Electronic Colloquium on Computational Complexity, Report No. 131 (2014)

A game characterisation of tree-like Q-Resolution size*

Olaf Beyersdorff!, Leroy Chew!, and Karteek Sreenivasaiah?

1 School of Computing, University of Leeds, UK
2 The Institute of Mathematical Sciences, Chennai, India

Abstract. We provide a characterisation for the size of proofs in tree-like Q-Resolution by
a Prover-Delayer game, which is inspired by a similar characterisation for the proof size in
classical tree-like Resolution [10]. This gives the first successful transfer of one of the lower
bound techniques for classical proof systems to QBF proof systems. We apply our technique to
show the hardness of two classes of formulas for tree-like Q-Resolution. In particular, we give a
proof of the hardness of the formulas of Kleine Biining et al. [20] for tree-like Q-Resolution.

1 Introduction

Proof complexity is a well established field that has rich connections to fundamental problems
in computational complexity and logic [14,21]. In addition to these foundational contributions,
proof complexity provides the main theoretical approach towards an understanding of the
performance of SAT solvers, which have gained a wide range of applications for the efficient
solution of practical instances of NP-hard problems. As most modern SAT solvers employ
CDCL-based methods, they correspond to Resolution. Lower bounds to the size and space of
Resolution proofs therefore imply sharp bounds for running time and memory consumption
of SAT algorithms. Consequently, Resolution has received key attention in proof complexity;
and many ingenious techniques have been devised to understand the complexity of Resolution
proofs (cf. [13,27] for surveys).

During the last decade there has been great interest and research activity to extend the
success of SAT solvers to the more expressive quantified boolean formulas (QBF). Due to its
PSPACE completeness, QBF is far more expressive than SAT and thus applies to further fields
such as formal verification or planning [6,26]. As for SAT solvers, runs of QBF solvers produce
witnesses respectively proofs of unsatisfiability, and there has been great interest in trying to
understand which formal system would correspond to the solvers. In particular, a number of
Resolution-based proof systems have been developed for QBF, most notably Q-Resolution,
introduced by Kleine Biining et al. [20], long-distance Q-Resolution [2], QU-Resolution [28],
and VExp+Res [19]. Designing two further calculi IR-calc and IRM-calc, a unifying framework
for most of these systems has recently been suggested in [7].

Understanding the lengths of proofs in these systems is very important as lower bounds to
the proof size directly translate into lower bounds to the running time of the corresponding
QBF-solvers. However, in sharp contrast to classical proof complexity we do not yet have
established methods that could be employed for this task. Very recently, the paper [8] intro-
duces a general proof technique for QBF systems based on strategy extraction, that allows to
transfer circuit lower bounds to proof size lower bounds. However, none of the techniques for
classical Resolution is known to be effective for QBF systems. Except for recent results shown
by the new strategy extraction method [8] all present lower bounds for QBF proof systems

* This work was supported by the EU Marie Curie IRSES grant CORCON, grant no. 48138 from the John
Templeton Foundation, and a Doctoral Training Grant from EPSRC (2nd author).

ISSN 1433-8092

are either shown ad hoc (e.g. [18] or the lower bound for KBKF(#) in [8]) or are obtained by
directly lifting known classical lower bounds to QBF (e.g. [15]).

Our contribution in this paper is to transfer one of the main game-theoretic methods from
classical proof complexity to QBF. Game-theoretic techniques have a long tradition in proof
complexity, as they provide intuitive and simplified methods for lower bounds in Resolution,
e.g. for Haken’s exponential bound for the pigeonhole principle in dag-like Resolution [23],
or the optimal bound in tree-like Resolution [9], and even work for strong systems [4] and
other measures such as proof space [17] and width [1]. A unified game-theoretic approach was
recently established in [12]. Building on the classic game of Pudldak and Impagliazzo [25] for
tree-like Resolution, the papers [9,11] devise an asymmetric Prover-Delayer game, which was
shown in [10] to even characterise tree-like Resolution size. Thus, in contrast to the classic
symmetric Prover-Delayer game of [25], the asymmetric game in principle allows to always
obtain the optimal lower bounds, which was demonstrated in [9] for the pigeonhole principle.

Inspired by this asymmetric Prover-Delayer game of [9-11], we develop here a Prover-
Delayer game which tightly characterises the proof size in tree-like Q-Resolution. The general
idea behind this game is that a Delayer claims to know a satisfying assignment to a false
formula, while a Prover asks for values of variables until eventually finding a contradiction. In
the course of the game the Delayer scores points proportional to the progress the Prover makes
towards reaching a contradiction. By an information-theoretic argument we show that the
optimal Delayer will score exactly logarithmically many points in the size of the smallest tree-
like Q-Resolution proof of the formula. Thus exhibiting clever Delayer strategies automatically
gives lower bounds to the proof size, and in principle these bounds are guaranteed to be
optimal. In comparison to the game of [9-11], our formulation here needs a somewhat more
powerful Prover, who can forget information as well as freely set universal variables. This
is necessary as the Prover needs to simulate more complex Q-Resolution proofs involving
universal variables and V-reductions.

We illustrate this new technique with two examples. The first was used by Janota and
Marques-Silva [18] to separate Q-Resolution from the system VExp+Res defined in [19]. We use
these separating formulas as an easy first illustration of our technique. Our Delayer strategy
as well as the analysis here are quite straightforward; in fact, a simple symmetric game in the
spirit of [25] would suffice to get the lower bound.

