and encoding accepting computations of an
NP-machine as a P-selective sets is well known. For example see [11].

Finally, in step four (Section 3.4), we show that if L is truth-table complete, then there is a
probabilistic machine Z such that for every ` there exists atleast one string in T` so that Z computes
an accepting computation of N on that string with high probability. Using this, we in turn show
that there exists a probabilistic machine Z2 so that for every input length `, there exists atleast one
string x ∈ Σ` such that Z2(x) outputs an accepting computation of the NEEXP machine N2(x).
This will be a contradiction. The most technical part of the proof lies in this step.

We now give proof details.

3.1 Hardness Amplification

The first step amplifies the hardness of the NEEXP machine N1 from the hypothesis to obtain a
new NEEXP machine N2.

Lemma 2. Suppose that the hypothesis W holds. Then there exist an NEEXP machine N2 accepting
Σ∗ and running in time O(2nτ(nc)) and a constant β < δ such that for every probabilistic machine
Z2 that runs in time τ(β2n

c
), there exist infinitely many input lengths n > 0 such that for every

x ∈ Σn,
Pr[Z2(x) = an accepting computation of N2(x)] ≤ 1/4.

Proof. Let N1 be the non-deterministic machine from Hypothesis W whose running time is bounded
by O(t(n)), where t(n) = τ(nc) (for some c > 1). Length of every accepting computation of N1(x)
is bounded by O(t(|x|)). Consider a machine N2 that behaves as follows:

On an input x of length n, it runs N1(y) on every string y of length n (in a sequential
manner).

The running time of N2 is O(2n× t(n)). Since N1 accepts Σ∗, the machine N2 also accepts Σ∗. We
claim that N2 has the required property.

Suppose not. Then there is a probabilistic machine Z2 that runs in time O(τ(β2n
c
)) (for some

β < δ) such that for all but finitely many n, there exists a string yn ∈ Σn such that

Pr[Z2(yn) = an accepting computation of N2(yn)] > 1/4.

By the definition of N2, the accepting computation of N2(x) encodes the accepting computation
of N1(y) for every y whose length is same as the length of x. Consider a machine Z1 that on any
input x of length n behaves as follows:

It runs Z2(y) on every y of length n. It verifies that the output of Z2(y) is an accepting
computation of N2(y), and if the verification succeeds, then it extracts the accepting
computation of N1(x) and outputs it. If Z2(y) does not output an accepting computa-
tion of N2(y), then Z1 outputs ⊥.

5

Let x be any input of length n. By our assumption, there exists a yn ∈ Σn such that Z2(yn)
outputs an accepting computation of N2(yn) with probability at least 1/4. The above machine
clearly runs Z2(yn) on input x. Since an accepting computation of N1(x) can be retrieved from an
accepting computation of N2(yn), the above machine outputs an accepting computation of N1(x).
Thus for all but finitely many n, for every x ∈ Σn, Z1 outputs an accepting computation of N1(x)
with probability at least 1/4. The running time of Z1 is clearly O(2n× τ(β2n

c
)), which is less than

τ(δ2n
c
) (as β < δ). This contradicts Hypothesis W.

3.2 Defining an NP machine

In this section, we define an NP machine N from the above NEEXP machine N2. Fix ε < β.
Consider the following padding function pad : Σ∗ → N, defined by

pad(x) = bτ ε(logc rx)c,

where rx is the rank of string x in the standard lexicographic order of Σ∗, so that 2` − 1 ≤ rx ≤
2`+1− 2, for every x ∈ Σ`. Note that pad is 1-1 and so pad−1(n) (if exists) is well defined. To keep
the calculation simple, we drop the floors henceforth. Now we define the following tally language
based on the padding function:

T =
{

0pad(x) | x ∈ Σ∗
}
.

Our NP machine N that accepts a tally language behaves as follows:

On input 0m, it computes x = pad−1(m). Upon finding such x, it runs N2(x). If no
such x is found, then N rejects.

