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Abstract

A recent trend in cryptography is to construct cryptosystems that are secure against physical
attacks. Such attacks are usually divided into two classes: the leakage attacks in which the
adversary obtains some information about the internal state of the machine, and the tampering
attacks where the adversary can modify this state. One of the popular tools used to provide
tamper-resistance are the non-malleable codes introduced by Dziembowski, Pietrzak and Wichs
(ICS 2010). These codes can be defined in several variants, but arguably the most natural of
them are the information-theoretically secure codes in the k-split-state model (the most desired
case being k = 2).

Such codes were constucted recently by Aggarwal et al. (STOC 2014). Unfortunately, unlike
the earlier, computationally-secure constructions (Liu and Lysyanskaya, CRYPTO 2012) these
codes are not known to be resilient to leakage. This is unsatisfactory, since in practice one
always aims at providing resilience against both leakage and tampering (especially considering
tampering without leakage is problematic, since the leakage attacks are usually much easier to
perform than the tampering attacks).

In this paper we close this gap by showing a non-malleable code in the 2-split state model
that is secure against leaking almost a 1/12-th fraction of the bits from the codeword (in the
bounded-leakage model). This is achieved via a generic transformation that takes as input any
non-malleable code (Enc,Dec) in the 2-split state model, and constructs out of it another non-
malleable code (Enc′,Dec′) in the 2-split state model that is additionally leakage-resilient. The
rate of (Enc′,Dec′) is linear in the rate of (Enc,Dec). Our construction requires that Dec is
symmetric, i.e., for all x, y, it is the case that Dec(x, y) = Dec(y, x), but this property holds
for all currently known information-theoretically secure codes in the 2-split state model. In
particular, we can apply our transformation to the code of Aggarwal et al., obtaining the first
leakage-resilient code secure in the split-state model. Our transformation can be applied to
other codes (in particular it can also be applied to a recent code of Aggarwal, Dodis, Kazana
and Obremski constructed in the work subsequent to this one).
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1 Introduction

Several attacks on cryptographic devices are based on exploiting physical weaknesses in their imple-
mentations. Such “physical attacks” are usually based on the side-channel information about the
internals of the cryptographic device that the adversary can obtain by measuring its running-time,
electromagnetic radiation, power consumption (see e.g. [ECR]), or on active tampering (see e.g.
[AK96, ECR]). A recent trend in theoretical cryptography, initiated by [MR04, ISW03, IPSW06],
is to design schemes that are provably-secure even if their implementations can be attacked.

One of the tools used in this area are the so-called non-malleable codes introduced by Dziem-
bowski, Pietrzak and Wichs in 2010 [DPW10]. Informally, a code (Enc : M → C,Dec : C → M),
where Enc is a randomized encoding function, and Dec is a partial decoding function, is non-
malleable if an adversary that learns C = Enc(M) is not able to produce C ′ = h(C) such that
Dec(C ′) is not equal to M , but is “related” to it. The precise meaning of “not being related” is
a little tricky to define but intuitively, what we require is that C ′ does not depend on C in any
non-trivial way. For example: C ′ equal to C with the first bit set to zero, or C ′ equal to C with
every bit negated, are obviously “related” to C, but a uniformly random C ′, or a constant C ′ are
unrelated to C. It is easy to see that in order to construct such codes, one needs to restrict in some
way the set of possible “manipulation functions” h that the adversary can use in order to compute
C ′ from C. This is because otherwise the adversary could simply let h compute M from C (using
the decoding function Dec), compute M ′ that is “related to M” (by say, negating all the bits of
M), and then output C ′ = Enc(M ′). Therefore the non-malleable codes are always defined with
respect to a family H of manipulation functions h that the adversary is allowed to use to compute
C ′ from C.

The main application for this notion is the protection against tampering attacks. Imagine
C = Enc(M) is stored on some device that the adversary can tamper with, and hence he can
substitute C with some C ′ 6= C. Suppose (Enc,Dec) is non-malleable with respect to the set of
manipulation functions that the adversary is able to induce by tampering. Then the only thing
that the adversary can achieve is that C ′ will either decode to the same M , or to some M ′ that is
totally unrelated to M . This is useful, since many practical attacks on cryptographic schemes are
based on the so-called “related key attacks” [BK03], where the adversary is able to break a scheme
S(K) (where K is the secret key) by having access to a device S(K ′) for some K ′ that is related
to K. Clearly, storing K in an encoded form Enc(K) provides protection against such attacks.
In [DPW10] the authors describe also other applications of non-malleable codes. In particular
they show how to use them in combination with the algorithmic tamper proof security framework
of Gennaro et al. [GLM+04]. Recently, Faust et al. used the non-malleable codes to construct
Random Access Machines secure against tampering and leakage attacks [FMNV14b], and Coretti
et al. [CMTV14] have shown how to use the non-malleable codes to construct public-key encryption
schemes.

Since the invention of the non-malleable codes, there has been a significant effort to construct
codes that would be secure against interesting classes of families. In [DPW10] the authors show a
construction of efficient codes secure against bit-wise tapering, i.e. when every bit of the codeword
is manipulated independently (this is achieved using the algebraic manipulation detection codes
of Cramer et al. [CDF+08]). They also provide an existential result that for every sufficiently
small family H of manipulation functions there exists a (not necessarily efficient) non-malleable
code secure against it. This immediately gives a construction of non-malleable codes secure in the
random oracle model [BR93].
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Previous constructions of non-malleable codes in the split-state model. A very attrac-
tive and natural family of manipulation functions can be defined using the so-called split-state
model. Assume that C is represented as a sequence of blocks C = (C1, · · · , Ck). Then H is a family
of k-split state manipulation functions if every h ∈ H manipulates each element C1, . . . , Ck indepen-
dently, i.e., for every h there exist functions {hi}ki=1 such that h(C1, . . . , Ck) = (h1(C1), . . . , hk(Ck)).
A practical justification for such a model comes from an observation that it may be easy to achieve
in real life, by simply placing every Ci on a separate chip. Of course, the fewer parts are needed,
the stronger the model is, and in particular the most desirable case is k = 2. In the sequel, we will
sometimes refer to the 2-split state model simply as the “split model”.

The aforementioned existential result of [DPW10] implies that there exist non-malleable codes
in the 2-split state model. The problem of showing an efficient construction of such codes was left
open in [DPW10]. The first step towards solving it was made by Liu and Lysyanskaya [LL12], who
showed a construction of non-malleable codes computationally secure in the 2-split state model.
Dziembowski, Kazana and Obremski [DKO13] provided an efficient construction of information-
theoretically non-malleable codes that works only for messages of length 1. The problem of con-
structing information-theoretically secure codes for messages of arbitrary length was finally solved
by Aggarval, Dodis and Lovett [ADL14]. Their construction is based on the methods from additive
combinatorics, including the so-called Quasi-polynomial Freiman-Ruzsa Theorem, and involves a
substantial blow-up in the size of the codeword (|C| = Õ((|M | + κ)7), where κ is the security
parameter). Very recently Chattopadhyay and Zuckerman [CZ14] have shown a construction of
non-malleable codes in 10-split state model that achieves linear blow-up.

A subsequent construction of non-malleable codes in the split-state model. In a paper
subsequent to this one, Aggarwal et al. [ADKO14] show a general transformation of any k-split
state model secure non-malleable code into one secure in the 2-split state model, that involves a
linear blow-up in the codeword size. This, together with the result of [CZ14] gives a construction
of a non-malleable code in the 2-split state model with codeword of length linear in |M |. Their
construction uses some of the techniques developed in this work. In particular, one of the steps of
their construction which can be seen as a generalization of our reduction is a reduction from the
2-split-state tampering family to the so called 2-part t-lookahead tampering family. However, the
result of [ADKO14] does not consider leakage-resilience, and considering the number of levels of
encoding required by their result, it is unlikely that their construction is resilient to any significant
leakage.

Leakage-resilience of non-malleable codes. The ultimate goal of the “physically secure cryp-
tography” is to provide both tampering- and leakage-resilience. The basic definition of the non-
malleable codes does not consider any type of leakage information that the adversary can obtain
about the codeword through the side channels. This may be considered unrealistic, as in practice
it may be often relatively easy for the adversary to obtain such information (probably easier than
to perform the tampering attacks). Therefore, it would be desirable to include also such attacks in
this definition. The first paper that considered leakage-resilient non-malleable codes was [LL12] (in
the computational settings). Our definition essentially follows their ideas, except that we consider
the information-theoretic settings.