Our second example are the well-known KBKF(¢)-formulas of Kleine Biining, Karpinski
and Flogel [20]. In the same work [20], where Q-Resolution was introduced, these formulas
were suggested as hard formulas for the system. Very recently, the formulas KBKF(t) were
even shown to be hard for IR-calc, a system stronger than Q-Resolution [8]. In fact, a number
of further separations of QBF proof systems builds on the hardness of KBKF(t) [3,16] (cf.
also [8]). Here we use our new technique to show that these formulas require exponential-
size proofs in tree-like Q-Resolution. In terms of the lower bound, this result is weaker than
the result obtained in [8]. However, it provides an interesting example for our new game
technique. In contrast to the first example, both the Delayer strategy as well as the scoring
analysis is technically involved. It is also interesting to remark that here we indeed need the
refined asymmetric game. The formulas KBKF(¢) have very unbalanced proofs and therefore
we cannot use a symmetric Delayer, as symmetric games only yield a lower bound according
to the largest full binary tree embeddable into the proof tree (cf. [10]).

The remaining part of this paper is organised as follows. We start in Section 2 with setting
up notation and reviewing Q-Resolution. Section 3 contains our characterisation of tree-like
Q-Resolution in terms of the Prover-Delayer game. The two mentioned examples for this lower

bound technique follow in Sections 4 and 5, the latter of which contains the hardness proof
for KBKF(¢). We conclude with some open directions for future research in Section 6.

2 Preliminaries

A literal is a Boolean variable or its negation; we say that the literal = is complementary
to the literal -z and vice versa. If [is a literal, = denotes the complementary literal, i.e.
-z = x. A clause is a disjunction of zero or more literals. The empty clause is denoted by L,
which is semantically equivalent to false. A formula in conjunctive normal form (CNF) is a
conjunction of clauses. Whenever convenient, a clause is treated as a set of literals and a CNF
formula as a set of clauses. For a literal | = z or [= -z, we write var(l) for and extend this
notation to var(C) for a clause C' and var(¢)) for a CNF 1.

Quantified Boolean Formulas (QBF's) extend propositional logic with quantifiers with the
standard semantics that V. ¥ is satisfied by the same truth assignments as ¥[0/x] A ¥[1/z]
and Jz. ¥ as ¥[0/x] V ¥[1/x]. Unless specified otherwise, we assume that QBFs are in closed
prenex form with a CNF matriz, i.e., we consider the form Q1 X, ... O Xi. ¢, where X; are
pairwise disjoint sets of variables; Q; € {3,V} and Q; # Q;+1. The formula ¢ is in CNF and
is defined only on variables X1 U --- U Xg. The propositional part ¢ of a QBF is called the
matriz and the rest the prefiz. If a variable x is in the set X;, we say that x is at level ¢ and
write lev(z) = i; we write lev(l) for lev(var(l)), so against some conventions a higher level is
more to the right. A closed QBF is false (resp. true), iff it is semantically equivalent to the
constant 0 (resp. 1).

Often it is useful to think of a QBF 91X ... QrXi. ¢ as a game between the universal
and the existential player. In the i-th step of the game, the player Q; assigns values to the
variables X;. The existential player wins the game iff the matrix ¢ evaluates to 1 under the
assignment constructed in the game. The universal player wins iff the matrix ¢ evaluates to 0.
A QBEF is false iff there exists a winning strategy for the universal player, i.e. if the universal
player can win any possible game.

Q-Resolution, by Kleine Biining et al. [20], is a resolution-like calculus that operates on
QBF's in prenex form where the matrix is a CNF. The resolution rule allows two clauses to be
merged with the removal of an existential pivot. The universal reduction rule allows universal
literals to be removed but only on the condition that they are not blocked. The rules are
given in Figure 1. In a clause universal variable u is said to be blocked by an existential literal
e in that clause if and only if lev(u) < lev(e). A refutation of a QBF ¢ is a derivation of the
empty clause. However, as is common in the literature, we will use the terms ‘refutation of ¢’
and ‘proof of ¢’ synonymously.

—— (Axiom) C1U{z} Cx U {—a} .
C UG (Res)
C,C1,Cy are clauses in the matrix. Variable z is existential. If z € C1, then =z ¢ Cs.

C U {u} Variable u is universal. If x € C'is
C (V-Red) existential, then lev(z) < lev(u).

Fig. 1. The rules of Q-Resolution [20]

Q-Resolution derivations can be associated with a graph where vertices are the clauses
of the proof and each resolution inference € ED gives rise to two directed edges (C, E) and
(D, E). Likewise a universal reduction % yields an edge (C, D). In general, this graph can be
a dag. We speak of tree-like @Q-Resolution if we only allow Q-Resolution proofs which have
trees as its associated graphs. This means that intermediate clauses cannot be used more than
once and have to be rederived otherwise. There are exponential separations known between
tree-like and dag-like Resolution in the classical case (cf. [27]), and these easily carry over to

an exponential separation between tree-like and dag-like Q-Resolution.