Note that |x| < (log logm2/ε)1/c. So running time of N is bounded by m3/ε. Thus N is an NP
machine. Note that N accepts the tally language T .

3.3 Turing-complete language

At this point, we are ready to define the language L in NP that we prove to be Turing complete,
but not truth-table complete for NP.

Let LT be the range of the padding function pad.

LT = {τ ε(logc i) | i ∈ N}.

By definition, N accepts only those tally strings whose length is in the set LT . We use ni to
denote pad(i). Given a length n ∈ LT , define an to be the lexicographically maximum accepting
computation of N(0n). Let a be the infinite binary string an1an2an3 · · · where ni ∈ LT and
n1 < n2 < n3 < · · · . Let |an| denotes the length of the accepting computation an. Let SAT′ consist
of the SAT formulas with lengths only in LT , i.e.,

SAT′ = SAT ∩ {x ∈ Σ∗ | |x| ∈ LT }.

Since there exists a polynomial p such that ni+1 ≤ p(ni), it can be shown via padding that SAT
many-one reduces to SAT′ and thus SAT′ is NP-complete.

We define L1 and L2 as follows:

L1 =
{
〈φ, u〉 | |φ| = n, u is an accepting computation of N on 0n, φ ∈ SAT′

}
6

and
L2 = L(a) = {z | z < a} ,

where < is the dictionary order with 0 < 1. Then our Turing-complete language L is the disjoint
union of L1 and L2, i.e.,

L = L1 ∪· L2 = 0L1 ∪ 1L2.

Note that both L1 and L2 are in NP, and so is L.

Lemma 3. L is ≤P
T -complete for NP.

Proof. Reduce SAT′ to L: On input φ of length n, make adaptive queries to L2 to find an. Accept
φ if and only if 〈φ, an〉 ∈ L1.

3.4 L is not truth-table complete

In this section, we show that L is not truth-table complete for NP. Before we proceed with the
proof, we provide the intuition behind the proof. Suppose that L is truth-table complete. We
achieve a contradiction by exhibiting a procedure to compute accepting computations of NEEXP
machine N2. Since the NP-machine N is padded version of N2, it suffices to compute the accepting
computations of N . We partition T into sets T1, T2, · · · , where T` = {0pad(x) | x ∈ Σ`}. Clearly,
|T`| = 2` and T =

⋃
` T`. Note that an accepting computation of N2(x) can be computed by

computing an accepting computation of N(0pad(x)), and if |x| = `, then 0pad(x) ∈ T`.
Recall that N2 has the following property: For every probabilistic machine Z2 that attempts

to compute its accepting computations, there exist infinitely many input lengths ` and Z2 fails
on every string at those lengths. Informally, this translates to the following hardness property of
N : For every probabilistic machine Z that attempts to compute accepting computations of N ,
there exist infinitely many integers ` such that Z fails on every string from T`. Thus to achieve a
contradiction, it suffices to exhibit a probabilistic procedure Z such that for all but finitely many
`, Z outputs an accepting computation of N(0n) for some 0n ∈ T`, with non-negligible probability.
We will now (informally) describe how to compute accepting computations of N .

For the sake of simplicity, let us first assume that the NP machine N has exactly one accepting
computation on every input from T . The first task is to define a set S that encodes the accepting
computations of the machine N . One way to define S as

S = {〈0n, i〉 | ith bit of accepting computation of N(0n) is 1} .