Let us now explain informally the concept of leakage-resilient non-malleable codes in the 2-split
state model (the formal definition appears in Section 3). First consider the question what would
be the most natural definition of leakage and tampering attacks. To be as general as possible we
should give to the adversary right to simultaneously tamper the codeword C = (L,R) and leak
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information from it. The leakage will be modeled by allowing the adversary to choose functions
LeakL

i and LeakR
i and learn LeakL

i (L) and LeakR
i (R) (respectively). The entire process should happen

in several rounds, and the adversary should be adaptive (i.e. his behavior in round i should depend
on what he learned in the previous rounds). The functions will be arbitrary, except that we will
have a bound on the total number of bits leaked from L and R, where the “number of leaked bits” is
measured in terms of the total out size of the LeakL

i (L) and LeakL
i (R) functions. This is essentially

the independent leakage model first considered in [DP08] (inspired by the “only computation leaks”
paradigm of Micali and Reyzin [MR04]) and then in a sequence of papers (see, e.g.: [DDV10,
FKPR10, GR12, DF12, BDL14]). It makes particular sense to use it in our context, as it is also
motivated by the assumption that L and R are stored on two separate memory parts. Observe
also that if we allowed joint leakage from L and R then we would need to have some additional
restrictions on the leakage functions, as otherwise the adversary could choose a leakage function
that first computes M = Dec(L,R) and then outputs the first bit M [1] of M . This, in turn, would
allow him to choose tampering functions that simply overwrite the original encoding with (L′, R′)
such that Dec(L′, R′) is equal to (M [1], 0, . . . , 0) (such M ′ is obviously “related” to M and with
overwhelming probability it is not equal to M). For similar reasons it is obvious that we always
need some sort of restriction on the leakage functions LeakL

i and LeakR
i , since if the adversary learns

the entire L (say) then he can then easily choose a leakage function LeakR
i that first computes

Dec(L,R) and then outputs M [1].
It is also easy to see that without loss of generality we can restrict the adversary to choose

deterministic leakage functions (since we can always convert a random function to a deterministic
one by fixing its random input). Another natural observation is that it is enough to consider the
case when all the leakage happens before the tampering functions are chosen. This is because
the result of any leakage Leaki from a tampered codeword f(C) can be computed by a function
Leak′i = Leaki ◦ f that is applied directly to C. The formal definition of our model appears in
Section 3.

1.1 Our contribution

As argued above, leakage-resilence is an important property for may applications of the non-
malleable codes. Unfortunatelly, this aspect of these codes has been ignored in many recent papers
on this topic. In particular, the authors of [ADL14, CZ14] do not consider leakage at all. Proving
that the code of [ADL14] is resilient to significant amounts of leakage seems highly non-trivial (if
not impossible), as one would need to adapt their “additive combinatorics” argument to consider
leakage. What would probably be easier (but still very far from immediate) would be to prove
some leakage-resilience of the 10-split state encoding of [CZ14]. Leakage-resilience was considered
in [DKO13], but their construction works only for messages of length 1. To summarize: until now,
no construction of leakage-resilient 2-split state non-malleable codes for messages longer than 1 was
known. Providing such a construction is the main contribution of this work.

In fact, our contribution is much more general. We show a generic transformation that takes as
input any non-malleable code (Enc,Dec) in the 2-split state model, and constructs out of it another
non-malleable code (Enc′,Dec′) in the 2-split state model that additionally is secure against leaking
a constant fraction of the bits from the codeword. The rate of (Enc′,Dec′) is linear in the rate
of (Enc,Dec). The only thing that we require is that (Enc,Dec) is symmetric, i.e., Dec(L,R) =
Dec(R,L). Since the code of [ADL14] has this property, thus, combining this result with ours, we
obtain a leakage-resilient 2-split state non-malleable code.

Let us also note that the code from the subsequent work of [ADKO14] (built by applying a
reduction from 10-split to 2-split state to the code of [CZ14]) is also symmetric, and therefore we
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can instantiate (Enc,Dec) with this construction, obtaining that (Enc′,Dec′) is a constant rate and
can tollerate leakage of a linear size.

Our key technical argument is contained in Theorem 5.1 that can be of independent interest.
Informally, in this theorem we consider a “parallel composition of the inner product encodings”,
i.e., we consider encoding of a pair of messages x1, x2 ∈ F as random elements L1, R1, L2, R2 ∈ Fn
such that 〈L1, R1〉 = x1, and 〈L2, R2〉 = x2. We show that it is partly resilient to tampering in
the following sense. If (L1, L2) and (R1, R2) are independently tampered to obtain (L′1, L

′
2) and

(R′1, R
′
2), and then we decode to get x′1 = 〈L′1, R′1〉, and x′2 = 〈L′2, R′2〉, then x′1, x

′
2 can only have

a limited dependence on x1, x2. The proof of this result is done using a careful combinatorial
argument that among other techniques, makes extensive use of the two-source extractor property
of the inner-product, and Vazirani’s XOR Lemma.

1.2 Other related work

The notion of non-malleability was introduced in cryptography by Dwork et al. [DDN98]. Formal
treatment of the tampering attacks was initiated in [IPSW06, GLM+04]. The non-malleable codes
were also studied by Cheraghchi and Guruswami, who in [CG14b] show improved constructions
of the non-malleable codes secure against bit-wise tampering and show a connection between the
non-malleable codes and the seedless non-malleable extractors (which is a new notion that they
introduce). In [CG14a] the same authors study the problem of the capacity of non-malleable codes
secure against different (non-split-state) families. Extensions of non-malleable codes to the case of
continuous tampering were studied in [FMNV14a]. Non malleable codes secure against tampering
functions coming from restricted complexity classes were studied in [FMVW14], and secure against
the linear tampering functions were considered in [CCP12].

Simultaneous leakage and tampering attacks were also considered in [LL10] (who consider a
more restricted type of leakage, called the “probing attacks”), in [KKS11] who construct tamper-
and leakage-resilient encryption and signature schemes, and in [DK12] who show a general way to
transform any cryptographic functionality into one that is secure against tampering with individual
bits, and leaking a logarithmic amount of information. Probabilistic tampering attacks on boolean
circuits (where the adversary can tamper each wire with a certain probability) were also considered
in [FPV11].

2 Preliminaries

For a set T , let UT denote a uniform distribution over T , and, for an integer `, let U` denote uniform
distribution over ` bit strings. The statistical distance between two random variables A,B is defined
by ∆(A,B) = 1

2

∑
v |Pr[A = v]− Pr[B = v]|. We use A ≈ε B as shorthand for ∆(A,B) ≤ ε.

Lemma 2.1. For any (randomized) function α, if ∆(A,B) ≤ ε, then ∆(α(A), α(B)) ≤ ε.

The min-entropy of a random variableW is H∞(W )
def
= − log(maxw Pr[W = w]), and the conditional

min-entropy of W given Z is H∞(W |Z)
def
= − log (Ez←Z maxw Pr[W = w|Z = z]).1

Definition 2.2. We say that an efficient function Ext : {0, 1}n × {0, 1}n → {0, 1}m is an
(n, k,m, ε)-two-source extractor [CG88] if for all independent sources X,Y ∈ {0, 1}n such that min-
entropy H∞(X)+H∞(Y ) ≥ k, we have (Y,Ext(X,Y )) ≈ε (Y,Um), and (X,Ext(X,Y )) ≈ε (X,Um).

1Note that we use the variant of conditional entropy where the logarithm is taken after maxw is determined. This
definition was introduced in [DORS08] (it was called an average min-entropy there).
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For n being an integer multiple of m, and interpreting elements of {0, 1}m as elements from F2m

and those in {0, 1}n to be from (F2m)n/m, we have that the inner product function defined as
〈(a1, . . . , an/m), (b1, . . . , bn/m)〉 := a1b1 + · · ·+an/mbn/m is a good 2-source extractor (cf. eg. [CG88,
Rao07]).

Lemma 2.3. For all positive integers m, n such that n is a multiple of m, and for all ε > 0, there
exists an efficient (n, n+m+ 2 log

(
1
ε

)
,m, ε) 2-source extractor.

We will need the following results. The proofs of these results can be found in Appendix A for
completeness. The following is a simple result from [ADL14].

Lemma 2.4. Let X1, Y1 ∈ A1, and Y1, Y2 ∈ A2 be random variables such that ∆((X1, X2) ; (Y1, Y2)) ≤
ε. Then, for any non-empty set A′ ⊆ A1, we have

∆(X2 | X1 ∈ A′ ; Y2 | Y1 ∈ A′) ≤
2ε

Pr(X1 ∈ A′)
.

A leakage oracle is a machine Ω that takes as input (L,R) ∈ {0, 1}n×{0, 1}n and then answers
the leakage queries of a type (L, f) and (R, g), where f, g : {0, 1}n → {0, 1}∗. Each query (L, fi)
(resp.: (R, gi)) is answered with fi(L) (resp.: gi(R)) or ⊥. An interactive machine A that issues
the leakage queries is called a leakage adversary. Let LeakAL (L) (resp.: LeakAR (R)) denote the
concatenation of all the non-⊥ answers to the (L, fi) (resp.: (R, gi)) queries of A. Moreover, let
LeakA(L,R) := (LeakAL (L), LeakAR (R)). The oracle Ω is m-bounded if it gives the non-⊥ answers
to the (L, fi) queries as long as |LeakAL (L)| ≤ m and the non-⊥ answers to (R, fi) queries as long
as |LeakAR (R)| ≤ m. The following result follows easily Lemma 4 of [DP07] and Lemma 2.2 of
[DORS08].

Lemma 2.5. Let L̃ ∈ {0, 1}n and R̃ ∈ {0, 1}n be two independent random variables, and let A be
an arbitrary leakage adversary interacting with an m-bounded oracle Ω(L̃, R̃). Then L̃ and R̃ are
independent given LeakA(L̃, R̃). Moreover, for every δ > 0 we have

Pr
(
H∞(L̃ | LeakA(L̃, R̃) = a) ≤ log |L| −m− log(1/δ)

)
≤ δ

(where a := LeakA(L̃, R̃)), and

Pr
(
H∞(R̃ | LeakA(L̃, R̃) = b) ≤ log |L| −m− log(1/δ)

)
≤ δ,

(where b := LeakA(L̃, R̃)).