3 Prover-Delayer game

In this section, we present a two player game along with a scoring system. The two players
will be called Prover and Delayer. The game is played on a QBF formula F. The Delayer
tries to score as many points as possible. The Prover tries to win the game by falsifying the
formula and giving the Delayer as small a score as possible. The game proceeds in rounds.
Each round of the game has the following phases:

1. Setting universal variables: The Prover can assign values to any number of universal
variables of her choice that are not blocked, i.e., a universal variable u can be assigned a
value by the Prover if all the existential variables with higher quantification level than
are currently unassigned.

2. Declare Phase: The Delayer can choose to assign values to any number of unassigned
existential variables of his choice. The Delayer does not score any points for this.

3. Query Phase: This phase has three stages:

(a) The Prover queries the value of any one existential variable = that is currently unas-
signed.

(b) The Delayer replies with weights pg and p; such that py + p; = 1.

(¢) The Prover assigns a value for x. If she assigns = = b for some b € {0, 1}, the Delayer
scores lg(pib) points.

4. Forget Phase: The Prover can forget values of any number of the assigned variables of her
choice. Any variable chosen by the Prover in this phase will lose its assigned value and
hence become an unassigned variable.

The Prover wins the game if any clause in F' is falsified. In every round, we check if the Prover
has won the game after each phase.
We will now show that our game characterizes tree like Q-Resolution.

Theorem 1. If ¢ has a tree-like Q-Resolution proof of size at most s, then there exists a
Prover strategy such that any Delayer scores at most 1g[5] points.

Proof. Let II be a tree-like Q-Resolution refutation of ¢. Informally, the Prover plays accord-
ing to II, starting at the empty clause and following a path in the tree to one of the axioms. At
a Resolution inference the Prover will query the resolved variable and at a universal reduction
she will set the universal variable. The Prover will keep the invariant that at each moment in
the game, the current assignment « assigns exactly all literals from the current clause C' on
the path in I, and moreover « falsifies C'. This invariant holds in the beginning at the empty
clause, and in the end, Prover wins by falsifying an axiom.

We will now give details and first describe a randomized Prover strategy. Let the Prover
be at a vertex in Il labeled with clause C'. We describe what the Prover does in the three
stages: Setting universal variables, Query phase and the Forget phase.

Setting universal variables: If the current clause C' was derived in the proof IT by a
V-reduction Cg'z , then Prover sets z = (0. This is possible as the current assignment contains
only variables from C and therefore z is not blocked. Prover then moves down to the clause
C' V z. The Prover repeats this till arriving at a clause derived by the Resolution rule (or
winning the game).

Query phase: Prover is now at a clause in I that was derived by a Q-Resolution step
%. If the Delayer already set the value of x in his Declare phase, then Prover just
follows this choice and moves on in the proof tree, possibly setting further universal variables.
She does this until she reaches a clause derived by Resolution, where the resolved variable
x is unassigned. Prover queries . On Delayer replying with weights wy and wi, the Prover
chooses x = ¢ with probability w;.

If z = 0, then Prover defines S to be the set of all variables not in Cy V x and proceeds
down to the subtree under that clause. Else, she defines S to be all variables not in Cy V -z
and proceeds down to the corresponding subtree.

Forget Phase: The Prover forgets all variables in the set S.

For a fixed Delayer D, let gp ¢ denote the probability (over all random choices made within
the game) that the game ends at leaf £. Let mp be the corresponding distribution induced on
the leaves.

For the Prover strategy described above, we have the following claim:

Claim. If the game ends at a leaf £, then the Delayer scores exactly ay = lg (L) points.

qD,¢

Proof. Note that since II is a tree-like Q-Resolution proof, there is exactly one path from the
root of IT to £. Let p be the unique path that leads to the leaf £ and let the number of random
choices made along p be m. Then, we have ¢p ¢ = [/, ¢; where g; is the probability for the
tth random choice made along p. Since p is the unique path that leads to ¢, the number of
points ay scored by the Delayer when the game ends at ¢ is exactly the number of points
scored when the game proceeds along the path p. The number of points scored by the Delayer

along p is given by:
- 1 1 1
Qp = Ig <> =lg — | =lg () O
; qi H qi qD.¢

)

O

The Prover strategy we described is randomized. The expected score over all leaves £ is
the following expression:

> apeew= D> apuls (q;g)

leaves £€1T leaves £€1T

But this quantity is exactly the Shannon entropy H(wp). Since D is fixed, this entropy
will be maximum when 7p is the uniform distribution; i.e., H(7wp) is maximum when, for all
leaves ¢, the probability that the game ends at £ is the same. A tree like Q-Resolution proof of
size s has at most [s/2] leaves. So the support of the distribution 7p has size at most [s/2]
and hence H(gp) <lg[s/2].

If the expected score with the randomised Prover is < 1g[s/2], then there is a deterministic
Prover who restricts the scores to at most lg[s/2]. Now we derandomise the Prover by just
fixing her random choices accordingly. If the delayer is optimal she can pick arbitrarily if not
she can pick to exploit this.

To obtain the characterisation of Q-Resolution we also need to show the opposite direction,
exhibiting an optimal Delayer:

Theorem 2. Let ¢ be an unsatisfiable QBFE formula and let s be the size of a shortest tree-
like Q-Resolution proof for ¢. Then there exists a Delayer who scores at least 1g[s/2] points
against any Prover.