Since we assumed that N has exactly one accepting computation, deciding S is equivalent to
computing accepting computations of N . Since S is in NP, there is a truth-table reduction from S
to L. We make another simplifying assumption that all queries are made to L1 part of L. Consider
an input 〈0n, i〉 where 0n ∈ T` (for some ` > 0). All the queries produced on this input are of
the form 〈φ, u〉. It is easy to check if u is an accepting computation of N(0m) for some m. If u
is not an accepting computation, then 〈φ, u〉 does not belong to L, and thus it is easy to decide
the membership of 〈0n, i〉 in S. Suppose that u is an accepting computation of N(0m) for some m.
Then there are two cases. First case is the “short query” case, where m is much smaller than n.
In this case 〈φ, u〉 is in L1 only when |φ| equals m and φ ∈ SAT′. Since m << n, we can decide
whether φ ∈ SAT′ using a brute force algorithm in time O(2m), this in turn enables us to decide
the membership of 〈0n, i〉 in S. Thus if all the queries are small, we can decide the memberships

7

of 〈0n, i〉 (for all i), and thus can compute accepting computation of N(0n). The second case is
the “large query” case: Suppose that for some query, m is not much smaller than n. In this case,
we are in the following scenario: The reduction outputs accepting computation of N(0m) and m is
somewhat large. In this case, we argue that for an appropriate choice of n, 0m also lies in T`. This
will enable us to design a procedure that outputs accepting computation of some string from T`.
This is the gist of the proof.

The above argument assumed that N has exactly one accepting computation, which is not true
in general. We get around this problem by applying Valiant-Vazirani lemma [26] to isolate one
accepting computation. Thus our language S will involve the use of isolation lemma. It is also very
much possible that the reduction makes queries to L2 also. Recall that L2 is a P-selective set and
it is known that if an NP-language A reduces to a P-selective set, then A must be “easy” [23, 25].
We use this in combination with the above mentioned approach. A technically involved part is to
define the correct notion of “small” and “large” queries. There is a fine interplay among the choice
of pad function, notion of small query, and the runtime of probabilistic machine that computes the
accepting computations of N . We now provide a formal proof.

Lemma 4. L is not ≤P
tt-complete for NP.

Proof. For the sake of contradiction, assume that L is truth-table complete for NP. Consider the
following set S.

S = {〈0n, k, r1, r2, . . . , rk, i〉 | n ∈ LT , 1 ≤ k ≤ |an|, ri ∈ Σ|an|, there is a u such that u is an

accepting computation of N(0n), u · r1 = u · r2 = · · · = u · rk = 0, and the ith bit of u = 1},

where u · ri denotes the inner product over GF[2].
It is easy to see that S is in NP. Since L is ≤P

tt-complete for NP, S is ≤P
tt reducible to L via

polynomial time computable functions 〈g, h〉, where g is the query generator and h is the truth-table
evaluator. Since g is polynomial-time computable, there exists a constant b > 0 such that every
query generated by it is of length at most nb.

At this point, our goal is to compute an accepting computation of N . We start with the following
algorithm A that classifies all the queries of the query generator into two sets, “Large Query” and
“Small Query”.

1. Input 0n, where n = τ ε(logc i) for some i ∈ N. Clearly, n ∈ LT .

2. For 1 ≤ j ≤ n2 repeat the following:

• Pick kj uniformly at random from {1, · · · , |an|}.
• Pick each of rj1, r

j
2, . . . , r

j
kj

uniformly at random from Σ|an|.

3. Let Qj be the set of queries generated by g on inputs 〈0n, kj , rj1, · · · , r
j
kj
, i〉, 1 ≤ i ≤ |an|.

Compute Qj for 1 ≤ j ≤ n2 and set Q =
⋃
j Q

j . Note that the length of each query is

bounded by nb.

4. Partition Q into two sets Q1 and Q2 such that Q1 is the set of all queries to L1 and Q2 is the
set of all queries to L2.

8

5. If Q1 contains a query 〈φ, ut〉 for some t, where ut is an accepting computation of N(0t) and

t > τ ε(((log log nb/ε)1/c − 1)c),

then print ut, output “Large Query”, and halt.

6. Otherwise, output “Small Query” and halt.

It is clear that the algorithm A runs in time polynomial in n.
Before we give our probabilistic algorithm to compute the accepting computations of N , we

bound the probabilities of certain events of interest. T is partitioned into sets T1, T2, · · · each of
cardinality 2`, where

T` =
{

0τ
ε(logc rx) | x ∈ Σ`

}
.