We say that (EncLR : M → L×R,DecLR : L × R → M) is an ε-leakage-resilient encoding in the
split-state model [DDV10] if for every M0,M1 ∈M we have that

∆(Leak(EncLR(M0)) ; Leak(EncLR(M1)) ≤ ε.

Such encodings can be easily constructed from the 2-source extractors [DDV10]. The following is
a generalization of the Vazirani’s XOR Lemma (it is proven in Appendix A).

Lemma 2.6. Let X = (X1, . . . , Xt) ∈ Ft be a random variable, where F is a finite field of order q.
Assume that for all a1, . . . , at ∈ Ft not both zero, ∆(

∑t
i=1 aiXi ; U) ≤ ε, where U is uniform in F.

Then ∆(X1, . . . , Xt ; U1, . . . , Ut) ≤ εqt, where U1, . . . , Ut are independent and uniform in Ft.
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3 The defintion of the Leakage Resilient Non-Malleable Codes

In this section we present the defintion of the leakage resilient non-malleable codes in the split-
state model. We first recall the definition of non-malleable codes in the split-state model from
[DPW10, ADL14]. As discussed already informally the introduction in this model we assume that
the codeword is split into two parts which are tampered independently.

Definition 3.1. A coding scheme in the split-state model consists of two functions: a randomized
encoding function Enc :M 7→ L×R, and a deterministic decoding function Dec : L×R 7→M∪{⊥}
such that, for each M ∈ M, Pr(Dec(Enc(M)) = M) = 1 (over the randomness of the encoding
algorithm). Suppose L = R and denote C := L(= R). A coding scheme (Enc,Dec) is symmetric is
for every (L,R) ∈ C we have that Dec(L,R) = Dec(R,L).

Definition 3.2. Let (Enc : M → C2,Dec : C2 → M) be a coding scheme in a split state model.
For tampering functions f, g ∈ CC, and m ∈M, define the tampering-experiment

Tamperm :=


(L,R)← Enc(m),

(L̃, R̃) := (f(L), g(R))

m̃ = Dec(L̃, R̃)
Output: m̃,


which is a random variable over the randomness of the encoding function Enc. We say that a
coding scheme (Enc,Dec) is ε-non-malleable w.r.t. F if for each f ∈ F , there exists a distribution
(corresponding to the simulator) D over M∪ {⊥, same}, such that, for all m ∈ M, we have that
the statistical distance between Tamperm and

Simm :=

{
m̃← D

Output: m if m̃ = same, and m̃, otherwise

}
is at most ε. Additionally, D should be efficiently samplable given oracle access to f and g.

We now define the notion of non-malleability against the leakage adversaries (which was first
formulated by [LL12]). As explained in the introduction it is enough to consider the scenario
where the adversary first learns some bounded information about the codeword (via the leakage
oracle), and then chooses the tampering functions. Formally we have the following.

Definition 3.3. Let Enc,Dec be a coding scheme from {0, 1}k to {0, 1}n×{0, 1}n, and let γ ∈ [0, 1)
be a parameter. Let A be any adversary that has oracle access to a γn-bounded leakage oracle
Ω(L,R) (cf. 2), where L,R ∈ {0, 1}n, and outputs functions (f, g) such that f, g : {0, 1}m →
{0, 1}m. Let m ∈ {0, 1}k be a message. Consider the following tampering experiment.

Tamperγm :=


(L,R)← Enc(m),
(f, g) = A(L,R),

(L̃, R̃) := (f(L), g(R)),

m̃ = Dec(L̃, R̃)
Output: m̃,


which is a random variable over the randomness of the encoding function Enc. We say that a
coding scheme (Enc,Dec) is γ-leakage resilient ε-non-malleable code if for each A, there exists a
distribution D over {0, 1}k ∪ {⊥, same}, such that, for all m ∈ {0, 1}k, we have that the statistical
distance between Tamperγm and

Simm :=

{
m̃← D

Output: m if m̃ = same, and m̃, otherwise.

}
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is at most ε. Additionally, D should be efficiently samplable given oracle access to f, g, Leak1, Leak2.

Of course, every ε-non-malleable code is also a 0-leakage resilient ε-non-malleable code. On the
other hand, it is easy to find codes that are ε-non-malleable but are not ξ-leakage resilient ε-non-
malleable for an arbitrarily small ξ. For example, consider an ε-non-malleable code (Enc,Dec), and
construct another code (Enc′,Dec′) as follows. Let

Enc′(M) = ((L, · · · , L)︸ ︷︷ ︸
d1/ξe times

, (R, · · · , R)︸ ︷︷ ︸
d1/ξe times

),

where (L,R) ← Enc(M). The decoding function for (L′, R′) = ((L1, . . . , Ld1/ξe), ((R1, . . . , Rd1/ξe)
is defined as: Dec′(L′, R′) = ⊥ if for some i, j we have Li 6= Lj or Ri 6= Rj , and Dec′(L′, R′) =
Dec(L1, R1) otherwise. It is easy to show that (Enc′,Dec′) is also ε-non-malleable. On the other
hand, clearly, it is not ξ-leakage resilient ε-non-malleable, since the adversary can simply leak L1

and Ri (since |Li|/|L′| = |Ri|/|R′| = 1/(d1/ξe) ≤ ξ) and hence he can compute M before he chooses
the tampering functions. Actually, it would even be enough for the adversary to leak Li from one
part (L, say), since in this case he could make the tampering function g fully dependent on M
(since M = Dec(L1, R1)), and, e.g., tamper with R only if M = 0 (which obviously means that the
code is malleable).

4 Our construction

This section contains the main construction of our paper. Let (Enc :M→ X ×X ,Dec : X ×X →
M) be a (not leakage resilient) symmetric ε-non-malleable code in the split state model. Let
γ ∈ [0, 1/12) be a parameter. We are going to construct a γ-leakage resilient 3ε-non-malleable code
(Enc′,Dec′) in the split state mode (the code (Enc′,Dec′) will also be symmetric).

The first obvious idea for constructing such a code could be to define Enc′(m) as follows:
first compute (x1, x2) = Enc(m), and then “encode” both x1 and x2 using the leakage-resilient
encoding (cf. Section 2). To be more concrete choose an encoding of [DDV10] that is based on the
inner product function2. Let (`1, r1) and (`2, r2) be such leakage-resilient encodings of x1 and x2,
respectively. It is clear that given (`1, r1, `2, r2) one can easily compute m as Dec(〈`1, r1〉, 〈`2, r2〉).

Of course, what remains to be defined is how the variables `1, r1, `2, and r2 are represented in the
final encoding, or, in other words: on which memory part one would store each of these variables.
One option, of course, would be to move to the 4-split state model and say that the result of the
encoding is (`1, r1, `2, r2) (i.e. each of these variables can leak and be tampered independently).
This approach can be proven secure, but it is clearly suboptimal since it increases to 4 the number
of memory parts needed to implement the scheme.3

If we restrict ourselves to the 2-split state model then we could simply think of putting some of
the `1, `2, r1, r2 variables on one part of the encoding and the remaining ones on the other part. It
is easy to see that `1 and r1 cannot be put together on one memory part (a symmetric argument
works for `2 and r2). This is because if the leakage function can be applied directly to `1 and r1
then the adversary choose a function that it simply internally decodes x1 from (`1, r1) and leaks
directly from x1. Hence, the code would need to be non-malleable even if the adversary can choose

2In this encoding in order to encode a message x one chooses random vectors ` and r (in some Fn) such that
〈`, r〉 = x, and to decode the message one simply computes 〈`, r〉.

3One can be tempted to say that in this case we can apply the transformation from the subsequent paper [ADKO14]
to reduce the number of parts from 4 to 2, but for this approach to work one would need to show that the construction
of [ADKO14] preserves the leakage-resilience which seems highly non-trivial.
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the tampering function g (that is applied to x2) after learning x1, which is impossible (cf. the
discussion at the end of Section 3).

Hence, the only option that has chances to work is to define the encoding of m to be equal to
((`1, `2), (r1, r2)). Observe that the adversary can now obviously “swap” x1 and x2 by changing the
encoding to ((`2, `1), (r2, r1)). This is ok for us, since we assumed that our encoding is symmetric.
He can also “copy” elements, and produce an encoding ((`1, `1), (r1, r1)) (or ((`2, `2), (r2, r2))). In
this case the decoded value (x′1, x

′
2) will be equal to (x1, x1) (resp.: (x2, x2)). It turns out that

this is also ok, since every non-malleable code in the 2-split state is essentially also a 2-out-of-2
secret sharing function (we prove this fact in Lemma 6.1), and thus x1 and x2 individually do
not provide any significant information about the encoded message m (which, of course, implies
that DecNM(x1, x1) is unrelated to m). Of course these attacks can be combined with tampering
attacks applied to each of `1, `2, r1 and r2 individually. For example the adversary can transform
the encoding to ((`1, c ·`1), (r1, r1)), which (from the linearity of the inner product) would decode to
(x1, c · x1). This, however, is not a problem, since such individual tampering is obviously tolerated
by every non-malleable code.

