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Abstract

We present an algebraic-geometric approach for devising a deterministic polyno-
mial time blackbox identity testing (PIT) algorithm for depth-4 circuits with bounded
top fanin. Using our approach, we devise such an algorithm for the case when such
circuits have bounded bottom fanin and satisfy a certain non-degeneracy condition. In
particular, we present an algorithm that, given blackboxes to P1 · · ·Pd, Q11 · · ·Q1d1 ,
. . . , Qk1 · · ·Qkdk where k and the degrees of Pi’s and Qij’s are bounded, determines
the membership of P1 · · ·Pd in the radical of the ideal generated by Q11 · · ·Q1d1 , . . . ,
Qk1 · · ·Qkdk in deterministic poly(n, d,maxi(di))-time.

We also give a Dvir-Shpilka [DS06]-like approach to resolve the degenerate case and,
in the process, initiate a new direction in incidence geometry for non-linear varieties.
This approach consists of a series of Sylvester-Gallai type conjectures for bounded-
degree varieties and, if true, imply a complete derandomization in the bounded bottom
fanin case. To the best of our knowledge, these problems have not been posed before.
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1 Introduction

Arithmetic Circuits : The most natural and intuitive way to compute a polynomial is via
an arithmetic circuit. An arithmetic circuit on inputs x1, . . . , xn and a field F computes a
polynomial in F[x1, . . . , xn] using only addition(+) and product(×) gates. The complexity
measures associated with circuits are size and depth, which respectively capture the number
of operations and the maximal distance between an input and the output.

It is well-known that, over any F, “almost all” degree-d polynomials require circuits of size
2Ω̃(d) (for d ≤ n). Shockingly, we don’t know of even a single such explicit polynomial. In
1979, Valiant formalized the notion of explicitness of a polynomial and conjectured that the
permanent of an n × n matrix of inputs is one such hard polynomial [Val79]. Proving a
super-polynomial lower bound on the size of arithmetic circuits computing the permanent is
the most important problem in arithmetic complexity and is not only considered to be the
arithmetic analogue of P =? NP but also a stepping stone towards resolving it (as it must
necessarily be resolved before resolving P =? NP [SV85]).

Polynomial Identity Testing : In blackbox polynomial identity testing (PIT), given only
query access to a hidden circuit, one has to determine if it outputs the zero polynomial.
This problem has numerous applications and has appeared in many fundamental results in
complexity theory. Although this problem exhibits a trivial randomized algorithm, designing
an efficient deterministic algorithm is one of the most challenging open problems. Strong
equivalence results between derandomizing PIT and proving super-polynomial circuit lower
bounds for explicit polynomials are known (cf. Chapter 4 of [SY10]).

Depth-4 Circuits : In a surprising result, Agrawal-Vinay [AV08] showed that a complete
derandomization of PIT for just depth-4 (ΣΠΣΠ) circuits implies an exponential lower bound
for general circuits and a near complete derandomization of PIT for general circuits of poly-
degree. In fact, in the ΣΠΣΠ circuits which they consider the bottom layer of multiplication
gates has just O(logn) fanin1. Hence the problem of derandomizing PIT for such fanin
restricted depth-4 circuits is equivalent to the general case. Such bottom-fanin restricted
ΣΠΣΠ circuits have enjoyed a fair amount of limelight in the past couple of years primarily
due to a line of work initiated by Gupta et al. [GKKS13a] on proving lower bounds for such
circuits. Such circuits also appear as an intermediate step in the recent construction by Gupta
et al. [GKKS13b] of the first nO(

√
n)-sized depth-3 circuit for computing the determinant of

an n× n matrix of inputs.

From the PIT side also, there has been an incredibly large number of results for ΣΠΣΠ
circuits with diverse restrictions. A study for the case in which the bottom fan-in of such
depth-4 circuits is at most 1 (known as ΣΠΣ circuits) was initiated by Dvir-Shpilka [DS06]
(whitebox) and Karnin-Shpilka [KS11] (blackbox). A different study for the case with the
restriction of read-once was initiated by Shpilka-Volkovich [SV08], the one with the restriction
of multilinearity was initiated by Karnin et al. [KMSV13] and the one with the restriction of

1fanin of a gate is its in-degree.
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bounded transcendence degree was initiated by Beecken et al. [BMS13]. Recently, Agrawal
et al. [ASSS12] reproved all these diverse results using a single unified technique based on
the Jacobian criterion. In all most all these results, the fanin of the top + gate is assumed
to be O(1). For details see the survey by Shpilka-Yehudayoff [SY10] or the one by Saxena
[Sax14].

The Model : In this work we consider the model of ΣΠΣΠ(k, r) circuits over C, the field
of complex numbers. We first define ΣΠΣΠ(k) circuits. These are circuits having four
alternating layers of + and × gates where the fanin of the top + gate is ≤ k. Such a circuit
C computes a polynomial of the form

C(x1, . . . , xn) =
k
∑

i=1

Fi =
k
∑

i=1

di
∏

j=1

Qij (1)

where di’s are the fanins of the× gates at the second level. Note that if C has size s then every
Pij has at most s non-zero monomials. Such polynomials are said to be s-sparse. Degree of
C is defined as max{deg(Fi) : i ∈ [k]}. Also gcd(C) := gcd(F1, . . . , Fk) and a circuit is said
to be simple if gcd(C) = 1. It is said to be minimal if for every ∅ ( A ( [k] :

∑

i∈A Fi 6≡ 0.
The polynomial computed by a ΣΠΣΠ(k, r) circuit C has the same form as in Equation (1)
with an added restriction that the degree of every Qij is ≤ r. As Qij ’s can have at most r
irreducible factors, we can factor Qij’s while incurring a multiplicative factor of r in the di’s.
Hence, the polynomial computed by a ΣΠΣΠ(k, r) circuit C is of the form

C(x1, . . . , xn) =
k
∑

i=1

Fi =
k
∑

i=1

d′i
∏

j=1

Q′
ij = gcd(C) · sim(C) (2)

where gcd(C) is a product of polynomials of degree ≤ r and sim(C) is a simple ΣΠΣΠ(k, r)
circuit said to be the simple part of C. Note that although Q′

ij ’s are irreducible they are not
necessarily s-sparse. Such a circuit is said to be homogenous if all Fi’s are homogenous2 of
the same degree (and therefore Q′

ij’s are also homogenous).

Having described the problems of proving circuit lower bounds and PIT in arithmetic com-
plexity, we now describe a problem in computational algebraic geometry.

Radical Membership : Before describing the problem of radical membership we state
some definitions. The variety of a set of polynomials f1, . . . , fk ∈ F[x1, . . . , xn] is the set
of their common zeros in Fn and is denoted by V (f1, . . . , fk). Formally, V (f1, . . . , fk) :=
{a ∈ Fn : f1(a) = . . . fk(a) = 0}. The ideal generated by f1, . . . , fk is the set {∑i hi · fi :
h1, . . . , hk ∈ F[x1, . . . , xn]} and is denoted by 〈f1, . . . , fk〉. The radical

√
I of an ideal I is

the set {g ∈ F[x1, . . . , xn] : g
e ∈ I for some integer e ≥ 1}. One of the most fundamental

problems in computational algebraic geometry is the problem of determining if the variety
of a given set of polynomials V (f1, . . . , fk) is contained inside the variety V (g) of a given

2in a homogenous polynomial the total degree of all non-zero monomials is same.
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polynomial g. For k = Ω(n), even in the case when fi’s have degree ≤ 2 and g = 1,
this problem is known to be NP-hard [BSS89] and hence we do not expect to have efficient
algorithms for this problem - at least not in the case when k is not bounded. When F = C,
Hilbert’s Nullstellensatz states that this problem can be reformulated as the problem of
radical membership. Formally, V (f1, . . . , fk) ⊆ V (g) if and only if g ∈

√

〈f1, . . . , fk〉. Hence
the above described problem is equivalent to asking if g ∈?

√

〈f1, . . . , fk〉. Similarly, in the
problem of ideal membership one has to determine if g ∈? 〈f1, . . . , fk〉. For a quick overview
of basic algebraic-geometric definitions and problems see the lecture notes by Sudan [Sud99]
and, for more details, the excellent book by Cox, Little and O’Shea [CLO07].

In this work, we consider radical membership for the case when the involved polynomials
are a product of homogenous bounded-degree polynomials and give the first deterministic
algorithm for this case. We show that (complete statement in Theorem 25)

Theorem (Blackbox Radical Membership). Let P := P1 · · ·Pd, and for i = 1, . . . , k let
Qi := Qi1 · · ·Qidi where Pi’s and Qij ’s are homogenous in C[x0, . . . , xn] and have degree ≤ r.

Let di’s are ≤ d′. Given blackboxes to P and Qi’s, P ∈?

√

〈Q1, . . . , Qk〉 can be decided in
deterministic poly(n, d, d′) time when k, r = O(1).

Having stated our main result for radical membership, we now describe a concept from
incidence geometry which also we would be needing to state our main result for the problem
of ΣΠΣΠ(k, r) PIT.

Sylvester-Gallai type problems : A well-known theorem in incidence geometry called
the Sylvester-Gallai (SG) theorem states that : if there are n distinct points on the real
plane s.t., for every pair of distinct points, the line through them also contains a third point,
then they all lie on the same line. Over several decades, various variants of this result have
been proved and are in general called Sylvester-Gallai type problems. Informally, in such
problems, one is presented with a set of objects (points, hyperplanes, etc.) with a lot of
“local” dependencies (e.g. two points are collinear with a third) and the goal is to translate
these local restrictions to a global bound (usually on the dimension of the space spanned by
the objects). Recently, in an impressive work by Barak et al. [BDWY13] a robust variant
of SG theorem was proved which among other things says that, even if for every point, the
above stated restriction holds for a constant fraction of other points, one can still bound the
dimension of the vector space spanned by the point set in Cd by a constant. Few other lines
of study for SG type problems include

• replacing lines by higher dimensional vector spaces (initiated by Hansen),

• having multiple sets of (colored) points (initiated by Motzkin-Rabin),

• robust/fractional versions of the above (initiated by Barak et al.).