Fix ` > 0. For a fixed 0n ∈ T` and j, 1 ≤ j ≤ n2, let En,j denote the following event:

There exists exactly one u such that

• u is an accepting computation on N(0n),

• u · rj1 = u · rj2 = · · · = u · rjkj = 0.

By Valiant-Vazirani, we have that Pr[En,j] ≥ 1
n2 . Let En denote the event that for some j, 1 ≤ j ≤

n2, En,j occurs. The probability of En is at least 1 − 1

2n2
. Finally, let E` denote the event that for

every 0n ∈ T`, the event En occurs. Again, we have that Pr[E`] ≥ 1− 1
2`

.
Thus for every `, the probability that the event E` occurs is very high. Fix an `. From now on,

we assume that the event E` has occurred.
Now our goal is to arrive at the machine that computes an accepting computation of atleast

one string from T`. For this we will analyze the behavior of the above algorithm on a specific string
0V` ∈ T`, where

V` = τ ε/b(logc(2`+1 − 2)).

We stress that this unique string 0V` depends only on the length `. When we run algorithm A on
0V` , either it outputs “Large Query” on it, or it outputs “Small Query”.

Lemma 5 (Key Lemma). One of the following holds.

1. If A outputs “Small Query” on 0V`, then there is an algorithm B1 that on input 0V` runs in
time polynomial in τ(ε2((log log V`

b/ε)1/c−1)c), and correctly outputs an accepting computation of
N(0V`).

2. If A outputs “Large Query” on 0V`, there exist an algorithm B2 such that for every string in
T` it runs in time polynomial in V`, and there exists a 0t ∈ T` for which B2(0t) outputs an
accepting computation of N(0t).

We defer the proof of this lemma and complete the proof of main theorem by describing a
probabilistic machine that computes accepting computation of the NEEXP machine N2.

9

Computing accepting computations of N2

Remember that we defined our NEEXP machine N2 in Lemma 2. Now consider the probabilistic
machine Z2 that does the following on input x ∈ Σ`:

1. Compute V`. Run A on 0V` .

2. If A(0V`) outputs “Small Query”,

• Verify if x = pad−1(V`). If it is, then run B1 on 0V` and if it outputs an accepting com-
putation of N(0V`), then output that accepting computation. This is also the accepting
computation of N2(x).

3. If A(0V`) outputs “Large Query”, do the following:

• For every string 0i in T`, run the algorithm B2 on it. If it outputs the accepting com-
putation of N(0t) for some 0t, then verify if x = pad−1(0t). If it is, then output that
accepting computation. This is also the accepting computation of N2(x).

We analyze the behavior of Z2 under the assumption that the event E` happens. Recall that
this happens with very high probability. If A(0V`) outputs “Small Query”, then by part (1) of
Lemma 5, B1 outputs an accepting computation of N(0V`). Note that every accepting computation
of N(0V`) is an accepting computation of N2(pad

−1(V`)). Since pad−1(V`) is of length `, there
exists a string x ∈ Σ`, on which Z2 outputs an accepting computation of N2(x). Now consider the
case where A(0V`) outputs “Large Query”, then by part (2) of Lemma 5, there exists a 0t ∈ T`
such that B2(0t) outputs an accepting computation of N(0t). Thus Z2 will find that 0t through
iteration. Similarly, pad−1(0t) ∈ T` is of length `, thus there exists a x in Σ` on which Z2 outputs
an accepting computation of N2(x). Thus Z2 always outputs an accepting computation of atleast
one string x from Σ`.