Proof. For any unsatisfiable QBF formula ¢, let L(¢) denote the number of leaves in the
shortest tree-like Q-Resolution proof of ¢. For a partial assignment a to variables in ¢, let
¢|a denote the formula ¢ restricted to the partial assignment a.

The Delayer starts with an empty partial assignment a and changes a throughout the
game. On receiving a query for an existential variable x, the Delayer does the following;:

1. Updates a to reflect any changes made by the Prover to any of the variables. These changes
include assignments made to both universal variables as well as existential variables.

2. Computes the quantities £p = L(P|qz=0) and £1 = L(P|gz=1)-

3. Replies with weights wg = and w; =

0 b
Lo+ Llo+Ly”

We show by induction on the number of existential variables n in ¢ that the Delayer
always scores at least 1g L(¢) points: Base case n = 0, L(¢) = 0 and the Delayer scores at
least 0 points. Assume the statement is true for all n < k. Now for n = k, consider the first
query by the Prover, after she possibly made some universal choices according to the partial
assignment a. Let the queried variable be x. If the Prover chose = b where b € {0, 1}, then
the Delayer scores lg o for this step alone. After assigning « = b, the formula ¢|q z—p has k—1
existential variables and hence we use induction hypothesis to conclude that the remaining
rounds in the game give the Delayer at least 1g L(¢|q 2=5). Hence the total score is:

L(

2=0) "‘L((b‘a,m:l)
L(¢|a,z:b)
—1)) 2 1g L(¢la) = 1g L(9).

I (;) g L(blancs) = g g L(blans)

=lg (L(¢la,z=0) + L(

The last inequality holds, because if ¢|4 is unsatisfiable at all, then we can refute ¢ by deriving
a universal clause just containing all variables in the domain of a and then V-reduce.
The theorem follows since for any binary tree of size s, the number of leaves is [s/2].

4 A first example

We consider the following formulas studied by Janota and Marques-Silva [18]:

F, = E!equlElc%c% e EIeNuiElc}c? e EIenVunElc1 2

n n
/\(ei:c})A(uijc})/\(ﬁei:cf)/\ —u; = /\\/ﬁc v —c?)
i=1 i=1

These formulas were used in [18] to show that VExp+Res does not simulate Q-Resolution, i.e.,
F, requires exponential-size proofs in VExp+Res, but has polynomial-size Q-Resolution proofs.
Janota and Marques-Silva [19] also show that VExp+Res p-simulates tree-like Q-resolution,
and hence it follows that F;, is also hard for the latter system. We reprove this result using
our characterisation.

Let U = {u1,ug,...,u,} be the set of all universal variables. In the following, we show a
Delayer strategy that scores at least n points against any Prover.

Declare Phase: The Delayer executes the declare routine in Algorithm 1 repeatedly till
reaching a fixed point (i.e., until calling the algorithm does not produce any changes to the
current assignment).

Query Phase: For any variable queried by Prover, Delayer responds with weights (%, %)

For i € [n], let T; = {e;,c},c?}. Let C = \/I_; (—cl vV —c?). Note that except for C, all other
clauses have only two literals.

Lemma 3. Algorithm 1 never falsifies a clause that has only two literals.

Proof. Algorithm 1 declares values for either a variable ¢; or an e;. We look at each of these
cases below: Setting either ci1 or c?: Note that in the formula F, except for the clause C,
the variables cZ1 and c? appear as positive literals and on the right hand side of implications.
Hence setting either ci1 or c? to 1 does not falsify any clause.

Setting an e;: Algorithm 1 declares a value for e; only when at least one of ¢} or ¢7 has
value 0. Suppose w.l.o.g., ¢? was set to 0 when Algorithm 1 was executed. Then Algorithm 1
assigns e; to 1. However, note that if e; was unassigned when Algorithm 1 was called, then
it must be the case that ¢} is not set to 0 (because otherwise e; would have been set in
some previous execution of Algorithm 1). Hence assigning 1 to e; does not falsify the clause
(e; = c}) because ¢} was either true or unassigned before execution of Algorithm 1. O
Lemma 4. If the Delayer uses the strateqy outlined above, then for any winning Prover
strategy, the clause falsified is C.

Proof. Suppose the clause falsified was D. We will show that if D # C, then the Delayer did
not use our strategy. We consider the following cases:

1. D involves variable u; for some i € [n]:
Note that u; appears in clauses with either c} or cg. Since both c} and c? block wu;, it
has to be the case that when u; was set by the Prover, the variables c} and 012 were
unassigned. Now it is straightforward to see that if the Delayer indeed used the declare
routine described in Algorithm 1, then all clauses involving u; become satisfied after w; is
set by the Prover.

2. Dis (e; = c}) or (—e; = c2):
Suppose w.l.o.g. that D = (e; = cll) As a consequence of Lemma 3, it must be the case
that D was falsified because of the Prover choosing a value for either e; or c}. So we have
two cases:

Algorithm 1 Declare Routine
for all clauses ({1 = {2) in F,, do
if /1 = 1 then Declare ¢5 = 1.
if {3 = 0 and var(¢1) ¢ U then Declare ¢; = 0.
end for

— Prover chose a value for e; to falsify D: So e; was unassigned just before the query
phase began. But if Algorithm 1 left e; unassigned, then this means ¢; is unassigned or
c} # 0. Hence if the Delayer indeed used Algorithm 1, D could not have been falsified.