For an introduction to the SG theorem and its variants see the survey by Borwein-Moser [BM90].
One interesting feature of [BDWY13] is that the robust variant of SG theorem was moti-
vated by a problem in theoretical computer science, in particular the study of (linear) Locally
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Correctable Codes (cf. Chapter 5 of Dvir’s survey [Dvi12]). We note here that a common
feature of all these variants is that they only consider flats/vector spaces/linear varieties.
We propose a new line of SG theorems for non-linear varieties and pose several variants in
spirit of the ones for linear varieties. These problems arise very naturally in our approach
for devising PIT algorithms for ΣΠΣΠ(k, r) circuits which is also a fundamental problem in
theoretical computer science.

SG theorem can be restated in terms of varieties as follows: let ℓ1, . . . , ℓm be distinct ho-
mogenous linear polynomials in R[x0, . . . , xn] s.t. for every pair of distinct ℓi, ℓi′ there is a
distinct ℓj s.t. V (ℓi, ℓi′) ⊆ V (ℓj). Then dimension of the vector space spanned by all ℓk’s is
≤ 2.

Dimension of vector space spanned by a set of linear polynomials is a special case of the
general concept of transcendence degree of a set of polynomials (denoted as trdeg). For
f1, . . . , fm ∈ F[x1, . . . , xn], where characteristic of F is 0, trdegF{f1, . . . , fm} equals the rank
(over F(x1, . . . , xn)) of their Jacobian matrix which is the m×n matrix whose (i, j)-th entry
is ∂fi

∂xj
.

Having stated the definitions of varieties and the SG theorem, we now define SG-ΣΠΣΠ(k, r)
circuits and state our main conjecture.
Definition 1 (SG-ΣΠΣΠ(k, r) circuit). A simple, minimal, homogenous ΣΠΣΠ(k) circuit
C :=

∑k

i=1 Fi as stated in Equation (1) is SG if

∀i ∈ [k] :
⋂

j∈[k]\{i}
V (Fj) ⊆ V (Fi).

3

Let C :=
∑k

i=1 Fi be a simple, minimal ΣΠΣΠ(k) circuit of degree d. C is SG if its ho-

mogenization w.r.t. a new variable x0 i.e. the circuit H(C) :=
∑k

i=1 x
d
0 · Fi is SG. Note that

H(C) is simple and minimal. In general, a ΣΠΣΠ(k, r) circuit C is SG if the simple part
sim(Cmin) of its minimal part Cmin is SG.

Our motivation behind terming such circuits as SG comes from Dvir-Shpilka’s idea of using
variants of SG theorem for bounding the dimension of the vector space spanned by the
linear forms occurring (at the third layer) in such circuits in the case when when the bottom
fanin is at most 1 i.e. it is a ΣΠΣΠ(k, 1) circuit. They also conjectured that, if F has
characteristic 0 then, this dimension is bounded by a function of only k. Indeed later,
Kayal-Saraf [KS09] used a colored higher-dimensional variant of SG theorem to prove this
conjecture for R. In spirit of Dvir-Shpilka [DS06] we conjecture that in such SG-ΣΠΣΠ(k, r)
circuits the transcendence degree of the set of Qij ’s is bounded by a function of k, r. This
also implies a similar conjecture made in [BMS13]. But in contrast we state a completely
geometric conjecture

Conjecture 1. Let F1, . . . , Fk be finite sets of irreducible homogenous polynomials inC[x0, . . . , xn]
of degree ≤ r s.t. ∩iFi = ∅ and for every k − 1 Q1, . . . , Qk−1, each from a distinct set, there

3varieties are viewed in the projective space.
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are P1, . . . , Pc in the remaining set s.t. V (Q1, . . . , Qk−1) ⊆ ∪iV (Pi). Then trdegC(∪iFi) ≤
λ(k, r, c) for some function λ.

Over C, by Nullstellensatz, the above condition can be restated as P1 · · ·Pc ∈
√

〈Q1, . . . , Qk−1〉.
For the case r = 1 this conjecture reduces to the case c = 1 by the irreducibility of vector
spaces and was first proved over R in [KS09].

We are now ready to state our main result for PIT.

Theorem (ΣΠΣΠ(k, r) PIT). Given blackbox access to the output f ∈ C[x1, . . . , xn] of a
ΣΠΣΠ(k, r) circuit C of degree ≤ d, f ≡? 0 can be decided deterministically in time

1. T := dO(k) · (nkD(M ′′′ + 2d))O(D) if C is not SG.

2. T + (dnλ′)O(rλ′) if Conjecture 1 is true (λ′ := λ(k, r, rk−1)).

where d̃ := rk, E :=
(

2(k−1)+1+d̃·13r2(k−1)+2

2(k−1)+1

)

, V := (k − 1)
(

2(k−1)+1+d̃·13r2(k−1)+2−r

2(k−1)+1

)

, D :=

E · d̃ · 13r2(k−1)+2 and M ′′′ :=
(

d

rk−1

)

· 2E+V .

1.1 Comparison with previous work on PIT

As we have already mentioned before, most of the work on ΣΠΣΠ(k, r) PIT has been done for
the case r = 1 (ΣΠΣ(k)) and hence here we will focus on the sub-models of ΣΠΣΠ(k) circuits
which can have r > 1. For these, unconditional results are known for very few sub-models.
For k = O(1), [KMSV13, SV11] gave poly(n, s) PIT with the assumptions of multilinearity
i.e. Fi’s in Equation (1) are such that every variable in every monomial has degree ≤ 1.
There are results known for constant-read formulas i.e. every variable appears at most O(1)
times (cf. [ASSS12]). In [BMS13], a poly(n, s) time algorithm was given for ΣΠΣΠ(k) circuits
with the assumption that the set of Qij’s in Equation (1) has O(1) transcendence degree.
We very gently note here that if one samples m ≤ n polynomials of any given degree from
a large enough subset of F, w.h.p. they will have transcendence degree exactly m.

As one of our results, we present an unconditional blackbox PIT algorithm for non-SG
ΣΠΣΠ(k, r) circuits which runs in poly(n) time when k, r = O(1). In contrast to [BMS13],
our algorithm works unconditionally for “most” ΣΠΣΠ(k, r) circuits. By this we mean that
if one fixes the parameters k, r, di’s in Equation (1) and samples Qij ’s randomly over any
large enough subset of F, one can show that w.h.p., the circuit C will not be SG. This can
be easily deduced from our proof techniques. Hence, being SG is a degenerate case and our
algorithm works unconditionally modulo this degenerate case. This makes our algorithm
the best known unconditional result for ΣΠΣΠ(k, r) PIT. Moreover our approach goes via
radical membership something that has not been studied for devising PIT algorithms before
our work. As expected, we introduce new techniques which are build on the concepts used
in computational algebraic geometry.

We also pose a geometric conjecture and resolve the SG case conditioned on it. This is a
higher-degree colored variant of the SG theorem and is true over R for the case r = 1 [KS09].
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Although it is not immediately clear and will be made clear in the forthcoming sections,
our conjecture also implies a conjecture made in [BMS13] conditioned on which they too
derandomized ΣΠΣΠ(k, r) PIT. They conjectured that the transcendence degree of the set
ofQij ’s occurring in simple, minimal ΣΠΣΠ(k, r) identities is bounded. But, before our work,
there wasn’t any approach, geometric or algebraic, for resolving the conjecture on simple,
minimal ΣΠΣΠ(k, r) identities. In contrast to [BMS13], besides posing a conjecture, we also
give a geometric approach (in Section 6) for resolving it, the simplest of the conjectures
being

Conjecture 2. Let Q1, . . . , Qm ∈ C[x0, . . . , xn] be irreducible and homogenous of degree
≤ r s.t. for every pair of distinct Qi, Qj there is a distinct Qk s.t. V (Qi, Qj) ⊆ V (Qk). Then
trdegC{Q1, . . . , Qm} ≤ λ(r).

For the case r = 1 the above conjecture is true and is called Kelly’s Theorem (as an easier
goal one can also start by bounding the co-dimension of V (Q1, . . . , Qm)). This conjecture
itself proposes a new line of work in incidence geometry viz. SG theorems for non-linear
varieties.

1.2 Overview of Techniques

We now give a high level picture of our proof techniques. Suppose we are given blackbox
access to a simple, minimal, homogenous ΣΠΣΠ(3, 2) circuit C of degree ≤ d computing a
non-zero polynomial F ∈ C[x0, . . . , xn] :

F = F1 + F2 + F3 =

3
∑

i=1

di
∏

j=1

Qij

where degrees of Qij’s is ≤ 2. Our goal is to efficiently construct a set of points s.t. on at
least one of them F doesn’t evaluate to 0. If C is not SG then w.l.o.g. say V (F1, F2) *
V (F3). As V (Fi) = ∪jV (Qij) we have that ∪j1,j2V (Q1j1, Q2j2) * V (F3). This implies

that w.l.o.g. say V (Q11, Q21) * V (F3). Hence F3 /∈
√

〈Q11, Q21〉. If we could somehow
come up with a linear transformation Φ that maps the variables xi’s to linear polynomials
Ai(y0, . . . , y5) respectively but at the same time preserves the non-membership of F3 in
√

〈Q11, Q21〉, then we claim that F (A0, . . . , An) 6≡ 0. This is because F (A0, . . . , An) ≡ 0
implies that F3(A0, . . . , An) = −F1(A0, . . . , An)−F2(A0, . . . , An) which, by definition, further
implies that F3(A0, . . . , An) ∈

√

〈Q11(A0, . . . , An), Q21(A0, . . . , An)〉, a contradiction. As
F (A0, . . . , An) is a degree ≤ d polynomial on 6 variables, its non-zeroness can easily be
tested by Schwartz-Zippel lemma.

Hence we are essentially reduced to the problem of coming up with a set of linear trans-
formations that preserves P1 · · ·Pd /∈

√

〈Q1, Q2〉 where Pi’s and Qi’s have degree ≤ 2. By
Hilbert’s Nullstellensatz, this is equivalent to V (Q1, Q2) * ∪iV (Pi). Now although Q1 and
Q2 have bounded degree, same is not true for Pi. We claim that this non-membership can
be re-written as a set of non-memberships each involving only bounded degree polynomials.
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This is because, by Bézout’s Theorem, it can be shown that if V (Q1, Q2) ⊆ ∪iV (Pi) then
∃Pi1 , . . . , Pi4 among the Pi’s s.t. V (Q1, Q2) ⊆ ∪4

j=1V (Pij ) (see Claim 11). This would further

imply that Pi1 · · ·Pi4 ∈
√

〈Q1, Q2〉. As linear transformation doesn’t increase the degree, to

preserve P1 · · ·Pd /∈
√

〈Q1, Q2〉, we just have to preserve it for all size-4 subsets S ⊆ [d]. I.e.,

under Φ, we want to preserve
∏

i∈S Pi /∈
√

〈Q1, Q2〉 for all size 4 subsets S ⊆ [d]. Now as
Pi’s themselves have degree ≤ 2 we have that each

∏

i∈S Pi has degree ≤ 8.