We will now bound the runtime of Z2. This is bounded by runtime of A(0V`), plus the runtime
of B1(0V`), and the time taken in step 3 of the above algorithm. By part (1) of Lemma 5, the

runtime of B1(0V`) is τd(ε2((log log V`
b/ε)1/c−1)c) for some constant d > 0, which is bounded by

τd(ε2((log log V`
b/ε)1/c−1)c) = τd(ε2((log

c(2`+1−2)1/c−1)c) = τd(ε2((log(2
`−1))c) < τd(ε2`

c
).

Let p be a constant such that A(0V`) runs in time V p
` and B2(0i), 0i ∈ T`, runs in time V p

` . Step 3
runs B2 on every string from T`, and there are 2` strings in T`. Thus the combined runtime of
A(0V`) in step 1 and step 3 is bounded by

2`+1V p
` = 2`+1τpε/b(logc(2`+1 − 2)) ≤ 2`+1τpε/b((`+ 1)c) ≤ τ q((`+ 2)c)

for some constant q > p. Thus the total running time of Z2 is bounded by τ(β2`
c
), as β > ε.

Thus for all but finitely many `, the machine Z2 computes an accepting computation of N2(x)
for atleast one string x from Σ` with non-trivial probability. This contradicts the hardness of
NEEXP machine N2 in Lemma 2. This completes the proof of Lemma 4.

This also completes the proof the main theorem.

10

3.5 Proof of Key lemma

We prove the two parts of the Lemma 5 separately.

Proof of Part 1. Fix the input 0V` from the hypothesis. Since we are operating under the assump-
tion that the event E` has occurred, there is a j, 1 ≤ j ≤ V`2, such that EV`,j has occurred.

Recall that Qj is the set of all queries made by the truth-table reduction 〈g, h〉 on inputs
〈0n, kj , rj1, · · · , r

j
kj
, i〉 for 1 ≤ i ≤ |aV` |. Let Qj1 be the set of all queries made to L1 and let Qj2 be

the set of all queries made to the set L2.
We will now describe how to decide answers to queries from Qj1. Note that each query q ∈ Qj1

is of the form 〈φ, z〉, where φ is of length t. If z is not an accepting computation of N(0t), then
〈φ, z〉 in not in L1. Suppose z is an accepting computation of N(0t). Then it must be the case that
t ≤ τ ε(((log log V`

b/ε)1/c − 1)c). Now 〈φ, z〉 is in L1 if and only if φ ∈ SAT′. Since |φ| = t, this can
be tested in time 2t. Thus we can decide the membership of all queries from Qj1 in time polynomial

in τ(ε2((log log V`
b/ε)1/c−1)c).

Now we deal with the queries to L2; we can not hope to decide membership of queries in Qj2 in
L2 in general. However, note that L2 is P-selective. Thus by Toda’s lemma (Lemma 1) all elements
of Qj2 can be ordered as q1, q2, · · · , qm and for some r, 1 ≤ r ≤ m, all of q1, · · · , qr are in L2 and
none of qr+1, · · · , qm are in L2. This ordering can be done in time polynomial in m. We do not
know the value of r. However, there are only m possibilities for r. For each i ∈ [1,m] we set r as i
and determine the possible membership of queries in L2.

We are now in the following situation: For every query in Qj1 we know the membership in L1,

and for every query in Qj2 we know candidate memberships in L2. Using these and evaluating h,
we obtain a candidate for the ith bit of u, for 1 ≤ i ≤ |aV` |. From this we construct a string û and
if û is an accepting computation of N(0n) we output it. If u is not an accepting computation of
N(0n), we proceed with next choice for r. By our assumption, there is an accepting computation
of N(0V`) that is isolated. Thus this process will find that accepting computation. Note that the

total time taken by this process is still some polynomial in τ(ε2((log log V`
b/ε)1/c−1)c).

Finally, we do not know the value of j for which the isolation occurs. We repeat the above
process for every possible choice of j, and there are only n2 choices for j. Thus the total time taken
by this algorithm is still a polynomial in τ(ε2((log log V`

b/ε)1/c−1)c).