— Prover chose a value for ¢! to falsify D: Following an argument just like the previous
case, if the Delayer indeed used Algorithm 1, then ¢; would be unassigned at the start
of the query phase only if e; = 0 or e; was unassigned. In both these cases D cannot
be falsified by choosing a value for cl-l. a

Theorem 5. Delayer scores at least n points against any Prover strategy.

Proof. From Lemma 4, it is sufficient to show that any Prover strategy that falsifies C will
give the Delayer a score of at least n. C can be falsified only if all variables c}, ¢? have been
assigned to 1. We observe that for any i € [n], the Prover can get at most one of cl-1 or c? to
be declared for free by setting u; appropriately. To assign the other ¢; to 1, the Prover can
either query ¢; directly and set it to 1 or query e; and set it appropriately. Both these ways
give the Delayer 1 point. Hence for every i € [n], the Delayer scores at least 1 point. O

With Theorem 1 this reproves the hardness of F}, for tree-like Q-Resolution, already implicitly
established in [18,19]:

Corollary 6. The formulas F,, require tree-like Q-Resolution proofs of size 2(2").

Note that this bound is essentially tight as it is easy to construct tree-like Q-Resolution
refutations of size O(2").

5 Hardness of the formulas of Kleine Biining et al.

In our second example we look at a family of formulas first defined by Kleine Biining, Karpinski
and Flogel [20]. The formulas are known to be hard for Q-Resolution and indeed for the
stronger system IR-calc [8]. Here we use our technique to give an independent proof of their
hardness in tree-like Q-Resolution.

Definition 7 (Kleine Biining, Karpinski and Flégel [20]). Consider the clauses

C- = {-yo}

Co = {yo.~w, —wi}

C) =y xi, v~y CF =l mn oy, iy fordi et —1]
CY =yl e, v, ey CF = Ut~ ~Wes 1, Wire}

C?+i = {z¢, yeyi} Ctl—i-i = {2, Yeri} fori € [t]

The KBKF(t) formulae are then defined as the union of these clauses under the quantifier
prefiz 3yo, Y, yi Vo1 3y, ys Voo, . Va1 gyt Yy Jyer - yera

We now want to show an exponential lower bound on proof size for the KBKF(¢) formulas
via our game. We will assume throughout that ¢t > 2. We start with an informal description
of the Delayer strategy.

vilyz| vt
Yo cee Yt4+1|Yt42|- - - |Y2t
yilys| |ve

Fig. 2. Variables of KBKF(t)

Delayer strategy — informal description

We think of the existential variables of KBKF(#) to be arranged as shown in Figure 2.
At any point of time during a run of the game, there is a partial assignment to the variables
of the formula that has been constructed by the Prover and Delayer. We define the following:

Definition 8. For any partial assignment a to the variables, we define zq to be the index
of the rightmost column (see Figure 2) where a assigns a 0 to one or more variables in the
column. If no such column exists, then z = 0.

For convenience, we will drop the subscript and just say z when the partial assignment is
clear from context. We usually mention the time during a run of the game at which we are
referring to z instead of explicitly mentioning the induced partial assignment. The idea behind
the Delayer strategy is the following: We observe that for all ¢ < t—2 and j € {0, 1}, to falsify
the clause C’g , it is necessary that yi is set to 0 and both y?+1 and yilJrl are set to 1. The
strategy we design will not let the Prover win on clauses C? or C} for any i < (¢ —2). We do
this by declaring either y? ‘1 Or yil 1 to 0 at a well chosen time. Furthermore, we will show the
following statements: (1) When the game ends, z > ¢ and (2) After any round in the game,
the Delayer has a score of at least az where o > 0 is a global constant. It is easy to see that
the lower bound of (2(¢) for the score of the Delayer follows from statements (1) and (2).

We now give the idea behind the declare routine and the weights.

Declare routine: We will use the declare routine shown in Algorithm 2. The declare
routine is designed specifically to make sure that the game does not end at a clause Czb for
any i < (t — 2) and that statement (1) (at the end of the game z = ¢) holds. Note that line
8 of Algorithm 2 is very similar to the idea behind the declare routine in Section 4, i.e., if in
any round there is a clause C' that has only one existential variable y unassigned and C|,—
is unsatisfiable, then we declare y = —b in the immediate declare phase.

We will give away values of variables y? and yjl- for all j < z for free in the declare phase
in a way that it neither ends the game, nor make any progress in the game. We do this in
line 15 of Algorithm 2.

There are still some complications for the Delayer strategy; the Prover can set all universal
variables to 1 then query yg, y,?_l, etc. until y?, choosing 1 each time. Subsequently, the Delayer
will be forced to set yi to 0, then ya to 0 etc. until y} = 0. Then the Prover need only query
the variables in C} to get a contradiction. To counter such strategies, the Delayer declares
¥ to 0 instead of allowing it to be queried for the usual score. This is achieved in line 11 of
Algorithm 2. It allows the value of z to increase, but in this case only by 1.

Scoring: At the start of the game, we have z = 0, and at the end, we will have z > t.
We will make sure that z increases monotonically. So the higher the value of z, the closer the
Prover is to winning the game. Intuitively, the value of z is a mark of progress in the game
for the Prover. Hence our scoring is designed so that the Prover is charged for increasing the
value of z.