We are now reduced to a problem of coming up with a set of linear transformations that
preserves Q3 /∈

√

〈Q1, Q2〉 where Qi’s have degree ≤ 8. As Q1, Q2 are homogenous, we
have that every component of V (Q1, Q2) has co-dimension ≤ 2. Using this fact, we first
show that if one makes a random projection to 6 variables y0, . . . , y5 then indeed the non-
membership is preserved. This is the most technically challenging part of our proof and
requires intricate use of the so called Bertini’s (second) Theorem, which is a generalization
of Hilbert’s Irreducibility Theorem to arbitrary varieties. We then derive an effective version
of this random radical non-membership-preserving projection by first reducing it to Ideal
Membership using a slightly different version of Kollár’s effective Nullstellensatz and then
using the fact that Ideal Membership is a linear algebraic problem. This allows us to derive
degree bounds on the polynomials which must evaluate to a non-zero quantity in our choice
of Φ.

Organization : In Section 2 we state our notations, the required preliminaries from iden-
tity testing and algebraic geometry. In Section 3 we prove that radical non-membership is
preserved under random projections. In Section 4 we give an effective version of the previous
statement and present our algorithm for testing radical membership. In Section 5 we prove
our main theorem for ΣΠΣΠ(k, r) PIT. In Section 6 we present our approach for resolving
Conjecture 1. Finally in Section 7 we present our overall program for ΣΠΣΠ(k) PIT and
conclude.

2 Preliminaries

Notations : [n] := {1, 2, . . . , n}, [0 : n] := {0, 1, . . . , n} and, for a finite set S,
(

S

t

)

denotes
the set of all subsets of S of size t. Boldfaced letters such as y shall stand for tuples of
variables or field elements. “w.h.p.” denotes with high probability (with probability (1 −
o(1))), “s.t.” denotes such that and “w.l.o.g.” denotes without loss of generality.

F-irreducibility and absolute irreducibility : A polynomial f ∈ F[x1, . . . , xn] is said to
be F-reducible if there exist nonconstant polynomials g, h ∈ F[x1, . . . , xn] such that f = g ·h.
Otherwise f is said to be F-irreducible. If f is F̄-irreducible then it is said to be absolutely
irreducible where F̄ is the algebraic closure of F.

Homogeneous Components : A polynomial is homogeneous of degree d if every mono-
mial with a non-zero coefficient is of degree d. By collecting together all monomials of the
same degree it can be seen that any polynomial f of degree d can be uniquely written as
f = f [d] + f [d−1] + . . . + f [0] where each f [i] is homogeneous of degree i. We call f [i] the
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homogeneous component of degree i of f . A polynomial of degree less than 0 is 0.

2.1 Hitting Sets and Generators

Here we state the notion of generators and hitting sets for a given circuit class. A detailed
discussion can be found in [SY10].

Hitting Set : H ⊆ CN is said to be a hitting set for a class C of N -variate polynomials if
for every non-zero f ∈ C, ∃â ∈ H such that f(â) 6= 0. We will call H explicit if there is a
deterministic algorithm to construct H in time poly(|H|, N).

Generator : A polynomial mapping G = (G1, . . . ,GN) : Ct 7→ CN is called a generator for
a class of polynomials C if for every non-zero f ∈ C, F (G) 6≡ 0.

In PIT both these objects play the same role. The following lemma shows how to inter-
convert them easily.

Lemma 3 ([SY10] pg. 294). Given a hitting set H ⊆ CN for a circuit class C, there is a
deterministic algorithm that, in time poly(|H|, N), constructs a map G : Ct 7→ CN with
t = ⌈logN |H|⌉ that is a generator for C. Moreover, degrees of Gi’s are ≤ N − 1.

In the other direction, let G : Ct 7→ CN be a generator for C and degrees of Gi’s be ≤ r. If
degrees of polynomials in C is ≤ D then for every set S ⊆ C of size |S| > rD we have that
H = G(St) is a hitting set for C.
In particular, we will be needing hitting sets and generators for the class of polynomials that
can be expressed as a product of bounded-degree polynomials .

Low-Degree Polynomials: Let CD be the class of all polynomials in C[x1, . . . , xN ] of degree
≤ D. It is well-known that there is an explicit hitting set HD for CD of size NO(D) (Thm.
10 in [KS01]). From Lemma 3 it follows that there is a generator GD = (G1, . . . ,Gn) for CD
with t = O(D) and Gi’s of degree ≤ N − 1.

Proposition 4. Let CD,M be the class of all polynomials in C[x1, . . . , xN ] which can be
written as a product of at most M polynomials each of degree ≤ D. There is an explicit
hitting set HD,M for CD,M of size (D(N − 1)M + 1)O(D).

Proof. Let f ∈ CD,M be non-zero and let f = g1 · · · gl for l ≤ M where degree of each gi is
≤ D. By definition of GD = (G1, . . . ,Gn), we have that ∀i ∈ [r] : gi(GD) 6≡ 0. So, f(GD) 6≡ 0.
As degree of gi is ≤ D and degree of each Gj is ≤ N − 1 we have that degree of gi(GD) is
≤ D(N − 1). Degree of f(GD) is at most D(N − 1)l and hence at most D(N − 1)M .

As f(GD) is a t-variate polynomial of degree ≤ D(N − 1)M , by a variant of Schwartz-
Zippel Lemma (cf. [SY10] pg. 296), ∃â ∈ [D(N − 1)M + 1]t such that f(GD)(â) 6= 0, Hence,
HD,M := GD([D(N − 1)M +1]t) is a hitting set for CD,M . Bound follows from using the fact
that t = O(D).
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2.2 Preliminaries from Algebraic Geometry

We now state the definitions and concepts from algebraic geometry that we would be needing
in our proofs. A good reference for most of these is [CLO07].

Projective Varieties : A variety is the set of common zeroes of a system of polynomial
equations f1 = f2 = . . . = fk = 0 for some fi’s in F[x0, . . . , xn]. If all the fi’s are homogeneous
then such a system also corresponds to a projective variety wherein two points x,y ∈ Fn+1

are considered to be equivalent, denoted x ∼ y, if one is a non-zero scalar multiple of the
other. Pn(F) (simply Pn for short), called the projective space of dimension n, is the set of
all points in (Fn+1 \ {0}) modulo this equivalence relation ∼. Unless mentioned otherwise,
we will always be dealing with projective varieties over C.

Irreducible Varieties and Minimal Decomposition : If for a variety V , V = V1 ∪ V2

implies V = V1 or V = V2, it is said to be irreducible. It is known that any variety V ⊆ Pn

can be decomposed into a union of finite number of irreducible varieties V1, V2, . . . , Vt s.t.
Vi * Vj for i 6= j, with the varieties Vi’s (called the irreducible components of V ) being
uniquely determined. This is called the minimal decomposition of V and t is called the
number of components of V .

Ideal-Variety Correspondence : Let I be an ideal in F[x1, . . . , xn]. We say I is radical
if
√
I = I. Hilbert’s Nullstellensatz shows the correspondence between varieties and radical

ideals over C. It states that, over C, V (f1, . . . , fk) ⊆ V (f) if and only if f ∈
√

〈f1, . . . , fk〉.
It can be easily deduced from this that two distinct radical ideals cannot have the same
variety. As every variety is associated to some radical ideal this implies that every variety
corresponds to a unique radical ideal (and vice versa). This correspondence will be used
implicitly in our proofs.

In particular, there is a one-to-one correspondence between irreducible varieties and prime
ideals. An ideal I is prime if, f · g ∈ I implies f ∈ I or g ∈ I. Over C, by Nullstellensatz
it follows that

√

〈f1, . . . , fk〉 is prime if and only if V (f1, . . . , fk) is irreducible. Thus, one
can write any radical ideal as an intersection of prime ideals corresponding to the irreducible
components of the variety of the radical ideal.

Dimension of a variety : We now examine the dimension of a variety. We shall use the
following definition of dimension from the text by Harris [Har92].

Proposition 5 ([Har92], Prop. 11.4). Dimension of V ⊆ Pn is the largest k s.t. for every
linear subspace Λ of dimension ≥ n− k we have V ∩ Λ 6= ∅.
Co-dimension of a variety V ⊆ Pn (denoted by codim(V )) is defined as n − dim(V ). We
collect certain well-known facts about the dimension of projective varieties.

Fact 1. Let V,W be projective varieties in Pn.

1. If V ⊆ W then dim(V ) ≤ dim(W ).

2. dim(V ∪W ) = max{dim(V ), dim(W )}.
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3. codim(V ∩ W ) ≤ codim(V ) + codim(W ) or equivalently, dim(V ∩ W ) ≥ dim(V ) +
dim(W )− n.

The following can easily be deduced from Exercise 11.6 in [Har92].

Proposition 6. For a variety V ⊆ Pn of co-dimension c and a generic linear subspace4 Λ of
co-dimension ≤ n− c− 1,

codim(V ∩ Λ) = codim(V ) + codim(Λ).

2.3 Some Algebraic Geometric Facts

Having stated the above definitions, we now state some of their important properties and
results on maneuvering these geometric objects.

Proposition 7 (Proposition 9.4.2 in [CLO07]). Let F ∈ C[x0, . . . , xn] be non-zero and
homogenous. Then in Pn, codim(V (F )) = 1.

Theorem 8 (Projective Dimension Theorem, Theorem 7.2 in [Har77]). For varieties V,W ⊆
Pn, every irreducible component of V ∩W has co-dimension ≤ codim(V ) + codim(W ).

It is easy to see from the above two properties that, for homogenous Fi’s, every component
of V (F1, . . . , Fk) has co-dimension ≤ k. This is not true if Fi’s are not homogenous as
codim(V (f, 1−f)) ≥ n. The following decomposition property will be used frequently.

Proposition 9. Let for each i ∈ [k], Qi := Qi1 · · ·Qidi where Qij ’s and P ∈ C[x0, . . . , xn].