Unfortunately, it turns out the the adversary can launch some more sophisticated attacks.
Observe that in our encoding the values (`1, `2) and (r1, r2) can be treated as vectors of length
2n. Suppose the adversary permutes both of them with the same random permutation σ, and
let (`′1, `

′
2) = σ(`1, `2) and (r′1, r

′
2) = σ(r1, r2). Then the inner product of the 2n-long vectors

remains unchanged (i.e. 〈(`′1, `′2), (r′1, r′2)〉 = 〈(`1, `2), (r1, r2)〉), and therefore 〈`1, r1〉 + 〈`2, r2〉 =
〈`′1, r′1〉+ 〈`′2, r′2〉, which means that x′1 + x′2 = x1 + x2 (where x′1 and x′2 are the results of decoding
the manipulated encodings). Since 〈`′1, r′1〉 is uniformly random, thus one can think of this attack as
(x′1, x

′
2) := (x1+Z, x2−Z) for some random Z. Fortunately, the non-malleable codes are obliviously

secure against attacks that add and subtract constants to the different parts of the encoding.
Nevertheless, this example indicates that analyzing all possible strategies of the adversary may be
non-trivial.

In Section 5 we characterize all such strategies by dividing them into classes. Very roughly
speaking, it turns out that the attacks described above are examples of attacks from each of these
classes. Namely: the adversary can either make x′1 depend only on x1 and x′2 on x2 (this case is
denoted Did), or x′1 depend on x2 and x′2 on x1 (case Dswap), or make both x′1 and x′2 depend only on
x1 (case Dforget,2) or only on x2 (case Dforget,1). He can also make x′1 depend in an arbitrary way on
x1, x2 and x′2 (case Dunif,2).This comes at a cost of making x1, x2 and x′2 uniform and independent
(note that the “(x′1, x

′
2) := (x1 +Z, x2−Z)” attack falls into this category). Symmetrically, he can

make x′2 depend in an arbitrary way on x1, x2 and x′1 (case Dunif,1).
What remains is to prove security of the non-malleable codes when the adversary can perform

the attacks from classes Did,Dswap,Dforget,1,Dforget,2,Dunif,1, and Dunif,2. This is done in Section 6.
In order to handle the cases Dunif,1, and Dunif,2 we need to modify our construction slightly. Namely,
we make the leakage-resilient encoding “sparse” in the sense that a decoding of random codeword
with overwhelming probability yields ⊥ (this is slightly reminiscent of the construction of [DKO13]
where a similar technique was used to construct the non-malleable codes for 1-bit messages). This
is achieved by requiring that the decoded value has to be in some sparse subset of F of size q′ � |F|.
It will be convenient to define this set as the set of all x’s such that ψ(x) ≤ q′, where ψ : F → [q]
is an arbitrary bijection. The technical details follow.

Our construction Let n be an integer, and let F = Fq be a finite field, and let q′ < q be an integer.
Let≺ be a total order on F, and let ψ : F→ [q] be a bijection such that a ≺ b if and only ψ(a) < ψ(b),
for all a, b ∈ F. Define the “leakage-resilient” decoding function DecLR : F2n×F2n → [q′]× [q′]∪{⊥}
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as follows:

DecLR ((`1, `2), (r1, r2)) =

{
⊥ if ψ(〈`1, r1〉) > q′, or ψ(〈`2, r2〉) > q′

(ψ(〈`1, r1〉) , ψ(〈`2, r2〉)) otherwise.

We then define EncLR : [q′]× [q′]→ F2n×F2n as follows: for any x ∈ [q′]× [q′], EncLR(x) is a random
element y in F2n × F2n, such that DecLR(y) = x. The following is our main result. The proof is
given in Section 6.

Theorem 4.1. Let (EncNM,DecNM) be an ε-non-malleable code from {0, 1}k to [q′]×[q′] in the split-
state model (for any ε ∈ (0, 1/10)) where DecNM is a symmetric function. Let (EncLR,DecLR) be as

above, with q ≥ q′

ε . Then for any γ < 1
12 the encoding scheme (EncLR ◦EncNM,DecNM ◦DecLR) is an

efficient 3ε-non-malleable γ-leakage resilient code in the split-state model from {0, 1}k to Fnq × Fnq ,

where n = O
(

1
1/12−γ

)
.

Thus, using the result of [ADL14, Agg14], we get the following result.

Corollary 4.2. For any γ < 1
12 and any ε ∈ (0, 3/10), there exists an efficient γ-leakage-resilient

ε-non-malleable code in the split-state model from k-bit messages to Θ
(
(k+log(1/ε))7

1/12−γ

)
-bit codewords.

Also, we get the following stronger result by combining Theorem 4.1 with an upcoming result [ADKO14],
which gives a constant-rate non-malleable code in the split-state model.

Corollary 4.3. For any γ < 1
12 and any ε ∈ (0, 3/10), there exists an efficient γ-leakage-resilient

ε-non-malleable code in the split-state model from k-bit messages to Θ
(
k+log(1/ε)
1/12−γ

)
-bit codewords.

5 The joint distribution of φf,g(L,R)

Before we proceed to the proof of Theorem 4.1 we need some auxiliary machinery that will allow us
the characterize how a distribution of 〈f1(L1, L2), g1(R1, R2)〉, 〈f2(L1, L2), g2(R1, R2))〉 can depend
on the distribution of 〈L1, R1〉, 〈L2, R2〉 (for arbitrary functions f1, f2, g1, and g2). Let F = Fq be
a finite field. Let (L1, L2), (R1, R2) be independent and distributed uniformly over L,R ⊆ F2n,
respectively. Let f1, g1, f2, g2 : Fn × Fn → Fn be a pair of functions. We consider the following
family of distributions

φf,g(L,R) := (〈L1, R1〉, 〈L2, R2〉, 〈f1(L1, L2), g1(R1, R2)〉, 〈f2(L1, L2), g2(R1, R2))〉 ∈ F4 ,

In this section, we analyze the possible joint distribution of φf,g(L,R) over F4 for arbitrary functions
f1, g1, f2, g2. First, define the following set of distributions (which were already informally discussed
in Section 4).

• Did := {(U1, U2, h1(U1, Z), h2(U2, Z))}, where h1, h2 are functions from F×Z to F, U1, U2 are
independent and uniform in F, and Z ∈ Z is some random variable independent of U1, U2.

• Dswap := {(U1, U2, h1(U2, Z), h2(U1, Z))}, where h1, h2 are functions from F× Z to F, U1, U2

are independent and uniform in F, and Z ∈ Z is some random variable independent of U1, U2.

• Dunif,1 := {(U1, U2, U3,W )}, where U1, U2, U3 are independent and uniform in F, and W is a
random variable over F arbitrarily correlated to U1, U2, U3.
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• Dunif,2 := {(U1, U2,W,U3)}, where U1, U2, U3 are independent and uniform in F, and W is a
random variable over F arbitrarily correlated to U1, U2, U3.

• Dforget,1 := {(U1, U2, h1(U2, Z), h2(U2, Z))}, where h1, h2 are functions from F×Z to F, U1, U2

are independent and uniform in F, and Z ∈ Z is some random variable independent of U1, U2.

• Dforget,2 := {(U1, U2, h1(U1, Z), h2(U1, Z))}, where h1, h2 are functions from F×Z to F, U1, U2

are independent and uniform in F, and Z ∈ Z is some random variable independent of U1, U2.

Define D to be the family of convex combinations of

Did ∪ Dswap ∪ Dunif,1 ∪ Dunif,2 ∪ Dforget,1 ∪ Dforget,2 .

We show that for any f, g, the value of φf,g(L,R) is statistically close to some distribution in D if
L,R have size at least q2n(1−γ).

Theorem 5.1. Let F = Fq be a finite field with q ≥ 4, n ≥ 48 be an integer, and γ ∈ [0, 1/12).
Let L = (L1, L2), and R = (R1, R2) be distributed uniformly at random in sets L,R of size at least
q2n(1−γ). For any f1, f2, g1, g2 : F2n → Fn, there exists a distribution D ∈ D such that

∆(φf,g(L,R) ; D) ≤ 72 · 2−s.

for any s ≤ (( 1
12 − γ)n− 5

4) log q − 5
6 .

We give a proof of this theorem in Section 8.

6 Concluding Theorem 4.1 from Theorem 5.1

Before we present our proof, we state a result showing that non-malleable codes in 2−split state
model also have the secret sharing property, i.e., that given any one part of the encoding of m, it
is impossible to guess the message m. The proof of this can be found in Appendix B.

Lemma 6.1. Let Dec : X × X →M, and Enc :M→ X ×X be ε−non-malleable code in 2−split
state model for some ε < 1

2 . For any pair of messages m0,m1 ∈ M, let (X0
1 , X

0
2 )← Enc(m0), and

let (X1
1 , X

2
2 )← Enc(m1). Then ∆(X0 ; X1) ≤ 2ε.