Algorithm 2 Declare Routine
Pyl 1yl

2=z
if yI= # 0 or z, unassigned then

for all i >zdoy) < 1;y} + 1
end if
fori=t¢t—1to1ldo

for j=0to 1 do

if C’Z is not satisfied with only one literal that is unassigned then Satisfy CZ with that literal (if

existential).
9: end for
10: end for
11: if z <t — 2 and either 2,5 =1 or yL,, = 1 then yi;f”l «~0
12: if z # 2/, =, assigned and y¥* = 0 then
13: if .41 unassigned then y2,, + 0 else yiifz «~0
14: end if
15: for all i < z do 32 < 0, y! <0

At some intermediate round in the game, if the Prover queries variable ¢! or y} for some
i > z, our strategy charges a score proportional to (i —z) for letting the Prover set the variable
queried to 0. However, in some cases, we will have to adjust this so that the Delayer scores
more if the declare phase immediately forces z to an even higher value. If the effect is not
immediate the Delayer can force the Prover to change the universal variables by declaring a
0 at yil |1 Or y? .1 depending on the universal variables (see line 12 of Algorithm 2).

Delayer strategy — details

We now give full details of the Delayer strategy.

Declare Phase: The Delayer sets yg to 0 in the declare phase of the first round.

Let F be the set of all existential variables that were chosen to be forgotten by the Prover
in the forget phase of the previous round. The Delayer first does the following “Reset Step”:
For all variables ¢ in F' that had value 0 just before the forget phase of the previous round,
the Delayer declares y = 0.

After the reset step, the Delayer executes Algorithm 2 repeatedly until reaching a fixed
point. The notation y < b means that the Delayer declares y = b if and only if y is an
unassigned variable. Also, we assume that z is updated automatically to be the index of the
rightmost column that contains a 0 (see Figure 2).

We observe the following about the reset step:

Observation 9 The reset step ensures that z always increases monotonically (when z is
measured at the beginning of each query phase).

Line 15 of Algorithm 2 gives us the following observation:

Observation 10 After the declare phase, for all i < z, the existential variables y? and yil
has been assigned a value.

Observation 11 For all i > z, Algorithm 2 assigns all y) and y} to 1 before assigning any
of them to 0.

10

Query Phase:
Let the variable queried be yf . From Observation 10, it is easy to see that ¢ > z. We have the
following cases:

=21 and w; =1 — wy.

— If ¢ > t, then the Delayer replies with weights wq
— Else z < i <t. We have two cases:
e If x; is unassigned, then the Delayer replies with weights wg = 2°~% and wy = 1 — wy.
e Else x; holds a value. Then we have the following cases:
* If b = —x;, then the Delayer replies with weights wy = 2°7% and w; = 1 — wy.
+ Else b = z; and Delayer replies with weight wg = 277, where j is the largest index
such that V& : z < k < j, z) is assigned and y1 k=1, Weight wy = 1 — wy.

We now analyze the above Delayer strategy: We start with the following lemma:

Lemma 12. If the Delayer uses the strategy outlined above, then against any Prover, at the
end of the game on KBKF(t), z >t (where z is defined as in Definition 8).

Proof. The Prover cannot win on the clause —yy because the Delayer always sets 39 to 0.
Suppose the Prover wins on the clause C? for some i € [t] and b € {0,1}. Then, we have the
following claim:

Claim. At the end of the game, z = 1.

Proof. The clause C’f has head yi? . Since C’Zb was falsified, the variable yib must have been set
to 0 permanently after some move in the game. We show that z = ¢ by observing semantically
that we would need to find a contradiction in the clauses with variables below the level of 30.
We know that if we have at least one of y?, yJ1 to be 0 then both the clauses containing the
negative literals are already satisfied. If we know that both are already assigned to 1 then it
means that yf]_ 7' gets set to 1 by the declare phase, and using our remark, this must happen
before z > j. The declare phase sets all other literals before 40 to 0, without a contradiction.

Note that Algorithm 2 (Line 8) prevents these clauses from being refuted in the immediate
query phase that follows. Hence we only consider the case where this clause is falsified in the
declare phase.

We will show that setting y;* to 0 is not the winning move in a declare phase. If it was the
winning move then it must be that immediately before we have a different zand ¢t = z+ 1,
where yzz+1 gets set to 0 in the declare phase. This requires that both yz o= =yl 19 =1, but
then by Observation 11, y;* will be set to 1 immediately before, contradicting it getting set
to 0. This means that the winning move can only be done by declaring y;[{" to 1 or y, _f”rl
to 1. Only y; “‘1 can be set in the declare phase (because the universal variable is essential),

but this requires yll 41 =1and y;* = 0. We can assume that none of these were set in the
previous query phase, as what is set in the previous query phase must cause the y; ’“ to be
set to 1 and, looking at the clauses, must be a higher level. Therefore in the declare phase
before that we must have yH =1,y =0and y;""" unassigned. So by Line 8 y{1" is set
to 0 in that declare phase (and the Delayer will replace the 0 if the Prover chose to forget it),
therefore it cannot be declared to 1 in the next turn. O

Remark 13. If the Prover choses to assign 1 to a variable queried in the query phase on turn k&,
then by the query phase on turn k+ 1, the value of z (index of the rightmost zero) increments
by at most 1. For the increase by 1 it is required that 372 = 0 and that for all ¢ € {0,1}, y¢,

11

and y7,, are unassigned before the query phase on turn k. If the Prover chose to assign 1 to
the variable queried and it results in a change of z, then it must cause any of y2, 1, ¥, 1, ¥2,,
or yl., to be set to 1, incrementing z be at most one.