P ∈
√

〈Q1, . . . , Qk〉 ⇐⇒ ∀(i1, . . . , ik) ∈ [d1]× . . .× [dk] : P ∈
√

〈Q1i1 , . . . , Qkik〉.

The proof is immediate from the definition of radical of an ideal and the ideal-variety corre-
spondence. The following proposition will be used crucially in our proofs and is one of our
main observations.

Proposition 10. Let Q1, . . . , Qk ∈ C[x0, . . . , xn] be homogenous of degree at most r. Then
V (Q1, . . . , Qk) has at most rk irreducible components.

Proof. The number of irreducible components of a variety is bounded by its cumulative
degree which is the sum of degrees of all its irreducible components. By Bézout’s Theorem,
cumulative degree of V (Q1, . . . , Qk) is at most

∏

i deg(Qi) (cf. Section 1.1.5 in [Sch07]).

One can also state the above observation in terms of radical ideals.

Claim 11. Let P1, . . . , Pd, Q1, . . . , Qk ∈ C[x0, . . . , xn] be homogenous and degree of each Qi

is at most r. Then,

P1 · · ·Pd ∈
√

〈Q1, . . . , Qk〉 ⇐⇒ ∃{i1, . . . , irk} ⊆ [d] : Pi1 · · ·Pi
rk

∈
√

〈Q1, . . . , Qk〉.
4Informally, by a generic subspace of co-dimension t one means V (ℓ1, . . . , ℓt) where ℓi’s are linear poly-

nomials with their coefficients chosen randomly from a “sufficiently large” subset of C.
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Proof. Let P1 · · ·Pd ∈
√

〈Q1, . . . , Qk〉 and V1 ∪ · · · ∪ Vt be the minimal decomposition of
V (Q1, . . . , Qk) where Vi’s are irreducible. Then,

V1 ∪ · · · ∪ Vt ⊆ V (P1) ∪ · · · ∪ V (Pd).

As Vi’s are irreducible, we have that for each i there is an ij ∈ [d] such that Vi ⊆ V (Pij ).
Therefore,

V (Q1, . . . , Qk) = V1 ∪ · · · ∪ Vt ⊆ V (Pi1) ∪ · · · ∪ V (Pit).

By Nullstellensatz, Pi1 · · ·Pit ∈
√

〈Q1, . . . , Qk〉. By Proposition 10, t ≤ rk and the claim
follows.

The following corollary follows immediately from Proposition 9 and Claim 11.

Corollary 12. Let P1, . . . , Pd, Q11, . . . , Q1d1 , . . . , Qk1, . . . , Qkdk ∈ C[x0, . . . , xn] be homoge-
nous and degree of each Qij is at most r. Then, P1 · · ·Pd ∈

√

〈Q11 · · ·Q1d1 , . . . , Qk1 · · ·Qkdk〉
if and only if

∀i = (i1, . . . , ik) ∈ [d1]× . . .× [dk] ∃Si ∈
(

[d]

rk

)

:
∏

j∈Si

Pj ∈
√

〈Q1i1 , . . . , Qkik〉.

3 Radical Non-membership is preserved under random

linear projections

In this section we study the problem of testing membership in the radical of an ideal generated
by bounded number of homogenous polynomials and show that radical non-membership is
preserved under a random linear transformation of the variable set to a bounded number of
variables. We will using the following theorem crucially in our proof.

Theorem 13 (Bertini’s (second) Theorem, Corollary 4.18 in [Mum76]). Intersection of an
irreducible variety V ⊆ Pn of dimension c and a generic linear subspace Λ of co-dimension
≤ c− 1 is irreducible.

We now prove our main lemma for this section which essentially a geometric version of our
above assertion on random linear projections.

Lemma 14. Let F, F1, . . . , Fk ∈ C[x0, . . . , xn] be homogenous. Then,

V (F1, . . . , Fk) ⊆ V (F ) ⇐⇒ V (F1, . . . , Fk) ∩ Λ ⊆ V (F ) ∩ Λ

where Λ is a generic linear subspace of dimension 2k + 1.

Proof. Let V := V (F1, . . . , Fk) and V1 ∪ · · · ∪ Vt be its minimal decomposition. Let
F = P e1

1 · · ·P ed
d where Pi’s are distinct irreducible homogenous polynomials over C and let

Hi := V (Pi). Let V * V (F ). Then,

V1 ∪ · · · ∪ Vt * H1 ∪ · · · ∪ Hd.
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As Vi’s are irreducible, ∃l ∈ [t] such that ∀j ∈ [d] : Vl * Hj. Using the following proposition
we will restate this condition in a quantitative way.

Proposition 15 ([CLO07], Proposition 9.4.10). For an irreducible variety V ⊆ Pn and a
homogenous F ∈ C[x1, . . . , xn],

1. V * V (F ) =⇒ codim(V ∩ V (F )) = codim(V ) + 1

2. if W ⊂ V is a variety such that W 6= V , then codim(W ) > codim(V ).

Using Proposition 15, we have that ∀j ∈ [d] : codim(Vl ∩ Hj) = codim(Vl) + 1. Now, as
V is an intersection of k hypersurfaces, from Proposition 7 and Theorem 8, we have that
codim(Vi) ≤ k for all i. Moreover, from Proposition 7, codim(Hj) = 1 for all j. From
Theorem 8, we have that codim(Vi ∩Hj) ≤ k + 1 and codim(Vi ∩ Vi′) ≤ 2k for all i, j, i′.

Let Λ be a generic linear subspace of dimension ≥ 2k + 1. From Theorem 13, we have that
Vi ∩Λ and Hj ∩ Λ are irreducible for all i, j. We now show that they also satisfy other non-
containment conditions. As V1 ∪ · · · ∪ Vt is a minimal decomposition, for any i 6= i′, we have
that Vi * Vi′ or, equivalently, Vi∩Vi′ 6= Vi. From Proposition 15, codim(Vi∩Vi′) > codim(Vi).
Now as codim(Vi ∩ Vi′) ≤ 2k and Λ is a generic subspace of co-dimension ≤ n− 2k − 1, by
Proposition 6 we have

codim((Vi ∩ Λ) ∩ (Vi′ ∩ Λ)) = codim((Vi ∩ Vi′) ∩ Λ) = codim(Vi ∩ Vi′) + codim(Λ).

Similarly, codim(Vi ∩ Λ) = codim(Vi) + codim(Λ). As codim(Vi ∩ Vi′) > codim(Vi),

codim((Vi ∩ Λ) ∩ (Vi′ ∩ Λ)) > codim(Vi ∩ Λ),

which implies that Vi ∩ Λ * Vi′ ∩ Λ. Similarly, Vi′ ∩ Λ * Vi ∩ Λ. Hence, (V1 ∩ Λ) ∪ · · · ∪
(Vt ∩ Λ) is the minimal decomposition of V ∩ Λ. Using the same argument, we can also
show that (H1 ∩ Λ) ∪ · · · ∪ (Hd ∩ Λ) is the minimal decomposition of V (F ) ∩ Λ and that
codim((Vl ∩ Λ) ∩ (Hj ∩ Λ)) = codim(Vl ∩ Λ) + 1 for all j. This implies that, for all j,

Vl ∩ Λ * Hj ∩ Λ,

and hence V ∩ Λ * V (F ) ∩ Λ.

Till now, a generic linear subspace Λ of co-dimension c was defined as V (L1, . . . , Lc) where
Li =

∑

j∈[0:n] aijxj and aij ’s are generic over C. Note that as Li’s are generic, they are
also linearly independent, and hence one can always solve x0, . . . , xc−1 as linear forms in the
remaining variables over C after applying Gaussian elimination. Hence, another sufficient
way to define a generic linear subspace Λ of co-dimension c is V (x0−

∑

j∈[n] a0,jxj , . . . , xc−1−
∑

j∈[c:n] ac−1,jxj).
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To make this argument more rigorous, we use a slightly different version of Bertini’s Theorem
by Heintz-Sieveking [HS81], in which a generic linear subspace Λ of co-dimension c is defined
as

V (x0 −
∑

j∈[n]
a0,jxj, . . . , xc−1 −

∑

j∈[c:n]
ac−1,jxj)

where aij ’s are generic over C. More formally,

Lemma 16 (Heintz-Sieveking, [HS81]). Let I be a prime ideal in C[x0, . . . , xn] and dim(V (I)) =
c + 1 (≥ 2). Let aij’s be transcendental over C and K be an algebraically closed field con-

taining C and aij ’s. Then, the ideal I +
〈

x0 −
∑

j∈[n] a0,jxj , . . . , xc−1 −
∑

j∈[c:n] ac−1,jxj

〉

is

prime in K[x0, . . . , xn].

Note that in Lemma 16 one can solve x0, . . . , xc−1 as linear forms in the remaining variables
where the coefficients are polynomials in aij ’s. An immediate corollary is that

Corollary 17. Let I be a prime ideal in C[x0, . . . , xn] and dim(V (I)) = c + 1 (≥ 2). Let
aij ’s be transcendental over C and K be an algebraically closed field containing C and

aij ’s. Then, the ideal I +
〈

x0 −
∑

j∈[0:n−c] a0,jyj, . . . , xn −
∑

j∈[0:n−c] an,jyj

〉

is prime in

K[x0, . . . , xn, y0, . . . , yn−c].

For a detailed discussion on Bertini’s Theorem and its variants see Section 9.1.3 in [DE05].
Using Corollary 17 we can restate Lemma 14 in form of radical membership.

Lemma 18. Let F, F1, . . . , Fk ∈ C[x0, . . . , xn] be homogenous. Then,

F ∈
√

〈F1, . . . , Fk〉 ⇐⇒ F (Ay) ∈
√

〈F1(Ay), . . . , Fk(Ay)〉

where F (Ay) := F
(

∑2k+1
j=0 a0jyj, . . . ,

∑2k+1
j=0 anjyj

)

and aij ’s are generic in C.5

Proof. If F /∈
√

〈F1, . . . , Fk〉 then, by Nullstellensatz, V (F1, . . . , Fk) * V (F ). From Lemma 14,

V (F1, . . . , Fk) ∩ Λ * V (F ) ∩ Λ

where Λ is a generic linear subspace of dimension 2k + 1. From Corollary 17 (and using the
irreducible variety-prime ideal correspondence), one can observe that in Lemma 14 Λ can

be defined as V
(

x0 −
∑

j∈[0:2k+1] a0,jyj, . . . , xn −
∑

j∈[0:2k+1] an,jyj

)

for generic aij ’s. After

substituting xi’s in Fi’s and F , we get V (F1(Ay), . . . , Fk(Ay)) * V (F (Ay)) which implies

that F (Ay) /∈
√

〈F1(Ay), . . . , Fk(Ay)〉.