Proof of Part 2. The length of every query generated by A(0V`) is at most V`
b. Then it can be

seen from algorithm A that on input 0V` , when it outputs “Large Query”, it outputs an accepting
computation ut of N(0t) such that

τ ε(((log log V`
b/ε)1/c − 1)c) < t < V`

b.

Now if we can show that 0t lies in T` for all possible values of t for such a V`, then there is at
least one 0t in T` whose accepting computation can be computed from a string 0V` in T`. Here
V` = τ ε/b(logc(2`+1−2)). Remember that T` = {0τε(logc rx) | 2`−1 ≤ rx ≤ 2`+1−2}. Then it’s easy
to verify that the upper and lower bounds on t gives the last and the first strings in T`, respectively.
We use this observation to construct B2:

On input 0t ∈ T`, run A(0V`) to get ut. Then verify if ut is an accepting computation
of N(0t). If it is, then output ut.

The above observation implies that there is such a 0t in T` on which B2 outputs ut. The algorithm
runs in time polynomial in V`.

11

4 Power of the hypothesis

In this section, we show some results that explain the power of Hypothesis W and also compare it
to some of the previously studied hypotheses that are used to separate NP-completeness notions.

Even though Hypothesis W talks about the difficulty of computing accepting computations of
NEEXP machines, our first result states that it can be related to the hardness of the complexity
class NEEXP ∩ co-NEEXP.

Hypothesis 2. There exist constants c > 1 and δ < 1 such that NTIME(t(n))∩ co-NTIME(t(n)) *
ZPTIME(2t(n)

δ
), for t(n) = 22

nc

.
Now we show that our hypothesis follows from this worst-case separation hypothesis.

Proposition 1. Hypothesis 2 implies Hypothesis W.

Proof. Suppose L is a language that satisfies the hypothesis. Let N1 and N2 be two machines that
witness that L and L are in NTIME(t(n)). Consider the following machine N : On input x, guess
b ∈ {1, 2} and run Nb. Clearly, N is an NTIME(t(n)) machine and accepts Σ∗. Suppose there

is a probabilistic machine M running in time 2t(n)
δ
, such that for all but finitely many x, M(x)

outputs an accepting computation of N(x) with probability at least 1/4. Note that by looking at
an accepting computation of N(x), we can decide whether x ∈ L or not. Consider a machine Z
that on input x does the following:

Run M(x). If the output of M(x) is an accepting computation of N1, then Z accepts x.
If the output of M(x) is an accepting computation of N2, then Z rejects x. Otherwise,
Z outputs ⊥.

Clearly, Z is a zero-error machine whose running time is O(2t(n)
δ
) and for every x, Z correctly

decides L with probability at least 1/4. By running this machine O(1) times, we obtain that L is

in ZPTIME(2t(n)
δ
). This contradicts Hypothesis 2.

Pavan and Selman [21] showed that the NP-completeness notions differ under the following
hypothesis.

Hypothesis 3. (NP-machine Hypothesis) There exist an NP machine N accepting 0∗ and β >

0 for every 2n
β
-time bounded deterministic algorithm M , M(0n) does not output an accepting

computation of N(0n) for all but finitely many n.
Note that the hypothesis requires that every machine that attempts to compute accepting

computations of N must fail on all but finitely many inputs. This type of hardness hypothesis is
called “almost everywhere hardness hypothesis”. In contrast, Hypothesis W requires that every
machine that attempts to compute accepting computations of the NEEXP machine must fail on
only infinitely many strings.

Ideally, we would like to show that NP-machine hypothesis implies Hypothesis W. However,
NP-machine hypothesis concerns with hardness against deterministic algorithms, whereas Hypoth-
esis W concerns with hardness against probabilistic algorithms. If we assume well-accepted deran-
domization hypotheses, we can show Hypothesis W is weaker than the NP-machine hypothesis.

Proposition 2. Suppose that ZPP = P. If NP-machine hypothesis holds, then Hypothesis W holds.