For all ¢ € [t], and z < t — 1, let s,(yf) denote the minimum (over all possible Prover
strategies) Delayer score when yf is assigned 1 by the Prover for the first time starting from
a partial assignment where the right most zero is in column z and every variable to the right
of column z is unassigned.

Of note is that s,(yf) for ¢ > z + 1 does not depend on the values of y?,y]l for j <1
(apart from giving a value to z) when the game is being played as described. This can be seen
because the Delayer does not base the scores on these values and these values cannot cause
higher index values to be declared to 1.

Combining Observation 9 with the fact that at the start of the game z = 0, Lemma 12
implies that the Prover increases z by at least ¢ in the process of winning the game. We will
now measure the scores that the Delayer accumulates.

Lemma 14. For all z <t —1 and i < t, each of s,(y?) and s.(y}) is at least 2!7*1g 23::
Proof. Suppose in the first round, the Prover sets x; = 1. Since all existential variables of
greater level are unassigned she could then somehow set y?H = 1 at cost sz(yilﬂ). Subse-
quently, she could still change all universal variables at level greater than lev(y? ',1) and delete
all existential variables afterwards, and thus can get yl1 11 = lat cost s, (yz1 1) without deleting
Y2, 1. At this point y! = 1 by the declare phase. This means s.(y}) < 2s.(y}4).

Suppose s (y}) # 25 z (yzl 1) then it is cheapest for the Prover to query y} immediately. This
) =20+ 2 — 2z — 1g (22112722 — 21+2=2) points. Instead the Prover

2i—7— 1
could query both ! and y} and this gives 21g 212““2 - T =2i+2—-2z— lg (2214222 _9it2-2 1 1)

which is slightly cheaper hence s.(y}) = 25 (y}4).
Recursively s,(y}) = 27%s.(yt). y} can be set to 1 by querying it or by querying all
variables in the next existential level however in the asymptotic case it will be cheaper to
. . 1\ ot—z 0y 1 . .
query it directly. Hence s (y;) = 1g 57==—. By symmetry, s.(y;) = s.(y;) as at the beginning
the Prover is free to switch the polarities of all the universal variables with no cost. a

gives the Delayer. lg(52-—

During a run of the game, z increases from 0 to t. Now we show that the Delayer scores (2(z)
points during any particular run of the game on KBKF(¢) for large enough t:

Lemma 15. There exists constants tg > 0 and o > 0 such that for all t > tg, at any point
of time during a run of the game on KBKF(t), the Delayer has a score of at least az.

Proof. We will take the lemma as an inductive hypothesis on z. On the first turn the Delayer
sets z = 0 and the Delayer has zero points.

The value of z can change from the Prover picking a 0 in the query phase, in this case the
Delayer either scores i — z points when nothing happens in the declare phase, or gets j — z
points when then 0 moves down j + 1 — z. When 2z doesn’t change in the declare phase, it is
the only case where the Prover is not forced to delete all the higher level existential literals
and switch the universal variable z; and so may get the z to be incremented by 1 at a cheaper
cost than s(y2,,) (which will be our lower bound when 1 is assigned by the Prover to an
existential variable to force a change in z). However this is not a problem as we only get this
once per time z is changed, hence the Delayer gets at least § points if z changes by n.

12

As remarked earlier, the value of z can change by at most 1 if Prover chooses to assign 1
to a queried variable. This can result from 1 being assigned after a query on y{ ; or yilJ:f, in
this case as y?+2 and yz1 o are unassigned the cost of these are 1, so the Prover gets enough
points. Now we only need to look at the case where a y! g Or y! 1o gets set to 1 and we start
with unassigned existential literals for higher levels than z. Here we know from Lemma 14
that the minimum cost is %2*‘2 lg(%). Note that ¢ is the only variable in this expression
since at any fixed point of time during a run of the game, the value of z is fixed. This quantity
can be written as f(z) = fzlg(-%) where z = 272, It is easy to see that the limit of f(z)
as x tends to infinity is the constant ;. This implies that f(z) € £2(1). So the Delayer
gets £2(1) points each time the Prover increments z by 1. More precisely, using the definition
of big-Omega, there exists constants 5 > 0 and « > 0 such that for all games played on
KBKF(t) for a t > to, the Delayer scores at least o points each time the Prover increases z
by 1. O

Combining Lemma 12 and Lemma 15, we have:

Theorem 16. There exists a Delayer strategy that scores §2(t) against any Prover in the
Prover-Delayer game on KBKF(t).

Combining Theorem 1 and Theorem 16, we obtain:

Corollary 17. The formulas KBKF(t) require tree-like Q-Resolution proofs of size 2102(t)

6 Conclusion

In this paper we have shown that lower bound techniques from classical proof complexity can
be transferred to the more complex setting of QBF proof systems. We have demonstrated
this with respect to a game-theoretic method, even obtaining a characterisation of tree-like
size in Q-Resolution. Although tree-like (Q-)Resolution is a weak system, it is an important
one as it corresponds to runs of the plain DLL algorithm, which serves as the basis of most
SAT and QBF-solvers.