4 Deterministic Radical Membership Testing

Lemma 18 gives us a very good indication that we are on the right track and that there should
be a system of polynomial equations that captures all the “bad” choices of the transforma-

5alternatively, aij ’s are transcendental over C.
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tions. In this section we indeed derive an effective version of Lemma 18 by characterizing
these “bad” transformations. In particular, we prove the following lemma.

Lemma 19 (Non-membership preserving projections). Let P̃ , Q̃1, . . . , Q̃k ∈ C[x0, . . . , xn] be

homogenous of degrees d̃, d1, . . . , dk respectively with di’s ≤ r. Let E :=
(

2k+1+d̃·13r2k+2

2k+1

)

,

V := k
(

2k+1+d̃·13r2k+2−r

2k+1

)

, M ′ := 2E+V , D := E · d̃ · 13r2k+2 and HD,M ′ be a hitting set for all
polynomials in C[a0,0, . . . , an,2k+1] which are a product of at most M ′ polynomials each of

degree ≤ D. Then, P̃ ∈
√

〈

Q̃1, . . . , Q̃k

〉

if and only if

∀(â0,0, . . . , ân,2k+1) ∈ HD,M ′ : P̃ (Ây) ∈
√

〈

Q̃1(Ây), . . . , Q̃k(Ây)
〉

where F̃ (Ây) := F̃
(

∑2k+1
j=0 â0,jyj, . . . ,

∑2k+1
j=0 ân,jyj

)

. Moreover, P̃ ∈?

√

〈

Q̃1, . . . , Q̃k

〉

can

be decided deterministically in time |HD,M ′| · poly(V, (nk)d̃·13r2k+2
).

But before addressing the radical membership problem, we will first address the Ideal Mem-
bership membership problem for homogenous polynomials and derive its linear algebraic
formulation. This will be used crucially in the proof of Lemma 19.

4.1 Linear Algebraic Formulation of Ideal Membership

The Ideal Membership problem is defined as follows:

Homogenous Ideal Membership: Given homogenous P,Q1, . . . , Qk ∈ C[y0, . . . , ym] of
degrees d, d1, . . . , dk respectively decide whether P ∈ 〈Q1, . . . , Qk〉.
In this subsection we describe the well-known linear algebraic formulation of this problem.
In the case of a homogenous ideal the following proposition provides an immediate bound
on the degree of the membership-certifying coefficient polynomials.

Proposition 20. Let P,Q1, . . . , Qk ∈ C[y0, . . . , ym] be homogenous. P ∈ 〈Q1, . . . , Qk〉 if
and only if P =

∑

i∈[k]RiQi for some homogenous R1, . . . , Rk ∈ C[y0, . . . , ym] where, for
each i, deg(Ri) = deg(P )− deg(Qi).

Proof. If P ∈ 〈Q1, . . . , Qk〉 then, for some f1, . . . , fk ∈ C[y0, . . . , ym], P =
∑

i∈[k] fiQi. As

P is homogenous, it equals
(

∑

i∈[k] fiQi

)[deg(P )]

which equals
∑

i∈[k] (fiQi)
[deg(P )]. As Qi is

homogenous, (fiQi)
[deg(P )] = Qi · f [deg(P )−deg(Qi)]

i and the assertion follows.

From Proposition 20 it follows that the Homogenous Ideal Membership, as described above,
is equivalent to deciding if there are homogenous R1, . . . , Rk ∈ C[y0, . . . , ym] of degree d− di
respectively such that P =

∑

i∈[k]RiQi. W.l.o.g. we can now assume that di’s are ≤ d. Let
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Dm,d := {ᾱ = (α1, . . . , αm) ∈ Zm
≥0 :

∑

i αi = d} and ȳᾱ :=
∏

i y
αi

i . Let a degree-d homoge-
nous polynomial F ∈ C[y0, . . . , ym] be denoted as

∑

ᾱ∈Dm,d
fᾱ.ȳ

ᾱ. Then we have,

∑

ᾱ∈Dm,d

pᾱ.ȳ
ᾱ =

∑

i∈[k]





∑

β̄∈Dm,d−di

ri,β̄.ȳ
β̄



 .





∑

δ̄∈Dm,di

qi,δ̄.ȳ
δ̄



 .

Comparing the coefficient of ȳᾱ on both sides we get

∀ᾱ ∈ Dm,d : pᾱ =
∑

i∈[k]

∑

β̄≤ᾱ

ri,β̄.qi,ᾱ−β̄ (3)

where β̄ ≤ ᾱ denotes that ∀j ∈ [0 : m], βj ≤ αj. This is a system of linear equations in
ri,β̄’s with E :=

(

m+d

d

)

equations and V :=
∑

i∈[k]
(

m+d−di
d−di

)

variables. Let the linear system

(3) be denoted as Mq̄ · r̄ = p̄ where Mq̄ is a E × V -matrix with every element as either 0
or a coefficient in some Qi, and p̄ is a E × 1-vector with every element as some coefficient
in P . Hence, the Ideal Membership problem is equivalent to deciding if this system has a
non-trivial solution over C or not. The following theorem gives an exact characterization of
the existence of such a solution.

Theorem 21 (Rouché-Capelli Theorem). Over C, a system of linear equations M · r̄ = p̄
has a non-trivial solution if and only if rank(M) = rank((M |p̄)).
It follows from the above theorem that P ∈ 〈Q1, . . . , Qk〉 if and only if, in the linear sys-
tem 3,

rank(Mq̄) = rank((Mq̄|p̄)).

Note that, given P,Q1, . . . , Qk explicitly, one can construct (Mq̄|p̄) in time poly(E · V ) and
compute its rank in time poly(E · V ) using Gaussian elimination. Hence, we can determine
P ∈? 〈Q1, . . . , Qk〉 deterministically in time poly(E · V ). From the above discussion the
following lemma follows.

Lemma 22 (Linear System for Ideal Membership). Let P,Q1, . . . , Qk ∈ C[y0, . . . , ym] be
homogenous of degrees d, d1, . . . , dk respectively with di’s ≤ d. Let E :=

(

m+d

d

)

and V :=
∑

i∈[k]
(

m+d−di
d−di

)

. There exists a E×V -matrixMq̄ with every element as either 0 or a coefficient
in some Qi, and a E × 1-vector p̄ with every element as some coefficient in P , such that

P ∈ 〈Q1, . . . , Qk〉 ⇐⇒ rank(Mq̄) = rank((Mq̄|p̄)).

Moreover, given P,Q1, . . . , Qk explicitly, P ∈? 〈Q1, . . . , Qk〉 can be determined deterministi-
cally in time poly(E · V ).
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4.2 Radical Membership to Ideal Membership : Proof of Lemma 19

We now return to the proof of Lemma 19 as restated below.

Lemma (Lemma 19 restated). Let P̃ , Q̃1, . . . , Q̃k ∈ C[x0, . . . , xn] be homogenous of degrees

d̃, d1, . . . , dk respectively with di’s ≤ r. Let E :=
(

2k+1+d̃·13r2k+2

2k+1

)

, V := k
(

2k+1+d̃·13r2k+2−r

2k+1

)

,

M ′ := 2E+V , D := E · d̃ · 13r2k+2 and HD,M ′ be a hitting set for all polynomials in
C[a0,0, . . . , an,2k+1] which are a product of at most M ′ polynomials each of degree ≤ D.

Then, P̃ ∈
√

〈

Q̃1, . . . , Q̃k

〉

if and only if

∀(â0,0, . . . , ân,2k+1) ∈ HD,M ′ : P̃ (Ây) ∈
√

〈

Q̃1(Ây), . . . , Q̃k(Ây)
〉

where F̃ (Ây) := F̃
(

∑2k+1
j=0 â0,jyj, . . . ,

∑2k+1
j=0 ân,jyj

)

. Moreover, P̃ ∈?

√

〈

Q̃1, . . . , Q̃k

〉

can

be decided deterministically in time |HD,M ′| · poly(V, (nk)d̃·13r2k+2
).

Proof. We first state the radical membership problem -

Homogenous Low-Degree Radical Membership: Let P̃ , Q̃1, . . . , Q̃k ∈ C[x0, . . . , xn] be

homogenous of degrees d̃, d1, . . . , dk respectively with di’s≤ r. Decide if P̃ ∈
√

〈

Q̃1, . . . , Q̃k

〉

.

As noted earlier we are interested in the setting in which k << n. So we can reduce the
number of variables involved using a random projection as stated in Lemma 18. From
Lemma 18 we have,

P̃ ∈
√

〈

Q̃1, . . . , Q̃k

〉

⇐⇒ P̃ (Ay) ∈
√

〈

Q̃1(Ay), . . . , Q̃k(Ay)
〉

where F̃ (Ay) := F̃
(

∑2k+1
j=0 a0jyj, . . . ,

∑2k+1
j=0 anjyj

)

and aij ’s are generic in C. 6

Note that, as Q̃i(Ay) is just a linear projection of Q̃i, deg(Q̃i(Ay)) ≤ deg(Q̃i) ≤ r. Now,
using the following version of the effective Nullstellensatz, in our setting, we will be effectively
able to reduce Radical Membership to Ideal Membership. Although the best bound is due
to Kollár [Kol88], we use Dubé’s bound for its somewhat simpler statement which is better
suited to our case.

Theorem 23 (Dubé, Theorem 7.1 in [Dub93]). Let P,Q1, . . . , Qk ∈ C[y0, . . . , ym] and degree
of each Qi is at most r. Then,

P ∈
√

〈Q1, . . . , Qk〉 ⇐⇒ P 13rm+1 ∈ 〈Q1, . . . , Qk〉 .
6alternatively, aij ’s are transcendental over C.
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From Theorem 23, it follows that

P̃ ∈
√

〈

Q̃1, . . . , Q̃k

〉

⇐⇒ (P̃ (Ay))13r
2k+2 ∈

〈

Q̃1(Ay), . . . , Q̃k(Ay)
〉

.