Proof of Theorem 4.1. Let n =
⌈

6
1/12−γ

⌉
. Fix the message m ∈M, and let EncNM(m) = (X1, X2),

and EncLR(X1, X2) = (L,R). Furthermore, fix manipulation functions f, g : Fn×Fn → Fn×Fn and
the parameter γ ∈ [0, 1

12). We need to analyze the distribution Tamperγm as in Definition 3.3. Before

this, consider the following. Choose γ′ = 1/12+γ
2 , so that (1/12− γ′)n = (γ′− γ)n ≥ 3. Let L̃, R̃ be

uniform in Fn. From Lemma 2.5 we know that the min-entropies of L̃ and R̃ conditioned on the
knowledge of LeakA(L̃, R̃) are at least 2n log q(1− γ′) with probability at least 1− 2 · q2n(γ−γ′). So,
at the cost of at most 2 ·q2n(γ−γ′) in the adversary’s success probability, we can restrict ourselves to
the case where L̃ and R̃ are distributed over uniformly over a set of size at least q2n(1−γ

′). Consider
the joint distribution

〈L̃1, R̃1〉, 〈L̃2, R̃2〉, 〈f1(L̃1, L̃2), g1(R̃1, R̃2)〉, 〈f2(L̃1, L̃2), g2(R̃1, R̃2)〉 ,

conditioned on the knowledge of LeakA(L̃, R̃). By Theorem 5.1, this has statistical distance at most

49 · 25/6 · q5/4−(1/12−γ′)n + 2 · q2n(γ−γ′) ≤ 100q−7/4 ≤ 100

(
ε2

2k

)7/4

≤ ε

2k+1
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from some distribution D in D. Here we used that ε < 1/10, and q′ ≥ 2k

ε . This holds for any
non-malleable code in the 2-split-state model. Note that for any known non-malleable code in this
model (in particular, those used in Corollary 4.2, and Corollary 4.3), we have that q′ � 2k

ε . Since
D is a convex combination (depending on f, g, and A) of distributions in Dforget,1, Dforget,2, Dunif,1,
Dunif,2, Did, and Dswap, without loss of generality we will analyze the distribution Tamperγm under
the assumption that D belongs to one of these sets. Hence, we consider the following cases.

D ∈ Dforget,1: In this case, D is of the form U1, U2, h1(U2, Z), h2(U2, Z), where U1, U2 are indepen-
dent and uniform in F, and Z is independent of U1, U2. Of course, in our case L1, R1, L2

and R2 are not entirely uniform and independent, as they are a random encoding of a fixed
message m. To take it into account we use Lemma 2.4, that states that in this case the
statistical distance gets mutiplied by 2 divided by the probability that a random message M
is equal to m (which is equal to 2−k). Hence, we get that Tamperγm has statistical distance at
most

2k+1 · ε

2k+1
= ε

from
V1 = DecNM

(
ψ
(
h1
(
ψ−1 (X2) , Z

))
, ψ
(
h2
(
ψ−1 (X2) , Z

)))
,

where EncNM(m) = (X1, X2), and Z is independent of X1, X2. Since V1 is independent of X1,
using Lemma 6.1 we get the desired result (as X2 cannot carry enough information to make
V1 dependent on m.

D ∈ Dforget,2: This case is similar to the previous one.

D ∈ Dunif,1: In this case, D is of the form U1, U2, U3,W , where U1, U2, U3 are independent and
uniform in F, and W ∈ F is arbitrarily correlated to U1, U2, U3. Again, by Lemma 2.4, this
implies that Tamperγm has statistical distance at most

2k+1 · ε

2k+1
= ε

from
V2 = DecNM

(
ψ (U3) ,W

′) ,
where EncNM(m) = (X1, X2), U3 is uniform and independent in F, W ′ is arbitrarily correlated
to X1, X2, U3. Note that ψ(U3) = ⊥ with probability 1− q′/q. Thus, Tamperγm has statistical
distance at most ε+ q′/q ≤ 2ε from ⊥.

D ∈ Dunif,2: This case is similar to the previous one.

D ∈ Did: In this case, D is of the form U1, U2, h1(U1, Z), h2(U2, Z), where U1, U2 are independent
and uniform in F, and Z is independent of U1, U2. By Lemma 2.4, this implies that Tamperγm
has statistical distance at most

2k+1 · ε

2k+1
= ε

from
V3 = DecNM

(
ψ
(
h1
(
ψ−1 (X1) , Z

))
, ψ
(
h2
(
ψ−1 (X2) , Z

)))
,

where EncNM(m) = (X1, X2), and Z is independent of X1, X2. It is easy to see that V3 is
ε-close to Simm by the ε-non-malleability of (EncNM,DecNM).

D ∈ Dswap: Using the fact that the decoding function is symmetric, this case is similar to the
previous one.
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7 Existential Result using [CG14b]

Cheraghchi and Guruswami [CG14b] introduced the notion of seedless non-malleable extractors as
a step towards constructing non-malleable codes defined as follows.

Definition 7.1. A function NMExt : {0, 1}n × {0, 1}n → {0, 1}k is a two-source non-malleable
(m, ε)-extractor if, for every pair of independent random variables X,Y over {0, 1}n such that
H∞(X) ≥ m, and for any functions f, g : {0, 1}n → {0, 1}n, there exists a distribution D over
{0, 1}k ∪ {same}, such that

∆(NMExt(X,Y ),NMExt(f(X), g(Y ) ; Uk, copy(D,Uk)) ≤ ε ,

where Uk is uniformly random in {0, 1}k, and copy(D,Uk) = Uk if D = same, and D, otherwise.

It was shown in [CG14b] that assuming the existence of non-malleable extractors with m = n
immediately gives non-malleable codes with good rate. We observe that their proof easily extends
to show that non-malleable extractors with small m implies non-malleable codes with good rate
that also tolerate large amount of leakage.

Theorem 7.2. Let NMExt : {0, 1}n × {0, 1}n → {0, 1}k be a two-source non-malleable (m, ε)-
extractor. Define a coding scheme (Enc,Dec) with message length k and block length 2n as follows.
The decoder Dec is defined as Dec(x, y) := NMExt(x, y).

The encoder, given a message s, outputs a uniformly random element (X,Y ) in {0, 1}n×{0, 1}n
such that Dec(X,Y ) = s. Then the pair (Enc,Dec) is (ε · (2k + 1)-non-malleable, 1 − m

n )-leakage-
resilient code against split-state tampering.

We now mention the result from [CG14b] showing the existence of non-malleable codes.

Theorem 7.3. Let NMExt : {0, 1}n×{0, 1}n → {0, 1}k be a random function. For any ε, δ > 0, and
m ≤ n, with probability at least 1− δ, the function NMExt is a two-source non-malleable extractor
provided that

m ≥ max(k +
3

2
· log 1/ε+

1

2
log log(1/δ) , log n+ log log(1/δ) +O(1)) .

Combining Theorem 7.2 and Theorem 7.3 gives us the following corollary.

Corollary 7.4. Let n = poly(k), and let NMExt : {0, 1}n×{0, 1}n → {0, 1}k be a random function.
With probability at least 1− 1

22k
, the scheme (NMExt−1,NMExt) is 2−k-non-malleable, 1− 5k

n -leakage-

resilient.

This implies that with probability very close to 1, a random function is an excellent leakage-
resilient non-malleable code, and we can arbitrarily increase the amount of leakage (upto the total
length of each part) at the cost of increasing the length of the codeword.

8 Proof of Theorem 5.1

8.1 The general strategy

Our strategy is to divide L×R into several disjoint parts, and prove that φf,g(L,R) is close to some
distribution in D for each of these parts separately. Let L = (L1, L2), and R = (R1, R2). Also, let
|F| = q, and τ = 1− γ. The following simple lemma shows that it suffices to bound the statistical
distance between φf,g(L,R) and some distribution in D for (L,R) restricted to partitions of L×R.
This was shown in [ADL14].
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Lemma 8.1. Let S ⊆ L × R. Let S1, . . . ,Sk be a partition of S. Also, let D1, . . . , Dk be some
distribution in D. Assume that for all 1 ≤ i ≤ k,

∆
(
φf,g(L,R)|(L,R)∈Si ; Di

)
≤ εi .

Then there exists a distribution D ∈ D such that

∆
(
φf,g(L,R)|(L,R)∈S ; D

)
≤
∑

εi
|Si|
|S|

.

We construct a partition of L × R in Section 8.2. Then in Sections 8.3.1—8.3.4 we analyze the
behavior of φf,g(L,R) on the constructed parts. Finally, in Section 8.4 we show how to combine
the facts proven in previous sections in order to obtain the statement of the theorem.

8.2 Partitioning the set L ×R.

We next define a partitioning of L×R based on f and g to which we will apply Lemma 8.1. This
is done independently for L and R and hence we will focus only on L (the partitioning of R is done
analogously). On a high level, our partitioning is constructed as follows: first we partition L into
sets Lffb,1,Lffb,2, and L1. Then we partition L1 into Lmix,1,Lmix,2, and L2. Finally, we partition L2
into Lid,Lswap, and Lrem (the meaning of the acronyms in the subscripts should become clear when
the sets are defined). Altogether, we partition L into 7 sets Lffb,1,Lffb,2,Lmix,1,Lmix,2,Lid,Lswap,
and Lrem.