12

Proof. Consider the NP machine N from the NP-machine Hypothesis that runs in time nd for some
d > 0. Define a padding function pad : Σ∗ → N by

pad(x) = τ((log rx − 1)2),

where c > 1, and rx is the lexicographic rank of x in Σ∗. Now define the NEEXP machine N1 as
follows: On input x, compute m = pad(x) and run N(0m). Clearly, N accepts Σ∗ and runs in time
τd(n2), for x ∈ Σn (so rx ≤ 2n+1 − 2). Assume t(n) = τd(n2).

Suppose there is a probabilistic machine Z1 running in time 2t(n)
δ
, such that for all but finitely

many x, Z1(x) outputs an accepting computation of N1(x) with probability atleast 1/4. Consider
a machine Z that on input 0m does the following: Compute x = pad−1(m) and run Z1(x). Clearly,
Z is a zero-error machine that runs in time

O(2t(n)
δ
) = τ(δd2n

2
) < τ(β2n

2
) = 2m

β

for some appropriate β > δd. Note that for every n, this time bound holds for the last string in Σn

and does not hold for the first string in Σn. Clearly, there are infinitely many 0m where Z correctly
computes the accepting computation of N(0m) in time 2m

β
. If we assume that full derandomization

is possible, then we can replace Z by a deterministic machine M that runs in time poly((2m
β
))

which is 2m
ε

for an appropriate ε > β. Hence contradiction.

Lutz and Mayordomo [20] achieved the separation of NP-completeness notions under the Mea-
sure Hypothesis. Hitchcock and Pavan [12] showed that Measure hypothesis implies the above
NP-machine hypothesis. Thus we have the following.

Proposition 3. Suppose that ZPP = P. Measure hypothesis implies Hypothesis W.

Pavan and Selman [22] showed that if NP-contains 2n
ε
-bi-immune sets, then completeness in

NP differ. Informally, the hypothesis means the following: There is a language L in NP such that
every 2n

ε
-time bounded algorithm that attempts to decide L must fail on all but finitely many

strings. Thus this hypothesis concerns with almost-everywhere hardness, whereas Hypothesis W
concerns with worst-case hardness. We are not able to show that the bi-immunity hypothesis implies
Hypothesis W (even under the assumption ZPP = P). However, we note that if NP ∩ co-NP has
bi-immune sets, then Hypothesis W follows. Pavan and Selman [21] showed that if NP∩ co-NP has
a DTIME(2n

ε
)-bi-immune set, then NP-machine hypothesis follows.

Proposition 4. Suppose that ZPP = P. If NP ∩ co-NP has a DTIME(2n
ε
)-bi-immune set, then

Hypothesis W holds.

5 Conclusions

This paper, for the first time, shows that Turing completeness for NP can be separated from
many-one completeness under a worst-case hardness hypothesis. Our hypothesis concerns with
hardness of non-deterministic, double exponential time. An obvious question is to further weaken
the hypothesis. Can we achieve the separation under the assumption that there exists a language
in NE that can not be solved in deterministic/probabilistic time O(2δ2

n
)?

13

References

[1] S. Aida, R. Schuler, T. Tsukiji, and O. Watanabe. On the difference between polynomial-
time many-one and truth-table reducibilities on distributional problems. In 18th International
Symposium on Theoretical Aspects of Computer Science, 2001.

[2] K. Ambos-Spies and L. Bentzien. Separating NP-completeness under strong hypotheses. Jour-
nal of Computer and System Sciences, 61(3):335–361, 2000.

[3] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge Univer-
sity Press, 2009.

[4] L. Babai and S. Laplante. Stronger separations ofor random-self-reducibility, rounds, and
advice. In 14th IEEE Conference on Computational Complexity, pages 98–104, 1999.

[5] H. Buhrman, S. Homer, and L. Torenvliet. Completeness notions for nondeterministic com-
plexity classes. Mathematical Systems Theory, 24:179–200, 1991.