Note that every Q̃i(Ay) ∈ C[y0, . . . , y2k+1] is a homogenous polynomial where the coefficient
of every monomial is a polynomial in aij ’s of degree at most r. Similarly, (P̃ (Ay))13r

2k+2 ∈
C[y0, . . . , y2k+1] is a homogenous polynomial where the coefficient of every monomial is a

polynomial in aij ’s of degree at most d̃ · 13r2k+2. Let E :=
(

2k+1+d̃·13r2k+2

2k+1

)

and V :=

k
(

2k+1+d̃·13r2k+2−r

2k+1

)

. From Lemma 22, there exists a E × V -matrix Mq̄ with every element as

either 0 or a coefficient in some Q̃i(Ay), and a E × 1-vector p̄ with every element as some
coefficient in (P̃ (Ay))13r

2k+2
, such that

(P̃ (Ay))13r
2k+2 ∈

〈

Q̃1(Ay), . . . , Q̃k(Ay)
〉

⇐⇒ rank(Mq̄) = rank((Mq̄|p̄)).

Now, (Mq̄|p̄) is a E×(V+1)-matrix such that every entry is a polynomial in C[a0,0, . . . , an,2k+1]
of degree at most d̃ · 13r2k+2. Moreover,

for a generic choice of aij ’s in C : P̃ ∈
√

〈

Q̃1, . . . , Q̃k

〉

⇐⇒ rankC(Mq̄) = rankC((Mq̄|p̄)).

Equivalently, viewing a0,0, . . . , an,2k+1 as transcendental quantities over C and viewing the
matrix (Mq̄|p̄) as a matrix over C(a0,0, . . . , an,2k+1), we have

P̃ ∈
√

〈

Q̃1, . . . , Q̃k

〉

⇐⇒ rankC(a0,0,...,an,2k+1)((Mq̄|p̄)) = rankC(a0,0,...,an,2k+1)(Mq̄).

Therefore, in the case when P̃ /∈
√

〈

Q̃1, . . . , Q̃k

〉

, from the above assertion, we have that

rankC(a0,0,...,an,2k+1)((Mq̄|p̄)) = rankC(a0,0,...,an,2k+1)(Mq̄) + 1.

Moreover, it is easy to see that any choice of aij ’s in C that preserves this rank relation
over C, also preserves radical non-membership. We now show how to find this substitution
efficiently.

Note that as E ≤ V , the rank((Mq̄|p̄)) is at most E. Let M≤E((Mq̄|p̄)) be the set of all
minors of (Mq̄|p̄) of size at most E, i.e.

M≤E((Mq̄|p̄)) := {t× t minor of (Mq̄|p̄) , t ≤ E}.

As every entry of (Mq̄|p̄) is a polynomial in C[a0,0, . . . , an,2k+1] of degree at most d̃ · 13r2k+2

we have that M≤E((Mq̄|p̄)) is a set of at most M ′ := 2E+V polynomials of degree at most
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D := E · d̃ · 13r2k+2. Let, the product of all non-zero polynomials in M≤E((Mq̄|p̄)) be the
non-zero polynomial G ∈ C[a0,0, . . . , an,2k+1].

Recall that HD,M ′ ⊆ C(2k+2)(n+1) is such that for every such non-zero G ∈ C[a0,0, . . . , an,2k+1]

∃(â0,0, . . . , ân,2k+1) ∈ HD,M ′ : G(â0,0, . . . , ân,2k+1) 6= 0.

It follows from the definition ofHD,M ′ that ∃(â0,0, . . . , ân,2k+1) ∈ HD,M ′ s.t.G(â0,0, . . . , ân,2k+1) 6=
0. Then, we have that the rank of every sub-matrix of (Mq̄|p̄) over C(a0,0, . . . , an,2k+1) is
preserved under the substitution of ai,j’s with âi,j ’s and therefore

rankC(a0,0,...,an,2k+1)((Mq̄|p̄)) = rankC(a0,0,...,an,2k+1)(Mq̄) ⇐⇒ rankC((Mq̄|p̄)) = rankC(Mq̄)

after choosing (a0,0, . . . , an,2k+1) to be (â0,0, . . . , ân,2k+1), thus preserving the (non-)membership

of P̃ in

√

〈

Q̃1, . . . , Q̃k

〉

.

Time Complexity : Note that at any fixed (a0,0, . . . , an,2k+1), the coefficients of (P̃ (Ay))13r
2k+2

,

Q̃1(Ay), . . . , Q̃k(Ay) can be determined in time poly((nk)d̃·13r
2k+2

) and the matrix (Mq̄|p̄)
can be formed in time poly(V ). Similarly, rankC((Mq̄|p̄)) and rankC(Mq̄) can be deter-
mined in time poly(V ) using Gaussian elimination. Therefore, the relation rankC((Mq̄|p̄)) =
rankC(Mq̄) can be verified in time poly(V, (nk)d̃·13r

2k+3
). Hence, radical membership can be

determined in deterministic time |HD,M ′| · poly(V, (nk)d̃·13r2k+2
).

4.3 Deterministic Radical Membership

Being armed with Lemma 19, in this subsection, we finally present our algorithms for radical
membership. We first consider a whitebox version in which the factors are given explicitly
as it highlights the main approach for the blackbox case and is easier to understand.

Theorem 24 (Deterministic Whitebox Radical Membership). Let P := P1 · · ·Pd and, for
each i ∈ [k], Qi := Qi1 · · ·Qidi where Pi’s are homogenous of degree ≤ r1 and Qij ’s are
homogenous of degree ≤ r in C[x0, . . . , xn]. Given Pi’s and Qij ’s,

P1 · · ·Pd ∈?

√

〈Q11 · · ·Q1d1 , . . . , Qk1 · · ·Qkdk〉

can be decided deterministically in time d1 · · ·dk ·
(

d

rk

)

· (nkDM ′)O(D) · poly(V, (nk)d̃·13r2k+2
)

where d̃ = r1 · rk, E :=
(

2k+1+d̃·13r2k+2

2k+1

)

, V := k
(

2k+1+d̃·13r2k+2−r

2k+1

)

, M ′ := 2E+V and D :=

E · d̃ · 13r2k+2.

Proof. From Corollary 12, P ∈
√

〈Q1, . . . , Qk〉 if and only if

∀i = (i1, . . . , ik) ∈ [d1]× . . .× [dk] ∃Si ∈
(

[d]

rk

)

:
∏

j∈Si

Pj ∈
√

〈Q1i1 , . . . , Qkik〉.
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By iterating over all d1 · · ·dk i ∈ [d1]× . . .× [dk] and all
(

d

rk

)

Si ∈
(

[d]
rk

)

one can check if

∏

j∈Si

Pj ∈?

√

〈Q1i1 , . . . , Qkik〉.

Note that degree of
∏

j∈S Pj is ≤ d̃ := r1 · rk. Hence, from Lemma 19 we have that for E :=
(

2k+1+d̃·13r2k+2

2k+1

)

, V := k
(

2k+1+d̃·13r2k+2−r

2k+1

)

, M ′ := 2E+V and D := E · d̃ · 13r2k+2,
∏

j∈Si
Pj ∈?

√

〈Q1i1 , . . . , Qkik〉 can be decided deterministically in time |HD,M ′| · poly(V, (nk)d̃·13r2k+2
)

whereHD,M ′ is as defined in Proposition 4. From Proposition 4, |HD,M ′| = (nkDM ′)O(D).

We now present our algorithm for the blackbox case. The main step is to construct an
explicit set of projections s.t. on at least one of them the non-membership is maintained.
Once we are reduced to the case of bounded number of variables, we can simply interpolate
and check for radical non-membership explicitly as described previously.

Theorem 25 (Deterministic Blackbox Radical Membership). Let P := P1 · · ·Pd and, for
each i ∈ [k], Qi := Qi1 · · ·Qidi where Pi’s are homogenous of degree ≤ r1 and Qij ’s are
homogenous of degree ≤ r in C[x0, . . . , xn]. Given blackbox access to P and Qi’s,

P1 · · ·Pd ∈?

√

〈Q11 · · ·Q1d1 , . . . , Qk1 · · ·Qkdk〉

can be decided deterministically in time

(nkDM ′′)O(D) ·
{

(r1 · d)O(k) + k(r · dmax)
O(k) + (dr1 · 13(r · dmax)

2k+2)O(k) + poly(Ẽ · Ṽ )
}

where d̃ = r1 · rk, E :=
(

2k+1+d̃·13r2k+2

2k+1

)

, V := k
(

2k+1+d̃·13r2k+2−r

2k+1

)

, M ′′ :=
(

d

rk

)

· 2E+V , D :=

E · d̃ · 13r2k+2, dmax := max{d1, . . . , dk}, ˜̃d := dr1 · 13(r · dmax)
2k+2, Ẽ :=

(

2k+1+ ˜̃
d

2k+1

)

and

Ṽ := k
(

2k+1+
˜̃
d

2k+1

)

.

Proof. Step 1: Suppose P /∈
√

〈Q1, . . . , Qk〉. From Proposition 9, P /∈
√

〈Q1, . . . , Qk〉 if

and only if ∃(i1, . . . , ik) ∈ [d1] × . . . × [dk] s.t. P /∈
√

〈Q1i1 , . . . , Qkik〉. W.l.o.g. let P /∈
√

〈Q11, . . . , Qk1〉. From Claim 11,

∀S ∈
(

[d]

rk

)

:
∏

j∈S
Pj /∈

√

〈Q11, . . . , Qk1〉.

Note that for any fixed S ∈
(

[d]
rk

)

, degree of
∏

j∈S Pj is ≤ d̃ := r1 · rk. Hence, from Lemma 19

we have that for E :=
(

2k+1+d̃·13r2k+2

2k+1

)

, V := k
(

2k+1+d̃·13r2k+2−r

2k+1

)

, M ′ := 2E+V and D :=

E · d̃ · 13r2k+2

∃(â0,0, . . . , ân,2k+1) ∈ HD,M ′ :
∏

j∈S
Pj(Ây) /∈

√

〈

Q11(Ây), . . . , Qk1(Ây)
〉

.
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where F (Ây) := F
(

∑2k+1
j=0 â0,jyj, . . . ,

∑2k+1
j=0 ân,jyj

)

and HD,M ′ is as defined in Proposi-

tion 4. As there are
(

d

rk

)

choices of S, from the definition of HD,M ′ and proof of Lemma 19,

it follows that for E :=
(

2k+1+d̃·13r2k+2

2k+1

)

, V := k
(

2k+1+d̃·13r2k+2−r

2k+1

)

, M ′′ :=
(

d

rk

)

· M ′ and

D := E · d̃ · 13r2k+2

∃(â0,0, . . . , ân,2k+1) ∈ HD,M ′′ : ∀S ∈
(

[d]

rk

)

:
∏

j∈S
Pj(Ây) /∈

√

〈

Q11(Ây), . . . , Qk1(Ây)
〉

.