Let β1 = 1
3n log q− 4(τ − 11

12)n log q + 4 log q + 4s+ 4, and let β2 = 1
3n log q− 4(τ − 11

12)n log q +
6 log q + 3s + 2. We first partition L into Lffb,1,Lffb,2, and L1. Recall that the elements of L
are pairs (`1, `2) ∈ Fn × Fn. Intutively Lffb,i (for i ∈ {1, 2}) will consist of the elements of L on
which the function f is “far from a bijection”, by which we mean that it “glues” at least 2β1/2

elements on the ith component (cf. Steps 2 and 3 below). The set L1 will consists of the remaining
elements (i.e. those that are “close to the bijection”). Since we want Lffb,1,Lffb,2, and L1 to be a
partition, thus Lffb,1 and Lffb,2 have to be disjoint. Hence we first construct Lffb,1, and then, using
the same method we construct Lffb,2, but in this construction we consider only `’s that belong to
L∗ := L \ Lffb,1. The set L1 consits of the elements of L that were not included in Lffb,1 or Lffb,2.
To avoid repetition, we present the procedures for constructing Lffb,1 and Lffb,2 as one algorithm,
whose behaviour depends on i. This algorithm, presented below, is executed first for i = 1 and
then for i = 2.

1. Initialize Lffb,i to be empty, and let L∗ := L if i = 1, and L∗ := L \ Lffb,1, otherwise.

2. Let W be a largest subset of L∗ such that for any two `, `′ ∈ W it holds that `i 6= `′i, and
f(`) = f(`′).

3. If |W| ≥ 2β1/2, then set L∗ = L∗ \W, set Lffb,i = Lffb,i ∪W, and go to Step 2.

4. Return Lffb,i.

The set L1 is defined to be
L1 = L \ (Lffb,1 ∪ Lffb,2) .

The justification for this choice is that for L̃ chosen uniformly at random from Lffb,i, we have

H∞(L̃i|f(L̃) = y) ≥ β1
2
,
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where y := f(L̃) (this is because the number of pre-images of y under f , projected on the ith
component, is at least 2β1/2). Also, we have that for any y ∈ Fn, the total number of elements

` ∈ L1 such that f(`) = y is at most
(

2
β1
2

)2
= 2β1 .

Recall that every f : Fn × Fn → Fn × Fn can be represened as a pair of functions f1, f2 :
Fn × Fn → Fn defined as (f1(`), f2(`)) := f(`). We further partition the set L1 depending on how
f1(`), f2(`) depend on `1, `2 for ` ∈ L1. We will now define partitioning of L1. Before we do it, let
us state the following auxiliary definition (note that it is defined for L, not for L1).

Definition 8.2. Define T i→j ⊂ L for i, j ∈ {1, 2}, as the set of all elements ` ∈ L such that∣∣∣{`∗ ∈ L ∣∣∣ `i = `∗i and fj(`) = fj(`
∗)
}∣∣∣ ≥ qn

2β2
.

Let us now prove the following simple result justifying the definition of T i→j . Intuitively, this
result shows that for every ` ∈ T i→j , the value of fj(`) can be computed given `i and a little more
information.

Lemma 8.3. Let ` ∈ T i→j for some i, j ∈ [t]. Then there exists some functions ai,j : T i→j 7→
{0, 1}β2 and ψi,j : Fn × {0, 1}β2 7→ Fn such that for all ` ∈ T i→j,

fj(`) = ψi,j(`i, ai,j(`)) .

Proof. Given ` ∈ T i→j , let T ′ = {`∗ ∈ T i→j | `∗i = `i}. Then, clearly |T ′| ≤ |Fn| = qn. Consider
a partition of T ′ into sets T ′1, . . . , T

′
m according to the value of function fj . More formally, for any

u, v ∈ [m], and any `′ ∈ T ′u, `′′ ∈ T ′v, we have that fj(`
′) = fj(`

′′) if and only if u = v. By definition
of T i→j , we have that |T ′u| ≥

qn

2β2
for all u ∈ [m]. Thus

m ≤ |T
′| · 2β2
qn

≤ 2β2 .

We define ai,j(`) as the binary representation of k such that ` ∈ T ′k. Now, it is easy to see that we
can determine fj(`) given `i and ai,j(`).

We now define disjoint subsets Lmix,1,Lmix,2 ⊆ L1 as follows.

Lmix,1 :=
{
` ∈ L1

∣∣ ` /∈ T 1→1 ∪ T 2→1
}
,

Lmix,2 :=
{
` ∈ L1 \ Lmix,1

∣∣ ` /∈ T 1→2 ∪ T 2→2
}
.

Informally speaking, ` ∈ Lmix,j implies that fj(`) depends on both `1 and `2. Now, let

L2 := L1 \ (Lmix,1 ∪ Lmix,2) .

We denote T (`, i) to be the set of j ∈ {1, 2} such that ` ∈ T i→j . Note that by the definition of
Lmix,j , for any ` ∈ L2 we have that T (`, 1) ∪ T (`, 2) = {1, 2}. We further partition L2 into Lid,
Lswap, and Lrem as follows.

Lid :=
{
` ∈ L2

∣∣ T (`, 1) = {1}, T (`, 2) = {2}
}
,

Lswap :=
{
` ∈ L2 \ Lid

∣∣ T (`, 1) = {2}, T (`, 2) = {1}
}
,

and
Lrem := L2 \ (Lid ∪ Lswap) .

The partitioning of R is defined similarly. We will later consider the partitions of L×R to be the
product of individual partitions of L and R (hence, at the end L×R is partitioned into 72 parts).
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8.3 Analyzing the parts

We will argue that for any part, either its probability is small, or φf,g(L,R) conditioned on (L,R)
belonging to it, is close to some distribution in D. We then apply Lemma 8.1 to obtain a proof of
Theorem 5.1.

8.3.1 Case: “f or g is far from bijection”

Lemma 8.4. For i = 1, 2, and R∗ ⊂ R, if |Lffb,i ×R∗| ≥ q4τn · 2−s then there exists a distribution
D that is a convex combination of distributions in Dforget,i such that

∆(φf,g(L,R)|(L,R)∈Lffb,i×R∗ ;D) ≤ 2−s .

Proof. Without loss of generality, let i = 1, and let |Lffb,1×R| ≥ q4τn ·2−s. Let L̃, R̃ be distributed
uniformly over Lffb,1 and R∗ respectively. Note that by the assumption we have that |Lffb,1| ≥
q2τn · 2−s and |R∗| ≥ q2τn · 2−s. Thus,

H∞(L̃1) ≥ (2τ − 1)n log q − s and H∞(L̃2|L̃1) ≥ (2τ − 1)n log q − s , (8.5)

and
H∞(R̃1) ≥ (2τ − 1)n log q − s and H∞(R̃2|R̃1) ≥ (2τ − 1)n log q − s . (8.6)

Denote 〈L̃k, R̃k〉 by Xk, and 〈fk(L̃), gk(R̃)〉 by X ′k for k = 1, 2. We have that

H∞(L̃1|X2, f(L̃)) ≥ β1
2
− log q .

Also, using Lemma 2.5, we get that L̃ and R̃ (and hence L̃1 and R̃1) are independent given f(L̃),
R̃2, and X2. Thus, using the fact that Ext is a strong two-source extractor, we have that

X1, R̃1, X2, f(L̃), R̃2 ≈2−(s+1) U1, R̃1, X2, f(L̃), R̃2 ,

where U1 is uniformly random in F. This implies that

X1, X2, X
′
1, X

′
2 ≈2−(s+1) U1, X2, X

′
1, X

′
2 . (8.7)

Now, X ′1, X
′
2 are independent of U1, and can be seen as a randomized function of X2. Let

U1, X2, X
′
1, X

′
2 ≡ U1, X2, h1(X2, Z), h2(X2, Z) ,

for Z independent of U1, X2. Using Equation 8.5 and 8.6, and that Ext is a two-source randomness
extractor, we have that X2 is 2−(s+1)-close to uniform. Thus, using equation triangle inequality,
we get that

X1, X2, X
′
1, X

′
2 ≈2−s U1, U2, h1(U2, Z), h2(U2, Z) ,

which implies the result.

In a symetric way we can prove the following.

Lemma 8.8. For i = 1, 2, and L∗ ⊂ L, if |L∗ ×Rffb,i| ≥ q4τn · 2−s then there exists a distribution
D that is a convex combination of distributions in Dforget,i such that

∆(φf,g(L,R)|(L,R)∈L∗×Rffb,i
;D) ≤ 2−s .
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8.3.2 Case: “output of f or g is mixed”

Lemma 8.9. For j = 1, 2, and R∗ ⊂ R, if |Lmix,j×R∗| ≥ q4τn ·2−s then there exists a distribution
D that is a convex combination of distributions in Dunif,j, such that

∆(φf,g(L,R)|(L,R)∈Lmix,j×R∗ ;D) ≤ 2−s .

Proof. Let us assume that |Lmix,1 × R∗| ≥ q4τn · 2−s. (Case j = 2 is analogous.) From the
assumptions we have that |Lmix,1| ≥ q2τn · 2−s and |R∗| ≥ q2τn · 2−s. Let L̃, R̃ be distributed
uniformly over Lmix,1 and R∗ respectively. Denote Ext(L̃k, R̃k) by Xk, and 〈fk(L̃), gk(R̃)〉 by X ′k for
k = 1, 2. Reasoning similarly as in Lemma 8.4, we have that X1 is q−3 · 2−(s+1)-close to uniform,
and also X2 is q−3 · 2−(s+1)-close to uniform given L̃1, R̃1, and hence using the hybrid argument,
we have that

X1, X2 ≈2−sq−3 U1, U2 , (8.10)

where U1, U2, are independent and uniformly distributed in F. We now give a lower bound for
H∞(L̃i|f1(L̃)) for i = 1, 2 using the definition of Lmix,1.