A very interesting question for further research is to understand how far this transfer
of techniques can be extended. In particular, it seems likely that the very general game-
theoretic approaches of Pudldk [23] or Pudldk and Buss [4,24] can also be utilised for QBF
systems. Two other seminal techniques that have found wide-spread applications for classical
Resolution are feasible interpolation [22], which also applies to many further systems, and the
size-width method of Ben-Sasson and Wigderson [5]. Is it possible to use analogous methods
for Q-Resolution and its extensions?

References

1. Albert Atserias and Victor Dalmau. A combinatorial characterization of resolution width. Journal of
Computer and System Sciences, 74(3):323-334, 2008.

2. Valeriy Balabanov and Jie-Hong R. Jiang. Unified QBF certification and its applications. Formal Methods
in System Design, 41(1):45-65, 2012.

3. Valeriy Balabanov, Magdalena Widl, and Jie-Hong R. Jiang. QBF resolution systems and their proof
complexities. In SAT, pages 154-169, 2014.

4. Eli Ben-Sasson and Prahladh Harsha. Lower bounds for bounded depth Frege proofs via Buss-Pudldk
games. ACM Transactions on Computational Logic, 11(3), 2010.

13

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow - resolution made simple. Journal of the
ACM, 48(2):149-169, 2001.

Marco Benedetti and Hratch Mangassarian. QBF-based formal verification: Experience and perspectives.
JSAT, 5(1-4):133-191, 2008.

Olaf Beyersdorff, Leroy Chew, and Mikold§ Janota. On unification of QBF resolution-based calculi. In
MFCS, pages 81-93, 2014.

Olaf Beyersdorff, Leroy Chew, and Mikolds Janota. Proof complexity of resolution-based QBF calculi.
Electronic Colloquium on Computational Complexity, 21:120, 2014.

Olaf Beyersdorff, Nicola Galesi, and Massimo Lauria. A lower bound for the pigeonhole principle in tree-
like resolution by asymmetric prover-delayer games. Information Processing Letters, 110(23):1074-1077,
2010.

Olaf Beyersdorff, Nicola Galesi, and Massimo Lauria. A characterization of tree-like resolution size. In-
formation Processing Letters, 113(18):666-671, 2013.

Olaf Beyersdorff, Nicola Galesi, and Massimo Lauria. Parameterized complexity of DPLL search proce-
dures. ACM Transactions on Computational Logic, 14(3), 2013.

Olaf Beyersdorff and Oliver Kullmann. Unified characterisations of resolution hardness measures. In SAT,
pages 170-187, 2014.

Samuel R. Buss. Towards NP-P via proof complexity and search. Ann. Pure Appl. Logic, 163(7):906-917,
2012.

Stephen A. Cook and Phuong Nguyen. Logical Foundations of Proof Complexity. Cambridge University
Press, 2010.

Uwe Egly. On sequent systems and resolution for QBFs. In SAT, pages 100-113, 2012.

Uwe Egly, Florian Lonsing, and Magdalena Widl. Long-distance resolution: Proof generation and strategy
extraction in search-based QBF solving. In LPAR, 2013.

Juan Luis Esteban and Jacobo Tordn. A combinatorial characterization of treelike resolution space.
Information Processing Letters, 87(6):295-300, 2003.

Mikolds Janota and Joao Marques-Silva. VExp+Res does not p-simulate Q-resolution. International
Workshop on Quantified Boolean Formulas, 2013.

Mikolds Janota and Joao Marques-Silva. On propositional QBF expansions and Q-resolution. In SAT,
pages 67-82, 2013.

Hans Kleine Biining, Marek Karpinski, and Andreas Flogel. Resolution for quantified Boolean formulas.
Inf. Comput., 117(1):12-18, 1995.

Jan Krajicek. Bounded Arithmetic, Propositional Logic, and Complexity Theory, volume 60 of Encyclopedia
of Mathematics and Its Applications. Cambridge University Press, Cambridge, 1995.

Jan Krajicek. Interpolation theorems, lower bounds for proof systems and independence results for bounded
arithmetic. The Journal of Symbolic Logic, 62(2):457-486, 1997.

Pavel Pudldk. Proofs as games. American Math. Monthly, pages 541-550, 2000.

Pavel Pudldk and Samuel R. Buss. How to lie without being (easily) convicted and the length of proofs
in propositional calculus. In CSL, pages 151-162, 1994.

Pavel Pudlak and Russell Impagliazzo. A lower bound for DLL algorithms for SAT. In Proc. 11th
Symposium on Discrete Algorithms, pages 128-136, 2000.

Jussi Rintanen. Asymptotically optimal encodings of conformant planning in QBF. In AAAI pages
1045-1050. AAAI Press, 2007.

Nathan Segerlind. The complexity of propositional proofs. Bulletin of Symbolic Logic, 13(4):417-481,
2007.

Allen Van Gelder. Contributions to the theory of practical quantified Boolean formula solving. In Michela
Milano, editor, CP, volume 7514, pages 647—-663. Springer, 2012.

14

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