As degrees of Qij(Ây)’s is ≤ r, from Claim 11 we have P (Ây) /∈
√

〈

Q11(Ây), . . . , Qk1(Ây)
〉

and hence P (Ây) /∈
√

〈

Q1(Ây), . . . , Qk(Ây)
〉

. From Proposition 4, |HD,M ′′| = (nkDM ′′)O(D)

and hence such a Â can be guessed in (nkDM ′′)O(D) iterations.

Step 2: As P (Ây) is a (2k + 2)-variate polynomial of degree ≤ dr1, it can be interpolated
deterministically from its blackbox using the Klivans-Spielman interpolation (Theorem 26)
in time (dr1)

O(k).

Theorem 26 (Sparse Interpolation [KS01]). Given blackbox access to g ∈ C[y0, . . . , ym] of
degree ≤ δ and having at most s non-zero monomials, the non-zero monomials of g along
with their respective coefficients can be determined deterministically in poly(m, δ, s) time.

Similarly, Qi(Ây)’s can be interpolated in time k(r · dmax)
O(k).

Step 3: We now describe how to determine if P (Ây) ∈?

√

〈

Q1(Ây), . . . , Qk(Ây)
〉

. Let for

any polynomial F , F̃ := F (Ây). As Q̃i’s are (2k+2)-variate polynomials of degree ≤ r ·dmax,
from Theorem 23

P̃ ∈
√

〈

Q̃1, . . . , Q̃k

〉

⇐⇒ P̃ 13(r·dmax)2k+2 ∈
〈

Q̃1, . . . , Q̃k

〉

.

Let ˜̃P := P̃ 13(r·dmax)2k+2
. We have that degree of ˜̃P is ≤ ˜̃

d := dr1 · 13(r · dmax)
2k+2 and hence

it can be computed from P̃ in time (dr1 · 13(r · dmax)
2k+2)O(k) by straightforward unfolding.

Let Ẽ :=
(

2k+1+
˜̃
d

2k+1

)

and Ṽ := k
(

2k+1+
˜̃
d

2k+1

)

. From Lemma 22, ˜̃P ∈?

〈

Q̃1, . . . , Q̃k

〉

can be reduced

to determining the consistency of a linear system of size at most Ẽ × Ṽ . This can be
determined deterministically in time at most poly(Ẽ · Ṽ ).
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5 PIT for ΣΠΣΠ(k, r) Circuits

Having described our main result on radical membership, in this section we prove our main
theorem on blackbox PIT for ΣΠΣΠ(k, r) circuits. The algorithm will have two stages. The
first one covers the case of non SG circuits and will essentially be on the lines of the earlier
described blackbox radical membership. The second stage covers the case of SG circuits and
is conditioned on Conjecture 1 under which the transcendence degree of the simple part of
such a circuit is bounded. In this situation we will simply use the result by [BMS13, ASSS12]
for constructing a hitting set.

Theorem 27. Given blackbox access to the output f ∈ C[x1, . . . , xn] of a ΣΠΣΠ(k, r) circuit
C of degree ≤ d, f ≡? 0 can be decided deterministically in time

1. T := dO(k) · (nkD(M ′′′ + 2d))O(D) if C is not SG.

2. T + (dnλ′)O(rλ′) if Conjecture 1 is true (λ′ := λ(k, r, rk−1)).

where d̃ := rk, E :=
(

2(k−1)+1+d̃·13r2(k−1)+2

2(k−1)+1

)

, V := (k − 1)
(

2(k−1)+1+d̃·13r2(k−1)+2−r

2(k−1)+1

)

, D :=

E · d̃ · 13r2(k−1)+2 and M ′′′ :=
(

d

rk−1

)

· 2E+V .

Proof. Let f 6≡ 0. As we are in the blackbox case we can w.l.o.g. assume that C is min-
imal (otherwise we can eliminate a few gates to make it minimal). We are given that
f(x1, . . . , xn) =

∑k

i=1 Fi = gcd(C) · sim(C) where gcd(C) is a product of at most d polyno-
mials of degree ≤ r and sim(C) is a simple, minimal ΣΠΣΠ(k, r) circuit.

Homogenization : We first homogenize the circuit C w.r.t. a new variable x0 by obtaining
blackbox to F := xd

0 · f(x1

x0
, . . . , xn

x0
) which clearly is 0 iff f is 0. Then, we have that

F = G ·H(sim(C))

where H(sim(C)) is a simple minimal homogenous ΣΠΣΠ(k, r) circuit and G is a prod-
uct of at most 2d homogenous polynomials of degree ≤ r. Moreover, by definition of
SG-ΣΠΣΠ(k, r) circuits, sim(C) is SG iff H(sim(C)) is SG. Also, degree of H(sim(C)) is
≤ d. Let

F = G · (H(sim(C))) = G ·
(

k
∑

i=1

Qi

)

= G ·
(

k
∑

i=1

di
∏

j=1

Qij

)

(4)

where di’s are ≤ d and Qij ’s are irreducible and homogenous of degree ≤ r.

Proof of part (1.) : C is not SG

Therefore, H(sim(C)) is not SG. W.l.o.g. V (Q1, . . . , Qk−1) * V (Qk). This implies that

w.l.o.g. V (Q1,1, . . . , Qk−1,1) * V (Qk). By Hilbert’s Nullstellensatz Qk /∈
√

〈Q1,1, . . . , Qk−1,1〉.
From Claim 11,

∀S ∈
(

[dk]

rk−1

)

:
∏

j∈S
Qk,j /∈

√

〈Q1,1, . . . , Qk−1,1〉.
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Note that for any fixed S ∈
(

[dk]
rk−1

)

, degree of
∏

j∈S Qk,j is ≤ d̃ := r · rk−1.

Non-membership preserving projection : Hence, from Lemma 19 we have that for

E :=
(

2(k−1)+1+d̃·13r2(k−1)+2

2(k−1)+1

)

, V := (k − 1)
(

2(k−1)+1+d̃·13r2(k−1)+2−r

2(k−1)+1

)

, M ′ := 2E+V and D :=

E · d̃ · 13r2(k−1)+2

∃(â0,0, . . . , ân,2(k−1)+1) ∈ HD,M ′ :
∏

j∈S
Qk,j(Ây) /∈

√

〈

Q1,1(Ây), . . . , Qk−1,1(Ây)
〉

.

where P (Ây) := P
(

∑2(k−1)+1
j=0 â0,jyj, . . . ,

∑2(k−1)+1
j=0 ân,jyj

)

and HD,M ′ is as defined in

Proposition 4. As there are
(

dk
rk−1

)

choices of S, from the definition of HD,M ′ and proof of

Lemma 19, it follows that for E :=
(

2(k−1)+1+d̃·13r2(k−1)+2

2(k−1)+1

)

, V := (k−1)
(

2(k−1)+1+d̃·13r2(k−1)+2−r

2(k−1)+1

)

,

M ′′ :=
(

dk
rk−1

)

·M ′ and D := E · d̃ · 13r2(k−1)+2

∃(â0,0, . . . , ân,2(k−1)+1) ∈ HD,M ′′ : ∀S ∈
(

[dk]

rk−1

)

:
∏

j∈S
Qk,j(Ây) /∈

√

〈

Q1,1(Ây), . . . , Qk−1,1(Ây)
〉

.

As degrees ofQij(Ây)’s is≤ r, from Claim 11 we haveQk(Ây) /∈
√

〈

Q1,1(Ây), . . . , Qk−1,1(Ây)
〉

and hence, from Proposition 9, Qk(Ây) /∈
√

〈

Q1(Ây), . . . , Qk−1(Ây)
〉

. This further implies

thatQk(Ây) /∈
〈

Q1(Ây), . . . , Qk−1(Ây)
〉

which in turn implies thatQk(Ây) 6= −∑i∈[k−1]Qi(Ây)

and hence H(sim(C))(Ây) 6≡ 0. As Qk was chosen arbitrarily among the Qi’s and every di
is ≤ d this argument works in general if Â it chosen from HD,M ′′′ where M ′′′ :=

(

d

rk−1

)

·M ′.

Moreover, as G is a product of at most 2d homogenous polynomials of degree ≤ r ≤ D, for
M ′′′′ = M ′′′ + 2d, ∃Â ∈ HD,M ′′′′ s.t. H(sim(C))(Ây) 6≡ 0 and G(Ây) 6≡ 0, which in turn

implies F (Ây) 6≡ 0. From Proposition 4, |HD,M ′′′′ | = (nkDM ′′′′)O(D) and hence such a Â can
be guessed in (nkDM ′′′′)O(D) iterations.

Klivans-Spielman : Moreover, for any choice of Â, as F (Ây) is a 2k-variate polynomial of
degree ≤ d, its non-zeroness can be determined from its blackbox using the Klivans-Spielman
interpolation (Theorem 26) in deterministic time dO(k).

Time Complexity : Â can be guessed in (nkDM ′′′′)O(D) iterations and in each iteration
Klivans-Spielman algorithm takes dO(k) time. Total time taken is dO(k) ·(nkD(M ′′′+2d))O(D).

To summarize, if the condition of part (1.) was satisfied i.e. sim(C) was not SG and f 6≡ 0
then the above algorithm would have correctly determined its non-zeroness. This completes
our proof for part (1.) of the theorem.

Proof of part (2.) : If we are not given the guarantee of part (1.) then we are in the general
ΣΠΣΠ(k, r) case. We first run the algorithm described above for the case when sim(C) is not
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SG. From proof of part (1.) if sim(C) was not SG then we would have already determined
the non-zeroness of F . Therefore we need to run one more step to cover the case when
sim(C) is SG.

sim(C) is SG : This implies that H(sim(C)) in Equation (4) is SG. By following the first
few steps in Proof of part (1.), negating the assertions for Qij ’s and using Ideal-Variety
correspondence one can easily deduce the k sets Qi := {Qi1, . . . , Qidi} are sets of irreducible
homogenous polynomials in C[x0, . . . , xn] of degree ≤ r s.t. ∩iQi = ∅ and for every k −
1 Q1, . . . , Qk−1, each from a distinct set, there are P1, . . . , Prk−1 in the remaining set s.t.
V (Q1, . . . , Qk−1) ⊆ ∪iV (Pi). If Conjecture 1 is true then trdegC{Q11, Q12, . . . , Qkdk} ≤ λ′ :=
λ(k, r, rk−1). We now use a result by Beecken et al. [BMS13, ASSS12].