H∞(L̃i|fj(L̃)) = − log

∑
y∈Fn

max
`i∈Fn

Pr(L̃i = `i ∧ fj(L̃) = y)


≥ − log

∑
y∈Fn

qn2−β2

|Lmix,1|


≥ − log

(
q2n2−β2

q2τn2−s

)
≥ β2 − 2(1− τ)n log q − s .

Thus, we have that for i = 1, 2, Xi is 2−s−1q−3-close to uniform given f1(L̃), R̃, and hence,

∆
(
Xi,Ext(f1(L̃), g1(R̃)) ; Ui,Ext(f1(L̃), g1(R̃))

)
≤ q−32−s−1 .

Also, since Lmix,1 and R∗ are in the complement of Lffb, and Rffb, respectively, we have that

H∞(fj(L̃)) ≥ H∞(f(L̃))− n log q ≥ (2τ − 1)n log q − β1 − s ,

and
H∞(gj(R̃)) ≥ (2τ − 1)n log q − β1 − s .

This implies that
∆
(
Xi, X

′
1 ; Ui, U

′
1

)
≤ q−3 · 2−s , (8.11)

where U ′1 is uniform in F.
Now, we claim that

∆(X1, X2, X
′
1 ; U1, U2, U

′
1) ≤ 2−s . (8.12)

If not, then by the XOR Lemma, there exist a1, a2, a3, not all zero such that a1X1 + a2X2 + a3X
′
1

is not 2−s · q−3 close to uniform. By Equation 8.10, we have that a3 6= 0, and by equation 8.11,
we have that a1, a2 6= 0 . Consider two sources in F3 as (a1L̃1, a2L̃2, a3f1(L̃)) and (R̃1, R̃2, g1(R̃)).
Applying Ext to these two sources gives a1X1 +a2X2 +a3X

′
1. The two sources have min-entropy at

least 2τn log q − s, and hence
∑t

i=1 aiXi + at+1Ext(fj(L̃), gj(R̃)) is 2−sq−3-close to uniform, which
is a contradiction.
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Symmetrically, we get that

Lemma 8.13. For j = 1, 2, and L∗ ⊂ L, if |L∗ ×Rmix,j | ≥ q4τn · 2−s then

∆(φf,g(L,R)|(L,R)∈L∗×Rmix,j
;D) ≤ 2−s ,

for some D that is a convex combination of distributions in Dunif,j.

8.3.3 Case “L̃ ∈ Lid ∪ Lswap and R̃ ∈ Rid ∪Rswap”

Lemma 8.14. If |Lid × Rswap| ≥ q4τn · 2−s then there exists a distribution D that is a convex
combination of distributions in Dforget,1 such that

∆(φf,g(L,R)|(L,R)∈Lid×Rswap
;D) ≤ 2−s .

Proof. This proof is almost identical to that of Lemma 8.4, except that it makes crucial use of
Lemma 8.3. Let |Lid ×Rswap| ≥ q4τn · 2−s. Let L̃, R̃ be distributed uniformly over Lid and Rswap

respectively. Note that by the assumption we have that |Lid| ≥ q2τn · 2−s and |Rswap| ≥ q2τn · 2−s.
Thus, for k = 1, 2,

H∞(L̃k|L̃k−1) ≥ (2τ − 1)n log q − s , (8.15)

and
H∞(R̃k|R̃k−1) ≥ (2τ − 1)n log q − s , (8.16)

where L̃0 = R̃0 ≡ 0. Denote 〈L̃k, R̃k〉 by Xk, and 〈fk(L̃), gk(R̃)〉 by X ′k for k = 1, 2. By Lemma 8.3,
there exists maps a1,1, a2,2 from Lid to {0, 1}β2 , and b1,2, b2,1 from Rswap to {0, 1}β2 , such that
f1(L̃), f2(L̃), g1(R̃), g2(R̃) are determined uniquely given (L̃1, a1,1(L̃)), (L̃2, a2,2(L̃)), (R̃2, b2,1(R̃)),
(R̃1, b1,2(R̃)), respectively.

Also, using Lemma 2.5, we get that L̃ and R̃ (and hence L̃1 and R̃1) are independent given
X2 = 〈L̃2, R̃2〉, X ′1, and X ′2. Thus, using the fact that Ext is a strong two-source extractor, we have
that

X1, R̃1, X2, f(L̃), R̃2 ≈2−(s+1) U1, R̃1, X2, f(L̃), R̃2 ,

where U1 is uniformly random in F. This implies that

X1, X2, X
′
1, X

′
2 ≈2−(s+1) U1, X2, X

′
1, X

′
2 .

Now, X ′1, X
′
2 are independent of U1, and can be seen as a randomized function of X2. Let

U1, X2, X
′
1, X

′
2 ≡ U1, X2, h1(X2, Z), h2(X2, Z) ,

for Z independent of U1, X2. Using Equation 8.15 and 8.16, and that Ext is a two-source randomness
extractor, we have that X2 is 2−(s+1)-close to uniform. Thus, using equation triangle inequality,
we get that

X1, X2, X
′
1, X

′
2 ≈2−s U1, U2, h1(U2, Z), h2(U2, Z) ,

which implies the result.

Symmetrically, we get the following:

Lemma 8.17. If |Lswap × Rid| ≥ q4τn · 2−s then there exists a distribution D that is a convex
combination of distributions in Dforget,1 such that

∆(φf,g(L,R)|(L,R)∈Lswap×Rid
;D) ≤ 2−s .
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We now look at the case when L,R are restricted to Lid, and Rid, respectively.

Lemma 8.18. If |Lid × Rid| ≥ q4τn · 2−s then there exists a distribution D that is a convex
combination of distributions in Did such that

∆(φf,g(L,R)|(L,R)∈Lid×Rid
;D) ≤ 2−s .

Proof. Let |Lid×Rid| ≥ q4τn · 2−s. Let L̃, R̃ be distributed uniformly over Lid and Rid respectively.
Note that by the assumption we have that |Lid| ≥ q2τn · 2−s and |Rswap| ≥ q2τn · 2−s. Denote
〈L̃k, R̃k〉 by Xk, and 〈fk(L̃), gk(R̃)〉 by X ′k for k = 1, 2.

By Lemma 8.3, there exists maps a1,1, a2,2 from Lid to {0, 1}β2 , and b1,1, b2,2 fromRid to {0, 1}β2 ,
such that f1(L̃), f2(L̃), g1(R̃), g2(R̃) are determined uniquely given (L̃1, a1,1(L̃)), (L̃2, a2,2(L̃)),
(R̃1, b1,1(R̃)), (R̃2, b2,2(R̃)), respectively. We define the random variable Y as

Y := L̃1, R̃2, a1,1(L̃), a2,2(L̃), b1,1(R̃), b2,2(R̃) .

Note that X ′1 is a deterministic function of Y and R̃1. Similarly, X ′2 is a deterministic function of
Y and L̃2. Let W1 be independent randomness used to sample R̃1 given Y and X1, and let W2 be
independent randomness used to sample L̃2 given Y and X2. Note that W1,W2 are independent
from each other and from X1, X2, Y . Therefore, we have that

X1, X2, X
′
1, X

′
2 ≡ X1, X2, h1(X1, Y,W1), h2(X2, Y,W2) , (8.19)

for some functions h1, h2. Also, using Lemma 2.3, we have that

X1, X2, Y,W1,W2 ≈2−(s+1) U1, X2, Y,W1,W2

≈2−(s+1) U1, U2, Y,W1,W2 .

This implies the desired result using equation 8.19, and Lemma 2.1.

Symmetrically, we get the following:

Lemma 8.20. If |Lswap × Rswap| ≥ q4τn · 2−s then there exists a distribution D that is a convex
combination of distributions in Dswap such that

∆(φf,g(L,R)|(L,R)∈Lswap×Rswap
;D) ≤ 2−s .

8.3.4 Remaining cases

Lemma 8.21. |Lrem| ≤ q2τn2−s, and |Rrem| ≤ q2τn2−s

Proof. Consider any ` ∈ Lrem. Since ` /∈ Lmix,j , we have that T (`, 1) ∪ T (`, 2) = {1, 2}. Also, since
` /∈ Lid ∪ Lswap, there exists some k ∈ {1, 2}, such that T (`, k) = {1, 2}. Thus, using Lemma 8.3,
we have that f(`) can be determined given `k, ak,1, ak,2. This implies that f(`) can be determined
given at most τn log q + 2β2 bits. Therefore

|Lrem| ≤ qτn22β2 ≤ q2τn2−s .

Symmetrically, |Rrem| ≤ q2τn2−s.