[6] H. Buhrman and L. Torenvliet. On the structure of complete sets. In 9th IEEE Annual
Conference on Structure in Complexity Theory, pages 118–133, 1994.

[7] S. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd ACM
Symposium on Theory of Computing, pages 151–158, 1971.

[8] J. Feigenbaum, L. Fortnow, C. Lund, and D. Spielman. The power of adaptiveness and
additional queries in random-self-reductions. In Proc. 7th Annual Conference on Structure in
Complexity Theory, pages 338–346, 1992.

[9] J. Feigenbaun, L. Fortnow, S. Laplante, and A. Naik. On coherence, random-self-reducibility,
and self-correction. In Proceedings of the Eleventh Annual IEEE Conference on Computational
Complexity, pages 224–232, 1996.

[10] X. Gu, J. Hitchcock, and A. Pavan. Collapsing and separating completeness notions under
average-case and worst-case hypotheses. Theory of Computing Systems, 51(2):248–265, 2011.

[11] E. Hemaspaandra, A. Naik, M. Ogiwara, and A. Selman. P-selective sets and reducing search
to decision vs. self-reducibility. Journal of Computer and System Sciences, 53(2):194–209,
1996.

[12] J. Hitchcock and A. Pavan. Hardness hypotheses, derandomization, and circuit complexity.
Computational Complexity, 17(1):119–146, 2008.

[13] J. Hitchcock, A. Pavan, and N. V. Vinodchandran. Partial bi-immunity, scaled dimension and
np-completeness. Theory of Computing Systems, 42(2):131–142, 2008.

[14] S. Homer. Structural properties of complete problems for exponential time. In L. Hemas-
paandra and A. Selman, editors, Complexity Theory Retrospective II, pages 135–153. Springer-
Verlag, 1997.

[15] D. W. Juedes and J. H. Lutz. The complexity and distribution of hard problems. SIAM
Joutnal on Computing, 24:279–295, 1995.

14

[16] R. Karp. Reducibility among combinatorial problems. In Complexity of Computer Computa-
tions, pages 85–104. Plenum Press, New York, 1972.

[17] K. Ko and D. Moore. Completeness, approximation and density. SIAM Journal on Computing,
10(4):787–796, Nov. 1981.

[18] R. Ladner, N. Lynch, and A. Selman. A comparison of polynomial time reducibilities. Theo-
retical Computer Science, 1:103–123, 1975.

[19] L. Levin. Universal sorting problems. Problems of Information Transmission, 9:265–266, 1973.
English translation of original in Problemy Peredaci Informacii.

[20] J. H. Lutz and E. Mayordomo. Cook versus Karp-Levin: Separating completeness notions if
NP is not small. Theoretical Computer Science, 164:141–163, 1996.

[21] A. Pavan and A. Selman. Separation of NP-completeness notions. SIAM Journal on Comput-
ing, 31(3):906–918, 2002.

[22] A. Pavan and A. Selman. Bi-immunity separates strong NP-completeness notions. Information
and Computation, 188:116–126, 2004.

[23] A. Selman. P-selective sets, tally languages, and the behavior of polynomial time reducibilities
on NP. Mathematical Systems Theory, 13:55–65, 1979.

[24] S. Tang, B. Fu, and T. Liu. Exponential time and subexponential time sets. In Theoretical
Computer Science, volume 115, pages 371–381, 1993.

[25] S. Toda. On polynomial-time truth-table reducibilities of intractable sets to P-selective sets.
Mathematical Systems Theory, 24(2):69–82, 1991.

[26] L. Valiant and V. Vazirani. NP is as easy as detecting unique solutions. Theoretical Computer
Science, 47:85–93, 1986.

[27] O. Watanabe. A comparison of polynomial time completeness notions. Theoretical Computer
Science, 54:249–265, 1987.

15

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