Theorem 28 (implicit in [BMS13, ASSS12]). Let f1, . . . , fm ∈ C[x0, . . . , xn] have degree
≤ r and trdegC ≤ λ. Let G = (G1, . . . ,Gn) be the generator for the class of degree ≤ rλ
polynomials in C[x0, . . . , xn]. Let C be a m-variate circuit over C s.t. C(f1, . . . , fm) 6≡ 0. Let
Φ : xi 7→ Gi+

∑λ

j=0 yi·wij where yi’s and w are new variables. Then, C(Φ(f1), . . . ,Φ(fm)) 6≡ 0.

As trdegC{Q11, Q12, . . . , Qkdk} ≤ λ′ and each factor of G has degree ≤ r, from Theorem 28,
map Φ preserves non-zeroness of G ·H(sim(C)). From Lemma 3, Gi are degree n polynomials
on t = O(rλ′) variables z1, . . . , zt. After the substitution we get a non-zero polynomial on
O(rλ′) variables of degree O(dnλ′). Hence by Lemma 3 a hitting set can be generated in
time (dnλ′)O(rλ′).

Time Complexity : The time required is the time taken in part (1.) + (dnλ′)O(rλ′).

6 Sylvester-Gallai Conjectures for Varieties

We now give a series of conjectures leading to our main conjecture under which we deran-
domize PIT for ΣΠΣΠ(k, r) circuits.

1. Kelly’s Theorem

Conjecture 29. Let Q1, . . . , Qm ∈ C[x0, . . . , xn] be irreducible and homogenous of degree
≤ r s.t. for every pair of distinct Qi, Qj there is a distinct Qk s.t. V (Qi, Qj) ⊆ V (Qk). Then
trdegC{Q1, . . . , Qm} ≤ λ(r).

Over C, by Nullstellensatz, the above condition can be restated as Qk ∈
√

〈Qi, Qj〉. For the
case r = 1 the above conjecture is true and is called Kelly’s Theorem.

2. Edelstein-Kelly Theorem

Conjecture 30. LetR,B,G be finite sets of irreducible homogenous polynomials in C[x0, . . . , xn]
of degree ≤ r s.t. R ∩B ∩G = ∅ and for every pair of Q,Q′ from distinct sets there is a Q′′

in the remaining set s.t. V (Q,Q′) ⊆ V (Q′′). Then trdegC(R ∪ B ∪G) ≤ λ(r).

Over C, by Nullstellensatz, the above condition can be restated as Q′′ ∈
√

〈Q,Q′〉. For the
case r = 1 the above conjecture is true over R and was proved by Edelstein and Kelly.
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We also need the following generalization of this conjecture to k colors.

Conjecture 31. Let F1, . . . , Fk be finite sets of irreducible homogenous polynomials in
C[x0, . . . , xn] of degree ≤ r s.t. ∩iFi = ∅ and for every k − 1 Q1, . . . , Qk−1’s, each from
a distinct set, there is a Qk in the remaining set s.t. V (Q1, . . . , Qk−1) ⊆ V (Qk). Then
trdegC(∪iFi) ≤ λ(k, r).

Over C, by Nullstellensatz, the above condition can be restated as Qk ∈
√

〈Q1, . . . , Qk−1〉.
For the case r = 1 the above conjecture is true over R and was first proved in [KS09].

3. Robust version of Conjecture 31

Conjecture 32. Let F1, . . . , Fk be finite sets of irreducible homogenous polynomials in
C[x0, . . . , xn] of degree ≤ r s.t. ∩iFi = ∅ and for every k − 1 Q1, . . . , Qk−1, each from a
distinct set, there are P1, . . . , Pc in the remaining set s.t. V (Q1, . . . , Qk−1) ⊆ ∪iV (Pi). Then
trdegC(∪iFi) ≤ λ(k, r, c).

Over C, by Nullstellensatz, the above condition can be restated as P1 · · ·Pc ∈
√

〈Q1, . . . , Qk−1〉.
For the case r = 1 this conjecture reduces to the case c = 1 by the irreducibility of vector
spaces. We note that our notion of robustness is different from that in [BDWY13].

4. Sparse versions of the above conjectures

We conjecture that the above conjectures also hold for d-degree s-sparse polynomials with
λ being a function of logn d, logn s (and k). For e.g. the corresponding sparse version of
Conjecture 29 is

Conjecture 33. Let S1, . . . , Sm ∈ C[x0, . . . , xn] be irreducible, homogenous, s-sparse poly-
nomials of degree ≤ d s.t. for every pair of distinct Si, Sj there is a distinct Sk s.t. V (Si, Sj) ⊆
V (Sk). Then trdegC{S1, . . . , Sm} ≤ λ(logn d, logn s).

Although its unclear at this point if it would be helpful or not but one can also start
by proving the above mentioned bounds for the co-dimension of the variety of the respec-
tive polynomial set. E.g. by proving that codim(V (Q1, . . . , Qm)) ≤ λ(r) instead of prov-
ing the bound on trdeg. Of course, this wouldn’t imply the bound on trdeg as for e.g.
codim(V (yx1, . . . , yxt)) = 1 but trdeg({yx1, . . . , yxt}) = t. For bounding trdeg one must
bound the co-dimension of every component of V (Q1, . . . , Qm).

We also conjecture that these conjectures also hold over R (the varieties are also taken in
Pn(R)) and hence one may also start by proving these over R.

We strongly note here that although we present the above conjectures in form of a series
leading to the one we require for derandomizing ΣΠΣΠ(k, r) PIT, this theme by no means
is limited to PIT and one can very well study other higher degree variants of the already
proved SG theorems, e.g. the quantitative SG theorems of [BDWY13].
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7 Approach for ΣΠΣΠ(k) circuits

In this section we state our overall approach for ΣΠΣΠ(k) PIT. Note that we have already
used the same approach to prove Theorem 27. Our approach is as follows

1. Sparse Irreducibility Testing

Problem 1 (Sparse Irreducibility Testing). Let S ∈ C[x0, . . . , xn] be s-sparse and of degree
≤ d. Decide if S is reducible over C in deterministic poly(n, s, d) time.

2. Generic Case : Sparse Radical Membership

Problem 2 (Sparse Radical Membership). Let P1, . . . , PD, S1, . . . , Sk ∈ C[x0, . . . , xn] be
homogenous s-sparse of degrees ≤ d and k = O(1). Decide in deterministic poly(n, s, d,D)
time if P1 · · ·PD ∈?

√

〈S1, . . . , Sk〉.
This would essentially solve ΣΠΣΠ(k) PIT in the generic case leaving only the degenerate
case of SG circuits. Currently, we do not even have a solution to this problem even for the
case when k = D = 1.

3. Degenerate Case : SG type theorems Prove the SG type conjectures for sparse
polynomials as stated in Section 6. Although we actually need to prove these for factors of
sparse polynomials, proving the conjectures for sparse polynomials would be a substantial
progress.

Conclusion

In this paper we presented new techniques for the problem of radical membership in com-
putational algebraic geometry, PIT in arithmetic complexity, and in the process, proposed a
new line of problems in incidence geometry. For PIT, we considered the model of ΣΠΣΠ(r, k)
circuits and presented an algorithm for it modulo a conjecture on the transcendence degree
of a set of varieties which have a lot of local dependencies. Moreover, our algorithm works
unconditionally for “most” ΣΠΣΠ(k, r) circuits. Although it is undeniable that PIT for
ΣΠΣΠ(k) circuits might very well have other approaches and algorithms, for us the motiva-
tion was to devise an approach which in the process also makes progress on other existing
fundamental problems in computational algebraic geometry. We conclude by highlighting
the two frontiers of our approach :

1. Prove/disprove Conjecture 29.

2. Solve Problem 1 on sparse irreducibility testing.

Acknowledgements

I thank MSR Outreach group and Satya Lokam for hosting me at MSR India where a major
part of this work was done. I am also immensely grateful to Amir Shpilka for championing
me in the community and for his constant support and encouragement.

26



References

[ASSS12] Manindra Agrawal, Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena.
Jacobian hits circuits: hitting-sets, lower bounds for depth-d occur-k formulas
& depth-3 transcendence degree-k circuits. In Proceedings of ACM Symposium
on Theory of Computing (STOC), pages 599–614, 2012.

[AV08] Manindra Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four.
In Proceedings of IEEE Foundations of Computer Science (FOCS), pages 67–75,
2008.

[BDWY13] Boaz Barak, Zeev Dvir, Avi Wigderson, and Amir Yehudayoff. Fractional
sylvester–gallai theorems. Proceedings of the National Academy of Sciences,
110(48):19213–19219, 2013.

[BM90] Peter Borwein and William OJ Moser. A survey of sylvester’s problem and its
generalizations. Aequationes Mathematicae, 40(1):111–135, 1990.

[BMS13] Malte Beecken, Johannes Mittmann, and Nitin Saxena. Algebraic independence
and blackbox identity testing. Information and Computation, 222:2–19, 2013.

[BSS89] Lenore Blum, Mike Shub, and Steve Smale. On a theory of computation and
complexity over the real numbers: NP-completeness, recursive functions and
universal machines. Bulletin (New Series) of the American Mathematical Soci-
ety, 21(1):1–46, 1989.

[CLO07] D.A. Cox, J.B. Little, and D. O’Shea. Ideals, Varieties, and Algorithms: An
Introduction to Computational Algebraic Geometry and Commutative Algebra.
Undergraduate Texts in Mathematics. Springer, 3rd edition, 2007.

[DE05] Alicia Dickenstein and Ioannis Z. Emiris, editors. Solving Polynomial Equa-
tions : Foundations, Algorithms, and Applications, volume 14 of Algorithms
and Computation in Mathematics. Springer, Berlin, 2005.

[DS06] Zeev Dvir and Amir Shpilka. Locally decodable codes with 2 queries and poly-
nomial identity testing for depth 3 circuits. SIAM Journal on Computing,
36(5):1404–1434, 2006.
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