8.4 Finishing the proof

We partitioned L ×R into following cases.
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• Lffb,i ×R∗ (see Lemma 8.4)

• L∗ ×Rffb,i (see Lemma 8.8)

• Lmix,j ×R∗ (see Lemma 8.9)

• L∗ ×Rmix,j (see Lemma 8.13)

• Lid ×Rswap (see Lemma 8.14)

• Lswap ×Rid (see Lemma 8.17 )

• Lid ×Rid (see Lemma 8.18)

• Lswap ×Rswap (see Lemma 8.20)

• Lrem×R∗ and L∗×Rrem (see Lemma 8.21)

We showed that in every case for partition L∗ ×R∗ we get either |L
∗×R∗|
|L×R| ≤ 2−s or there exists D′

from D such that
∆(φf,g(L,R)|L,R∈L∗×R∗ ; D′) ≤ 2−s,

where D is a convex combination of distributions Did ∪Dswap ∪Dunif,1 ∪Dunif,2 ∪Dforget,1 ∪Dforget,2.
We partitioned both L and R each into 7 subsets, thus by Lemma 8.1 we obtain that there exists
a distribution D in D such that

∆(φf,g(L,R) ; D) ≤ 72 · 2−s.

This finishes the proof.

9 Conclusions and Open Problems

Our main result is a generic transformation from non-malleable codes in the 2-split-state model to
non-malleable codes in the 2-split-state model that is resilient to leakage of length upto 1/12-th
of the length of the codeword. Combining with the best known non-malleable codes in the 2-split
state model achieved by a subsequent work [ADKO14], we get constant-rate 1/12-leakage resilient
non-malleable codes.

We also observe in Section 7 that the result of [CG14b] implies that we can achieve non-malleable
codes resilient to a fraction of leakage arbitrarily close to 1.

Thus, our work can be viewed as initiating the study and achieving a constant factor leakage
resilience for information-theoretically secure non-malleable codes. In view of the existential result,
the main open question is whether we can give an efficient construction of non-malleable codes
that can achieve leakage-resilience larger than a 1/12-th fraction, and thereby make non-malleable
codes practically more useful.
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A Proofs of Lemmata from Section 2

Lemma 2.4 Let X1, Y1 ∈ A1, and Y1, Y2 ∈ A2 be random variables such that ∆((X1, X2) ; (Y1, Y2)) ≤
ε. Then, for any non-empty set A′ ⊆ A1, we have

∆(X2 | X1 ∈ A′ ; Y2 | Y1 ∈ A′) ≤
2ε

Pr(X1 ∈ A′)
.
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Proof.

∆(X2 | X1 ∈ A′ ; Y2 | Y1 ∈ A′) =
1

2

∑
x∈A2

∣∣∣Pr(X2 = x | X1 ∈ A′)− Pr(Y2 = x | Y1 ∈ A′)
∣∣∣

≤ 1

2

∑
x∈A2

(∣∣∣Pr(X2 = x ∧ X1 ∈ A′)
Pr(X1 ∈ A′)

− Pr(Y2 = x ∧ Y1 ∈ A′)
Pr(X1 ∈ A′)

∣∣∣
+ Pr(Y2 = x ∧ Y1 ∈ A′)

∣∣∣ 1

Pr(Y1 ∈ A′)
− 1

Pr(X1 ∈ A′)

∣∣∣)

≤ ε

Pr(X1 ∈ A′)
+

ε ·
∑
x∈A2

Pr(Y1 ∈ A′ ∧ Y2 = x)

Pr(Y1 ∈ A′) · Pr(X1 ∈ A′)

=
2ε

Pr(X1 ∈ A′)
.

Lemma 2.6 Let X = (X1, . . . , Xt) ∈ Ft be a random variable, where F is a finite field of order q.
Assume that for all a1, . . . , at ∈ Ft not all zero, ∆(

∑t
i=1 aiXi ; U) ≤ ε, where U is uniform in F.

Then ∆(X1, . . . , Xt ; U1, . . . , Ut) ≤ εq(t+2)/2, where U1, . . . , Ut are independent and uniform in Ft.

Proof. The proof uses basic Fourier analysis. Assume F has characteristic p. Let ω = e2πi/p be a
primitive p-th root of unity. Let Tr : F→ Fp denote the trace operator from F to Fp. The additive
characters of F are given by {χa(x) : F→ C : a ∈ F} defined as

χa(x) = ωTr(ax).

The additive characters of Ft are given by χa1,...,at(x1, . . . , xt) = Πt
i=1χai(xi) for a1, . . . , at ∈ F.

First, we bound the Fourier coefficients of the distribution of X = (X1, . . . , Xt). The (a1, . . . , at)
Fourier coefficient, for all non-zero (a1, . . . , at), is given by

E[χa1,...,at(X1, . . . , Xt)] = E[ωTr(
∑t
i=1 aiXi)] =

∑
b∈F

ωTr(b) Pr[
t∑
i=1

aiXi = b]

=
∑
b∈F

ωTr(b)

(
Pr
X

[
t∑
i=1

aiXi = b]− 1

|F|

)
,

where we used the fact that
∑

b∈F ω
Tr(b) = 0. Hence for all non-zero (a1, . . . , at),

∣∣E[χa1,...,at(X1, . . . , Xt)]
∣∣ ≤∑

b∈F

∣∣∣∣∣Pr[

t∑
i=1

aiXi = b]− 1

|F|

∣∣∣∣∣ ≤ 2ε · |F| .

Let pa1,...,at = Pr[(X1, . . . , Xt) = (a1, . . . , at)]. By Parseval’s identity,

∑
a1,...,at∈F

(
pa1,...,at −

1

|F|

)2

=
∑

(a1,...,at)6=0

E[χa1,...,at(X1, . . . , Xt)]
2 ≤ 4ε2|F|t+2 ,
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B Proof of Lemma 6.1

We will need the following fact.

Fact B.1. Let Dec : X × X → M ∪ {⊥}, and Enc : M → X × X be ε-non-malleable scheme in
2−split state model for some ε < 1

2 . For any two messages m0,m1 ∈M, there exist x01, x
1
1, x2 ∈ X

such that

• Dec(x01, x2) = m0 • Dec(x11, x2) = m1

Proof. By contradiction, let us assume there exists m0,m1 ∈ M such that ∀x2∈X |Dec(X , x2) ∩
{m0,m1}| = 1. Let us define sets X 0

2 ,X 1
2 as follows

X 0
2 = {x2 ∈ X : Dec(X , x2) ∩ {m0,m1} = {m0}}
X 1
2 = {x2 ∈ X : Dec(X , x2) ∩ {m0,m1} = {m1}}

Fix arbitrary x02 ∈ X 0
2 , x

1
2 ∈ X 1

2 , and let

X 0
1 = {x ∈ X : Dec(x, x02) = m0}
X 1
1 = {x ∈ X : Dec(x, x12) = m1}

Consider tampering functions h1 : X → X , and h2 : X → X as follows. Let h2(X 0
2 ) := x12 and

h2(X 1
2 ) := x02, and h2 is defined arbitrarily in X \ (X 0

2 ∪X 1
2 ). Also, if X 0

1 ∩X 1
1 is non-empty, then fix

some x ∈ X 0
1 ∩ X 1

1 , and let h1(c) = x for all c ∈ X . Otherwise choose arbitrary x01 ∈ X 0
1 , x11 ∈ X 1

1 ,
and let h1(X 0

1 ) := x11 and h1(X 1
1 ) := x01, and h1 is defined arbitrarily in X \ (X 0

1 ∪ X 1
1 ).

Then, we have that Tamperm0
= m1, and Tamperm1

= m0 with probability 1, where Tamperm0

and Tamperm1
are as in Definition 3.2. This implies that there exists a distribution D overM∪{⊥}

such that Pr(D = m0) ≥ 1− ε, and Pr(D = m1) ≥ 1− ε, which is a contradiction.

Lemma 6.1 Let Dec : X × X → M, and Enc : M → X × X be ε−non-malleable scheme
in 2−split state model for some ε < 1

2 . For any pair of messages m0,m1 ∈ M, let (X0
1 , X

0
2 ) ←

Enc(m0), and let (X1
1 , X

1
2 )← Enc(m1). Then ∆(X0

1 ; X1
1 ) ≤ 2ε.

Proof. By contradiction assume that ∆(X0
1 ; X1

1 ) > 2ε. Then there exists distinguisher A : X →
{0, 1} such that

Pr(A(X0
1 ) = 1)− Pr(A(X1

1 ) = 1) > 2ε . (B.2)

By Fact B.1 we have x01, x
1
1, x2 ∈ X such that Dec(x01, x2) = m0 and Dec(x11, x2) = m1. Now let us

choose following tampering functions:

h2(r) = x2, and h1(`) = xA(`).

Consider Tamperm0
and Tamperm1

as in Definiton 3.2. By Equation B.2, we have that

Pr[Tamperm0
= m1]− Pr[Tamperm1

= m1] > 2ε . (B.3)

From Definition 3.2, we have that there exists a distribution D such that

|Pr[Tamperm0
= m1]−Pr(D = m1)| ≤ ε, and |Pr[Tamperm1

= m1]−Pr(D = m1)−Pr(D = same)| ≤ ε .

By triangle inequality, this implies,

Pr[Tamperm0
= m1]− Pr[Tamperm1

= m1] + Pr(D = same) ≤ 2ε ,

which contradicts Equation B.3.
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